

PAPER • OPEN ACCESS

## An analytical approach to explore prospects and limits of nutrition-sensitive fisheries governance under climate change

To cite this article: Abigail Bennett *et al* 2025 *Environ. Res.: Food Syst.* **2** 035003

View the [article online](#) for updates and enhancements.

### You may also like

- [Eleven New Transiting Brown Dwarfs and Very-low-mass Stars from TESS](#)

Noah Vowell, Joseph E. Rodriguez, David W. Latham *et al.*

- [The MaNGA Dwarf Galaxy Sample \(MaNDala\): Stellar Profiles and Gradients Characterization](#)

M. Cano-Díaz, A. Rodríguez-Puebla, A. C. Robleto-Orús *et al.*

- [Numerical study of thermohydraulics induced by highly under-expanded jet during in-vessel LOCA for the CFETR WCCB concept](#)

Jinghua Jiang, Jun He, Tianyu Chen *et al.*



The advertisement features a large white circle on the left containing the number '250' in red and green, with a blue ribbon banner across it that reads 'ECS MEETING CELEBRATION'. Below this, text in white on a dark blue background reads: '250th ECS Meeting', 'October 25–29, 2026', 'Calgary, Canada', and 'BMO Center'. To the right, the ECS logo (blue 'ECS' inside a green oval) is positioned above the text 'The Electrochemical Society' and 'Advancing solid state & electrochemical science & technology'. A large green banner with white text says 'Step into the Spotlight'. A red button at the bottom right says 'SUBMIT YOUR ABSTRACT'. Below that, a dark blue banner with white text says 'Submission deadline: March 27, 2026'.

# ENVIRONMENTAL RESEARCH

## FOOD SYSTEMS



### PAPER

#### OPEN ACCESS

RECEIVED  
30 May 2024

REVISED  
13 February 2025

ACCEPTED FOR PUBLICATION  
28 April 2025

PUBLISHED  
15 July 2025

Original content from  
this work may be used  
under the terms of the  
Creative Commons  
Attribution 4.0 licence.

Any further distribution  
of this work must  
maintain attribution to  
the author(s) and the title  
of the work, journal  
citation and DOI.

## An analytical approach to explore prospects and limits of nutrition-sensitive fisheries governance under climate change

Abigail Bennett<sup>1</sup> , Julia G Mason<sup>2,\*</sup> , Willow Battista<sup>2,3</sup> , Christopher M Free<sup>4,5</sup> , Jessica A Gephart<sup>6</sup> , Kristin M Kleisner<sup>2</sup> , Emma D Rice<sup>1,7</sup> , Kelly F Robinson<sup>8</sup> and John Virdin<sup>9</sup>

<sup>1</sup> Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, United States of America

<sup>2</sup> Environmental Defense Fund, New York, NY 10010, United States of America

<sup>3</sup> Washington Maritime Blue, Seattle, WA 98119, United States of America

<sup>4</sup> Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, United States of America

<sup>5</sup> Bren School of Environmental Science and Management, University of California, Santa Barbara, Santa Barbara, CA 93106, United States of America

<sup>6</sup> School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States of America

<sup>7</sup> Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States of America

<sup>8</sup> U.S. Geological Survey, Georgia Cooperative Fish and Wildlife Research Unit, Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, United States of America

<sup>9</sup> Nicholas School of the Environment, Nicholas Institute for Energy, Environment and Sustainability, Duke University, Durham, United States of America

\* Author to whom any correspondence should be addressed.

E-mail: [jmason@edf.org](mailto:jmason@edf.org)

**Keywords:** food systems transformation, aquatic foods, fisheries, climate resilience, climate adaptation, trade, food security

Supplementary material for this article is available [online](#)

### Abstract

Researchers and policymakers increasingly recognize the contribution of aquatic food systems, such as fisheries, to food security and nutrition. Yet governing fisheries for nutrition objectives is complicated by the multiple overlapping processes that shape availability and access to nutrients over time, including fishing sustainability, climate change, trade dynamics, and consumer preferences. Anticipating the effect of governance interventions to sustain or enhance nutritional benefits from fisheries entails accounting for these multiple interacting influences. We develop an analytical approach to link available data on aquatic foods production, nutrition, distribution, and potential climate impacts to evaluate the nutrition implications of fishery management and post-harvest allocation interventions. We demonstrate this approach using national and publicly available datasets for five case study countries: Peru, Chile, Indonesia, Sierra Leone, and Malawi. As examples, we evaluate the potential to enhance domestic supply of key nutrients to nutritionally-vulnerable populations by (a) dynamically adjusting fishing effort in response to climate impacts on fish stocks, and (b) retaining aquatic foods currently diverted via trade or foreign fishing. The results indicate substantial differences across countries in terms of anticipated climate change effects, with potential for substantially increased nutrition yield in Chile and Peru under adaptive management, vs more modest yield increases in Indonesia. The impacts of post-harvest allocation policies related to foreign fishing, exports, fishing sector, and subnational trade also vary, with exports weighing heavily on nutrient availability in Sierra Leone. This methodological approach represents a step toward operationalizing calls to manage fisheries as part of national food and nutrient supplies, in light of climate change risks.

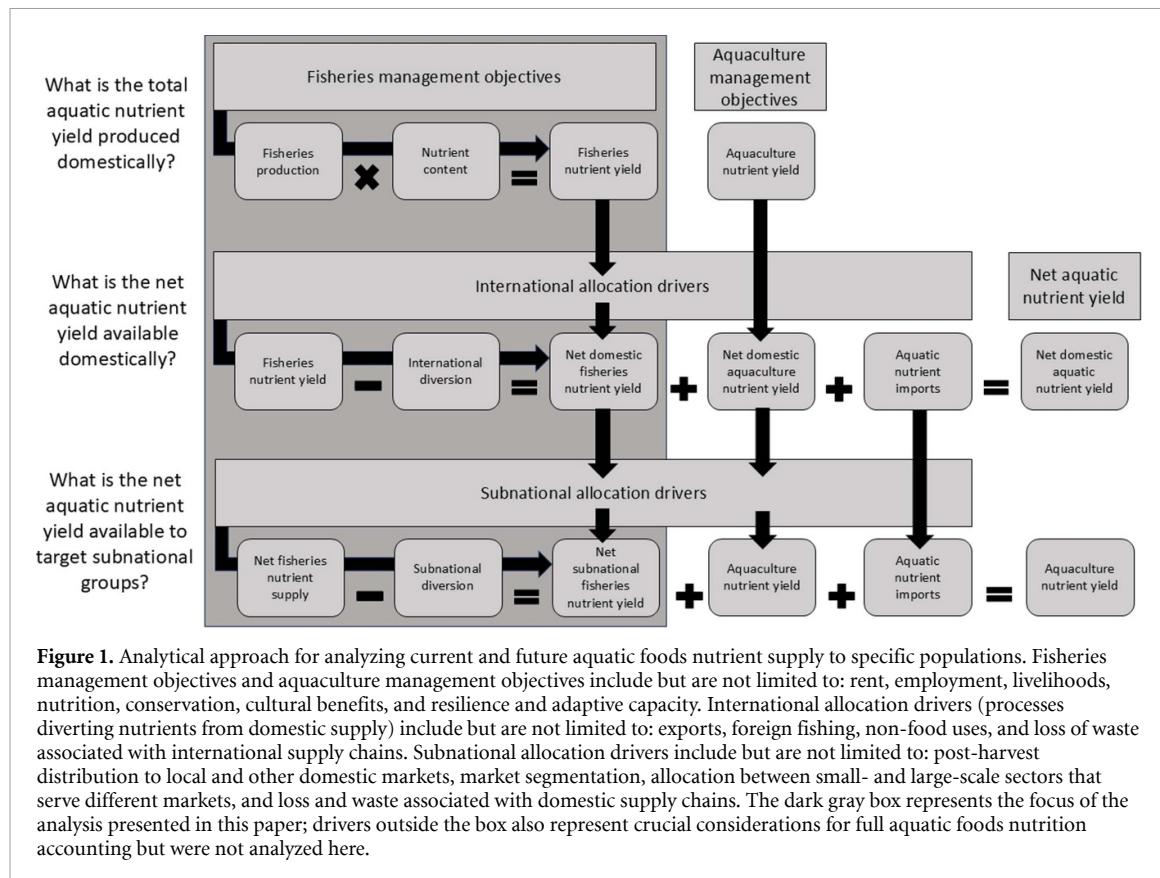
### 1. Introduction

Society must contend with the challenge of sustaining nutritious, equitable, and just food systems in the face of climate change (Vermeulen *et al* 2012, Myers *et al* 2017, Fanzo *et al* 2018). Aquatic food systems (i.e. fisheries and aquaculture), provide nutrition to billions of people and support the livelihoods of millions

of households worldwide, although these contributions have not always been fully recognized in food systems policy (Bennett *et al* 2021, Golden *et al* 2021a). While aquatic foods have potential to contribute to more climate-resilient global food systems (von Braun *et al* 2021, Crona *et al* 2023), planning specific governance interventions to support this goal is complicated by the multiple interacting processes and factors that shape availability and access to nutrients from aquatic foods.

Recent research highlights key considerations relevant to planning nutrition-sensitive fisheries governance in the context of climate change. First, aquatic foods are rich in multiple nutrients and micronutrients essential to human development, health, and wellbeing (Bennett *et al* 2021), with 10 of 15 of the top nutrient-rich animal source food groups in the world are aquatic (Golden *et al* 2021a). Nutrient yield varies across species and fisheries (Hicks *et al* 2019) and advances in the number and quality of databases on the nutrient content of aquatic foods (Cohen *et al* 2022) enable interventions to better account for this variation to understand specific nutritional impacts of more targeted interventions. Early applications of a new concept, maximum nutrient yield, suggest that changes in fishing patterns could increase yield of nutrients needed by target populations without threatening sustainability (Robinson *et al* 2022a).

Second, climate hazards including temperature change, acidification, heatwaves, and storm intensity pose serious compounding economic, nutritional, livelihood, and cultural risks for aquatic foods systems (Tigchelaar *et al* 2021). Future fisheries declines from overfishing and climate change could result in substantially increased micronutrient deficiencies (Golden *et al* 2016, Maire *et al* 2021). Climate impacts and risks are not uniform. For example, species ranges are likely to shift poleward and to deeper water with changing temperatures, with the largest impacts in low latitude countries, many of whom already face high rates of malnutrition (Cheung *et al* 2023, Whitney *et al* 2023). Freshwater systems may be more sensitive to changes in precipitation and water temperature than the oceans (Barange *et al* 2018). In some cases, it may be possible to counteract climate impacts through improved fisheries management, for example by reducing overfishing (Cheung *et al* 2018, Gaines *et al* 2018, Free *et al* 2020). In other cases, countries may face inevitable reductions in fisheries due to climate change.


Third, there is increasing awareness among scholars, governments, and donors that governing fisheries for objectives such as livelihoods, gender equity, and nutrition requires interventions not only in harvesting, but also in post-harvest dimensions of food systems (Basurto *et al* 2020). Fish is one of the most-traded food commodities in the world, and trade and foreign fishing influence national supply of important nutrients from aquatic foods (Nash *et al* 2022). Subsectors within fisheries such as small-scale versus large-scale fleets or foreign fishing often serve distinct end consumers. Within countries, fisheries target different species differentially serving urban or rural, coastal or inland markets (Bennett *et al* 2022). Post-harvest approaches to shaping subnational allocation of access to nutrition from fisheries include interventions to reduce food loss and waste, improve market access, reduce transport and transfer costs, and promote consumption of fish products by vulnerable populations such as lactating mothers and children under 2 years of age through product development, school feeding, and other nutritional programs (Ahern *et al* 2021, Rice *et al* 2023).

In this paper, we integrate these three recent strands of research (on nutrient yield, climate impacts, and post-harvest distributional dynamics) into a more holistic analytical approach to evaluating the potential for specific governance interventions to advance nutritional goals of aquatic food systems in the context of climate change. Given the various research efforts, datasets, and alternative management frameworks described above, we aim to provide a practicable approach to bring this information to bear on management decisions to enhance nutrition security. Here, we introduce and provide an initial demonstration of an analytical approach to bring together information on fisheries yield, nutrition, climate-adaptive management, and post-harvest allocation. With context-specific application, this approach has the potential to examine the prospects and limits for aquatic food systems governance to support human nutrition in light of anticipated climate change impacts.

## 2. Methods

### 2.1. General approach

Our analytical approach illustrates how different data sources related to fisheries production, allocation, and nutrition can be linked to consider availability and access dimensions of food security in the context of climate change. We use it to evaluate potential nutrition implications of two types of governance decisions: (1) decisions about investment in fisheries management to sustain and enhance nutrient yields and (2) allocative decisions that shape availability of and access to nutrients from aquatic foods at national and subnational (i.e. within specific subpopulations) levels. Recognizing that the type, quality, and quantity of data available for input into such an analytical approach varies across countries and fisheries, we seek to illustrate how different data streams and sources can be integrated to answer similar questions across geographies.



First, the approach considers how different management objectives and interventions affect total nutrient yield (TNY), i.e. the total nutrient supply generated from a country's wild capture fisheries (figure 1, first row). TNY is calculated as the product of the edible portion of fisheries production and species-specific nutrient content. Potential management interventions that the approach could consider include those that impact the volume and species composition of fisheries production, with objectives that could include rent maximization, e.g. by achieving maximum economic yield (MEY); biodiversity conservation, e.g. by restricting access to slow-reproducing or rare species; or nutrition, e.g. by prioritizing management of and access to highly nutritious species or implementing novel management paradigms like maximum nutrient yield (Robinson *et al* 2022a). For exploring future scenarios, climate-adaptive management interventions, such as incorporating climate information into harvest limits or closed areas or implementing joint transboundary management measures, would be key drivers of TNY. For demonstration purposes in this study, we examine one management intervention related to dynamically maximizing economic yield under climate change (refer to section 2.4). Although this analysis focuses specifically on capture fisheries, a full accounting of a country's aquatic foods TNY would also include data and analysis of aquaculture (both marine and freshwater; figure 1).

Next, the approach derives the net nutrient yield, that is, the nutrient yield available to domestic populations (figure 1, second row). This is calculated by subtracting nutrients diverted to non-domestic uses, which could include exports, foreign fishing, loss and discards, and non-food uses. Here, we focus primarily on exports and foreign fishing due to data availability. Complete accounting of net aquatic food nutrients available to domestic populations would also include imports, which we do not discuss in this paper given our focus on domestic production management decisions.

Subnational data on wild caught aquatic foods distribution and consumption among regions and demographics can be used to assess whether aquatic foods nutrients are reaching nutritionally vulnerable populations and potentially reveal barriers to access (figure 1, third row). The nutrient yield available to specific target groups would be calculated as the sum of the proportion of wild caught aquatic nutrients available to that group (and would additionally include aquaculture nutrients and imported aquatic foods nutrients for a complete accounting). We present one case study focused on subnational allocation to inland and urban populations.

## 2.2. Selection of case study countries and case study contexts

To illustrate this analytical approach, explore its utility, and identify limitations and challenges in applying it, we selected five country case studies: Peru, Chile, Indonesia, Sierra Leone, and Malawi. In case selection, we aimed to (a) include at least one case from South America, Asia, and Africa, (b) capture variation in latitude, which has relevance for climate impacts on fish abundance and distribution, (c) represent both marine and inland (freshwater) fisheries, and (d) capture different data types and availability (table 1). Considering these criteria, we chose major fishing nations for which one or more authors have research experience.

### 2.2.1. Peru case study background

Peru is home to over 33 million people, 51% of whom experience moderate or severe food insecurity (FAO, IFAD, UNICEF, WFP and WHO 2022). Accounting for fortification, 54% of the population is deficient in calcium, 23% is deficient in zinc, 2% is deficient in vitamin A, and 0.01% is deficient in iron (Beal *et al* 2017). Despite this low estimation of national iron deficiency, anemia is a public health priority in Peru, with various national programs and policy resolutions to combat childhood and adult anemia rates that rise upward of 40% in the interior Amazon regions (Berky *et al* 2020); and a national anemia rate in children aged 6–35 months of 43.1%, and in women of childbearing age, aged 15–49 years, of 22.7%. Chronic childhood malnutrition is 11.5% in children under 5 years of age (INEI 2024), influenced by the lack of access to protein-rich foods.

Peru is among the largest fishing nations and is home to the single largest fishery in the world, Peruvian anchoveta (*Engraulis ringens*). Anchoveta comprises the majority of Peru's aggregate catch by volume (68%, 3.9 million tonnes, in 2019; figure 2(a)), and most of this catch goes to fishmeal and fish oil production (Carlson *et al* 2018, FAO 2021). Each year, Peru exports over USD 3 billion in total fish and fish products, contributing to 0.55% of national gross domestic product (GDP) (7.93% of agricultural GDP) (FAO 2021). Peru is the leading exporter of fish for fishmeal and fish oil production globally, exporting over USD 1.5 billion in species destined for fishmeal and nearly USD 375 million toward fish oil annually (Fréon *et al* 2014, FAO 2021).

Following anchoveta stock collapse in the 1970s–80s, fisheries managers implemented individual vessel quota allocations in the anchoveta fishery, which has contributed to stock recovery (Aranda 2009, Srinivasan *et al* 2012). Although most anchoveta are caught by industrial vessels (96.5% of anchoveta landing in 2023; PRODUCE 2024), the majority of fish caught for direct human consumption in Peru are harvested by the small-scale fleet (De la Puente *et al* 2020a) and in case of anchoveta only the small-scale fleet have license to fish it for direct human consumption; small-scale fleets represented 3.5% of anchoveta landing in 2023 (PRODUCE 2024). Previous attempts to increase domestic demand and consumption of nutrient-rich anchoveta within Peru have been undermined by additional structural issues beyond the industrial vessels' lack of authorization to fish anchoveta for direct human consumption, including higher post-harvest costs associated with products for human consumption and related economic incentives for small-scale fleets to sell anchoveta catch to fishmeal plants, particularly in years when industrial sector quota allocations are low (Majluf *et al* 2017). Recent literature suggests a need for improved fisheries management in Peru's small-scale fisheries sector, particularly concerning governance issues such as monitoring and enforcement of illegal fishing (De la Puente *et al* 2020a, Gozzer-Wuest *et al* 2021). Catch reconstructions have shown a declining trend over the past 20 years, with fluctuations driven largely by anchoveta (figure 2(a)) because landings depend on quotas based on scientific recommendations about estimated anchoveta biomass and current and forecasted environmental conditions.

### 2.2.2. Chile case study background

The population of Chile has reached almost 20 million people, 17.4% of whom experience moderate or severe food insecurity (INE 2018, FAO, IFAD, UNICEF, WFP and WHO 2022). Accounting for fortification, 58.7% of Chile's population is deficient in calcium, 25.3% deficient in vitamin A, and 9.2% deficient in zinc (Beal *et al* 2017).

Like Peru, Chile has a major anchoveta fishery, but the species is less dominant economically and is more often caught by the artisanal sector (99.54% in 2023; SERNAPESCA 2023, figure S40). Although not examined here, the rapidly-growing aquaculture sector in Chile, predominantly for farmed salmon (*Salmo salar* and *Oncorhynchus* spp.), accounts for nearly half of all domestic seafood production by volume (46% aquaculture; 54% fisheries) (Bachmann-Vargas *et al* 2021, FAO 2023a). Chile exports nearly USD 6 billion worth of fish and fish products each year, accounting for 0.65% of GDP (15.67% of agricultural GDP) (FAO 2023a, PROCHILE 2024). Chile has made progress in recent years to address fisheries sustainability challenges through implementation of ecosystem-based fisheries management (Porobic *et al* 2018) and co-management mechanisms (Gozzer-Wuest *et al* 2023). Catches have been relatively stable over the past

decade, with fluctuating anchoveta catches and a marked rise of perch-likes, predominantly jack mackerel/jurel (figure 4(a)).

#### 2.2.3. *Indonesia case study background*

Indonesia is home to around 270 million people, 6% of whom experience moderate or severe food insecurity (FAO, IFAD, UNICEF, WFP and WHO 2022). Accounting for fortification, 93.1% of Indonesia's population is deficient in calcium, 85.5% deficient in vitamin A, 6.3% deficient in iron (Beal *et al* 2017). In Indonesia, aquatic foods account for over 50% of animal protein intake (FAO 2022b).

Indonesia is among the largest fishery producers in the world, landing nearly 13 million tonnes of fish and fish products each year, 56% of which comes from fisheries and 44% of which comes from aquaculture (FAO 2022a). Indonesia exports nearly USD 4.5 billion in fish and fish products annually, contributing to 2.65% of national GDP (20.85% of agricultural GDP) (FAO 2022a). Indonesian fisheries are dominated by small-scale fishers with highly diverse gear types and target species (Halim *et al* 2019, Jaya *et al* 2022). To account for this diversity, Indonesia has multiple levels of governance and has moved to decentralize its fisheries management (Jaya *et al* 2022). Further, Indonesia has shifted away from single-species management towards an ecosystem-based approach in recent years (Hutubessy and Mosse 2015, Muawanah *et al* 2018). Nonetheless, challenges persist in Indonesian fisheries management including inadequate data and local engagement as well as monitoring and enforcement of regulations (Jaya *et al* 2022).

#### 2.2.4. *Sierra Leone case study background*

Sierra Leone, a coastal nation in West Africa, is home to approximately 8 million people, of which 86.7% experience moderate or severe food insecurity (FAO, IFAD, UNICEF, WFP and WHO 2022), and about 56.8% of whom live below the national poverty line (UNDP 2024). Accounting for fortification, 92.4% of the population are deficient in calcium, 60.1% in vitamin A, 50.1% in iron, and 31.3% in zinc (Beal *et al* 2017).

Marine fisheries play a critical role in supporting the national economy in Sierra Leone, as well as providing livelihoods to the majority of the country's coastal population, including women, and contributing to food security and nutrition (Thorpe *et al* 2009, 2014, Baio 2016). Sierra Leone exports over USD 3 million in fish and fish products annually, accounting for nearly 14% of national GDP (FAO 2023b). Since the Sierra Leone Civil War (1991–2002) the country's fisheries have faced numerous challenges including increased fishing pressure from illegal gears, foreign industrial fleets, and poor governance, despite community-based management efforts (Thorpe *et al* 2009, World Bank 2017, Okeke-Ogbuafor *et al* 2020, Okeke-Ogbuafor and Gray 2021).

#### 2.2.5. *Malawi case study background*

Malawi's population in 2021 reached 19.89 million, of which 81.3% experience moderate or severe food insecurity (FAO, IFAD, UNICEF, WFP and WHO 2022). Accounting for fortification, 95.8% of the population is deficient in calcium, 5.5% deficient in iron, and 0.02% deficient in vitamin A (Beal *et al* 2017).

Fish is the most widely consumed animal source protein in Malawi, a landlocked country with large inland fisheries based mainly in two large lakes, Lake Malawi and Lake Chilwa. Fisheries contribute 7% of Malawi's national GDP (Torell *et al* 2020), although this may be an underestimate, as landings may be underreported by up to 65% (Fluet-Chouinard *et al* 2018). More than 90% of Malawi's fisheries are small-scale, using primarily gillnets and non-motorized vessels targeting small pelagic species, with some larger scale trawl fisheries focused traditionally on tilapia species, but more recently also on pelagics (Cooke *et al* 2021).

Usipa (*Engraulicypris sardella*) and other small pelagic species (e.g. Ndunduma, *Diplotaxodon argenteus*; and utaka, *Mchenga inornata/Copadichromis inornata*) comprise the vast majority of catch by volume (figure 7(a)). The predictive models to evaluate nutritional upsides of management under climate change scenarios used on the other case study countries are only applicable to marine fisheries and therefore cannot be applied to Malawi fisheries. However, retrospective observation shows substantial changes in the species composition in landings over the past two decades. Chambo (*Oreochromis* spp., a tilapia) dominated Malawi's landings until the early 1990s when chambo landings declined precipitously. Subsequently, landings of small pelagics rose drastically.

### 2.3. Calculating TNY

We used the most recent year of available catch or landings data for each country to characterize current fisheries production, using reconstructed data from the Sea Around Us (SAU) Project database ([www.searroundus.org/](http://www.searroundus.org/)) where official national landings were not publicly available (table 1). In general, SAU reconstructions are more comprehensive than national official landings because they synthesize multiple information sources to interpolate missing data (Zeller and Pauly 2015). For example, unlike official

landings, SAU reconstructions for each exclusive economic zone (EEZ) include catch by foreign vessels, as well as estimates of discards, which is the live weight of fish caught but not retained. Foreign catch and discards by EEZ are both important for characterizing the total potential nutrient yield and the diverse management interventions across the food system in distributing total yield. However, reconstructed data may be less current than official landings and may include assumptions that do not reflect specific country contexts. All catch data represent only marine capture fisheries data, except for Malawi landings, which exclusively represent catch from inland fisheries (Malawi is a landlocked country). Landings data from Chile included substantial harvest of seaweeds and algae, which can be highly nutritious. However, because these taxa are sparsely represented in other data sources, we excluded them from analysis and present their nutrient yield in the supplementary materials.

We sourced nutrient content of finfish from the FishNutrients predictive trait-based model developed by Hicks *et al* (2019), which provides estimates of the concentration of calcium, iron, omega-3 fatty acids, selenium, vitamin A, and zinc per 100 g of an edible serving of each species. Where landings were reported at the genus or family level, we took the mean nutrient content of all species in that genus or family found in that country's EEZ according to FishBase, using the country-level nutrient lookup tool that relates FishNutrients data to FishBase species profiles (<https://fishbase.ca/Nutrients/NutrientSearch.php>). Landings reported at broader taxonomic groups than the family level were excluded from analysis.

We sourced nutrient content of invertebrates and aquatic plants from the Aquatic Foods Composition Database (Golden *et al* 2021a), and selected the same nutrients available in the FishNutrients database. Nutrient content was interpolated from genus, family, or order levels where data were missing, as calculated in Golden *et al* (2021a). We replaced extreme outlier values (orders of magnitude above other taxa values) with average values from other species within genera, families, or orders depending on data availability. For Humboldt squid (*Dosidicus gigas*), which represents a substantial proportion of Peru and Chile's catch, we used species-specific nutrition information from Bianchi *et al* (2022) because nutrients were available only at the family level from the Aquatic Foods Composition Database.

We converted landed weight to edible weight with taxa-level conversion factors (87% for finfish, 36% for crustaceans, 17% for molluscs; Roberts 1998, Free *et al* 2022). For algae, echinoderms, and other species for which we did not have conversion factors, we used landed weight (wet weight). We used a species-specific conversion factor for Humboldt squid (67%; Bianchi *et al* 2022) because it represents a substantial proportion of Peru's and Chile's catch. We multiplied total catch or landings by this weight conversion and nutrient concentration to derive TNY.

To express TNY in health-relevant terms, we compared nutrient yield to the World Health Organization's (WHO) recommended nutrient intake (RNI) values for children, using mean RNIs for children aged 7 months–6 years (WHO 2004). RNIs are daily intake values that would meet the nutrient requirements of 97.5% of the healthy population of a given age and sex. We expressed nutrient yield in child RNI-equivalents, meaning the number of children whose daily nutrient needs could theoretically be met by consuming all the edible yield (annual catch \* conversion to edible portion \* nutrient content/365/RNI). We used this as a standard, public health-relevant metric to compare yields across nutrients and case studies; this does not imply that all aquatic foods yield could be consumed by children, that children would meet all of their daily nutrient needs from consuming fish, or even that these values reflect the actual number of children in a country's population. Rather, we focused on children because aquatic foods nutrients are critical for childhood development and growth (Neumann *et al* 2002), so children could be considered a common nutritionally vulnerable population across countries (this metric could similarly be used for reproductive age women; see Nash *et al* 2022). RNIs have not been set for omega-3 fatty acids, so we used Adequate Intake values for  $\alpha$ -linolenic acids for children aged 7 months–8 years (Institute of Medicine 2005; following Nash *et al* 2022). For additional context, we provide prevalence of inadequate intake values for each country, using 2011 values that account for fortification (Beal *et al* 2017). Prevalence of inadequate intake estimates were not available for selenium or omega-3 fatty acids. Because selenium is required only in trace amounts, nutrient yield in terms of RNI equivalents was often orders of magnitude higher than yield for other nutrients; we thus exclude selenium from most figures to aid interpretability but report values in the text.

Additionally, to present TNY in terms relevant to each country's specific demographic context, we calculated potential contributions to current and future total population nutrient demand for each country. For this, we paired current and projected demographic data from the United Nations Department of Economic and Social Affairs 2022 estimates and projections (UN DESA 2022) with sex- and age-specific RNIs for each nutrient (WHO 2004).

#### 2.4. Calculating nutrition impacts of climate change and fisheries management interventions

To illustrate potential scenarios of climate and fisheries management impacts on nutrition, we converted future fish production projections from Gaines *et al* (2018) and Free *et al* (2020) into nutrient yield. The

bioeconomic model developed in these studies calculates potential biomass and catch based on the effects of projected sea surface temperature on species' potential ranges within an EEZ (from Garcia Molinos *et al* 2016), as well as different policy scenarios. We examine nutrition implications of two contrasting policy scenarios: (1) No Adaptation, where current (defined as 2012) fishing mortality is maintained at each time step for species that remain wholly in a country's EEZ, and fishing mortality for transboundary stocks starts at 2012 rates and gradually moves toward open access harvest rates and (2) Full Adaptation, where both static and transboundary species are harvested at the rate that achieves MEY, dynamically optimized each year for climate impacts. Refer to Gaines *et al* (2018) for additional model specifications and dynamic optimization formulas. These policy scenarios are not intended to perfectly replicate how fisheries management does or could operate in a given country, but rather as demonstrations of what these policy goals might look like if achieved. We selected these two scenarios to maximize contrast.

Additionally, the bioeconomic model examines four climate scenarios from the Intergovernmental Panel on Climate Change's suite of representative concentration pathways (RCPs), which characterize alternative future greenhouse gas emissions based on potential socio-economic and technological developments (Moss *et al* 2010). We present outputs from one moderate climate scenario (RCP 6.0) for simplicity but provide additional climate scenarios in the supplementary materials.

Because the starting harvest values for each species and country in the bioeconomic model were based on the RAM Legacy Stock Assessment database and Food and Agriculture Organization marine capture databases, which often use different catch history reconstruction techniques and input data than the SAU or national datasets, they do not necessarily align with the production data we used in this analysis. Therefore, rather than comparing projected future catch values from the bioeconomic model directly with our country-specific production data, we first converted the projected catch values into a ratio of future modeled catch to baseline modeled catch. Specifically, we divided the projected catch at mid-century (mean of 2051–2060) in both the No Adaptation and Full Adaptation scenarios by the mean catch in 2017–2021 under the No Adaptation scenario. We used this relatively short baseline period to avoid large 'burn-in' fluctuations in the initial years of model projections. We then multiplied the country-specific production values by those ratios to adjust the projected catch values. Where landings data were reported at the genus or family level, we took mean projected catch ratios for modeled species for each country. We present catch and nutrition yield projections only for the subset of species for which production and nutrition data were available. We calculated the nutrient 'upside' of climate-adaptive management as the difference in mean adjusted projected catch between the two scenarios at mid-century. We express the upside as a proportion of the baseline catch or baseline child RNI equivalents, clipped to the subset of species for which projection data were available.

## 2.5. Accounting for national-level allocative drivers

We used SAU estimates to calculate catch by foreign vessels in each country's EEZ (table 1). Because we could not trace the ultimate destination of foreign-caught fish, we assumed that catch by foreign vessels was consumed by the foreign fishing country and therefore represents a domestic nutrition loss; however, we acknowledge that this may not be the case depending on the species and country, particularly in situations where the foreign access agreement includes a requirement to supply a portion of catch for the domestic market or where there are requirements to land catch domestically, for example, as required in the Palau National Marine Sanctuary Act (PICRC 2019). Foreign catch data were not available for Malawi.

We used the share of production exported from the Aquatic Resource Trade in Species (ARTIS) database (<https://artisdata.weebly.com>), which disaggregates bilateral trade data into estimated species flows based on Gephart *et al* (2024). We multiplied country-specific production by the proportion exported by volume for each species and country in 2019, the most recent year available in the database. The ARTIS database has been harmonized with SAU species and taxa names, minimizing mismatch. Although export data were available for Malawi, we did not assess them here due to high levels of uncertainty given informal cross-border trade (Mussa *et al* 2017) (table 1).

Other potential national-level allocative drivers include food loss and waste along the supply chain (including discards and spoilage) and the conversion of aquatic foods to uses other than direct human consumption, such as fishmeal or fish oil for agriculture, mariculture, and livestock. Rates of post-harvest loss and uses other than direct human consumption vary at the specific value chain level, including amongst different chains (e.g. dried versus fresh products, local versus export markets), so we did not explicitly examine these drivers here. However, they could be quantified and demonstrated in the same manner as the other allocative measures where data are available, and may be feasible particularly for studies with a narrower focus on a single country or fishery. For Peru and Chile, where conversion to fishmeal/fish oil represents a critical driver because of the predominant anchoveta (*E. ringens*) fishmeal industry (Fréon *et al* 2014), we indirectly address this driver by separating our nutrient yield analyses of anchoveta and other

**Table 1.** Data sources for each case study used to evaluate the nutrition implications of fishery management and post-harvest allocation interventions.

| Country      | Production, most recent year                                                                                                                                                                                                                              | Climate-adaptive fishery management                     | Exports              | Foreign fishing | Fishing sector                                      | Subnational distribution                                                                      |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------|-----------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Peru         | Sea Around Us, 2019. (De la Puente <i>et al</i> 2020b)                                                                                                                                                                                                    | Gaines <i>et al</i> (2018) and Free <i>et al</i> (2020) | ARTIS trade database | Sea Around Us   | Sea Around Us                                       | Not assessed                                                                                  |
| Chile        | Country-specific official landings from SERNAPESCA, 2021 ( <a href="http://www.sernapesca.cl/informacion-utilidad/anuarios-estadisticos-de-pesca-y-acuicultura">www.sernapesca.cl/informacion-utilidad/anuarios-estadisticos-de-pesca-y-acuicultura</a> ) | Gaines <i>et al</i> (2018) and Free <i>et al</i> (2020) | ARTIS trade database | Sea Around Us   | Official landings from SERNAPESCA                   | Not assessed                                                                                  |
| Indonesia    | Sea Around Us, 2019. (Polido <i>et al</i> 2020)                                                                                                                                                                                                           | Gaines <i>et al</i> (2018) and Free <i>et al</i> (2020) | ARTIS trade database | Sea Around Us   | Sea Around Us                                       | Not assessed                                                                                  |
| Sierra Leone | Illuminating Hidden Harvest estimates, 2017 (FAO <i>et al</i> 2023) <sup>a</sup>                                                                                                                                                                          | Gaines <i>et al</i> (2018) and Free <i>et al</i> (2020) | ARTIS trade database | Sea Around Us   | Illuminating Hidden Harvest                         | Not assessed                                                                                  |
| Malawi       | Country-specific official landings from Department of Fisheries Data, 2017                                                                                                                                                                                | No data                                                 | Not assessed         | No data         | Official landings from Department of Fisheries Data | Sector-level production; Detailed market and value chain analysis (Bennett <i>et al</i> 2022) |

<sup>a</sup> The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO.

species. We present separate figures and values for anchoveta in Peru, and figures for Chile's anchoveta are in the supplemental information. However, this does not account for conversion of other species to fishmeal.

### 3. Results

Countries vary in terms of the projected impact of climate change in their waters and the current flows of landings out of national waters via foreign fishing and trade, resulting in different levers for retaining fishery nutrients. The selected case studies, detailed below, illustrate a range of predicted future outcomes and different policy and management levers that may influence nutrient availability nationally or for specific subnational populations by mid-century (table 2).

#### 3.1. Peru

##### 3.1.1. *Results in brief—key drivers: export and foreign fishing allocations, climate-adaptive management*

While climate change could cause a substantial decline in nutrient yield by mid-century for Peru, there is an opportunity for climate-adaptive management to improve nutrient yields relative to current baseline. Currently, a substantial proportion of Peru's nutrient yield is diverted away from domestic consumption through exports and presumed diversion of anchoveta to fishmeal/fish oil production. Foreign fishing of species other than anchoveta also currently diverts a moderate proportion of nutrient yield.

##### 3.1.2. *Current total nutritional yield from capture fisheries*

Peru's 2019 catch, excluding anchoveta, represents a TNY equivalent to over 13 million child RNIs for iron, or over 100 million child RNIs for selenium (figure 2(b), table 2). This catch represents ample sources of selenium, omega-3 fatty acids, zinc, and iron for Peru's population (table 2). Although most anchoveta is not consumed by humans, Peru's anchoveta TNY represents over 20 million child RNI equivalents for all assessed nutrients except vitamin A, and could exceed Peru's population-level demand for omega-3 fatty acids and selenium (table 2). Of the five most commonly caught species by volume in the SAU catch data, anchoveta represents a major source of omega-3 fatty acids, with a 100 g edible serving providing over 100% of a child's daily RNI (figure 2(c)). Humboldt squid and jurel (jack mackerel; *Trachurus murphyi*) provide substantial iron, omega-3 fatty acids, and zinc; jurel is additionally a good source of calcium. Bonito (*Sarda chiliensis*) is a source of iron and omega-3 fatty acids (figure 2(c)).

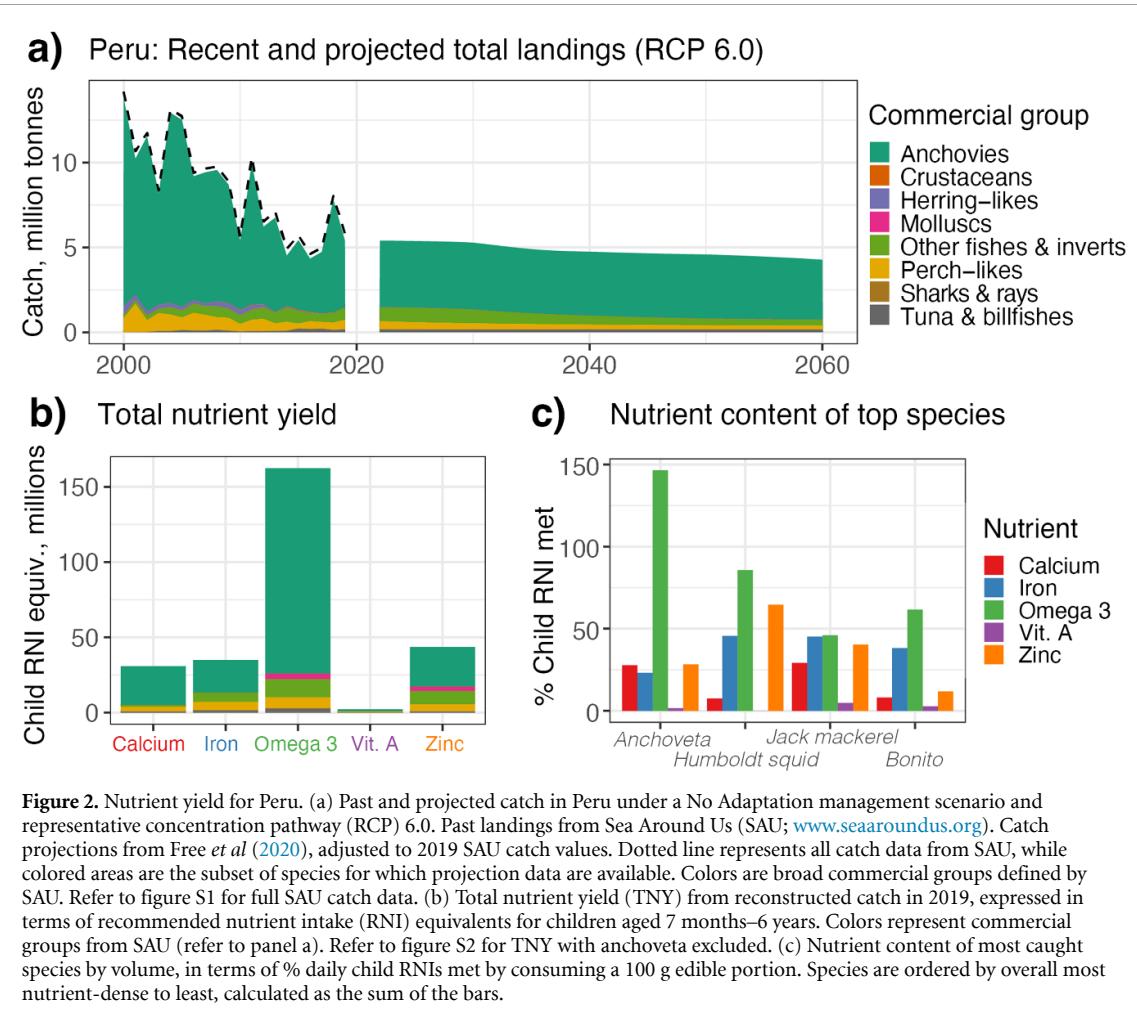
##### 3.1.3. *Nutritional upsides and downsides (net nutritional yields) of management and allocation drivers*

Under a No Adaptation management scenario, the total catch from Peru's fisheries, excluding anchoveta, is projected to decrease to 52.4% of the 2017–2021 baseline by mid-century (2051–2060) (figures 2(a) and S12). In contrast, under the Full Adaptation scenario, catch could increase to 137.7% of baseline by mid-century (figure S12). The Full Adaptation scenario would particularly increase yields of calcium (157% of baseline, or 7.7 million child RNI equivalents) and vitamin A (201.6% of baseline TNY, 1.3 million child RNI equivalents) (figure 3(a), table 2). For anchoveta, the two management scenarios have similar patterns, projecting a small decline in catch by mid-century (to ~94% of baseline catch) (figure S14). Implementing the Full Adaptation scenario instead of the No Adaptation scenario could yield an additional 800 000 omega-3 fatty acid child RNI equivalents at mid-century from anchoveta (figure 3(c), table 2).

Excluding anchoveta, 47.5% of domestic catch volume is exported. This represents a substantial loss of domestic nutrient yield, from 22.7% of vitamin A yield to 61.1% of iron yield (figure 3(b), table 2). Iron, zinc, and selenium are slightly overrepresented in export flows, whereas calcium and vitamin A are disproportionately retained in-country (table 2). The majority, 77.5% by volume, of anchoveta catch is exported. A hypothetical, albeit unrealistic, scenario in which all anchoveta are retained domestically and allocated to direct human consumption, would provide additional nutrient yields equivalent to 102.8 million omega-3 fatty acids child RNIs (figure 3(d), table 2).

Non-anchoveta catch lost to foreign fishing in Peru's waters represents 23.0% of catch volume and a moderate loss of nutrient yield, ranging from 22.5% of omega-3 yield lost to foreign fishing to a 34.8% loss in calcium yield (figure S37, table 2). Foreign catch of anchoveta is minimal (<3% by volume) but could still account for 3.8 million child RNI equivalents of omega-3 fatty acids (figure S38, table 2).

Artisanal fisheries contribute 81.3% of non-anchoveta catch volume and disproportionately contribute to omega-3 fatty acids and zinc yields (~86% of nutrient yield, representing 17.1 million and 11.3 million child RNI equivalents, respectively), whereas industrial fisheries disproportionately contribute to vitamin A (52% of nutrient yield, representing 240 000 child RNI equivalents) and calcium (37% of nutrient yield, representing 1.2 million child RNI equivalents) (figure S37, table 2).


**Table 2.** Summary of total nutrient yield, climate impacts, and potential leverage of national and subnational allocative drivers for each case study used to evaluate the nutrition implications of fishery management and post-harvest allocation interventions. Projected climate impact represents percent (%) change in catch by mid-century (2051–2060) under the No Adaptation scenario. The impact (or upside) of climate-adaptive fishery management is the difference in projected catch in the Full Adaptation scenario and the No Adaptation scenario at mid-century, expressed as a percentage of baseline catch. For allocative drivers, % yield diverted refers to nutrient yield (share of total child RNI equivalents) going to that destination (diverted to exports; diverted to foreign fishing; diverted to inland populations), although we do not assess in this study whether the populations in those destinations are more nutritionally vulnerable than those in the country or region where the fish was caught. For industrial/large-scale fishing, percent (%) yield refers to the percentage of nutrients caught in those fisheries; we specify % yield rather than % yield diverted since these nutrients may be consumed domestically. Categories are defined as: negligible (<2% change in nutrient yield or change in catch); small (2%–10% change in nutrient yield or change in catch); modest (11%–25% change in nutrient yield or change in catch); moderate (26%–40% change in nutrient yield or change in catch); substantial (>40% change in nutrient yield or change in catch). RNI—recommended nutrient intake. RCP—representative concentration pathway. TNY—total nutrient yield.

| Country                   | Nutrient  | Total nutrient yield (TNY) |                           | Climate impact and fisheries management upside          |                                                                     | National allocative drivers         |                                             |                                                   | Subnational allocative drivers     |                                   |
|---------------------------|-----------|----------------------------|---------------------------|---------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------|---------------------------------------------|---------------------------------------------------|------------------------------------|-----------------------------------|
|                           |           | Child RNI equivalents      | Population demand met (%) | Projected climate impact on catch (Midcentury, RCP 6.0) | Upside of climate-adaptive fishery management, (% of baseline RNIs) | Exports (% nutrient yield diverted) | Foreign fishing (% nutrient yield diverted) | Industrial/large-scale fishing (% nutrient yield) | Inland (% nutrient yield diverted) | Urban (% nutrient yield diverted) |
| Peru (anchoveta excluded) |           |                            |                           | Substantial decrease to 52.4% of baseline catch         | Substantial upside, median 88.7% of TNY                             | Substantial, median 51.9%           | Moderate, median 28.3%                      | Modest, median 24.0%                              | Not assessed                       | Not assessed                      |
|                           | Calcium   | 5030 132                   | 7.6                       |                                                         | 156.99                                                              | 43.68                               | 34.78                                       | 37.79                                             |                                    |                                   |
|                           | Iron      | 13 348 919                 | 17.39                     |                                                         | 97.3                                                                | 61.11                               | 28.27                                       | 23.96                                             |                                    |                                   |
|                           | Omega 3s  | 25 818 214                 | 44.16                     |                                                         | 67.78                                                               | 51.89                               | 22.54                                       | 14.65                                             |                                    |                                   |
|                           | Selenium  | 100 850 392                | 186.12                    |                                                         | 74.09                                                               | 55.55                               | 28.26                                       | 22.68                                             |                                    |                                   |
|                           | Vitamin A | 731 364                    | 1.72                      |                                                         | 201.6                                                               | 22.73                               | 32.75                                       | 49.11                                             |                                    |                                   |
|                           | Zinc      | 17 268 854                 | 38                        |                                                         | 80.03                                                               | 58.67                               | 24.04                                       | 13.79                                             |                                    |                                   |
| Peru (anchoveta only)     |           |                            |                           | Small decrease to 93.6% of baseline catch               | Negligible upside, median 0.59% of TNY                              | Substantial, 77.5%                  | Small, 2.8%                                 | Substantial, 93.6%                                | Not assessed                       | Not assessed                      |
|                           | Calcium   | 25 865 920                 | 39.1                      |                                                         |                                                                     |                                     |                                             |                                                   |                                    |                                   |
|                           | Iron      | 21 604 962                 | 28.15                     |                                                         |                                                                     |                                     |                                             |                                                   |                                    |                                   |
|                           | Omega 3s  | 136 508 816                | 233.47                    |                                                         |                                                                     |                                     |                                             |                                                   |                                    |                                   |
|                           | Selenium  | 124 488 162                | 229.74                    |                                                         |                                                                     |                                     |                                             |                                                   |                                    |                                   |
|                           | Vitamin A | 1533 288                   | 3.61                      |                                                         |                                                                     |                                     |                                             |                                                   |                                    |                                   |
|                           | Zinc      | 26 372 223                 | 58.04                     |                                                         |                                                                     |                                     |                                             |                                                   |                                    |                                   |

(Continued.)

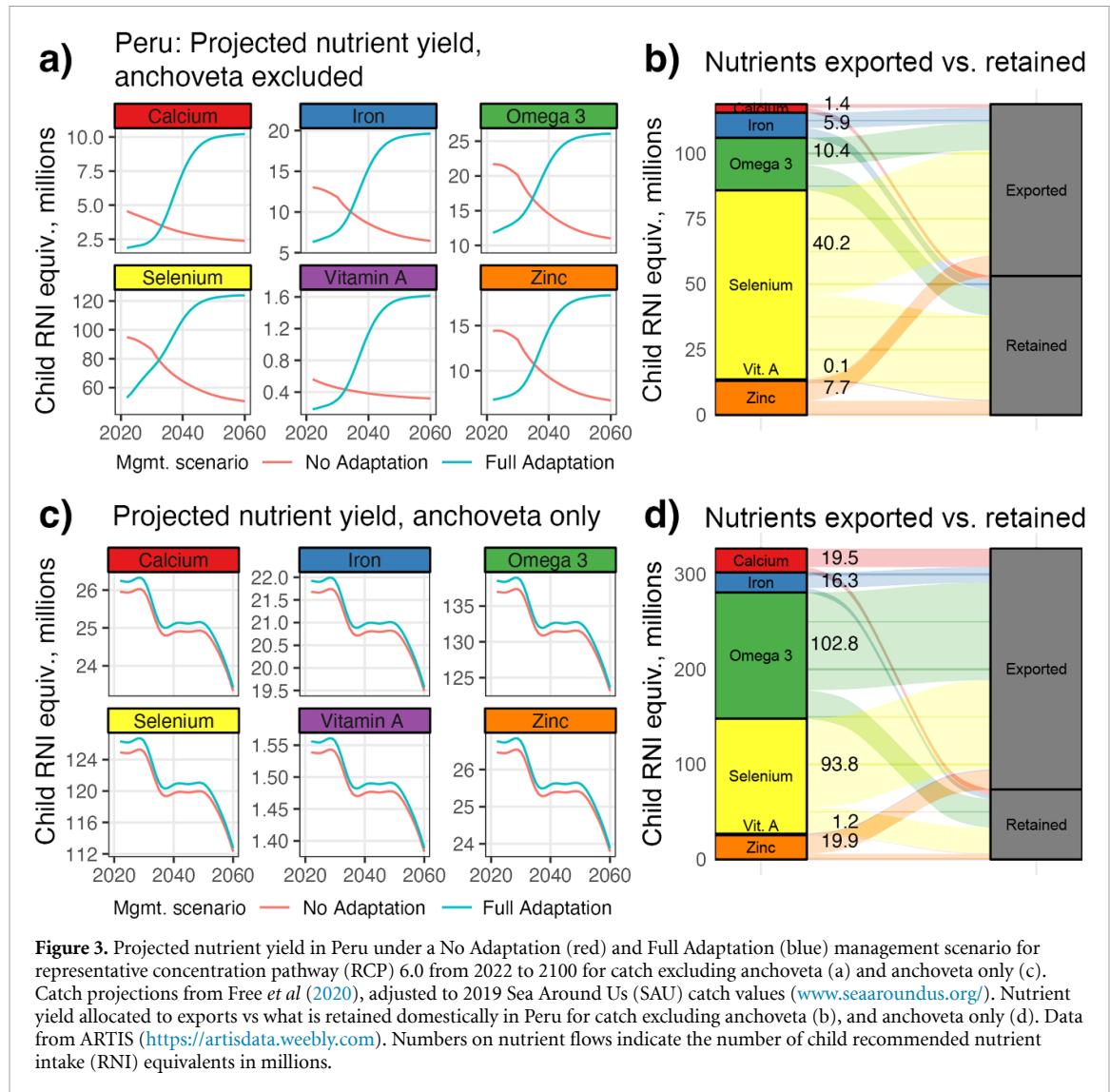
Table 2. (Continued.)

|                               |               |                                                 |                                          |                           |                         |                            |                            |                            |
|-------------------------------|---------------|-------------------------------------------------|------------------------------------------|---------------------------|-------------------------|----------------------------|----------------------------|----------------------------|
| Chile<br>(anchoveta excluded) |               | Substantial decrease to 44.3% of baseline catch | Substantial upside, median 269.3% of TNY | Substantial, median 62.3% | Negligible, median 1.7% | Substantial, median 57.0%  | Not assessed               | Not assessed               |
| Calcium                       | 7333 104.14   | 18.05                                           | 301.98                                   | 62.23                     | 1.70                    | 56.95                      |                            |                            |
| Iron                          | 11 576 498.32 | 25.45                                           | 295.02                                   | 64.44                     | 1.96                    | 59.55                      |                            |                            |
| Omega 3s                      | 19 236 703.84 | 53.44                                           | 232.68                                   | 50.57                     | 1.42                    | 39.35                      |                            |                            |
| Selenium                      | 41 344 460.41 | 67.39                                           | 233.98                                   | 58.3                      | 1.61                    | 53.85                      |                            |                            |
| Vitamin A                     | 65 289 104.96 | 196.32                                          | 254.87                                   | 58.56                     | 1.58                    | 56.05                      |                            |                            |
| Zinc                          | 1183 050.82   | 4.62                                            | 283.81                                   | 62.65                     | 1.65                    | 61.75                      |                            |                            |
| Indonesia                     |               | Small decrease to 97.8% of baseline catch       | Modest upside, median 11.8% of TNY       | Modest, median 16.1%      | Small, median 3.0%      | Substantial, median 71.72% | Not assessed               | Not assessed               |
| Calcium                       | 44 923 278    | 8.26                                            | 7.5                                      | 15.83                     | 3.04                    | 70.45                      |                            |                            |
| Iron                          | 30 896 462    | 4.9                                             | 11.95                                    | 17.67                     | 2.62                    | 71.72                      |                            |                            |
| Omega 3s                      | 61 518 496    | 12.69                                           | 11.67                                    | 16.08                     | 2.84                    | 72.71                      |                            |                            |
| Selenium                      | 494 134 576   | 110.01                                          | 17.36                                    | 17.26                     | 2.81                    | 71.26                      |                            |                            |
| Vitamin A                     | 10 532 526    | 3.01                                            | 16.67                                    | 13.28                     | 3.54                    | 72.43                      |                            |                            |
| Zinc                          | 35 574 824    | 9.49                                            | 11.36                                    | 15.05                     | 3.13                    | 71.42                      |                            |                            |
| Sierra Leone                  |               | Substantial decrease to 31.8% of baseline catch | Negligible upside, median 0.18% of TNY   | Moderate, median 25.8%    | Modest, median 16.5%    | Moderate, median 33.3%     | Not assessed               | Not assessed               |
| Calcium                       | 2797 762      | 19.22                                           | 0.24                                     | 30.57                     | 10.94                   | 33.76                      |                            |                            |
| Iron                          | 2049 560      | 11.98                                           | 0.11                                     | 25.78                     | 16.9                    | 31.83                      |                            |                            |
| Omega 3s                      | 6694 476      | 52.41                                           | -1.91                                    | 14.85                     | 13.42                   | 25                         |                            |                            |
| Selenium                      | 37 382 831    | 314.04                                          | 1.22                                     | 28.66                     | 16.45                   | 34.93                      |                            |                            |
| Vitamin A                     | 428 075       | 4.42                                            | 6.72                                     | 39.32                     | 20.07                   | 48.92                      |                            |                            |
| Zinc                          | 2711 459      | 25.77                                           | -1.74                                    | 20.91                     | 15.65                   | 27.84                      |                            |                            |
| Malawi                        |               | No data                                         | No data                                  | Not assessed              | No data                 | Negligible, median 1.29%   | Substantial, median 93.46% | Substantial, median 67.67% |
| Calcium                       | 4082 242      | 11.51                                           |                                          |                           |                         | 0.74                       | 94.22                      | 66.93                      |
| Iron                          | 2825 807      | 6.69                                            |                                          |                           |                         | 0.66                       | 93.99                      | 67.29                      |
| Omega 3s                      | 1909 464      | 6.2                                             |                                          |                           |                         | 1.51                       | 93.53                      | 68.03                      |
| Selenium                      | 12 626 473    | 43.85                                           |                                          |                           |                         | 1.29                       | 93.38                      | 68.26                      |
| Vitamin A                     | 668 233       | 2.82                                            |                                          |                           |                         | 2.00                       | 93.98                      | 67.31                      |
| Zinc                          | 2037 411      | 7.91                                            |                                          |                           |                         | 1.23                       | 93.29                      | 68.97                      |



### 3.2. Chile

#### 3.2.1. Results in brief—key drivers: climate-adaptive management, export allocations

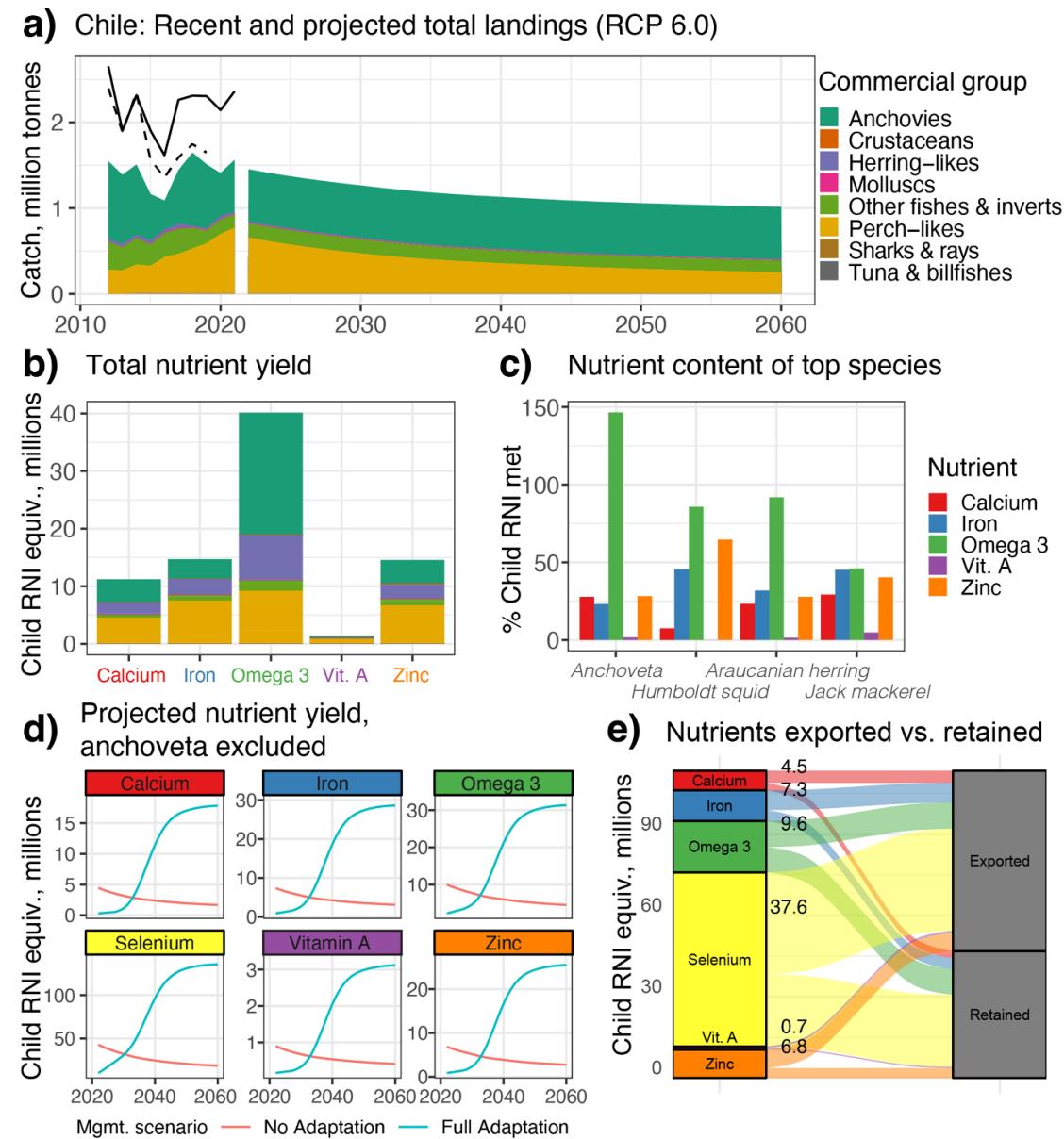

Chile has a similar ecosystem and suite of fished species to Peru, but as a higher-latitude country is projected to see smaller losses in nutrient yield due to climate change and could experience greater increases in nutrient yield by adopting climate-adaptive management reforms. As with Peru, exports represent a substantial diversion of nutrient yield away from domestic consumption, but unlike Peru, foreign fishing represents a negligible nutrient allocation driver.

#### 3.2.2. Current total nutritional yields from wild fisheries

Excluding anchoveta and algaes, TNY from Chile's landings could exceed population-level demand for omega-3 fatty acids and selenium, and represents significant supplies of zinc, calcium, and iron (figure 4(b), table 2). When seaweeds are included in the total nutrient RNI equivalents, these figures more than double for most nutrients except vitamin A, with over a nine-fold increase in zinc provisioning (figure S5). Although some seaweeds are consumed locally, and a number of government programs have sought to increase domestic consumption of seaweeds (Rogel-Castillo *et al* 2023), we do not have definitive figures regarding rates of domestic human consumption. The highest-volume species are similar to those in Peru; Araucanian herring (*Strangomeria bentincki*) additionally represents a major source of omega-3 fatty acids (figure 4(c)).

#### 3.2.3. Nutritional upsides and downsides (net nutritional yields) of management and allocation drivers

Under a No Adaptation scenario, non-anchoveta catch is projected to decrease to 44.3% of baseline by mid-century, while under Full Adaptation scenario, catch could increase to 269.3% of baseline, representing substantial nutrient upsides with particular increases in calcium, iron, and zinc. (Figure 4(D), figure S18, table 2). These large increases are driven by a combination of expected stock range increases in Chile's waters consistent with poleward shifts in stock distributions, and climate-sensitive harvest controls, which forestall modeled collapses in key commercial fish stocks such as jurel and chub mackerel (*Scomber japonicus*) (Free *et al* 2020).

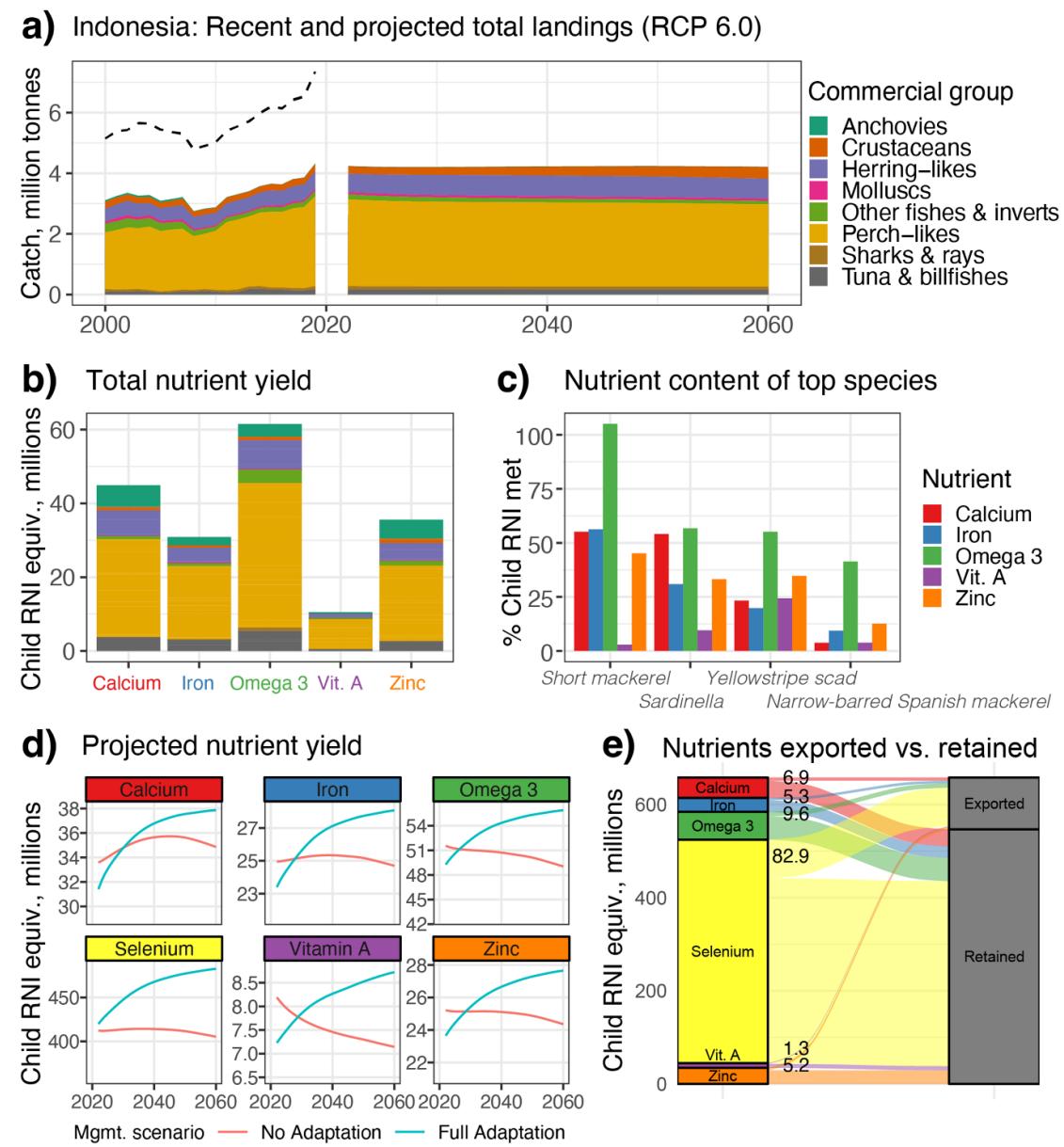



The majority (56.9%) of Chile's domestic catch volume is exported, representing a substantial loss in domestic nutrient yields (table 2). Zinc and iron are overrepresented in export flows relative to volume, while omega-3 fatty acids are underrepresented (figure 4(e), table 2). Foreign fishing in Chile's waters is negligible according to the SAU database, accounting for just 1.1% of catch volume; nutrient yield losses from foreign fishing are roughly proportional to catch volume, although omega-3 fatty acids are slightly underrepresented in foreign catch (0.68% of nutrient yield lost to foreign fishing) (figure S39, table 2). Large-scale fisheries produced the slight majority (50.4%) of Chile's non-anchoveta fishery volume in 2021, with a disproportionate contribution to vitamin A and iron yields because that catch is predominantly jurel/jack mackerel (table 2). Artisanal fisheries, which catch higher volumes of Araucanian herring and Humboldt squid, disproportionately contributed to omega-3 fatty acids yield (table 2). Additionally, Chile's artisanal fisheries caught 83% of anchoveta in 2021, representing another major contribution to omega-3 fatty acids yield that is likely diverted to fishmeal and fish oil (figure S40).

### 3.3. Indonesia

#### 3.3.1. Results in brief—key drivers: climate-adaptive management, export allocations

Among the countries studied here, Indonesia's catch is uniquely rich in vitamin A, a nutrient for which much of the population faces deficiencies. Because relatively little of Indonesia's nutrient yield is diverted to exports or foreign fishing, further analysis of subnational allocative drivers would be an important step toward distributing that vitamin A yield to nutrient-deficient populations. Small projected climate-related declines in nutrient provisioning could be reversed by mid-century with climate-adaptive management.




**Figure 4.** Nutrient yield and allocations for Chile, excluding seaweeds. (a) Past and projected catch in Chile under a No Adaptation management scenario and representative concentration pathway (RCP) 6.0. Official national landings from SERNAPESCA ([www.sernapesca.cl/informacion-utilidad/anuarios-estadisticos-de-pesca-y-acuicultura](http://www.sernapesca.cl/informacion-utilidad/anuarios-estadisticos-de-pesca-y-acuicultura)) and catch projections from Free *et al* (2020), adjusted to 2021 catch values. Solid line represents all catch data from SERNAPESCA, while colored areas are the subset of species for which projection data are available. Dotted line indicates all catch data for Chile from the Sea Around Us (SAU) project ([www.seararoundus.org/](http://www.seararoundus.org/)). Colors are broad commercial groups defined by SAU. Refer to figure S3 for full official landings data and figure S4 for full SAU catch data. (b) Total nutrient yield (TNY) from official catch in 2021, expressed in terms of recommended nutrient intake (RNI) equivalents for children aged 7 months–6 years. Colors represent commercial groups from SAU (refer to panel a). Refer to figure S5 for TNY including algae and figure S6 for TNY excluding anchoveta (c) Nutrient content of most caught species by volume, in terms of % daily child RNIs met by consuming a 100 g edible portion. Species are ordered by overall most nutrient-dense to least, calculated as the sum of the bars. (d) Projected nutrient yield, excluding anchoveta, under a No Adaptation (red) and Full Adaptation (blue) management scenario for RCP 6.0 from 2022 to 2100. (e) Nutrient yield, excluding anchoveta, allocated to exports vs what is retained domestically. Data from ARTIS (<https://artisdata.weebly.com>). Numbers on nutrient flows indicate the number of child RNI equivalents in millions.

### 3.3.2. Current total nutritional yields from wild fisheries

Indonesia's fisheries TNY represents a larger source of vitamin A relative to the other cases analyzed here, and a large source of selenium, omega-3 fatty acids, and calcium (figure 5(b), table 2). The high vitamin A yield is driven by relatively high catch of yellowstripe scad (*Selaroides leptolepis*), snappers (*Lutjanus* spp.), chocolate hind (*Cephalopholis boenak*), and fusiliers (*Caesionidae* spp.), all of which have predicted vitamin A values of >100 mcg/100 g edible portion<sup>10</sup>. Among commonly-caught species, short mackerel (*Rastrelliger*

<sup>10</sup> The only species with available nutrient data found in Indonesia's waters is the mottled fusilier (*Dipterygonotus balteatus*).



**Figure 5.** Nutrient yield and allocations for Indonesia. (a) Past and projected catch in Indonesia under a No Adaptation management scenario and representative concentration pathway (RCP) 6.0. Past landings from Sea Around Us (SAU; [www.seaaroundus.org](http://www.seaaroundus.org)). Catch projections from Free *et al* (2020), adjusted to 2019 SAU catch values. Dotted line represents all catch data from SAU, while colored areas are the subset of species for which projection data are available. Colors are broad commercial groups defined by SAU. Refer to figure S8 for full SAU catch data. (b) Total nutrient yield from reconstructed catch in 2019, expressed in terms of recommended nutrient intake (RNI) equivalents for children aged 7 months–6 years. Colors represent commercial groups from SAU (refer to panel a). (c) Nutrient content of most caught species by volume, in terms of % daily child RNIs met by consuming a 100 g edible portion. Species are ordered by overall most nutrient-dense to least, calculated as the sum of the bars. (d) Projected nutrient yield under a No Adaptation (red) and Full Adaptation (blue) management scenario for RCP 6.0 from 2022 to 2100. Catch projections from Free *et al* (2020), adjusted to 2019 SAU catch values. (e) Nutrient yield allocated to exports vs what is retained domestically. Data from ARTIS (<https://artisdata.weebly.com>). Numbers on nutrient flows indicate the number of child RNI equivalents in millions.

*brachysoma*) provides high levels of calcium, iron, and zinc; *Sardinella* spp. are also good sources of calcium, and yellowstripe scad contains high levels of vitamin A (figure 5(c)). Narrow-barred Spanish mackerel (*Scomberomorus commerson*) also provides relatively high levels of omega 3 fatty acids (figure 5(c)).

### 3.3.3. Nutritional upsides and downsides (net nutritional yields) of management and allocation drivers

Indonesia's fisheries production is projected to decline slightly under climate change and a No Adaptation scenario (figure 5(a), table 2), but the Full Adaptation scenario could yield nutrient upsides by mid-century, representing 7.5%–16.7% increases over baseline TNY for each nutrient (figure 5(d), table 2).

Exports are a relatively small driver for nutrition yield, redirecting 13.2% of domestic catch volume; however, nutrition yields of iron and selenium are slightly overrepresented in export flows (figure 5(e)),

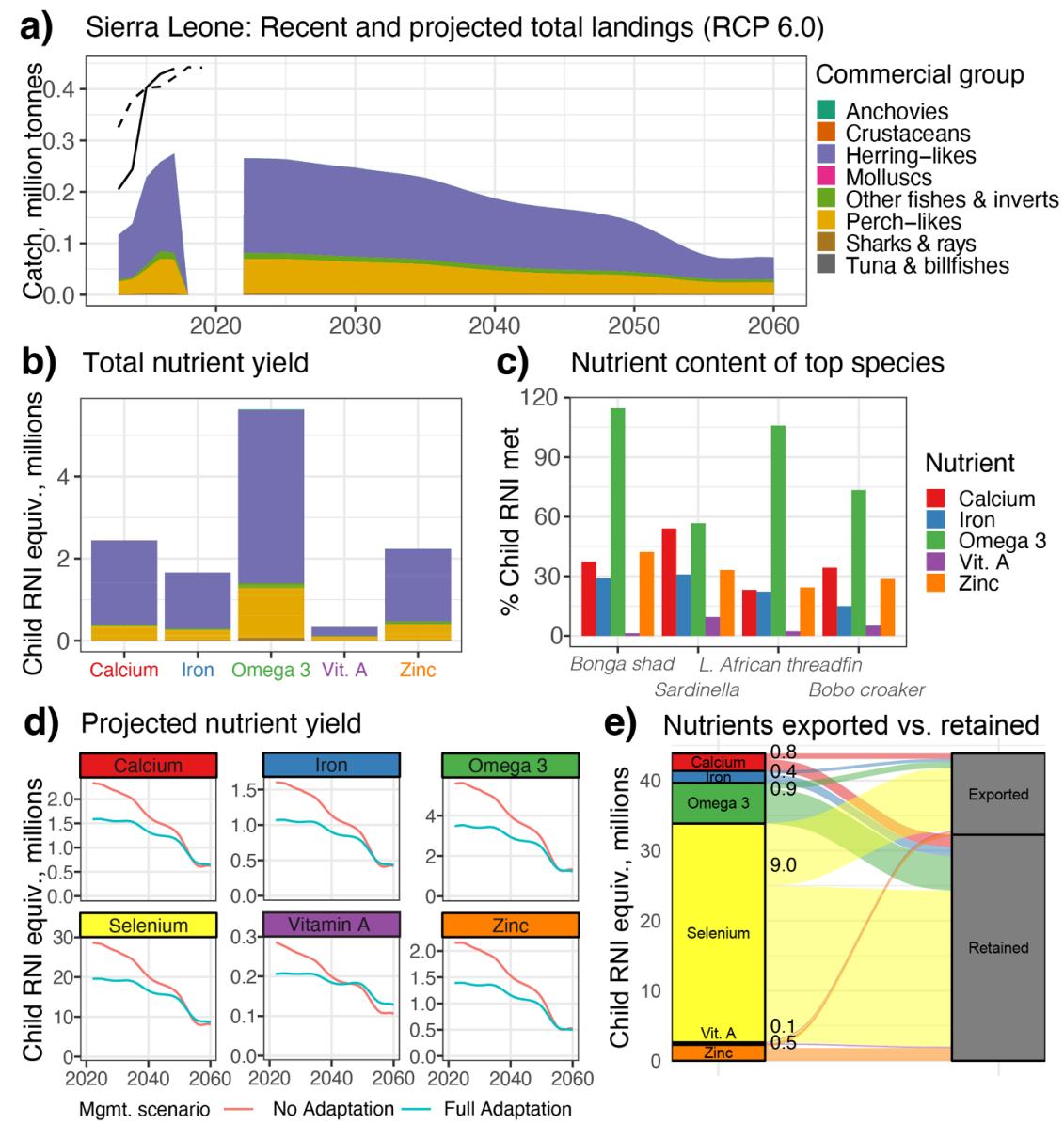
table 2). Foreign fishing is negligible in Indonesia's waters, representing 2.9% of catch volume and similar percent losses in nutrient yield (figure S41, table 2). Indonesia's artisanal fisheries contribute approximately one-third of catch volume, and slightly under-contribute to nutrition provisioning relative to industrial fisheries (27.2%–29.6% of RNI equivalents) (figure S41).

### 3.4. Sierra Leone

#### 3.4.1. Results in brief—key drivers: export allocations, subnational allocation

In the Sierra Leone case, examining catch as nutrient yield reveals that exports of aquatic foods, while relatively modest in terms of volume, are disproportionately nutritious. Reexamining any national- and subnational allocative drivers that divert nutrition away from vulnerable populations will be critical in Sierra Leone because model projections indicate that nutrient yields will decline substantially due to climate change under all management scenarios. In particular, exports of small pelagic fish disproportionately divert nutrition, representing nearly 40% of Vitamin A yield despite a relatively modest volume. The observably increasing export of smoked fish to Europe and North American in response to demand from African diasporans is of domestic food fish insecurity concern (Baio 2016). Moreover, the strict monitoring of the 5 nautical miles inshore exclusion zone has resulted in the outsourcing of the harvesting of desired species (especially the bobo croaker, *Pseudotolithus* spp.) to small-scale fishers by traditional industrial fishing operators. The understanding is that the catch should be sold to export oriented fish processing units—an arrangement with potential food fish and nutrition insecurity as well as unsustainability outcomes (Baio 2016). Sierra Leone represents a case where fisheries management interventions could incur nutrition trade-offs, where restricting fishing to achieve MEY would reduce near-term nutrient availability.

#### 3.4.2. Current total nutritional yields from wild fisheries


Small pelagic 'herring-like' fish including bonga shad (*Ethmalosa fimbriata*) and *Sardinella* spp. contribute to high nutrient yields of omega-3 fatty acids, calcium, zinc, and iron in Sierra Leone's fisheries that could meet a significant portion of population nutrient demand (figure 6(b), table 2). These species represent major sources of omega-3 fatty acids (figure 6(c)). Bonga shad is additionally relatively high in zinc, while *Sardinella* spp. are relatively high in calcium and vitamin A. Lesser African threadfin (*Gaeleoides decadactylus*) and bobo croaker (*Pseudotolithus elongatus*) are also good sources of omega-3 fatty acids (figure 6(c)).

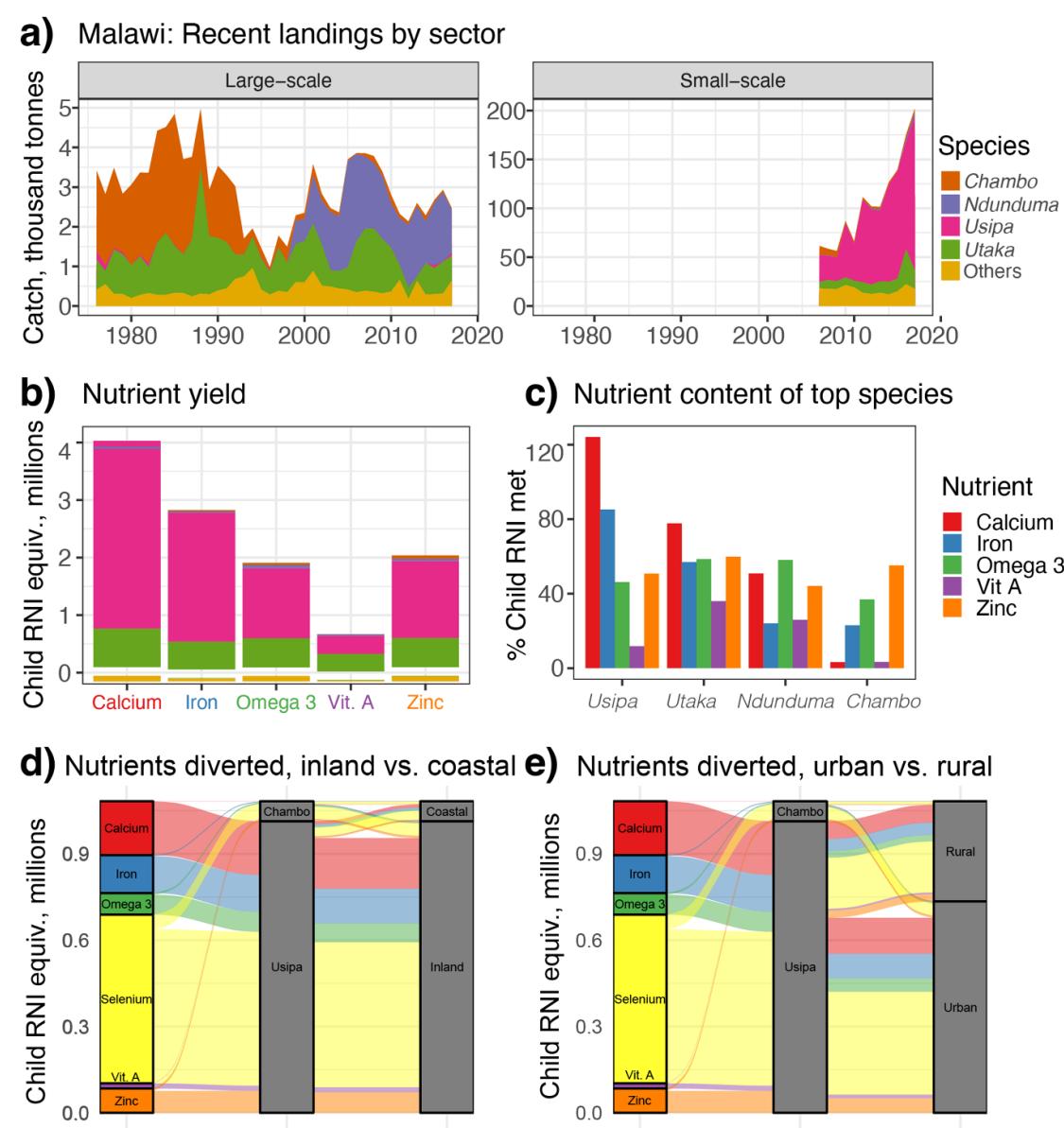
#### 3.4.3. Nutritional upsides and downsides (net nutritional yields) of management and allocation drivers

Regardless of the management scenario, nutrient yields from Sierra Leone's fisheries are projected to decrease substantially by mid-century (figures 6(a), (d) and table 2). In the near term, the Full Adaptation scenario would result in lower nutrient yields than the No Adaptation scenario, due to constraining harvest of overexploited and/or transboundary stocks to achieve MEY (figure 6(d)).

Therefore, allocation drivers may be higher priority nutrition interventions. Export flows from Sierra Leone, while only 13.9% of domestic catch volume, represent disproportionate losses of yield for every nutrient analyzed. Vitamin A and calcium, nutrients for which the majority of Sierra Leone's population faces deficiencies, are substantially overrepresented in export flows (figure 6(e), table 2). This disproportionate loss is primarily driven by export of *Sardinella* spp. (71% of catch by volume is exported; this represents 93% of export volume analyzed here), which is relatively high in calcium and vitamin A, among other nutrients (figure 6(c)).

Foreign catch, at 24.7% of overall catch volume in Sierra Leone's waters, represents a larger driver than exports by volume. But, conversely to exports, foreign catch portfolios are lower in the focal nutrients in this study than domestic catch, particularly lower in calcium and omega-3 fatty acids (figure S42, table 2). Small-scale fisheries dominate catch volume (75.4%) and therefore provide the majority of nutrient yield. However, large-scale fisheries disproportionately contribute to nutrient yield for vitamin A and, to a lesser extent, calcium, and iron, due to high catch proportion of *Sardinella* spp. (figure S42, table 2). Even though small-scale fisheries catch relatively more vitamin A-rich snappers (*Lutjanus* spp., 81 mcg/100 g edible serving) than large scale fisheries, small-scale catch is dominated by bonga shad, which is low in vitamin A (~5 mcg/100 g edible serving) compared to *Sardinella* (~40 mcg/100 g edible serving) (figure 6(c)). As Baio (2010) observed, the demersal species occurring in relatively low volume and therefore attracting comparatively high prices, such as snappers and groupers, are regarded as the so-called 'Good Fish' in fisheries circles. Conversely, the nutritious clupeids such as bonga shad and *Sardinella* spp. sustain the majority of the population as the key source of animal protein. However, because these species occur in large quantities due to their shoaling characteristics and consequently are relatively affordable, they are not considered as 'Good Fish.' This 'paradox of value' potentially undermines both the required robust management planning and appropriate pricing for these species.




**Figure 6.** Nutrient yield and allocations for Sierra Leone. (a) Past and projected catch in Sierra Leone under a No Adaptation management scenario and representative concentration pathway (RCP 6.0). Reconstructed landings from the Illuminating Hidden Harvest (IHH) project ([www.fao.org/voluntary-guidelines-small-scale-fisheries/ihh/en](http://www.fao.org/voluntary-guidelines-small-scale-fisheries/ihh/en)) and catch projections from Free *et al* (2020), adjusted to 2017 catch values. Solid line represents all catch data from IHH, while colored areas are the subset of species for which projection data are available. Dotted line indicates all catch data for Sierra Leone from the Sea Around Us (SAU) project ([www.searounds.org/](http://www.searounds.org/)). Colors are broad commercial groups defined by SAU. Refer to figure S9 for full landings estimates and figure S10 for full SAU catch data. (b) Total nutrient yield from catch in 2017, expressed in terms of recommended nutrient intake (RNI) equivalents for children aged 7 months–6 years. Colors represent commercial groups from SAU (refer to panel a). (c) Nutrient content of most caught species by volume, in terms of % daily child RNIs met by consuming a 100 g edible portion. Species are ordered by overall most nutrient-dense to least, calculated as the sum of the bars. (d) Projected nutrient yield under a No Adaptation (red) and Full Adaptation (blue) management scenario for RCP 6.0 from 2022 to 2100. Catch projections from Free *et al* (2020), adjusted to 2017 catch values. (e) Nutrient yield allocated to exports vs what is retained domestically. Data from ARTIS (<https://artisdata.weebly.com>). Numbers on nutrient flows indicate the number of child RNIs in millions.

### 3.5. Malawi

#### 3.5.1. Results in brief—key drivers: subnational allocation

This case demonstrates how changes in species composition of landings can affect nutrient provisioning, both because of differences in the nutrient profiles between species and because of post-harvest distributional dynamics. It also illustrates how different species make these nutrients available to distinct populations, due to post-harvest distribution and market dynamics.

Since Malawi is a landlocked country, it only has inland fisheries and consequently data, estimates, and models of marine fisheries are not available for Malawi. However, this case draws on publicly available subnational postharvest distribution data based on a large value chain survey (Bennett *et al* 2021) to explore availability of nutrients from different fisheries to different subpopulations. In Malawi, nutrient provision



**Figure 7.** Nutrient yield and allocations for Malawi. (a) Past catch in Malawi from the Food and Agriculture Organization, by fishery sector. Small-scale fishery catch data not available prior to 2007. (b) Total nutrient yield from catch in 2017, expressed in terms of recommended nutrient intake (RNI) equivalents for children aged 7 months–6 years. Colors represent species (refer to panel a). (c) Nutrient content of most caught species by volume, in terms of % daily child RNIs met by consuming a 100 g edible portion. Species are ordered by overall most nutrient-dense to least, calculated as the sum of the bars. (d) Nutrient yield from chambo and usipa (primary species) allocated to coastal (within 25 km of the coast) and inland populations. Data from market surveys. (e) Nutrient yield from chambo and usipa allocated to rural and urban populations. Data from market surveys.

has evolved with changing fishery species marked by a decline of tilapia species and increase in small pelagic species. Nutrients from these fisheries are differentially available to urban and rural populations, and this varies by species. For example, in Malawi, the small pelagic species usipa (*E. sardella*) is much more available in rural markets than chambo (*Oreochromis spp.*), a popular tilapia, which is most available in urban markets (Bennett *et al* 2022).

### 3.5.2. Current total nutritional yields from wild fisheries

TNY from Malawi's catch is high in calcium, iron, and zinc, and relatively lower in omega-3 fatty acids than other cases, despite the prevalence of small pelagics (figure 7(b)). This reflects the nutrient composition of usipa, the dominant species by volume (figure 7(c)). Among other major species, utaka is a good source of all the nutrients studied here, including relatively high levels of vitamin A. Ndunduma, a small pelagic species which has largely replaced large-scale landings of chambo, is generally more nutritious than chambo except for lower levels of zinc (figure 7(c)). Here, it is notable that the nutrient profile of chambo is very different

from that of the small pelagic species, particularly usipa, which is especially high in calcium (more than 120% child RNI per 100 g serving versus about 1% child RNI equivalent provided by a 100 g serving of chambo).

### 3.5.3. Nutritional upsides and downsides (net nutritional yields) of various allocation drivers

Small-scale fisheries account for the vast majority (98.4%) of Malawi's catch by volume, and provide similar proportions of nutrient yield, ranging from 98% of vitamin A to 99.3% of iron.

When comparing two species, chambo and usipa, in terms of the flows of nutrients from those fisheries to either coastal (<25 km from Lake Malawi) or inland (>25 km from Lake Malawi) market destinations, coastal nutrients are provided overwhelmingly by usipa, with almost 100% of nutrients from chambo destined for inland markets (figure 7(d)). In addition, 33% of nutrients from usipa are available to rural consumers, whereas only 17% of nutrients from chambo are available to rural consumers (figure 7(e)).

## 4. Discussion

Effectively addressing the world's pressing food systems challenges requires not only reacting to present issues but also proactively designing approaches that anticipate future conditions of the world's social and natural systems. In this paper, we have introduced and applied a methodological approach for considering the prospects—and limitations—of governing fisheries for nutrition in the context of climate change. Like all models, the fisheries models that we used contain error and uncertainties from data limitations and model assumptions. Nonetheless, the results indicate that the effect of different governance approaches is likely to vary substantially from place to place. This finding is broadly consistent with most work on fisheries and climate change, which anticipates that some of the worst climate impacts will be experienced in low latitude countries (Golden *et al* 2016, Cheung *et al* 2023). The implications for availability of nutrients for countries and target subnational populations depend jointly on the predicted impacts of climate change, the potential for increasing fishery yield over time from sustainable management, the nutrient content of targeted species, the variety of post-harvest processes that shape the physical and economic accessibility of available nutrients, and the governance approaches that are applied from production through processing and distribution.

For some of the case study countries, investment in improved fisheries management produces substantial nutritional upsides, which could potentially counteract predicted nutrient losses due to climate change and BAU fishing mortality. In both Peru and Chile, excluding anchoveta (which is not commonly consumed locally and which is largely used for fishmeal/fishoil), climate change could substantially threaten fisheries production without climate-adaptive management interventions, whereas adopting a climate-adaptive management approach indicates increases in nutrient yield by mid-century relative to today. For these countries, prioritizing fisheries management interventions, such as regularly re-evaluating catch limits or other means for controlling fishing mortality (e.g. input-based effort controls) and promoting international cooperation for transboundary fish stocks and avoiding illegal, unreported, and unregulated fishing, may represent a priority for securing future nutrition provisioning from aquatic foods.

Further, this analytical approach can illuminate nutrient-rich species to prioritize both for fisheries management and allocation decisions (Bennett *et al* 2021). For example, in many of the examined national allocative drivers, the management and flows of small pelagic fish (e.g. anchoveta in Peru and Chile, *Sardinella spp.* and *E. fimbriata* in Sierra Leone, *E. sardella* in Malawi) heavily influence nutrient yield outcomes. Small pelagics have been shown to be among the most nutritionally-dense as well as affordable options in many countries (Isaacs 2016, Robinson *et al* 2022b), and thus represent potential priority species for nutrient-sensitive fisheries management, supply chain interventions, or educational initiatives or incentives to increase direct human consumption.

In other contexts, notably Sierra Leone within the cases we examined, projected climate impacts are alarming, and climate-adaptive management interventions may provide little recourse. We re-emphasize that the bioeconomic model used here is based on global data and does not fully account for context-specific dynamics, and is best approached as a means of exploring future scenarios, not a specific planning tool. Nevertheless, the general direction and projected trends for tropical coastal nations, particularly in West Africa, point to serious potential nutritional losses from fisheries due to climate change (Golden *et al* 2016, Cheung *et al* 2023). In these cases, decision makers may consider compensating elsewhere in national food systems and nutrition policy, with particular attention to planning for subpopulations currently dependent on fish. This could entail supplementing aquatic foods supply with aquaculture and imported fish, alongside additional terrestrial food sources. Additionally, decision makers might examine allocative drivers including exports and foreign fishing alongside alternate nutrition sources. More broadly, these sobering results underscore the humanitarian and ecological imperatives for bold and concerted global action to reduce greenhouse gas emissions.

This approach can also illustrate where allocative drivers in the midstream of value chains (processing and trade) may be as or more important than climate-adaptive fisheries management in mediating nutrient availability. Indonesia represents a case where climate impacts may not be as severe as in other countries under this set of projection models and scenarios, climate-adaptive management represents a less significant lever, and national allocative levers including foreign fishing and exports may have less of an impact. Here, subnational allocation policies could be prioritized instead. In Sierra Leone, exports provide a striking example of how a policy driver that may appear modest by overall volume (~13%) could merit further consideration as a nutritional intervention because it diverts up to 40% of the yield of critical micronutrients for which the majority of Sierra Leone's population faces deficiencies. In Peru and Chile, the majority of nutrients from both anchoveta and non-anchoveta fisheries are exported.

Of course, the relationship between exports and nutrition outcomes is complex; fish exports do not necessarily mean a net nutrition loss for domestic populations if revenue is directed toward other nutritious foods (e.g. HLPE 2014, Fabinyi *et al* 2017) including fish (Béné *et al* 2010, Asche *et al* 2015) and livelihoods linked to export markets enhance food purchasing power for households. At the same time, in many contexts, globalization and trade of traditionally-consumed fish has led to food system transitions toward highly processed foods, creating poor ecological and nutritional outcomes (Golden *et al* 2021b). Power dynamics in fisheries export markets can concentrate benefits among larger firms to the detriment of small-scale fishers and fish traders (e.g. Nunan *et al* 2020, Arthur *et al* 2022). Further, high nutrition exports may be the consequence of limited domestic demand and/or high foreign demand for certain species, as well as substitution or competition from aquaculture production. However, these market forces are shaped, in part, by governance decisions. For example, in Peru, public campaigns substantially increased domestic demand for anchoveta, but the impacts were limited and short-lived due to structural factors including differential regulations for industrial and artisanal fleets and post-harvest value chain dynamics limiting cost-effectiveness of processing anchoveta for human consumption (Majluf *et al* 2017). Of course, exports often supply needed nutrients to external populations, as is the case, for example, with regional trade within Africa (Béné *et al* 2010, Mussa *et al* 2017). Thus, applications of this analytical approach should carefully define target populations and while also considering tradeoffs between income and direct nutrient provisioning and between different target and non-target populations. Nuanced understandings of demand and consumption dynamics, and the broader economic context, would be needed to develop policies to address exports as a potential driver of nutrition yield loss.

None of the cases had complete and comprehensive data to assess all drivers evaluated in the analytical approach. However, our approach underscores the idea that the absence of perfect data does not preclude any examination of nutritional dimensions of fisheries management. Furthermore, the method indicates where additional data collection could illuminate the impact of other drivers. In all cases except for Malawi, greater investigation of subnational allocation and distribution would be needed to better understand access to aquatic foods nutrients within each country and to craft effective policies. There may be economic and nutritional tradeoffs from changes to these drivers (including income derived from foreign fishing, exports, and conversion to fishmeal/fish oil) that are not explored here. Further, using more country-specific and subnational data could reveal additional drivers in aquatic food systems, such as changing demand or preference for particular kinds of products in certain places, which in addition to climate change, is likely to affect the contributions of aquatic and other foods in diets (Naylor *et al* 2021). In subnational studies, analysts could also incorporate or prioritize different sets of nutrients for fisheries management and allocation decisions, depending on the specific nutrient needs or deficits within target countries or subpopulations, and the nutrients provided by locally-available aquatic foods (Koehn *et al* 2023). For example, Indonesia's fisheries are uniquely rich in vitamin A, and 85% of the population faces vitamin A deficiencies. This points to priority areas for further study, such as the subnational flows of and barriers to access to vitamin A-rich species such as snappers. Interventions, such as socio-technical bundles (e.g. enhancing market infrastructure and processing technologies to reduce loss, reducing transport and transfer costs to target markets, supporting fisher and trader organizations, developing information and communication technologies to connect traders to target markets), nutritional interventions such as development of fish powder for young children and inclusion of fish in school feeding programs, and subsidies for aquatic foods can increase the distribution and availability of aquatic food nutrients to target populations.

Similarly, more nuanced subnational investigation could contextualize the notable result that, except for Malawi, large or industrial scale fisheries tended to disproportionately contribute to nutrient yields relative to catch volumes. This could indicate that smaller-scale fisheries may not have access to more nutritious fish, which could be due to regulatory, cultural, or logistical factors (e.g. more nutritious pelagic fish may be further from shore). It may also be that the full diversity of species caught and consumed from small-scale fisheries are not well-represented in global datasets, in particular if they do not enter formal markets or

tracking systems. Globally, small-scale fisheries tend to provide more fish for human consumption (Teh and Pauly 2018, FAO 2020), so if these patterns hold true across other regions, these results could indicate that more nutritious fish caught in large-scale fisheries are less available to meet local population nutrient needs. Further, subnational investigation of how fish from large- vs small-scale fisheries are allocated to export markets and non-food uses could reveal how policies governing species and catch allocation between large- and small-scale fishery sectors ultimately impact nutrient availability to vulnerable populations.

In addition to contextualizing findings from this analytical approach, use of finer-scale data could avoid potential inaccuracies or mismatches that may stem from the use of coarse global-level data and models. For example, the predictive nutrient model for finfish embeds assumptions about what constitutes an 'edible' portion of each species that may not be universal across cultures and contexts. Similarly, the climate-linked bioeconomic model projections were intended to explore broad relative changes in fisheries outcomes under different policy scenarios, so the fishing mortality assumptions underlying the No Adaptation scenario do not necessarily reflect actual fisheries management interventions for particular species in these national case studies, nor is the climate-adaptive management scenario necessarily achievable or appropriate. Further, because the No Adaptation scenario assumes a fixed level of fishing mortality that is highly uncertain and may not represent current fishing levels in each country, the differences between the Full Adaptation and No Adaptation scenarios may be inflated. There is also inherent model imprecision due to data limitations, e.g. catch-only stock models of data-limited stocks (Ovando *et al* 2022), and temperature-only climate projections (McHenry *et al* 2019). Given that almost any empirical application of this analytical approach will suffer from similar limitations and uncertainties, its most appropriate application is in the construction of future scenarios as a basis for considering the range of interventions that could have a meaningful impact on nutrients available from aquatic foods. Specific interventions could then be explored using species- and region-specific models and downscaled climate projections where available.

## 5. Conclusion

This modeling exercise, while representing imperfect data and requiring several assumptions, suggests that the effectiveness of different types of policies to maintain or enhance nutrients available to domestic populations from fisheries operating in national waters varies substantially among countries. Where climate change limits potential nutrient upsides of fisheries management, alternative policy approaches might be necessary, including those that have the potential to increase the proportion of nutrients available for consumption by communities who need them the most, or that enhance profits from fisheries and thereby enable purchase of other aquatic food sources (e.g. aquaculture, imported aquatic foods) or alternative nutrient-dense foods. In some countries, there may be underdeveloped or emerging fisheries with untapped nutrient potential that could allow for a shift to alternative species to meet specific nutrient needs.

Within the realm of fishery management, this analytical approach provides insights for decision-makers considering how to maintain or increase access to nutrition provided by fisheries for the domestic population. This might be considered alongside other objectives including economic returns, employment, and social objectives; all of these could incur trade-offs. This approach may also help assess the costs of public health investments within the fisheries sector. For example, decision makers might weigh the costs of fisheries management against the benefits of having healthy children who can develop their full potential and contribute to society as well as the costs of investment in public health due to anemia, malnutrition and other diseases associated with poor nutrition. By quantifying nutrient yield from fisheries, disaggregating yield into specific micronutrients beyond protein, and considering the complex dynamics of trade and foreign catch, we provide a more complete picture—albeit in broad strokes—of the benefits of managing fisheries for nutrient provisioning. By applying this approach with finer details including country or region-specific data sources, or relevant and feasible management frameworks, decision-makers could better evaluate tradeoffs and compare policies to achieve multiple fisheries goals.

## Data availability statement

No new data were created or analysed in this study.

## Acknowledgment

We sincerely thank Samuel Amorós, Andrew Baio, Abdul Halim, and Sergio Palma for their insights and review for the presentation and interpretation of the case studies. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. JAG received support from the U.S. National Science Foundation (HNDS-I # 2121238). Illuminating Hidden Harvests

(IHH) data for Sierra Leone was provided by FAO on request, as part of work undertaken within the context of the IHH study, conducted by FAO in partnership with WorldFish and Duke University. FAO is the source and copyright holder of the data produced within the Sierra Leone case study, which was commissioned with funding support from the Norwegian Agency for Development Cooperation and the Swedish International Development Cooperation Agency under the FAO Umbrella Programme for the promotion and application of the SSF Guidelines.

## ORCID iDs

Abigail Bennett  <https://orcid.org/0000-0001-9356-8014>  
Julia G Mason  <https://orcid.org/0000-0002-8828-353X>  
Willow Battista  <https://orcid.org/0000-0002-2616-2740>  
Christopher M Free  <https://orcid.org/0000-0002-2557-8920>  
Jessica A Gephart  <https://orcid.org/0000-0001-6836-9291>  
Kristin M Kleisner  <https://orcid.org/0000-0002-6918-1546>  
Emma D Rice  <https://orcid.org/0000-0001-8812-2368>  
Kelly F Robinson  <https://orcid.org/0000-0001-8109-9492>

## References

Ahern M B, Thilsted S H, Kjellevold M, Overå R, Toppe J, Doura M and Franz N 2021 Locally-procured fish is essential in school feeding programmes in sub-Saharan Africa *Foods* **10** 2080  
Aranda M 2009 Developments on fisheries management in Peru: the new individual vessel quota system for the anchoveta fishery *Fish. Res.* **96** 308–12  
Arthur R I, Skerritt D J, Schuhbauer A, Ebrahim N, Friend R M and Sumaila U R 2022 Small-scale fisheries and local food systems: transformations, threats and opportunities *Fish. Fish.* **23** 109–24  
Asche F, Bellemare M F, Roheim C, Smith M D and Tveteras S 2015 Fair enough? Food security and the international trade of seafood *World Dev.* **67** 151–60  
Bachmann-Vargas P, van Koppen C S A and Lamers M 2021 Re-framing salmon aquaculture in the aftermath of the ISAV crisis in Chile *Mar. Policy* **124** 104358  
Baio A 2010 Show me the way: inclination towards governance attributes in the artisanal fisheries of Sierra Leone *Fish. Res.* **102** 311–22  
Baio A 2016 Participatory appraisal of the impact of policy and governance reform: the case of the Yawri Bay marine protected area along the coast of Sierra Leone *Bull. Anim. Hlth. Prod. Afr. Fish.* **9** 89–109 Special Edition December 2016  
Barange M, Bahri T, Beveridge M C, Cochrane K L, Funge-Smith S and Poulaing F 2018 Impacts of climate change on fisheries and aquaculture *United Nations' Food Agric. Org.* **12** 628–35  
Basurto X, Bennett A, Lindkvist E and Schlüter M 2020 Governing the commons beyond harvesting: an empirical illustration from fishing *PLoS One* **15** e0231575  
Beal T, Massiot E, Arsenault J E, Smith M R and Hijmans R J 2017 Global trends in dietary micronutrient supplies and estimated prevalence of inadequate intakes *PLoS One* **12** e0175554  
Béné C, Lawton R and Allison E H 2010 “Trade matters in the fight against poverty”: narratives, perceptions, and (lack of) evidence in the case of fish trade in Africa *World Dev.* **38** 933–54  
Bennett A *et al* 2021 Recognize fish as food in policy discourse and development funding *Ambio* **50** 981–9  
Bennett A, Rice E, Muhonda P, Kaunda E, Katengeza S, Liverpool-Tasie L S O, Belton B, Infante D M, Ross J and Virdin J 2022 Spatial analysis of aquatic food access can inform nutrition-sensitive policy *Nat. Food* **3** 1010–3  
Berky A J, Robie E, Ortiz E J, Meyer J N, Hsu-Kim H and Pan W K 2020 Evaluation of Peruvian government interventions to reduce childhood anemia *Ann. Glob. Health* **86** 98  
Bianchi M, Hallström E, Parker R W R, Mifflin K, Tyedmers P and Ziegler F 2022 Assessing seafood nutritional diversity together with climate impacts informs more comprehensive dietary advice *Commun. Earth Environ.* **3** 188  
Carlson A, Taylor W, Liu J and Orlic I 2018 Peruvian anchoveta as a telecoupled fisheries system *Ecol. Soc.* **23** 35  
Cheung W W, Jones M C, Reygondeau G and Frölicher T L 2018 Opportunities for climate-risk reduction through effective fisheries management *Glob. Change Biol.* **24** 5149–63  
Cheung W W, Maire E, Oyinlola M A, Robinson J P, Graham N A, Lam V W and Hicks C C 2023 Climate change exacerbates nutrient disparities from seafood *Nat. Clim. Change* **13** 1242–9  
Cohen P J, Consalez F, Ahern M, Masangwi S, Rittenschober D, Holmes B, Kjellevold M, Golden C and Hicks C 2022 Serving up data on nutrient composition of aquatic foods  
Cooke S J, Nyboer E, Bennett A, Lynch A J, Infante D M, Cowx I G, Beard T D and Taylor W W 2021 The ten steps to responsible Inland fisheries in practice: reflections from diverse regional case studies around the globe *Rev. Fish. Biol. Fish.* **31** 843–77  
Crona B I *et al* 2023 Four ways blue foods can help achieve food system ambitions across nations *Nature* **616** 1–9  
De la Puente S, de la Lama R, Benavente S, Sueiro J C and Pauly D 2020a Growing into poverty: reconstructing Peruvian small-scale fishing effort between 1950 and 2018 *Front. Mar. Sci.* **7** 681  
De la Puente S, Noël S-L and White R 2020b Peru: updated catch reconstruction for 1950–2018 *Updating to 2018 the 1950–2010 Marine Catch Reconstructions of the Sea around Us. Part II: The Americas and Asia-Pacific* vol 28, ed B Derrick, M Khalfallah, V Relano, D Zeller and D Pauly (Fisheries Centre Research Report) pp 249–78  
Fabinyi M, Dressler W H and Pido M D 2017 Fish, trade and food security: moving beyond ‘availability’ discourse in marine conservation *Hum. Ecol.* **45** 177–88  
Fanzo J, Davis C, McLaren R and Choufani J 2018 The effect of climate change across food systems: implications for nutrition outcomes *Glob. Food Secur.* **18** 12–19  
FAO, Duke University & WorldFish 2023 Illuminating hidden harvests—The contributions of small-scale fisheries to sustainable development (<https://doi.org/10.4060/cc4576en>)

FAO, IFAD, UNICEF, WFP and WHO 2022 The state of food security and nutrition in the world 2022 *Repurposing food and agricultural policies to make healthy diets more affordable*

FAO 2020 The state of world fisheries and aquaculture 2020. Sustainability in action (<https://doi.org/10.4060/ca9229en>)

FAO 2021 Peru GLOBEFISH market profile (available at: [www.fao.org/3/cb5771en/cb5771en.pdf](http://www.fao.org/3/cb5771en/cb5771en.pdf))

FAO 2022a Indonesia GLOBEFISH market profile (available at: [www.fao.org/3/cb9745en/cb9745en.pdf](http://www.fao.org/3/cb9745en/cb9745en.pdf))

FAO 2022b The state of world fisheries and aquaculture 2022. Towards blue transformation (<https://doi.org/10.4060/cc0461en>)

FAO 2023a Chile GLOBEFISH market profile (available at: [www.fao.org/3/cc5540en/cc5540en.pdf](http://www.fao.org/3/cc5540en/cc5540en.pdf))

FAO 2023b Sierra Leone GLOBEFISH market profile (available at: <https://openknowledge.fao.org/server/api/core/bitstreams/dd54383c-ee34-4627-a653-f5ac982503d2/content>)

Fluet-Chouinard E, Funge-Smith S and McIntyre P B 2018 Global hidden harvest of freshwater fish revealed by household surveys *Proc. Natl Acad. Sci.* **115** 7623–8

Free C M *et al* 2022 Expanding ocean food production under climate change *Nature* **605** 490–6

Free C M, Mangin T, Molinos J G, Ojea E, Burden M, Costello C and Gaines S D 2020 Realistic fisheries management reforms could mitigate the impacts of climate change in most countries *PLoS One* **15** e0224347

Fréon P, Sueiro J C, Iriarte F, Evar O F M, Landa Y, Mittaine J-F and Bouchon M 2014 Harvesting for food versus feed: a review of Peruvian fisheries in a global context *Rev. Fish Biol. Fish.* **24** 381–298

Gaines S D *et al* 2018 Improved fisheries management could offset many negative effects of climate change *Sci. Adv.* **4** eaao1378

Gephart J A, Agrawal Bejarano R, Gorospe K, Godwin A, Golden C D, Naylor R L and Troell M 2024 Globalization of wild capture and farmed aquatic foods *Nat. Commun.* **15** 8026

Golden C D, Allison E H, Cheung W W, Dey M M, Halpern B S, McCauley D J, Smith M, Vaitla B, Zeller D and Myers S S 2016 Nutrition: fall in fish catch threatens human health *Nature* **534** 317–20

Golden C D, Gephart J A, Eurich J G, McCauley D J, Sharp M K, Andrew N L and Seto K L 2021b Social-ecological traps link food systems to nutritional outcomes *Glob. Food Secur.* **30** 100561

Golden C D, Koehn J Z, Shepon A, Passarelli S, Free C M, Viana D F, Matthey H, Eurich J G, Gephart J A and Fluet-Chouinard E 2021a Aquatic foods to nourish nations *Nature* **598** 315–20

Gozzer-Wuest R, Alonso-Población E and Tingley G 2021 Identifying priority areas for improvement in Peruvian Fisheries *Mar. Policy* **129** 104545

Gozzer-Wuest R, Chávez R S V, Stranger G O, Goncalves G A, Hirari-Bertrand L, Labraña-Cornejo R and Alonso-Población E 2023 Identifying priority areas for improvement in Chilean fisheries *Front. Mar. Sci.* **10** 1073397

Halim A, Wirawan B, Loneragan N R, Hordyk A, Sondita M F A, White A T, Koeshendrajana S, Ruchimat T, Pomeroy R S and Yuni C 2019 Developing a functional definition of small-scale fisheries in support of marine capture fisheries management in Indonesia *Mar. Policy* **100** 238–48

Hicks C C, Cohen P J, Graham N A, Nash K L, Allison E H, D'Lima C, Mills D J, Roscher M, Thilsted S H and Thorne-Lyman A L 2019 Harnessing global fisheries to tackle micronutrient deficiencies *Nature* **574** 95–98

HLPE 2014 Sustainable fisheries and aquaculture for food security and nutrition. A report by the high level panel of experts on food security and nutrition of the committee on world food security

Hutubessy B G and Mosse J W 2015 Ecosystem approach to fisheries management in Indonesia: review on indicators and reference values *Proc. Environ. Sci.* **23** 148–56

INE 2018 *Síntesis resultados Censo 2017* (Instituto Nacional de Estadísticas)

INEI 2024 Perú: encuesta Demográfica y de Salud Familiar—ENDES 2023—Nacional y Departamental (available at: [www.inei.gob.pe/media/MenuRecursivo/publicaciones\\_digitales/Est/Lib1950/libro.pdf](http://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib1950/libro.pdf))

Institute of Medicine 2005 *Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids* (The National Academies Press) (<https://doi.org/10.17226/10490>)

Isaacs M 2016 The humble sardine (small pelagics): fish as food or fodder *Agri. Food Sec.* **5** 1–14

Jaya I, Satria F, Nugroho D, Sadiyah L, Buchary E A, White A T, Franklin E C, Courtney C A, Green G and Green S J 2022 Are the working principles of fisheries management at work in Indonesia? *Mar. Policy* **140** 105047

Koehn J Z, Leape J P and Allison E H 2023 Aquatic foods at the nutrition–environment nexus *Nat. Sustain.* **6** 1–2

Maire E, Graham N A, MacNeil M A, Lam V W, Robinson J P, Cheung W W and Hicks C C 2021 Micronutrient supply from global marine fisheries under climate change and overfishing *Curr. Biol.* **31** 4132–4138.e4133

Majluf P, De la Puente S and Christensen V 2017 The little fish that can feed the world *Fish Fish.* **18** 772–7

McHenry J, Welch H, Lester S E and Saba V 2019 Projecting marine species range shifts from only temperature can mask climate vulnerability *Glob. Change Biol.* **25** 4208–21

Molinos G, Halpern B, Schoeman D, Brown C, Kiessling W, Moore P, Pandolfi J, Poloczanska E, Richardson A and Burrows M 2016 Climate velocity and the future global redistribution of marine biodiversity *Nat. Clim. Change* **6** 83–88

Moss R H, Edmonds J A, Hibbard K A, Manning M R, Rose S K, Van Vuuren D P and Wilbanks T J 2010 The next generation of scenarios for climate change research and assessment *Nature* **463** 747–56

Muawanah U, Yusuf G, Adrianto L, Kalther J, Pomeroy R, Abdullah H and Ruchimat T 2018 Review of national laws and regulations in Indonesia in relation to an ecosystem approach to fisheries management *Mar. Policy* **91** 150–60

Mussa H, Kaunda E, Chimatiro S, Kakwasha K, Banda L, Nankwenya B and Nyengere J 2017 Assessment of informal cross-border fish trade in the southern Africa region: a case of Malawi and Zambia *J. Agric. Sci. Technol.* **7** 358–66

Myers S S, Smith M R, Guth S, Golden C D, Vaitla B, Mueller N D, Dangour A D and Huybers P 2017 Climate change and global food systems: potential impacts on food security and undernutrition *Annu. Rev. Public Health* **38** 259–77

Nash K L, MacNeil M A, Blanchard J L, Cohen P J, Farmery A K, Graham N, Thorne-Lyman A L, Watson R A and Hicks C C 2022 Trade and foreign fishing mediate global marine nutrient supply *Proc. Natl Acad. Sci.* **119** e2120817119

Naylor R L, Kishore A, Sumaila U R, Issifu I, Hunter B P, Belton B and Crona B 2021 Blue food demand across geographic and temporal scales *Nat. Commun.* **12** 5413

Neumann C, Harris D M and Rogers L M 2002 Contribution of animal source foods in improving diet quality and function in children in the developing world *Nutrition Res.* **22** 193–220

Nunan F, Cepić D, Onyango P, Salehe M, Yongo E, Mbilingi B, Odongkara K, Mlahagwa E and Owili M 2020 Big fish, small fries? The fluidity of power in patron-client relations of Lake Victoria fisheries *J. Rural Stud.* **79** 246–53

Okeke-Ogbuafor N and Gray T 2021 Is community-based management of small-scale fisheries in Sierra Leone the answer to their problems? *World Dev. Perspect.* **21** 100292

Okeke-Ogbuafor N, Gray T and Stead S M 2020 Is there a 'wicked problem' of small-scale coastal fisheries in Sierra Leone? *Mar. Policy* **118** 103471

Orvando D, Free C M, Jensen O P and Hilborn R 2022 A history and evaluation of catch-only stock assessment models *Fish Fish.* **23** 616–30

PICRC 2019 Palau national marine sanctuary act overview (Palau International Coral Reef Center (available at: <https://drive.google.com/file/d/1jg45aVGvupTrOmgYkLnrQpkVwSBWfv7H/view?usp=sharing>) (Accessed 23 February 2024)

Polido R, Chu E and Derrick B 2020 Indonesia (Central, Eastern and Indian Ocean): updated catch reconstruction to 2018 *Updating to 2018 the 1950–2010 Marine Catch Reconstructions of the Sea around Us. Part II: The Americas and Asia-Pacific* vol 28, ed B Derrick, M Khalfallah, V Relano, D Zeller and D Pauly (Fisheries Centre Research Report) pp 314–9

Porobic J, Fulton E A, Frusher S, Parada C, Haward M, Ernst B and Stram D 2018 Implementing ecosystem-based fisheries management: lessons from Chile's experience *Mar. Policy* **97** 82–90

PROCHILE 2024 Informe Exportaciones No Cobre No Litio—Noviembre 2024 (available at: <https://cdc.prochile.cl/documento/informe-exportaciones-no-cobre-no-litio-noviembre-2024/>)

PRODUCE 2024 Tablero BI Pesca (available at: <https://app.powerbi.com/view?r=eyJrIjoiZDU3ODFlOTAtOTM2ZS00MzYzLWE3N2EtNTVIZjY2U1IiwidCl6ImMzNGNjOGM2LTJiMjctNDA0Mi1hMGE2LWI3OWZiMmM0NDE4NyIsImMiOjR9>)

Rice E D, Bennett A E, Muhonda P, Katengeza S P, Kawaye P, Liverpool-Tasie L S O and Tschirel D L 2023 Connecting gender norms and economic performance reveals gendered inequities in Malawian small-scale fish trade *Marit. Stud.* **22** 46

Roberts P 1998 *Conversion Factors for Estimating the Equivalent Live Weight of Fisheries Products* (The Food and Agriculture Organization of the United Nations)

Robinson J P W *et al* 2022b Small pelagic fish supply abundant and affordable micronutrients to low- and middle-income countries *Nat. Food* **3** 1075–84

Robinson J P W, Nash K L, Blanchard J L, Jacobsen N S, Maire E, Graham N A J, MacNeil M A, Zamborain-Mason J, Allison E H and Hicks C C 2022a Managing fisheries for maximum nutrient yield *Fish Fish.* **23** 800–11

Rogel-Castillo C, Latorre-Castañeda M, Muñoz-Muñoz C and Agurto-Muñoz C 2023 Seaweeds in food: current trends *Plants* **12** 2287

SERNAPESCA 2023 Anuarios Estadísticos de Pesca y Acuicultura (available at: [www.sernapesca.cl/informacion-utilidad/anuarios-estadisticos-de-pesca-y-acuicultura/](http://www.sernapesca.cl/informacion-utilidad/anuarios-estadisticos-de-pesca-y-acuicultura/))

Srinivasan U T, Watson R and Sumaila U S 2012 Global fisheries losses at the exclusive economic zone level, 1950 to present *Mar. Policy* **36** 544–9

Teh L C L and Pauly D 2018 Who brings in the fish? The relative contribution of small-scale and industrial fisheries to food security in southeast Asia *Front. Mar. Sci.* **5** 44

Thorpe A, Pouw N, Baio A, Sandi R, Ndomahina E and Lebbie T 2014 "Fishing Na Everybody Business": women's work and gender relations in Sierra Leone's Fisheries *Feminist Econ.* **20** 53–77

Thorpe A, Whitmarsh D, Ndomahina E, Baio A, Kemokai M and Lebbie T 2009 Fisheries and failing states: the case of Sierra Leone *Mar. Policy* **33** 393–400

Tigchelaar M, Cheung W W, Mohammed E Y, Phillips M J, Payne H J, Selig E R and Troell M 2021 Compound climate risks threaten aquatic food system benefits *Nat. Food* **2** 673–82

Torell E C, Jamu D M, Kanyerere G Z, Chiwaula L, Nagoli J, Kambewa P, Brooks A and Freeman P 2020 Assessing the economic impacts of post-harvest fisheries losses in Malawi *World Dev. Perspect.* **19** 100224

UN DESA 2022 2022 revision of world population prospects. United Nations department of Economic and Social Affairs, population division (available at: <https://population.un.org/wpp/>) (Accessed 4 May 2023)

UNDP 2024 The human development report 2023/2024—breaking the gridlock (Reimagining cooperation in a polarized world) UNDP (available at: <https://hdr.undp.org>)

Vermeulen S J, Campbell B M and Ingram J S 2012 Climate change and food systems *Annu. Rev. Environ. Resour.* **37** 195–222

von Braun J, Afsana K, Fresco L O and Hassan M 2021 Food systems: seven priorities to end hunger and protect the planet *Nature* **597** 28–30

Whitney C K, Cheung W W and Ban N C 2023 Considering the implications of climate-induced species range shifts in marine protected areas planning *Facets* **8** 1–10

WHO 2004 *Vitamin and Mineral Requirements in Human Nutrition* 2nd edn (World Health Organization) p 341 (available at: <https://iris.who.int/handle/10665/42716>)

World Bank 2017 *Programme Implementation Manual. Global Environmental Facility Additional Financing for the West African Regional Fisheries Programme in West Africa (WARFP -SOP A1) in Sierra Leone* (The World Bank)

Zeller D and Pauly D 2015 Reconstructing marine fisheries catch data. Catch reconstruction: concepts, methods and data sources *Online Publication. Sea around Us (Www. Seaaroundus. Org)* (University of British Columbia)