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Abstract

Federated learning (FL) is well-suited to 5G networks, where many
mobile devices generate sensitive edge data. Secure aggregation
protocols enhance privacy in FL by ensuring that individual user
updates reveal no information about the underlying client data.
However, the dynamic and large-scale nature of 5G-marked by
high mobility and frequent dropouts-poses significant challenges
to the effective adoption of these protocols. Existing protocols often
require multi-round communication or rely on fixed infrastructure,
limiting their practicality. We propose a lightweight, single-round
secure aggregation protocol designed for 5G environments. By
leveraging base stations for assisted computation and incorporating
precomputation, key-homomorphic pseudorandom functions, and ¢-
out-of-k secret sharing, our protocol ensures efficiency, robustness,
and privacy. Experiments show strong security guarantees and
significant gains in communication and computation efficiency,
making the approach well-suited for real-world 5G FL deployments.
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1 Introduction

Federated learning (FL) has emerged as a powerful approach for
enabling privacy-preserving machine learning across distributed
devices, allowing users to collaboratively train models without
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sharing raw data [19]. While FL has been deployed over conven-
tional communication infrastructures, the rapid rollout of fifth-
generation (5G) networks introduces both opportunities and new
challenges. On the one hand, 5G offers high bandwidth, low latency,
and support for massive device connectivity—features that make it
well-suited for large-scale, on-device FL deployments. Real-world
applications already highlight FL’s potential in 5G settings, such as
real-time analytics for connected vehicles and privacy-preserving
medical diagnostics [17, 21]. FL can also benefit network providers
by improving tasks like channel estimation [15], thereby enhancing
overall network performance while maintaining user privacy. On
the other hand, these same 5G features create a highly dynamic
environment [13]. Devices frequently join and leave the network,
connectivity conditions fluctuate, and the scale of participation can
surpass what existing FL protocols were designed to handle.
These 5G-specific conditions pose significant obstacles for secure
aggregation [6], a critical component of FL that ensures individual
model updates remain private during server-side aggregation. Most
existing secure aggregation techniques assume relatively stable
device participation and moderate network scale, often relying on
multiple rounds of interaction or fixed infrastructure. In contrast, a
practical secure aggregation protocol for 5G must operate efficiently
under high churn, large user populations, and minimal communi-
cation rounds-all while preserving strong security guarantees.
Requirements of 5G for FL. 5G’s capacity to connect large num-
bers of devices simultaneously greatly expands the pool of potential
FL participants, but it also introduces significant communication
and computation overhead if aggregation involves multiple rounds
of interaction. Meanwhile, 5G networks exhibit high mobility and
signaling, leading to unpredictable connectivity and higher churn
rates, which can degrade the reliability and speed of FL aggregation.
Therefore, secure aggregation solutions in 5G must satisfy several
key requirements: 1) Scalability. Secure aggregation introduces
additional computation and communication overhead in addition to
the local training on mobile devices. Therefore, given the resource
constraints of these battery-powered devices, this can directly im-
pact the performance and scalability of these systems. Since each
user’s training parameters must be collected, the overhead of com-
putation and communication should remain manageable even when
thousands or millions of devices are involved. 2) Resilience. Given
the dynamic nature of 5G, where user devices (e.g., cell phones)
and even the base stations can go offline unexpectedly, the secure
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aggregation mechanism must be robust against dropouts. 3) Com-
patibility. To enable seamless deployment, the protocol should be
compatible with existing 5G infrastructures without demanding
substantial hardware or protocol modifications.
Current Secure Aggregation Solutions. Existing approaches to
secure aggregation primarily rely on secure multi-party compu-
tation (MPC) [12, 18] or pairwise masking [4, 5, 14]. For instance,
Flamingo [18] employs a multi-round protocol where users reuse a
secret to generate masks; a subset (decryptors) then interacts over
multiple rounds to reveal active user masks and eliminate offline
user contributions. e-SeaFL [4], based on pairwise masking, reduces
the communication overhead by introducing assisting nodes that
hold shared secrets, achieving single-round secure aggregation.
OPA [14] also follows the pairwise masking paradigm, but instead
of relying on pre-shared secrets, it uses key-homomorphic cryptog-
raphy. Users interact with a committee to remove global masks by
exchanging fresh auxiliary information in each training round.
However, these methods face limitations under 5G conditions.
While Flamingo can handle dropouts via secret sharing, its multi-
round interactions significantly increase communication overhead.
e-SeaFL relies on a designated set of assisting nodes, and if these
nodes go offline unexpectedly, it can cause the entire protocol to fail.
Both protocols have stringent requirements and rely on complex
public key infrastructures (PKIs), making their deployment infea-
sible in fast-evolving 5G networks. OPA uses a stateless, one-shot
design without pre-shared secrets, running only one training round
per execution. To support multiple FL rounds, it must restart with
new auxiliary exchanges each round, incurring high overhead. It
also lacks precomputation mechanisms to alleviate the computa-
tional and communication overhead of its single-round approach,
making it less suitable for resource-constrained 5G environments.
Our Contributions. To address these challenges, we propose a
novel secure aggregation framework tailored to FL in large-scale
5G environments. Our approach leverages base stations to assist
the server in aggregating user updates to significantly reduce the
overall communication and computation overhead, achieving a
single-round secure aggregation protocol. We also introduce a sim-
ple but effective pre-computation method to meet the stringent
performance requirements of mobile devices in 5G networks. By in-
corporating key-homomorphic pseudo-random functions (KHPRFs)
and a robust t-out-of-k secret sharing scheme, our protocol tolerates
both user equipment and base station dropouts without compro-
mising security or correciness. Crucially, our solution integrates
seamlessly with standard 5G architectures and does not impose
significant additional infrastructure requirements. In summary, our
main contributions include:

o A single-round secure aggregation protocol optimized for large-
scale 5G settings, supported by precomputation techniques and
base stations to minimize computation and communication over-
head and the risk of data leakage.

o Resilience mechanisms that ensure continuous operation despite
unexpected device or base station dropout, thus maintaining
reliable model convergence in 5G deployments.

e A thorough security analysis and experimental evaluation show-
ing the computational and communication efficiency of our ap-
proach, as well as its robust security guarantees.
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2 Preliminaries and Models

Following [5, 18], we adopt the definitions of privacy for secure
aggregation protocols as follows.

Definition 2.1 (Key-Homomorphic Pseudorandom Function (KH-
PRF) [7]). A key-homomorphic pseudorandom function is KHPRF :
K x M — Y, where K is the key space, M is the domain of
inputs, and Y is the output space. This function satisfies: 1) Key-
Homomorphism: For any keys ky,k; € K and any input m € M,
KHPRF (ky + k2, m) = KHPRF(kq, m) + KHPRF(kz, m) where the ad-
dition operations are performed in the appropriate key and out-
put groups. This property naturally extends to any finite sums of
keys, i.e., KHPRF(};cr ki, m) = ) ;o1 KHPRF (k;, m), for any index set
IC{1,...,n}.2) Pseudorandomness: For a uniformly chosen k € K,
the function KHPRF (k, -) is computationally indistinguishable from
a truly random function mapping M to V.

Definition 2.2 (t-out-of-n Secret Sharing [22]). A secret sharing
scheme 88 = {§8.5plit, SS.Recover} for threshold ¢ out of n
operates over a message space M. It consists of two algorithms:

® {s1,...,sn} « S&.5plit(s): Given a secret s € M, the
algorithm outputs n shares {sy,...,s;}. Any subset of at
least t shares is sufficient to recover s, whereas any subset
of fewer than t shares reveals no information about s.

e 5 «— SS.Recover(S’): Given any subset 8’ C {sy,...,sp}
of size |S’| > t, the algorithm reconstructs and outputs the
secret 5. If | 8’| < t, it outputs L (failure).

Definition 2.3 (a-summation ideal functionality [5]). Given p,n,d
as integers and consider a set L C [n] with associated data vectors
WL = {W;}icp where w; € Zg. Given a threshold 0 < @ < 1 and
Qr as the set of partitions of L and a set of pairwise disjoint subsets
{L1,...,L;} € Qr, the a-summation ideal functionality Fw q(-)
computes Fw,a({Li}ie[s,..11) — {Sitie[1,.. 1], Where

; i if > a|L
Viell.. ls= ijQLWJ Qrl = e|L]

else.

Definition 2.4 (Privacy of Secure Aggregation [5]). Let X be a
Shamir secret sharing protocol instantiated with a security parame-
ter , and ¥ be an ideal functionality that only outputs the aggrega-
tion if at least an defined as honest users are participating, where
0 < a < 1. An aggregation protocol T is said to preserve privacy
against an adversary A if there exists a probabilistic polynomial-
time (PPT) simulator Sim such that, for any iteration t € [T] and
any set of input vectors ‘W' = {wy,...,wp}, the output produced
by Sim is computationally indistinguishable from the adversary’s
view. The adversary A is assumed to have control over NC, a Ap
fraction of users U, and a A4 fraction of assisting nodes BS,. Its
view comprises the combined view of the compromised server NC*,
the set of compromised users, and the set of compromised assisting

nodes: Real® (Adv, {Wi}i¢r,) =« Simul">Twta (D) (Adv).

2.1 System Model

5G-Integrated FL Ecosystem. As illustrated in Figure 1, our ar-
chitecture comprises three core components: user equipment (UE),
base stations (BSs), and the core network (CN). It harnesses 5G’s
high bandwidth, low latency, edge-processing capabilities as well
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Figure 1: 5G+FL Framework.

as security features to support efficient, privacy-preserving model
training across diverse user devices.

UEs (e.g., mobile or IoT devices) collect local data and train

models at the network edge. They typically possess basic edge-
computing capabilities, allowing them to perform local learning
without uploading raw data to the aggregation server and masking
their local updates before transmission. Each UE operates under a
BS for connectivity; BSs often possess edge-computing resources to
help with partial unmasking and handling potential device dropouts.
The CN orchestrates system-wide coordination and security. Typi-
cally, the Authentication Server Function (AUSF) in the CN ensures
secure device authentication, while the Application Function (AF),
either hosted in the CN or provided by an external third party, deliv-
ers user-facing services. When integrating with FL functionality, a
dedicated AF module (AFFy) coordinates the end-to-end FL process
by collecting UE updates, aggregating them into a global model,
and distributing the result to participating UEs. Robust end-to-end
encryption and integrity checks among the three components are
enforced via the 5G-AKA protocol [1].
FL Workflow. The FL procedure comprises two main phases. In
the one-time Setup Phase, cryptographic materials are configured
for UEs and BSs, including establishing secret shares to protect
local updates and tolerate BS dropouts. In the iterative Aggregation
Phase, UEs independently train local models, mask their updates,
and send them to AFf|. The AFf| then unmasks and aggregates
these updates to compute a global model, which is subsequently
distributed back to the UEs for further local training.

2.2 Threat Model

Based on the 3GPP Technical Specifications [1-3] and relevant
literature [17, 24], we consider the following adversarial behaviors
and practical constraints within our 5G-based FL framework:

o We assume that the CN in 5G is generally trusted, with the excep-
tion of the AFf| responsible for model aggregation in FL. Since
AFfL may be provided by a third-party service, it can behave mali-
ciously, attempting to infer private user data or conducting mem-
bership inference attacks based on aggregated updates [9, 10, 23].
In contrast, other CN components (e.g., AUSF) are considered be-
nign, as they typically reside within the trusted 5G Core Network
infrastructure 1.

'We note that we can lift these trust assumptions on CN and AUSF by assuming a
simple digital signature scheme akin to the malicious model in [4].
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o UEs may drop out during FL training due to network instability,
node mobility, or active adversarial efforts [16, 20]. Their un-
predictable mobility across different BSs can further complicate
model consistency. Likewise, BSs are susceptible to outages or
unavailability caused by network failures, targeted attacks, or
other system constraints [13].

o To leverage the existing 5G security mechanisms [2] rather than
introducing new ones (such as PKI), we consider that the FL
process begins only after the 5G-AKA procedure is completed.
This ensures that communication keys (e.g., long-term keys and
session keys) have been securely negotiated and distributed, thus
encrypting and protecting the integrity of all transmitted infor-
mation among UEs, BSs, and CN (AUSF and AFfp). Consequently,
even if adversaries intercept communication channels, they can-
not decrypt or forge valid messages unless they obtain direct

access to a compromised user device?.

3 Our Protocol

We now describe our 5G-based FL secure aggregation protocol (see
Figure 2). Our protocol is designed to meet the high connectivity,
mobility, resilience and compatibility demands of 5G. By combining
threshold secret sharing, KHPRFs, and BS-assisted unmasking, it
protects individual user data from inference attacks and remains
robust against UE and BS dropouts. Each UE and BS has single-
round communication with the CN, maintaining high efficiency.

Qur system consists of three primary entities: 1) n UEs (denoted
by U; where i € {1,...,n}); 2) k BSs (denoted by BSj where j €
{1, ...,k}) in a certain region; and 3) a single CN that hosts an AF
as the FL aggregation server (AFF| ) as well as an AUSF to forward
sensitive messages. The protocol operates in two main phases: an
initial Setup phase (one-time) to establish cryptographic secrets,
followed by a single-round Aggregation phase (iterative) for secure
model updates.

3.1 Setup Phase

The Setup phase is executed once to bootstrap trust and secrets
among the UEs and the BSs, ensuring resilience against BS dropouts
and enabling secure masked aggregation.

Step 1.1: UE secret generation and distribution. Each UE initial-
izes a secret SUi. To facilitate the recovery of user masks during ag-
gregation, this secret SUt is partitioned into k splits, {S(fr‘- Vi€ [k]},
using a t-out-of-k secret sharing scheme SS.Split(-). The UE
sends these shares to the CN via its currently assigned BS. The
AUSF within CN then forwards and distributes one share to each
BS in the designated region. This ensures that the UE secret can be
reconstructed if at least t shares are collected, thereby mitigating
the impact of BS dropouts.

3.2 Aggregation Phase

At each iteration t, the protocol executes three steps to securely
aggregate local updates and refresh the global model.

Step 2.1: Local model training and masked update generation.
Each Uj trains a local model on its private dataset and obtains a

2Similar to previous work on secure aggregation [4, 18] we do not consider imperson-
ated or compromised UEs and BSs as our paper focuses on secure aggregation instead
of data poisoning.
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Figure 2: 5G-based FL secure aggregation protocol.

parameter update? w, . To protect W?" from direct exposure to
the AFg, U; computes a mask vector using the KHPRF: M ask:?' =
KHPRF(SY, t). The final masked update is MaskVeci’r" = Wi’r" +
Maskf’r" , which is then sent to to the AFf|.

Since the mask is derived solely from SUt and the known iteration

index ¢, our protocol adopts a pre-computation sirategy. That is,
a UE can precompute all necessary masks (such as T masks for the
first T iterations) before the runtime aggregation phase, minimizing
on-the-fly computation costs.
Step 2.2: Online user registration and mask share computa-
tion. Once the AFf| receives MaskVec?i, it logs U; in the online
UE list L?", identifying UEs that remain active for iteration ¢. The
AFg| checks that |[LY"| > an; if so, it shares this list with all BSs (in
a certain region).

Each BS; computes its mask share by summing the secret shares
received from all UEs in L{" and applying the KHPRF: MaskShar efs'j
= KHPRF(Sy,eLom sf;’f, t) = Sueren KHPRF{SJ?*, t). Owing to the
key-homomorphic property, the final output is equivalent to the
sum of individual KHPRF(-) evaluations, enabling the AFF| to only
recover the aggregated mask while never seeing any single user’s
update and mask.

Step 2.3: Secure aggregation and global model update. Using
the masked UE updates and the mask shares, the AFp first recon-
structs the aggregated mask of online UE masks via the ¢t-out-of-k
secret reconstruction algorithm: ¥y, eron Mask?" = 8S.Recover(

{M as;"cShm‘efs'j }jej), where J is a subset of BSs which are online.

The AFf then computes the global aggregated update w; by
subtracting the sum of masks from the sum of all masked UE up-
dates, then applying a standard FL aggregator (e.g., FedAvg [19]):

Wi = FedAvg(ZUieL?n M(ISkVEC:J'- — ZU;EL.?" Mask?‘) This sum

3The protocol accommodates both gradient- and parameter-based FL variants.
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of masks can make sure to “unmask” the global update without
revealing individual user parameters, i.e., only the aggregated result
W; is revealed, preventing the AFf| from accessing any user-level
update directly.

After computing the global update w;, the AFg| then propagates
it to all participating UEs. UEs then incorporate these aggregated
parameters into their local models, completing the t-th iteration.
Notably, new or reconnected UEs can join seamlessly after complet-
ing their own setup phase, while the aggregation phase continues
iteratively until the global model converges or meets predefined
performance criteria.

3.3 Security Analysis

THEOREM 3.1. The protocol proposed above with n users, k base
stations and the aggregation server AFg| is private against an adver-
sary A where A is able to compromise (1 — a)n users, k — 1 base
stations and the aggregation server AFF .

ProoF. Following Definition 2.4, we consider a simulator C and
establish indistinguishability through a standard hybrid argument.
This is done by presenting a set of successive hybrids that are com-
putationally indistinguishable. We start by defining the behavior
of C during the Setup and Aggregation phases. In the Setup phase,
honest users U; compute their secret shares {SF" .- ,SEi } and en-
crypt them (using AKA-ENC) for the target BS. The encrypted
shares are distributed to the base stations via AUSF. During the
aggregation phase, users compute their masked update MaskVec?"
and send it to AFg| . Next, AFg adds the user to an authenticated
list of participating users. We now present our hybrids.

Hyb@: This hybrid represents the actual execution of the protocol,
during which A interacts with the honest entities.

Hyb1: C is introduced. C is assumed to possess all the secrets of the
honest parties.

Hyb2: The behavior of the honest parties U; and base stations BS; is
modified by selecting a random shared secret key from the key space
K instead of executing SS.Split(-) algorithm. The security of the
secret sharing protocol (e.g., asin [5, 22]) and the encryption scheme
ensure the indistinguishability of this hybrid from the previous one.
Hyb3: Each honest user U; replaces the masked update MaskVec?"

sent to AFf with a random vector MaskVec;U‘. Given our protocol
requires at least one base station to be honest, the indistinguisha-
bility of this hybrid is ensured, as A does not have knowledge of at
least one honest base station. Therefore, in Real, the masked update
follows the same distribution as M askVec;Ui in Simul.

Hyb4: The aggregated masking term M as;"cShm‘efgs'j outputted by

the honest base stations BS; is replaced with MaskShare;st by
using the ideal functionality % o(L;°") where L}°" is the list of
honest participating users. Since A has no knowledge of the honest
entities’ shared secret, the distribution of the aggregated masking
term in Simul is identical to that in Real and the view of this hybrid
remains indistinguishable.

Hyb5: C sends the output of the ideal functionality as the interme-
diate model w;. Note that the ideal functionality does not return 1,
given the condition on the fraction of honest users. Consequently,
this hybrid remains indistinguishable from the previous one, as the
local updates are unknown to A in Real.
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From the above, we have demonstrated that the view of all cor-
rupted parties under the control of A is computationally indistin-
guishable from their view in Real. m}

4 Evaluation

We evaluate our 5G-based FL secure aggregation protocol by com-
paring it against state-of-the-art alternatives. The goal is to demon-
strate the efficiency, communication overhead, and resilience of
our approach in realistic 5G network scenarios.

4.1 Experiment Setup

Implementation We implemented our protocol in Python (ap-
proximately 1,200 lines of code) using the ABIDES [8] simulation
framework, which enables controlled testing of multi-round FL
aggregation protocols, allowing us to replicate realistic 5G network
behaviors in a simulated environment. We used ASCON [11] as
the pseudo-random function (PRF) for mask generation, given its
lightweight design and suitability for resource-constrained devices.
Experiment Environments. All experiments were conducted on
an x86_64 Linux server equipped with an AMD Ryzen Threadripper
PRO 5965WX (24-core CPU), 256 GB of RAM, and three NVIDIA
GeForce RTX 3090 GPUs for model training. We do not include
model-training overhead in our measurements, as our primary
focus is the communication and computation costs introduced by
the secure aggregation protocol itself.

Evaluation Metrics. We assess our protocol using two primary
metrics. Efficiency is quantified by computation time and commu-
nication overhead during both the setup and aggregation phases.
Resilience is measured by the ability of the protocol to maintain
global model accuracy in the presence of UE and BS dropouts.
Baselines. We compare our protocol with two secure aggregation
protocols, e-SeaFL and Flamingo, as they have a certain ability to
be resistant to device dropout. Under similar capabilities, we record
the computation time and communication overhead to evaluate the
efficiency of our protocol. For resilience evaluation, we include a
baseline variant of our protocol that simply halts FL updates (i.e.,
distribute the original global model update) if the aggregated update
cannot be correctly reconstructed.

Parameter Selection. For a fair comparison, all protocols are
evaluated under the same conditions. Unless otherwise stated, our
experiments use four BSs (k = 4), and eight UEs (n = 8). The
dropout rate is set to a = %, meaning up to one-third of the UEs
and BSs may disconnect during training. A (¢, k) threshold with
t=(1-a) -k (ie, t = 3), ensuring successful reconstruction of
the aggregated mask as long as at least three BSs remain online.
Moreover, we consider simulated dropout scenarios by reducing the
number of UEs from 8 to 2 and BSs from 4 to 2, running tests over
10 training iterations. The key evaluation metric is the accuracy
of the global model, which measures the impact of dropouts on FL
performance, allowing us to analyze the robustness of the protocol
under varying dropout conditions.

4.2 Results

4.2.1 Efficiency. Figure 3 reports the computation and communica-
tion overhead of our solution compared with e-SeaFL and Flamingo.
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Overall, our protocol demonstrates significantly lower aggregation-
phase latency and competitive communication costs.

Setup phase. During the one-time setup, our protocol imposes
minimal load on both the AFf| and the BSs, as most computational
tasks are offloaded to the UEs (e.g., precomputation). Although this
leads to a slightly higher setup cost on the UE side compared to
e-SeaFL and Flamingo, the precomputation of masks at this phase
substantially reduces overheads during aggregation. In contrast,
Flamingo and e-SeaFL have to perform distributed key generation
or shared secret computations among the BSs and the AFf , which
increase the setup cost on those devices.

Aggregation phase. Once FL procedure has been initialized, our
protocol achieves markedly faster secure aggregation than e-SeaFL
and Flamingo. This improvement is primarily due to: (i) shifting the
bulk of cryptographic tasks to a one-time precomputation step in
the setup phase; and (ii) employing a key-homomorphic framework
that avoids per-BS decryption operations when handling dropped
or offline clients. In comparison, Flamingo tends to incur significant
additional steps to manage these dropouts at the BS level (such as
decryption), while e-SeaFL, without a precomputation step, requires
each BS to compute large mask vectors at each iteration.

In terms of communication cost, our protocol remains on par
with or improves with respect to e-SeaFL and Flamingo. On the
UE and the AFf| side, our protocol has a similar communication
throughput of e-SeaFL, due to the masked UE updates and aggre-
gated final update, as well as an online user list in our protocol.
Notably, BSs in our scheme benefit from transmitting far fewer bits,
since each device only sends an aggregated mask share rather than
a full vector. The mask shares from the BSs can be expanded on the
AFFL. Flamingo incurs more communication cost due to its multiple
interactions between AFf and BSs for dropout management, like
online UE/BS lists and encryption/decryption results, which create
additional communication steps that our approach avoids.

4.2.2 Resilience to UE and BS Dropout. Given the distributed na-
ture of FL, real-world deployments often encounter scenarios where
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participating nodes may become temporarily unavailable due to
network failures, device disconnections, or power constraints. Fig-
ure 4 illustrates the impact of UE and BS dropouts on the global
model accuracy.

The left panel of Figure 4 shows the impact of varying UE
dropouts on the global model accuracy. We can observe that even as
the number of dropped UEs increases, the overall accuracy remains
relatively stable. This resilience is due to the effective reconstruc-
tion of aggregated updates via active BSs. However, when a larger
fraction of UEs drop out, the final accuracy experiences a slight
decline due to the reduction in the amount of data contributing to
the model update, which also violates the privacy guarantee 2.3.

The right panel shows the impact of BS dropouts on accuracy.
When up to one BS drops out, the model maintains a high accuracy
level. However, when two BSs drop out, the accuracy decreases
significantly. This is expected, as our (3, 4) secret sharing scheme
in the experiment requires at least three BSs to reconstruct the
aggregated mask correctly. With only two BSs remaining, the server
is unable to aggregate UE contributions effectively, preventing
meaningful global model updates and leading to a stagnation in
accuracy at a lower level.

4.2.3 Summary of Findings. Our evaluation demonstrates that the
proposed protocol achieves lower aggregation overhead by shifting
intensive cryptographic operations to the setup phase, resulting in
reduced latency compared to similar schemes. It also maintains com-
petitive communication cost by eliminating the need for extra com-
munication rounds common in multi-phase decryption protocols,
keeping bandwidth usage comparable to or below existing methods.
Finally, the use of threshold secret sharing and BS-assisted unmask-
ing provides robust handling of moderate UE and BS dropouts,
though overall reliability depends on having a sufficient number of

active base stations.

5 Conclusion and Future Work

In this paper, we presented a secure aggregation framework for fed-
erated learning over 5G networks. By incorporating a single-round
protocol with t-out-of-k secret sharing and key-homomorphic pseu-
dorandom functions, our approach efficiently safeguards user data
while maintaining reliable model updates, even in dynamic and
large-scale 5G environments. The empirical results confirm the pro-
tocol’s ability to preserve privacy, tolerate adversarial conditions,
and adapt to core characteristics of future wireless ecosystems.

Looking ahead, several promising research directions could fur-
ther enhance this framework. First, an adaptive base station selec-
tion mechanism, potentially supported by machine learning, can
better handle user mobility by dynamically choosing the most ap-
propriate base stations. Second, strategies for share reassignment
and revocation may strengthen security, ensuring continuous pro-
tection when the network topology changes. Third, more advanced
or flexible threshold secret sharing schemes-including the inte-
gration of zero-knowledge proofs-may bolster resilience against
adversarial threats and fluctuating network conditions. Last, eval-
uating the protocol on real-world devices remains an important
next step, so we leave this as future work and consider it a key step
toward practical deployment.
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