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Abstract. Reconstructing 3D faces with facial geometry from single 
images has allowed for major advances in animation, generative models, 
and virtual reality. However, this ability to represent faces with their 
3D features is not as fully explored by the facial expression inference 
(FEI) community. This study therefore aims to investigate the impacts 
of integrating such 3D representations into the FEI task, specifically for 
facial expression classification and face-based valence-arousal (VA) esti-
mation. To achieve this, we first evaluate the performance of two 3D face 
representations (both based on the 3D morphable model, FLAME) for 
the FEI tasks. We further explore two fusion architectures, intermediate 
fusion, and late fusion, for integrating the 3D face representations with 
existing 2D inference frameworks. To evaluate the proposed architecture, 
we extract the corresponding 3D representations and perform extensive 
experiments on the AffectNet and RAF-DB datasets. The experimental 
results show that our method outperforms the state-of-the-art in Affect-
Net VA estimation and RAF-DB classification tasks. Furthermore, our 
method can serve as a complement to other existing methods to boost 
performance in many emotion inference tasks. 

Keywords: 3D Face Representations · Facial Expression Inference · 
Intermediate and Late Fusion 

1 Introduction 

Facial expressions play a significant role in social interactions, as it can provide 
insights into a person’s feelings toward other individuals or events. Mehrabian 
and Wiener [ 45] suggest that 55% of communication is perceived through facial 
expressions. AI-based automated emotion analysis enhances user experience and 
it has well-known applications in autonomous driving [ 9], online course learning 
[ 4], security [ 41,48], healthcare [ 47], medical rehabilitation [ 67], employee job 
retention [ 51], and many other social situations. 
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In the domain of facial expression inference (FEI) 1, there are two primary 
tasks: discrete and continuous facial expression inference. Discrete or categorical 
inference aims to assign facial expressions into distinct emotional categories, such 
as anger, sadness, joy/happiness, surprise, fear, disgust, contempt and neutral, 
whereas continuous inference assigns facial expressions within a continuous 2D 
numerical space; where the two dimensions are extents of valence (the extent of 
pleasant or unpleasant response to an emotional stimulus) and arousal (the state 
of physiological activation and alertness resulting from an emotional stimulus). 
Discrete classification has advanced quickly due to the ease of data annotation. 
However, the highly abstract nature of labels makes cross-cultural consensus 
difficult [ 2]. Additionally, experts disagree on the number of emotion categories 
[ 13,14,19,54], which have increased from 7 to 135 [ 7]. Continuous circumplex 
emotion modeling [ 55] further quantifies emotions and promotes research, but it 
is challenging to annotate accurately and suffers from bias [ 32,46]. To mitigate 
this, researchers typically try to increase the number of human observers to 
reduce bias [ 52]. Although both types of analysis have certain data limitations, 
combining them offers complementary benefits. Therefore, we believe that the 
model’s analysis should consider both perspectives. 

Recently, 3D mesh reconstruction from static human-centric images has 
shown impressive achievements across various applications [ 12,56,65,69]. In par-
ticular, reconstructing 3D faces from monocular images using facial geometry has 
proven effective in capturing extreme, asymmetric, and subtle expressions accu-
rately. Regressing parameters from images as a lightweight 3D representation 
can disentangle facial shape and expression, and easily generate 3D facial geom-
etry using a morphable model like FLAME [ 40]. Therefore, a natural progression 
is to integrate this technology into facial expression inference. However, limited 
research has investigated the significance and impact of the parameters involved, 
and how they can enhance FEI. In this work, we investigate the performance 
of two latest 3D face regression models, EMOCA [ 10] and SMIRK [ 53], in the 
context of the FEI task. 

Data fusion is a process dealing with data and information from multiple 
sources to achieve improved information for decision-making [ 17]. This paper 
addresses the fusion of information from 2D images with parameters regressed 
from 3D perspectives, presenting significant challenges and uncertainties. A 
major issue is the heterogeneity of feature representations. Features from dif-
ferent modalities can vary greatly, requiring effective methods to integrate these 
diverse features seamlessly. Therefore, this paper proposes two architectures, 
intermediate fusion and late fusion, to investigate the impact of different fusion 
methods on facial expression inference performance. 
In summary, the contributions of this work are as follows: 

First, We provide insights into the parameters of 3D face representation (pose, 
shape, expression, jaw, etc.) and compare the two recent 3D face representa-

1 Wagner et al . [61] postulate that facial expressions are inferred and not recognized, 
hence the use of the term FEI, rather than the more popular term FER - facial 
expression recognition. 
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tion models, SMIRK and EMOCA on the benchmark datasets. Experiments 
showcase that EMOCA 3D representation achieves better performance on 
FEI tasks. 
We introduced two architectures for integrating 3D representations: interme-
diate fusion and late fusion. Our experiments demonstrate that the late fusion 
architecture achieves superior performance. 
Lastly, we present a simple and effective architecture that can be flexibly 
adapted to various affective reasoning tasks. Extensive experiments demon-
strate the efficiency of our method, with results surpassing the state-of-the-art 
in AffectNet VA estimation and RAF-DB classification. 

2 Related Work 

Facial Expression Inference Datasets 

The continuous development of datasets has driven the advancement of AI-based 
affective models. Early datasets such as JAFFE [ 44], CK+ [ 43], and KDEF [ 6] 
primarily collected expressions under 7 or 8 discrete categories. Subsequently, 
in-the-wild datasets like FER2013 [ 16], AffectNet [ 46], RAF-DB [ 38,39], and Aff-
Wild2 [ 22– 34,68] further increased the scale of data. EmotionNet [ 3], LIRIS CSE 
[ 21] and MAFW [ 42] extended the discrete labels by including compound annota-
tions to better capture the richness of human emotions. Additionally, fine-grained 
discrete labels have been explored in datasets like F2ED [ 71] and Emo135 [ 62]. 
Having both discrete and continuous annotations also opens up new avenues for 
research breadth [ 1,35,46] Contextual information is consciously considered and 
collected in the EMOTIC [ 35] and VEATIC [ 52] datasets. 

To better compare performance advantages, this paper selects the widely 
studied AffectNet and RAF-DB datasets for analysis. AffectNet includes 287,651 
training images and 3,999 validation images (typically used as test data in 
experiments). It provides annotations for 8 distinct categories and VA (Valence-
Arousal) annotations. RAF-DB includes 12,272 images for training and 3,096 
images for testing, covering 7 distinct categories. Additionally, the dataset con-
tains labels related to attributes such as gender, age, and more. 

Facial Expression Inference Models 

Discrete expression inference on datasets like AffectNet and RAF-DB has made 
continuous progress. The current top accuracy models [ 50] on both datasets are 
the same: DDAMFN, FMAE, BTN, and ARBEx. DDAMFN [ 70] integrates a 
Mixed Feature Network (MFN) as the backbone and a Dual-Direction Atten-
tion Network (DDAN) as the head. FMAE [ 49] introduces Identity Adversarial 
Training (IAT) and pre-trains a Facial Mask Autoencoder. S2D [ 8] proposes  
the Static-to-Dynamic Model to improve Dynamic Facial Expression Recogni-
tion (DFER) in videos. BTN [ 18] includes Multi-Level Attention (MLA) and 
Batch Transformer (BT) modules to address uncertainty and noisy data in Facial



Ig3D 407

Expression Recognition (FER). ARBEx [ 63] incorporates learnable anchors and 
a multi-head self-attention mechanism in the embedding space to tackle class 
imbalance, bias, and uncertainty in expression learning tasks. 

Regarding continuous expression VA inference, CAGE [ 61] is the current 
state-of-the-art framework. It uses a small-scale pre-trained version of the Multi-
Axis Vision Transformer (MaxVIT) [ 60] along with a lightweight EfficientNet 
model [ 58]. The core insight is to train both discrete category and VA estima-
tion simultaneously, using the combined checkpoint to enhance VA inference. 
Therefore, DDMFN and CAGE frameworks are employed as our 2D image-side 
backbones for fusion analysis. 

Data Fusion 

Intermediate fusion allows data fusion at different stages of model training by 
transforming input data into higher-level feature representations through mul-
tiple layers [ 37]. It offers flexibility at different depths of fusion. In the context 
of deep learning with multimodal data, intermediate fusion involves merging 
different modal representations in a single hidden layer, enabling the model to 
learn joint representations. To improve performance, data dimensionality can be 
adjusted [ 11,66]. 

Late fusion involves independently processing data sources at the decision 
stage before fusing the results [ 37]. This technique is inspired by the popular-
ity of ensemble classifiers [ 36]. When data sources differ significantly in sampling 
rate, data dimensionality, and measurement units, this technique is much simpler 
than early fusion methods. Since errors from multiple models are handled inde-
pendently, they are uncorrelated, and late fusion typically yields better perfor-
mance. Many researchers use late or decision-level fusion to address multimodal 
data problems [ 20,57,64]. 

3 Face Representation with 3D Morphable Models 

Although there are many different 3D face representation models, in this work, 
we are mainly considering 3D morphable models (3DMM), which have been 
widely used in widely used in facial geometry reconstruction tasks. These models 
regress the 3D representations of faces from 2D images, by projecting the input 
2D image onto the previously established 3DMM space, to obtain shape, pose, 
expression, and detail coefficients. Nonlinear optimization techniques are then 
used to refine these parameters by minimizing a cost function. The pipeline 
demonstrating the relationship between face regression and 3DMM is shown in 
Fig. 1 Below, we briefly introduce the widely used FLAME model and the two 
latest FLAME-based regression tasks EMOCA and SMIRK. 

FLAME [ 40] is a 3DMM used for synthesizing detailed and expressive 3D 
models of human heads. It accomplishes this by exploiting a linear shape space 
trained from a large dataset of 3D scan sequences (4D with time). The model
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Fig. 1. A standard pipeline for 3D facial geometry reconstruction from an image. Left: 
The regression model extracts disentangled 3D parameter representations from the 
images. Right: These parameters are utilized to reconstruct the 3D facial geometry 
using a 3D Morphable Model. 

uses Principal Component Analysis (PCA) to create a low-dimensional repre-
sentation of facial shapes and this involves identifying the principal components 
(PCs) that capture the most variance in the facial shapes from the training 
data. Thus, any new face can be represented as a linear combination (the shape 
parameters) of these principal components. By adjusting the weights of these 
components, FLAME can generate a wide variety of facial shapes. To improve its 
fidelity, FLAME also includes pose-dependent corrective blendshapes and global 
expression blendshapes. The global blendshapes are predefined facial expressions 
that are added to the base facial shape. They capture various facial movements 
associated with emotions, such as smiling, frowning, or surprise. 

Figure 2 shows a few examples of the resulting synthesized faces when various 
model parameters are altered. The images were created from the FLAME Model 
Viewer located on the authors’ site 2. 

Fig. 2. 3D Representation Visualization.

2 https://flame.is.tue.mpg.de/. 

https://flame.is.tue.mpg.de/
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EMOCA [ 10] extends the previously trained face reconstruction framework, 
DECA [ 15], which reconstructs a detailed 3D face model by learning the FLAME 
parameters from a single RGB image. The model uses a combination of land-
mark losses, photometric losses, and perceptual emotion consistency loss during 
training to ensure the reconstructed 3D faces accurately convey the emotional 
content of the input images. The EMOCA model regresses a total of 334 param-
eters: 100 for shape, 50 for emotional expressions, 6 for pose, 100 for detail, 50 
for texture, and others including pose-dependent and articulated components. 

SMIRK [ 53] is another FLAME-based regression model that has the advan-
tage of capturing any subtleties, extreme expressions, asymmetries, or rarely 
observed expressions that create slight deformations of the face shape. SMIRK 
replaces the previous differentiable rendering approach in comparing generated 
3D face representations with the original inputs. Given the rendered predicted 
mesh geometry and sparsely sampled pixels of the input image, this new neural 
rendering module focuses on local geometries to generate a face image more sim-
ilar to the original, which can then be fed back to the reconstruction pipeline. 
The SMIRK model regresses to 358 standard parameters, comprising 300 shape 
parameters, 50 expression parameters, and 6 pose parameters. Additional param-
eters include camera settings and those specific to the neural rendering process 
used in SMIRK. 

4 Fusion Architecture 

4.1 3D Representation Classifier Architecture 

Though EMOCA and SMIRK report emotion recognition performance, their 
results are based on a manually cleaned dataset, which is difficult to reproduce. 
Despite the inherent limitations of the AffectNet dataset, for a fair comparison, 
we extracted all 3D features from AffectNet datasets to curate a 3D representa-
tion dataset and then trained the 3D representation classifier. 

The classifiers in this study adopted a similar architecture to the emotion 
classification MLP proposed in [ 59], with minor adjustments. The classifier net-
work architecture comprises an input layer, followed by four fully connected 
layers, each with an output dimension of 2048. Batch normalization and Leaky 
ReLU activation functions are applied in all fully connected layers. Dropout 
rates of 50% and 40% are applied to the first and second layers, respectively. 
The output layer is adapted based on the dataset: for the RAF-DB dataset, it 
has 7 output dimensions, while for the AffectNet dataset, it includes 8 classes 
plus additional outputs for valence and arousal values. 

4.2 Loss Function 

Discrete Expression Inference. For the AffectNet dataset [ 46], following the 
previous approach [ 59,61] for emotion classification, we employed a combined 
loss function for this task.
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Fig. 3. Overview of the 3D Representation Fusion Architecture. 

The combined loss function used in this study integrates several components 
to handle both classification and regression tasks. The cross-entropy loss LCE is 
used for the classification task, measuring the difference between the true and 
predicted class labels. For the regression tasks, the mean squared error LMSE  is 
applied to minimize the squared differences between the predicted and true val-
ues of valence and arousal. Additionally, we incorporate the Pearson correlation 
coefficient LPCC , which assesses the linear correlation between the predicted 
and true valence and arousal values. Furthermore, the concordance correlation 
coefficient LCCC is used to measure the agreement between the predicted and 
true values, considering both precision and accuracy. 

The final loss function is a weighted combination of these components as 
shown Eq: 1: 

Loss = LCE + 
α 

α + β + γ 
× LMSE + 

β 
α + β + γ 

× (1 − LCCC ) +  
γ 

α + β + γ 
× (1 − LPCC  ) (1) 

where α, β, γ are weighting factors for the different components of the loss 
function. The values of α, β, γ are randomly sampled from a uniform distribution 
between 0 and 1 for each batch. 

Continuous Expression Inference. Regarding the VA estimation on Affect-
Net, we follow CAGE [ 61] and use a two-stage training approach and employ 
their best performance model, MaxVIT as our 2D image analysis model. In the 
first stage, we train with a combined loss Losscombined. In the second stage, 
building on the first, we modify the output to valence and arousal to strengthen 
the VA supervised learning with Lossva. 

Losscombined = LweightedCE + w1 · LMSE (2)
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Lossva = LCCC + w2 · LMSE (3) 

where the weighted cross-entropy LweightedCE is used to ease the issue of 
imbalanced distribution in the training set. This loss function assigns weights 
based on the frequencies of the expressions. 

4.3 Intermediate Fusion Architecture 

In the intermediate fusion architecture shown in Fig. 3, A facial image is pro-
cessed by both a 2D face analysis model and a 3D face regression model. The 
2D analysis model extracts high-dimensional features useful for recognizing facial 
expressions, while the 3D regression model regresses parameters that are linked 
to the facial structure. 

Next, the 2D image features and the transformed 3D features are concate-
nated (or combined) into a comprehensive feature set. This feature set is then 
fed into a linear fusion architecture, leveraging both 2D and 3D information. The 
fused features are input into a classification layer (CLS), which is identical to the 
classifier architecture mentioned earlier. The CLS layer processes these features 
to predict various aspects of facial expressions (category, valence, or arousal). 

Different datasets necessitate different outputs and loss functions. The loss 
function and linear fusion architecture used here are consistent with the classifier 
architecture mentioned above. 

4.4 Late Fusion Architecture 

In the late fusion architecture shown in Fig. 3, the input image is processed by 
the 2D face analysis model. This model extracts 2D features from the image and 
inputs these 2D features into the 2D classifier, which outputs emotion category, 
valence, and arousal results based on the requirements of different datasets. 
Meanwhile, the input image is also processed by the 3D face regression model. 
This model extracts 3D features from the image, and these 3D features are then 
input into a pre-trained classifier, which outputs emotion category, valence, and 
arousal results. This architecture maximizes the preservation of their respective 
independent inference capabilities. 

In the late fusion step, the outputs of the 2D classifier and the 3D classifier are 
combined. Here, we use simple fusion methods such as max, mean, and weighted 
to integrate the information from both 2D and 3D analyses, generating more 
accurate and robust emotion recognition results. 

5 Experiments 

Training Setting and Evaluation Metrics. The hyperparameters for the 
training architecture are summarized in Tab. 1. These settings ensured the sta-
bility and efficiency of the model training process.
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Table 1. Hyperparameters for Classifier Training. 

Hyperparameter Value 
Batch Size 64 
Weight Decay 1e-5 
Maximum Epochs 100 
Early Stopping Patience 3 
Learning Rate Scheduler CyclicLR 
Base Learning Rate 1e−6 
Maximum Learning Rate 1e−4 
Step Size len(train loader)//2 

Scheduler Mode ‘triangular’ 
Cyclical Momentum No 

For the emotion discrete classification task, we use state-of-the-art binary 
classification metrics [ 61,70], including Accuracy, F1 score, Precision, and Recall. 
We follow established practices 3 to compute these metrics. For a comprehensive 
evaluation, we report both weighted and macro averages for the unbalanced 
test dataset (RAF-DB). For the balanced test dataset (AffectNet), where both 
metrics are identical, we report results once. 

For the emotion continuous regression task, our evaluation metrics are Mean 
Squared Error (MSE), Mean Absolute Error (MAE), Root Mean Squared Error 
(RMSE), and Concordance Correlation Coefficient (CCC). 

5.1 3D Representation Classification Performance 

In 3D representations, the parameters most relevant to expressions are expres-
sion, pose, and shape. To analyze the information gained from other parameters 
on FEI tasks, we divided them into two groups: the short group (expression, 
pose, shape) and the full group (all parameters). Thus, Smirk3Dshort has 353 
dimensions, Smirk3Dfull  has 358 dimensions, Emoca3Dshort has 156 dimen-
sions, and Emoca3Dfull  has 334 dimensions. 

As  shown in Tab.  2 and Tab. 3, Emoca3D outperforms Smirk3D in discrete 
emotion classification tasks. Emoca3Dshort achieves the best performance on 
AffectNet, improving by 2.26% in accuracy compared to Smirk3Dshort, while 
Smirk3Dfull  achieves the best performance on RAF-DB, improving by 3.7% in 
accuracy compared to Smirk3Dfull. Experiments show that EMOCA preserves 
more emotional information and is better suited for emotion reasoning tasks.

3 Code reference for evaluation (see lines 90-92). 

https://github.com/wagner-niklas/CAGE_expression_inference/blob/main/models/evaluation.py/
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Table 2. Classification Comparison of EMOCA and SMRIK 3D Representations only 
(no fusion) on AffectNet Dataset. 

3D Classifier Accuracy ↑ F1 ↑ Precision ↑ Recall ↑ 
CLSSmirk3D−short 0.5461 0.5459 0.5477 0.5461 
CLSSmirk3D−full 0.5546 0.5547 0.5569 0.5546 
CLSEmoca3D−short 0.5723 0.5726 0.5758 0.5723 

CLSEmoca3D−full  0.5703 0.5704 0.5768 0.5703 

Table 3. Classification Comparison of EMOCA and SMRIK 3D Representations only 
(no fusion) on RAF-DB Dataset. Due to the unbalanced test dataset, we report both 
weighted and macro average metrics for a comprehensive evaluation. Acc stands for 
Accuracy, F1 for F1 score, P for Precision, and R for Recall. 

3D Classifier Acc ↑ Weighted Avg Macro Avg 
F1 ↑ P ↑ R ↑ F1 ↑ P ↑ R ↑ 

CLSSmirk3D−short 0.7378 0.7418 0.7475 0.7418 0.6421 0.6386 0.6482 
CLSSmirk3D−full 0.7557 0.7584 0.7631 0.7557 0.6585 0.6568 0.6627 
CLSEmoca3D−short 0.7862 0.7873 0.7895 0.7862 0.6965 0.6908 0.7037 
CLSEmoca3D−full  0.7927 0.7946 0.7985 0.7927 0.7073 0.7043 0.7118 

5.2 3D Fusion in Discrete Facial Expression Inference 

In the experiments of discrete expression inference on the AffectNet dataset as 
shown in Tab.  4, our fusion method achieved the best performance. Although 
we did not replicate its best performance as reported (65.04%) on AffectNet 8, 
the weighted late fusion still achieved an improvement in all metrics. Here, the 
late fusion weight is 0.2 for the 3D component. The weighted fusion strategy 
improved the accuracy by 0.55%, the F1 score by 0.58%, the precision by 0.26%, 
and the recall by 0.55%. 

In the experiments of discrete expression inference on the RAF-DB dataset as 
shown in Tab. 5, The best performance was achieved with the weighted Emoca3D 
late fusion strategy, reaching the highest accuracy (94.00%), F1 score (93.93%), 
precision (93.97%), and recall (94.00%). Compared to our reproduced DDAMFN 
model, the weighted fusion strategy improved the accuracy by 3.84%, the F1 
score by 3.80,% the precision by 3.75%, and the recall by 3.84%. This result 
has made our model overpass the state-of-the-art performance on the RAF-DB 
dataset. 

We believe the reason late fusion outperforms intermediate fusion is that 
the results from different models remain more independent, thereby maximiz-
ing the retention of each model’s respective advantages. However, the features 
provided by intermediate fusion are redundant compared to the original fea-
tures. During training, we observed early stopping occurring within the first 8 
epochs, earlier than the baseline model’s 12–15 epochs. We guess this is because
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Table 4. Classification Comparison of Different Fusion Architectures on AffectNet 
Dataset. 

Framework Accuracy ↑ F1 ↑ Precision ↑ Recall ↑ 
DDAMFN (our reproduction) 0.6324 0.6323 0.6353 0.6324 
Intermediate Fusion 

F2D + FSmirk3D 0.6117 0.6098 0.6128 0.6117 
F2D + FEmoca3D 0.6234 0.6232 0.6276 0.6234 
Late Fusion 

Max with CLSSmirk3D 0.6267 0.6260 0.6273 0.6267 
Max with CLSEmoca3D 0.6294 0.6292 0.6306 0.6294 
Mean with CLSSmirk3D 0.6262 0.6266 0.6315 0.6262 
Mean with CLSEmoca3D 0.6289 0.6295 0.6338 0.6289 
Weighted with CLSSmirk3D 0.6364 0.6367 0.6408 0.6364 
Weighted with CLSEmoca3D 0.6379 0.6381 0.6379 0.6379 

Table 5. Classification Comparison of Different Fusion Architectures on RAF-DB 
Dataset. Due to the unbalanced test dataset, we report both weighted and macro 
average metrics for a comprehensive evaluation. Acc stands for Accuracy, F1 for F1 
score, P for Precision, and R for Recall. 

Framework Acc ↑ Weighted Avg Macro Avg 
F1 ↑ P ↑ R ↑ F1 ↑ P ↑ R ↑ 

DDAMFN (our reproduction) 0.9016 0.9013 0.9022 0.9016 0.8554 0.8686 0.8451 
Intermediate Fusion 

F2D + FSmirk3D 0.9006 0.9007 0.9018 0.9006 0.8489 0.8561 0.8435 
F2D + FEmoca3D 0.8996 0.8990 0.8989 0.8996 0.8501 0.8559 0.8453 
Late Fusion 

Max with CLSSmirk3D 0.8989 0.8984 0.8989 0.8989 0.8527 0.8656 0.8426 
Max with CLSEmoca3D 0.8941 0.8944 0.9021 0.8941 0.8462 0.8643 0.8485 
Mean with CLSSmirk3D 0.9030 0.9024 0.9041 0.9030 0.8561 0.8829 0.8361 
Mean with CLSEmoca3D 0.9130 0.9135 0.9178 0.9130 0.8413 0.8414 0.8521 
Weighted with CLSSmirk3D 0.9106 0.9099 0.9110 0.9106 0.8689 0.8914 0.8516 
Weighted with CLSEmoca3D 0.9400 0.9393 0.9397 0.9400 0.8958 0.9090 0.8860 

intermediate fusion introduces excessive redundant information, which strongly 
correlates with features extracted from images in high-dimensional space, leading 
to reduced model generalization. 

The results shown in Tab. 6 indicate that a simple weighted late fusion strat-
egy can significantly enhance the performance of our reproduced DDAMFN 
model (originally ranked 5th), achieving new state-of-the-art performance. Note
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Table 6. Comparison with Previous SOTA models for Discrete FEI on RAF-DB 
Dataset. 

Method Accuracy [%] Date [mm-yy] 
FMAE [49] 93.09 07-2024 
S2D [ 8] 92.57 12-2023 
BTN [18] 92.54 07-2024 
ARBEx [63] 92.37 05-2023 
DDAMFN [70] 92.34 07-2023 
Ours 94.00 07-2024 

that the top-1 FMAE model is pre-trained on large datasets, whereas our method 
is trained solely on the RAF-DB dataset. 

5.3 3D Fusion in Continuous Facial Expression Inference 

The experimental results on AffectNet, as shown in Tab. 7, indicate that our late 
fusion and mean fusion strategies effectively improved performance. Surprisingly, 
the performance of the 3D representation alone is already very close to that of 
our reproduced CAGE. Our mean fusion achieved an MSE of 0.0956 and an 
RMSE of 0.392, while our weighted fusion achieved an MAE of 0.2316 and a 
CCC of 0.7901. The weight for the 3D representation was set at 0.4. These 
results highlight the importance of 3D representation to continuous FEI tasks. 

Table 7. Continuous VA Results from Different Fusion Architectures on AffectNet 
Dataset. 

Framework MSE ↓ MAE ↓ RMSE ↓ CCC ↑ 
CAGEva (Our reproduction) 0.1044 0.2377 0.3230 0.7814 
3D Representation 

RegresserEmoca3D 0.1061 0.2483 0.3257 0.7637 
Feature Fusion 

F2D + FEmoca3D 0.1061 0.2398 0.3257 0.7749 
Late Fusion 

Max with RegressorEmoca3D 0.1052 0.2419 0.3243 0.7727 
Min with RegressorEmoca3D 0.1053 0.2441 0.3245 0.7726 
Mean with RegresserEmoca3D 0.0956 0.2325 0.3092 0.7891 
Weighted with RegresserEmoca3D 0.0958 0.2316 0.3095 0.7901 

Compared to our reproduced CAGE model in , our mean late fusion improved 
performance by 8.43% in MSE, 2.19% in MAE, 4.27% in RMSE, and 0.99% in
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Table 8. Benchmark Comparison for VA Inference on AffectNet Dataset. 

Framework RMSEval↓ RMSEaro↓ CCCval ↑ CCCaro ↑ Date[mm-yy] 
VGG-G [ 5] 0.356 0.326 0.710 0.629 03-2021 
CAGE [61] 0.331 0.305 0.716 0.642 04-2024 
Ours 0.323 0.294 0.724 0.650 07-2024 

CCC. Our weighted late fusion increased performance by 8.24% in MSE, 2.57% 
in MAE, 4.18% in RMSE, and 1.11% in CCC. 

Table 8 shows that our late fusion method has surpassed the current state-of-
the-art methods. Compared with the CAGE model, our valence RMSE increased 
by 2.42% , arousal RMSE increased by 3.61%, valence CCC increased by 1.12%, 
and arousal CCC increased by 1.25%. The overall results indicate that the late 
fusion of 3D representations can effectively enhance continuous expression infer-
ence tasks. 

6 Conclusions 

As 3D face reconstruction aligns more closely with reality, its integration and 
analysis can be beneficial in many FEI tasks. Our research evaluates the perfor-
mance of existing 3D face representations, introduces two fusion architectures, 
and demonstrates the efficiency of late fusion through extensive experiments. 
The experimental results show that our proposed method outperforms the state-
of-the-art in AffectNet VA estimation and RAF-DB classification tasks. These 
findings offer valuable insights into the application of 3D representations for 
emotion inference. 

Moving forward, our future work will focus on several key areas. First, we 
will delve deeper into the analysis of 3D representations within the realm of 
micro-expressions, aiming to capture even the most subtle emotional cues. Sec-
ond, we will investigate how 3D reconstructions can enhance emotion inference 
in scenarios involving human backgrounds and human-human interactions. By 
continuing to refine and expand upon these methodologies, we aim to contribute 
to the development of more nuanced and accurate emotion inference models. 
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