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Abstract—Federated learning (FL) enables collaborative model
training while preserving user data privacy by keeping data
local. Despite these advantages, FL remains vulnerable to pri-
vacy attacks on user updates and model parameters during
training and deployment. Secure aggregation protocols have
been proposed to protect user updates by encrypting them, but
these methods often incur high computational costs and are
not resistant to quantum computers. Additionally, differential
privacy (DP) has been used to mitigate privacy leakages, but
existing methods focus on secure aggregation or DP, neglecting
their potential synergies. To address these gaps, we introduce
Beskar, a novel framework that provides post-quantum secure
aggregation, optimizes computational overhead for FL settings,
and defines a comprehensive threat model that accounts for
a wide spectrum of adversaries. We also integrate DP into
different stages of FL training to enhance privacy protection in
diverse scenarios. Our framework provides a detailed analysis
of the trade-offs between security, performance, and model
accuracy, representing the first thorough examination of secure
aggregation protocols combined with various DP approaches for
post-quantum secure FL. Beskar aims to address the pressing
privacy and security issues FL while ensuring quantum-safety
and robust performance.

Index Terms—Privacy-preserving AI, post-quantum security,
differential privacy, secure aggregation, deep learning.

I. INTRODUCTION

Federated learning (FL) enables collaborative learning of a
shared model between distributed parties while keeping the
data local, mitigating data privacy and collection challenges
common in traditional centralized learning. In large-scale FL,
clients with limited computational resources, such as mobile
devices, can contribute to training a global model with the
assistance of a central server. In each iteration, the central
server distributes an intermediate model to all clients, who
then train the model using their local data to compute local
updates (i.e., user gradients). The server aggregates the local
updates from all users, refines the intermediate model, and
sends it back to the clients. This iterative process continues
until the model achieves a satisfactory level of performance,
resulting in a final model to be deployed in production. FL
contributes to data privacy by keeping the user data local.
However, recent attacks have demonstrated that deploying a
plain FL paradigm is insufficient to protect the privacy of
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the participating users’ data [1], [2], [3]. More specifically,
these attacks can undermine the privacy of the training data
by having access only to the user updates or the model at any
stage (training and/or deployment).

A well-known solution to protect the user updates during
the training phase is secure aggregation [4], where the server
can compute the global model without knowledge of any
individual user update. This is achieved by masking/encrypting
the updates so that the masking factors cancel out during
aggregation. Secure aggregation can be achieved with different
techniques, such as secure distributed computation [5], [6], [7]
or Homomorphic Encryption (HE) [8], [9]. However, existing
secure aggregation protocols often incur high communication
and/or computation overhead.

Additionally, to our knowledge, except for a few (e.g.,
[10]), the existing methods are primarily based on conventional
cryptographic tools. However, such tools are not resistant to
quantum computers, which are on the verge of becoming a
reality. Therefore a pressing requirement is that FL protocols
(and other distributed protocols for machine learning) must
be post-quantum secure. Given the directives by the NSA
and the White House [11], [12], [13], NIST has suggested
a series of post-quantum (PQ) secure cryptographic schemes.
While one might consider the direct adoption of the recent
NIST PQ cryptographic standards [14], these schemes and
their subsequent extensions (e.g., [15], [16]), despite their
elegant designs, might not be suitable for highly distributed
settings (e.g., FL) with resource- and bandwidth-constrained
devices (e.g., mobile phones). Finally, existing methods do
not protect the intermediate model distributed by the server
in each iteration, making it vulnerable to privacy attacks by
adversaries disguised as clients.

Differential privacy (DP) [17], as a popular statistical
tool, can mitigate these privacy leakages effectively. This is
achieved by injecting a controlled noise to the model to distort
the effects of individual data points on model parameters.
Abadi et al. [18] introduced the concept of DP in deep
learning by proposing DP-SGD, a privacy-preserving version
of the well-known SGD algorithm. In the FL setting, DP
can be applied independently or in conjunction with secure
aggregation at various stages of the training process (e.g., [19],
[20], [21], [22], [23], [24], [25]), taking into account different
performance impacts and adversarial models. Accordingly, im-
plementing these privacy-preserving techniques often depends
on thoroughly understanding the adversarial and threat models
involved. Existing approaches have primarily been designed
focusing on individual privacy-preserving methods (i.e., secure
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aggregation or DP); therefore, there remains a significant gap
regarding a comprehensive threat model tailored for privacy-
preserving FL. We stress that establishing a comprehensive
threat model and evaluating the effectiveness of recommended
privacy-preserving methods for each threat scenario would be
critical for organizations striving to address diverse privacy
requirements and comply with regulations such as HIPAA.

TABLE I: High-level Comparison with State-of-the-Art

Protocol Rd. Dropout
Resilience Model Privacy PQ

[7] 6 Low ✗ ✗
[26] 3 Moderate ✗ ✗
[27] 3 Low ✗ ✗
[10] 3 Low ✗ ✓
[6] 1 High ✗ ✗

Ours 1 High ✓ ✓

A. Our Contribution

In response to the above requirements, we propose Beskar.
To our knowledge, Beskar is the first to introduce a compre-
hensive threat model for FL settings by considering adversaries
with different capabilities. As shown in Table I, Beskar
is the only solution offering high dropout resilience with
only one communication round, while simultaneously ensuring
post-quantum (PQ) security and privacy of user data during
and after training. Beskar fills the critical gaps in existing
protocols by its balance of privacy, minimal communication
requirements, and robustness against quantum attacks, making
it a holistic solution for FL in the post-quantum era. We detail
the contribution of our work in what follows.

• Efficient Post-Quantum Secure Aggregation. We propose
a new secure aggregation framework with post-quantum secu-
rity by leveraging NIST post-quantum standards. Despite their
elegant design, most of the suggested standards (e.g., [28],
[29]) are not optimized for resource-constrained environments,
such as mobile devices, where minimizing computational
overhead is critical. While prior works (e.g., [30]) have
demonstrated the effectiveness of pre-computation techniques
for minimizing the overhead for mobile devices, applying these
methods to their post-quantum counterparts is not straightfor-
ward due to their inherent design requirements (e.g., rejection
sampling). Other methods (e.g., [31]) rely on precomputed
tables that might not be suitable for mobile devices due to
their significant storage overhead. To address these challenges,
we develop two lightweight yet efficient pre-computation
strategies that explicitly account for the rejection sampling of
post-quantum methods and eliminate the need for large lookup
tables. Our methods are specifically designed for low-end
devices (e.g., mobile devices) with limited computational and
storage resources, ensuring practical deployment in resource-
constrained environments. Both optimizations leverage the
characteristic that FL operates over a relatively small number
of iterations, typically in the order of hundreds. Our first
optimization algorithm improves the signature generation of
Dilithium [32] by pre-computing message-independent tokens,
thereby minimizing the signature generation overhead. This

results in a 30% faster signing process compared to the
standard Dilithium algorithm. Generating the masking terms to
hide each element of user gradient is one of the dominant costs
in secure aggregation protocols designed for larger deep learn-
ing models. Our second optimization algorithm significantly
improves this process by achieving favorable computation and
storage trade-offs and pre-computing a masking table for each
client. Our experiments demonstrate that the two optimizations
yield efficiency improvements of 134x, 1.1x, and 1233x in the
aggregation phase with 1,000 clients.
• Comprehensive Threat Models for FL. Existing ap-
proaches [26], [27], [10], [33], [34] typically assume a single
type of adversary, whereas FL applications face diverse threats
and have to meet varying security requirements depending on
their specific use cases. We thus propose the first comprehen-
sive security framework for FL settings by considering three
types of adversaries with varying capabilities and access levels.
We define three distinct threat models corresponding to these
adversaries, each posing a unique threat to the privacy of local
updates, intermediate models, and final models, respectively.
This comprehensive approach enables developers and organi-
zations to identify the threat model most pertinent to their
privacy needs or mandated by regulatory frameworks such
as HIPAA. Thus, a customized security solution is provided
that aligns with specific compliance obligations and protection
needs and guarantees robust and targeted privacy safeguards.

• Various Compositions of Secure Aggregation with DP.
Existing approaches [7], [10], [35] primarily focus on enhanc-
ing secure aggregation using various strategies (e.g., MPC,
HE) or applying DP methods separately. However, these
approaches do not offer comprehensive privacy protections for
FL, particularly against the threat models discussed above. To
address this gap, we integrate different DP applications within
FL to provide tailored privacy protection against various threat
models. Our approach involves applying DP at different stages
of FL training, effectively defending against the adversaries
defined in our threat models. Additionally, we conduct a
thorough performance analysis of our approach, emphasizing
the trade-offs between security, performance, and accuracy.
To our knowledge, this is the first work to analyze the per-
formance of secure aggregation protocols using different DP
approaches, offering valuable insights into their effectiveness
across various scenarios.

II. PRELIMINARY

Vectors are denoted by bold letters (e.g., a). We define a
pseudorandom function PRF : {0, 1}∗ → a where a shares the
same dimension as the global model. The number of elements
in a list L is represented as |L|. Given two vectors a and
b with the same dimension, a + b denotes the element-wise
addition. [j] denotes the set {1, . . . , j}. In the following, we
define the cryptographic building blocks used in our protocol.

Definition 1 (Key-encapsulation [29]). A key-encapsulation
mechanism E = {KeyGen, Encaps, Decaps} with key space
K is defined as follows.
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• (pkE , skE) ← KeyGen(1κ): On the input of the security
parameter κ, it returns a pair consisting of a public and
private key (pkE , skE).

• (cx, x) ← Encaps(pkE): On the input of the public key,
it returns a key x ∈ K and its ciphertext cx.

• {⊥, x} ← Decaps(skE , cx): On the input of the secret
key and ciphertext, it either outputs the key x ∈ K or ⊥,
indicating rejection.

A key encapsulation algorithm is (1−β)-correct if Pr(cx ←
E .Decaps(skE , cx) :(cx, x)← E .Encaps(pkE)) ≥ 1−β where
probability is taken over E .KeyGen(·) and E .Encaps(·). The
standard security notion for a key-encapsulation algorithm is
indistinguishably under a chosen-ciphertext attack (IND-CCA)
where the adversary has access to a E .Decaps(·) oracle.

Definition 2 (Digital Signatures). A digital signature scheme
for a messages space MΠ is defined by Π:(KeyGen, Sign,
Verify):

• (pkΠ, skΠ) ← KeyGen(1κ): On the input of security
parameter κ, it returns a pair consisting of a public and
private key (pkΠ, skΠ).

• σ ← Sign(skΠ,m): On the input of a secret private key
skΠ and a message m ∈MΠ, it outputs a signature σ.

• {0, 1} ← Verify(pkΠ,m, σ): On the input of a public
key pkΠ, a message m ∈ MΠ, and an alleged signature
σ, it outputs 1 if σ is a valid signature under pkΠ for
message m. Otherwise, it outputs 0.

A digital signature scheme is correct if for any m ∈ MΠ,
Verify(pkΠ,m, σ) = 1, where (pkΠ, skΠ) ← KeyGen(1κ)
and σ ← Sign(skΠ,m). The standard security notion for a
digital signature scheme is existential unforgeability against
adaptive chosen message attacks (EU-CMA), defined in Ap-
pendix B.

Following Bell et al. [36], we utilize the following α-
summation ideal functionality to prove the privacy of our
protocol. The α-summation ideal functionality necessity for
a sufficient proportion of honest clients is to ensure that the
aggregated model in the secure aggregation setting does not
leak any information about each user update.

Definition 3 (α-summation ideal functionality [36]). Given
p, n, d as integers, we let L ⊆ [n] and XL := {xi}i∈L

where xi ∈ Zd
p. Now, given a 0 ≤ α ≤ 1 and QL as the

set of partitions of L and a set of pairwise disjoint subsets
{L1, . . . , Ll} ∈ QL, the α-summation ideal functionality
Fx,α(·) computes Fx,α({Li}i∈[1,...,l])→ {si}i∈[1,...,l] where

∀j ∈ [1, . . . , l], sj =

{∑
j∈QL

xj if QL| ≥ α|L|
⊥ else.

Definition 4 (The MSIS Problem [28]). With an algorithm
A, we associate the advantage function AdvMSIS

m,k,γ to solve
the MSISm,k,γ problem over the ring Rq as

AdvMSIS
m,k,γ (A) :=P(0 < ∥y∥∞ ≤ γ ∧ (I|A) · y = 0

| A ← Rm×k
q ; y ← A(A))
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Fig. 1: Beskar’s System Model

Definition 5 (Differential Privacy [37]). A randomized mech-
anism M: X → Y satisfies (ϵ, δ)-DP, if for any two adjacent
datasets X,X ′ ∈ X that differ in only a single data element
and for any subset of output Y ⊆ Y , P(M(X) ∈ Y ) ≤
exp(ϵ) · P(M(X ′) ∈ Y ) + δ holds.

The parameter (ϵ, δ) is often called the privacy budget.
Specifically, ϵ represents the privacy guarantee: a lower ϵ
corresponds to a higher level of privacy; and δ indicates the
probability that the upper-bound does not hold.

III. MODELS

In this section, we first introduce the system model for
Beskar, then define its threat and security models.

A. System Model

We define a system model similar to models defined by
previous work [6], [26] (see Fig. 1). Our system consists of
three types of participants: an aggregation server, a set of n
users with their local dataset collaborating to train a central
model, and k assisting nodes, which assist the aggregation
server in unmasking the final model without leaking any
individual gradient. Beskar offers a one-time setup (❶)
for T training iterations. After the setup, each client trains
the model on their local data, masks the local updates, and
sends the masked updates to the aggregation server (❷) with
a simple participation message broadcast to all k assisting
nodes (❸). After receiving all the masked updates, the server
receives the aggregated masking terms from the k assisting
nodes (❹). It then aggregates all the provided information
to obtain the unmasked global model (❺). To address the
different privacy requirements, Beskar seamlessly adopts DP
in different stages of training, depending on the target privacy
requirements. We discuss each variation in Section IV.

B. Threat Model

Attacks on FL systems predominantly aim to compromise
the integrity and confidentiality of these systems [4], [7], [26].
These include traditional Man-in-the-middle (MITM) attacks
and emerging attacks targeting the model to compromise the
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privacy of the training data. Following [26], we consider
a malicious MITM attacker. This is the strongest adversary
in the context of FL [26], [27], [7]. More specifically, aside
from the ability to analyze communication, such an adversary
can actively force users to drop out, and drop or replace
messages, compromising up to (k − 1) assisting nodes. The
adversary is assumed to have access to quantum computers
capable of breaking conventional cryptographic problems.
Consistent with [26], we consider a secure and authenticated
channel between the entities (e.g., via [38]). For simplicity
and following prior privacy-preserving approaches for the FL
setting [26], [27], [6], we assume that the compromised parties
will follow the protocol.

Attacks targeting the model to compromise data privacy,
irrespective of the adversarial method utilized—whether black-
box or white-box—can be classified, based on severity, into
membership inference, model inversion, and training data ex-
traction attacks. Such adversaries can attack user gradients and
intermediate models during training and the final model after
deployment [1] by compromising different entities involved
in the protocol. Unlike traditional centralized training, where
an adversary typically has access only to the final model,
FL involves multiple participants who may have different
objectives and varying levels of trust. Since training occurs
in a distributed setting, privacy concerns are not limited to the
deployed model but also include the entire training process.
As highlighted by [39], it is crucial to protect user data
both during training and after deployment. To this end, we
propose a full-stack threat model that addresses privacy risks
at every stage of the training pipeline and after deployment.
This includes attacks on user updates sent to the server,
the intermediate global models shared with clients, and the
final deployed model. Note that extensive research has been
conducted on model correctness and poisoning attacks [6],
which can be utilized alongside our method to enhance client
data privacy protection, hence outside the scope of our work.
Therefore, we define three threat models, categorized based on
the adversary’s capabilities and access to the model in different
stages (i.e., user gradients, intermediate or final models).
Following the above attack categories, the adversary succeeds
if it can infer any information about the training data (i.e.,
the membership inference attack).

• Threat Model 1: TM1 considers an adversary targeting
user gradients during the training phase to undermine the
privacy of the honest users’ data. In TM1, the adversary
captures a compromised aggregation server that aims to
undermine the clients’ data privacy through its access to
their masked gradient. A real-world example is a cloud
provider running the federated learning server which,
despite performing aggregation as expected, attempts to
reconstruct sensitive information (e.g., handwritten digits
or medical conditions) from user-submitted updates using
gradient inversion attacks.

• Threat Model 2: TM2 considers an adversary targeting
the intermediate model during the training phase. This
threat model accounts for a compromised aggregation
server or a subset of the clients (or both) that aim to

undermine the clients’ data privacy through their access
to the intermediate model computed and distributed by
the aggregation server at the end of each iteration. A
practical scenario is a group of colluding clients in a
cross-silo FL setup (e.g., hospitals sharing models for
disease prediction) using model update differences across
rounds to infer training data from other participants.

• Threat Model 3: TM3 considers privacy attacks after
the training phase, once the model is deployed. As stated
above, these attacks can occur via white-box and black-
box access. A real-world instance is a deployed language
model accessed via an API (black-box) or downloaded
in its entirety (white-box), where adversaries attempt
membership inference or data reconstruction attacks to
determine whether specific records (e.g., patient names
or user queries) were part of the training data.

A protocol is considered to provide full-stack privacy if it
effectively safeguards user data across all the above threat
models, ensuring comprehensive protection throughout the
entire lifecycle of the model.

C. Security Models
In the following, we define the security models for our

primitives. The standard security notion for a digital signature
scheme is existential unforgeability against adaptive chosen
message attacks (EU-CMA), defined below.

Definition 6 (EU-CMA). Existential Unforgeability under
Chosen Message Attack (EU-CMA) experiment ExptEU-CMA

Π,A

for a signature scheme Π:(KeyGen, Sign, Verify) with an
adversary A is defined as follows.

• (sk, pk)← Π.KeyGen(1κ)
• (m∗, σ∗)← AΠ.Sign(·)(pk)
• If 1 ← Π.Verify(·) and m∗ was never queried to
Verify(·), return ‘success’ otherwise, output ‘⊥’.

The main security notion for a key encapsulation mechanism
is the indistinguishability of the chosen ciphertext attack (IND-
CCA), which enables the adversary to access the decapsulation
mechanism.

Definition 7 (IND-CCA). IND-CCA property of a key en-
capsulation scheme E = {KeyGen, Encaps, Decaps} with key
space K under chosen ciphertext attack (IND-CCA) experi-
ment ExptIND-CCA

E,A with an adversary A is defined as follows.
• (sk, pk)← Π.KeyGen(1κ)
• b← {0, 1}, (cx, x0)← Π.Encaps(pk)
• x1 ← K
• b′ ← AΠ.Encaps(·),Π.Decaps(·)(pk, cx, xb)

The advantage of the adversary in the above experiment is
defined as Pr[b = b′] ≤ 1

2 + ε for a negligible ε.

IV. POST-QUANTUM FEDERATED LEARNING

Given a secure public key infrastructure, Beskar only
requires a single setup round to train a central model (via
multiple rounds). Beskar provides security against quantum
adversaries while incurring the least computational overhead
compared to its counterparts with conventional (non-quantum)
security. Below, we present the high-level ideas of Beskar,
followed by a detailed protocol.
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A. High-level Idea

The design of Beskar is based on two main observa-
tions: (1) The main overhead in privacy-preserving FL arises
from the underlying cryptographic operations. This is further
exacerbated when post-quantum security is considered. (2)
The training takes place over a small number of iterations,
typically between 20 and 50. With these insights, we design
a new, highly efficient privacy-preserving FL framework by
devising a series of precomputation methods to reduce the
cryptographic overhead while attaining post-quantum security.
Following the recent development in practical secure aggre-
gation protocols (e.g., [26], [6]), Beskar assumes a set of
assisting nodes to assist the aggregation server in unmasking
the intermediate/final model. In addition, to ensure privacy
against different threat models, we integrate Beskar with
different DP methods. Fig. 2 shows the high-level architecture
of Beskar and its integration with the FL training process.

B. FL Secure Aggregation with Post Quantum Security.

1) Setup Phase: The setup phase is a one-time process that
can be performed, at least partially, offline. This phase consists
of a single round, namely, KeyGen and Advertise. During this
round, all users P1, ..., Pn and assisting nodes A1, ..., Ak are
initialized with the two pairs of public keys, i.e., (skE , pkE )
for the key exchange scheme and (skΠ, pkΠ) for the digital
signature scheme. Then, a public-key exchange procedure is
performed as follows: (1) the users receive copies of the key
exchanging public keys from each assisting node pk

Aj

E ; (2)
the assisting nodes receive copies of the user signing public
keys pkPi

Π ; and (3) the aggregation server receives copies of
the signing public keys from the assisting nodes pk

Aj

Π and
the users pkPi

Π . After that, each user computes a shared secret
x
Aj

Pi
for each assisting node Aj with skPi

E and pk
Aj

E via the
key exchange scheme E .Encaps(.) and securely sends it to
the corresponding assisting node Aj . The assisting node Aj

can recover the shared secret using its private key sk
Aj

E via
E .Decaps(.).

2) Aggregation Phase: The aggregation phase (Algorithm
2) comprises two rounds: Masking Updates and Aggregate
Updates. The aggregation phase is repeated at run-time with
several iterations based on the FL training requirements.

Specifically, at t-th iteration, in the first round (Masking
Updates), each user computes a masking vector aPi

t using
the shared secrets x

Aj

Pi
for j = 1, ..., k to mask its user

gradient wPi
t . The user then sends the masked gradient yPi

t

and a participation message (e.g., the iteration number) to the
aggregation server and the k assisting nodes, respectively. All
the messages are signed using Π.Sign(.).

In the second round (Aggregate Updates), upon receiving
(and verifying) the participation message (and signature), each
Aj adds the user to the list Lj, t. For all users in Lj, t,
Aj computes the aggregation of their masking vectors a

Aj

t

using the shared keys x
Aj

Pi
and sends a

Aj

t to the aggregation
server, in which the messages are signed by assisting nodes
using Π.Sign(.). Next, when receiving (and verifying) the
participation message (and signature), the aggregation server
S adds the user to the list Ls, t and then verifies that all user
lists from the assisting nodes and the aggregation server are
identical. For all users in Ls, t, the server uses the masked
updates (yPi

t and the aggregated masking terms aAj

t ) provided
by the assisting nodes to efficiently compute the aggregated
intermediate model.

3) Precomputed Masks: To avoid plain gradient transmis-
sion, Beskar generates a mask for each client local update
and only transmits the masked update. On the user side, a
mask is generated with the shared secret of the user and each
assisting node x

Aj

Pi
and the iteration number t. As the shared

secrets are calculated in the setup phase and the iteration
number is iterated in order, there is no any runtime information
(i.e., local updates) involved. Therefore, we can precompute
T masks for T iterations before the runtime aggregation.

C. Resiliency Against User and Assisting Node Dropouts

The design of Beskar offers strong resilience against both
user and assisting node dropouts. Specifically, Beskar is a
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Algorithm 1 Beskar Setup
Input: All parties are provided with the security parameter κ, the number of assisting nodes k, a key encapsulation protocol
E = {KeyGen, Encaps, Decaps}, a digital signature scheme with precomputation Π: (KeyGen, Precmp, PSgn, Verify), instantiated using
the security parameter κ.
Output: All the entities generate their key exchange, signature key pairs, as well as precomputed signing parameter list LS .
All the users receive the public keys of all the assisting nodes ⟨(pkA1Π , . . . , pkAkΠ ), (pkA1E , . . . , pkAkE )⟩, and shared secret seed x

Pi
Aj

for each
assisting node Aj . All the assisting nodes receive the public keys of all the participating users (pkP1Π , . . . , pkPnΠ ), and a shared secret seed
x
Aj
Pi

with each user Pi. The aggregation server S receives the public keys of all the users and assisting nodes
⟨(pkP1Π , . . . , pkPkΠ ), (pkA1Π , . . . , pkAkΠ )⟩. Lastly, all the users and assisting nodes generate the precomputed mask lists MS.

Phase 1 (KeyGen and Advertise)
All the communications below are conducted via an authenticated channel (similar to [4], [27])

1: Each assisting node Aj generates its key pair(s) (skAjΠ , pk
Aj
Π )← Π.KeyGen(κ) and(skAjE , pk

Aj
E )← E .KeyGen(κ) and sends (pk

Aj
Π , pk

Aj
E )

to the n users and sends pk
Aj
Π the aggregation server.

2: Upon receiving pk
Aj
E from Aj , each user Pi computes and encapsulate a shared secret by (xPiAj , c

Pi
Aj
)← E .Encaps(pkAjE ). It then

generates its key pair(s) (skPiΠ , pkPiΠ )← Π.KeyGen(κ) and sends pkPiΠ and cPiAj to Aj to the k assisting nodes and pkPiΠ to the
aggregation server.

3: Upon receiving cPiAj from the the user Pi, the assisting node Aj computes and retrieves the shared secret xPiAj ← E .Decaps(c
Pi
Aj
, sk

Aj
E )

4: The aggregation server S generates a key pair (skSΠ, pk
S
Π)← Π.KeyGen(1κ) and sends pkSΠ to the users.

5: All the entities perform the precomputation to get a list LS with N groups of pre-computated parameters for optimizing further
signing operations: LSAj ← Precmp(skAj , N), LSPi ← Precmp(skPi , N), LSS ← Precmp(skS, N).

6: Each user Pi computes a list MSAjPi for each assisting node Aj , with T groups of masks: MSAjPi [t] = PRF(x
Aj
Pi
, t) for t ∈ [1, . . . , T ].

Similarly, each assisting node Aj computes a list MSPiAj : MSPiAj [t] = PRF(xPiAj , t) for t ∈ [1, . . . , T ].

Algorithm 2 Beskar Aggregation
Input: The iteration t, a user calculated model update wPi

t , a keyed pseudorandom function PRF, a digital signature scheme Π, the secret
seeds x (shared between the users and the nodes), the signature key pair of the users and the assisting nodes, as well as the precomputed
signing parameter list LS of all entities and the precomputed mask list MS of the users and the assisting nodes.
Output: The final model update wt ∈Md.

Phase 1 (Masking Updates)

1: The user compute the local update wPi
t for iteration t

2: The user Pi first gets the mask MSAjPi [t] for iteration t, and then computes aPi
t =

∑k
j=1MS

Aj
Pi

[t] and the masked update
yPi
t = wPi

t + aPi
t .

3: The user sets m = (t,yPi
t ) and m′ = (t), computes signatures σPi

S ← Π.PSgn(skPiΠ ,m,LSPi) and σPi
Aj
← Π.PSgn(skPiΠ ,m′,LSPi) and

sends (m,σPi
S ) and (m′, σPi

Aj
) to the aggregation server and the assisting node Aj (for j ∈ [1, . . . , k]), respectively.

Phase 2 (Aggregate Updates)

1: Upon receiving (m′, σPi
Aj
) from all the users in the system, Aj checks if Π.Verify(pkPiΠ ,m′, σPi

Aj
)

?
= 1 holds, it adds the user to its user

list Lj,t.
2: Each assisting node checks if |Lj,t| ≥ αPH , it gets MSPiAj [t], computes a

Aj
t =

∑|Lj,t|
i=1 MS

Pi
Aj

[t], sets m′′ = (t, |Lj,t|,a
Aj
t ) and

σAi
S ← Π.PSgn(sk

Aj
Π ,m′′,LSAj ) and sends (m′′, σ

Aj
S ) to the aggregation server S.

3: Upon receiving (m,σPi
S ), S first checks if Π.Verify(pkPiΠ ,m, σPi

S )
?
= 1 holds, it adds Pi to its user list LS,t.

4: Next, S checks if Π.Verify(pk
Aj
Π ,m′′, σ

Aj
S )

?
= 1 holds for j ∈ [1, . . . , k]. It then checks if |LS,t| = |L1,t| = · · · = |Lk,t|, does not

hold it aborts.
5: S computes and broadcasts the final update as wt =

∑|LS,t|
i=1 yPi

t −
∑k

j=1 a
Aj
t .

one-round protocol. Unlike existing approaches [4], [7], [27],
user dropouts do not introduce any additional overhead for
the remaining participants. As in standard non-private FL,
user dropouts may affect model accuracy but do not impact
the overall protocol execution. Therefore, Beskar does not
introduce any additional constraints in this regard. Moreover,
the novel design of Beskar enables the use of a rotating
set of assisting nodes. In scenarios where an assisting node
has an unreliable connection or is at risk of dropping out,
a simple secret sharing scheme can be used to distribute
the node’s secret among the other assisting nodes [40]. This
schema allows the online assisting parties to collaboratively

reconstruct the required masking terms without imposing any
additional burden on the regular users.

D. Integrating Differential Privacy

During and after the FL aggregation, attackers under differ-
ent threat models could exploit the client gradients, intermedi-
ate models, and final models to conduct black- and white-box-
based model inversion attacks, as outlined in Section III-B.
These attacks could allow one to infer information about or
reconstruct the model’s training data, making secure aggrega-
tion alone insufficient to fully protect user training data.
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Algorithm 3 Precomputation Algorithm for Dilithium
LS ← Precmp(skΠ, N)

1: LS := ∅
2: while Length of LS < N do
3: y← Sℓγ1−1

4: w1 := HighBits(Ay, 2γ2)
5: Add (y,w1) into LS
6: return LS

σ ← PSgn(skΠ,m,LS)

1: for each (y,w1) in LS
2: c ∈ B60 := H(m ∥ w1)
3: z := y + cs1
4: if ∥z∥∞ ≥ γ1 − β
5: or ∥LowBits(Ay − cs2, 2γ2)∥∞ ≥ γ2 − β,
6: then Remove (y,w1) from LS
7: return σ = (z, c)
8: return Sign(skΠ,m)

To tackle that issue, Beskar integrates DP techniques
with secure aggregation, adding noises to the final, interme-
diate, and local models during training. Depending on the
threat models, in which adversaries with different abilities
are involved, we employ two DP methods–Local Differential
Privacy (LDP) and Central Differential Privacy (CDP)–
individually or in combination to safeguard the client gradient
privacy, intermediate model privacy, and final model privacy.
Specifically, LDP is used to protect client gradient updates.
Each client applies DP noise during local model training
at every iteration, preventing user training data from being
exposed to a malicious server or other clients. Note that clients
may use different privacy budgets (ε), with the overall privacy
guarantee determined by the largest ε among all clients. CDP
protects against model inversion attacks on aggregated models.
The CDP server adds DP noise to the aggregated model at
each training iteration, ensuring that malicious entities cannot
infer the individual data of honest clients from the aggregated
models.
Beskar adopts tailored DP strategies with the two DP

methods based on the specific threat model. Under TM1,
Beskar applies LDP (as well as the secure aggregation) to
protect the client gradients. By adding noise to client gradients
during local client training, a compromised server will be
unable to infer the exact training data after receiving the
client gradients. Under TM2 and TM3, Beskar utilize LDP
and CDP to protect the intermediate models and final models
against compromised clients and compromised server. Noise
is added to the client gradients on the client side and to the
aggregated model on the server side, ensuring robust protection
under these threat models.

E. Efficient Post-Quantum Signature

Digital signatures are essential for ensuring the authen-
ticity and integrity of transmitted messages. While post-

quantum signatures promise long-term security against quan-
tum adversaries, they are often more resource-intensive than
their classical counterparts. This overhead becomes significant
when these schemes are deployed on resource and battery-
constrained devices like cellular phones. Several algorithms
have been proposed in the NIST post-quantum standards, such
as Dilithium [32] and SPHINCS+ [41]. We select Dilithium as
the most efficient option [42], and optimize it for deployment
in Beskar. In the following, we describe Dilithium and
introduce a precomputation method to significantly improve
its computational overhead in the FL settings.

Dilithium is based on Fiat-Shamir with abort paradigm,
and its security relies on the hardness of the modulo-SIS and
modulo-LWE problems. In the standard Dilithium signature
without any optimization (as Algorithm 4 in Appendix A),
key generation involves selecting matrix A of dimension k× l
and computing an MLWE public key t = As1 + s2 where
s1 and s2 are sampled from the key space Sη with small
coefficient of size at most η. The HighBits(·) and LowBits(·)
methods simply select the high-order and low-order bits of the
coefficients in their vector, respectively.

Given the Fiat-Shamir paradigm, in lattice-base settings,
since we are solving for a variant of the SIS problem, the
signature z should be small. To ensure this, an eligible
signature should meet two conditions: (i) For security, it is
crucial that the masking term y is completely hiding cs1;
the first rejection condition (Step 7) addresses this concern.
(ii) The second rejection condition is required for both the
scheme’s correctness and security [43] and ensures that the
same c is recovered in the verification algorithm. In practice,
this could require repeating the signing algorithm 7 times
before finding an eligible signature [32], [43]. This can have a
significant resource and computation overhead for constrained
devices.

To address such an issue, we propose a precomputation
algorithm for Dilithium by leveraging the fact that FL takes a
small number of training iterations (in the order of hundreds).
The high-level idea of the precomputation algorithm, presented
in Algorithm 3, is to store a list of masking values y and
their corresponding commitment values Ay. Therefore, if the
selected masking term does not pass the rejection conditions
during the signing algorithm, another value and its correspond-
ing commitment can be selected from the list. Following the
one-time nature of the masking term, it will be removed from
the list once an eligible masking term is selected. Detailed
algorithms are provided in Appendix A.

F. Security Analysis

Theorem 1. The Beskar protocol presented in Algorithms
1 and 2, running with n parties {P1, . . . , Pn}, k assisting
nodes {A1, . . . , Ak}, and an aggregation server S provides
post-quantum privacy against a malicious adversary A ∈
A1, A2, A3 which controls S and 1−α fraction of users and
k − 1 assisting nodes with the offline rate (1− δ) ≥ α.

Proof. Following [6], we prove the above theorem by the
standard hybrid argument. The proof relies on the assumption
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of the simulator Sim that controls the environment. Ph and
PC define the set of honest and corrupt users, respectively.

Setup phase:
1) Each honest user Pi and assisting node Aj follows the

protocol in Algorithm 1.
2) For each corrupt user Pi′ ∈ PC and honest assisting

node Aj ∈ AH , compute and store (x
Pi′
Aj

, c
Pi′
Aj

) ←
E .Encaps(pkAjE ).

3) For each honest user Pi ∈ PH and corrupt assisting
node Aj′ ∈ AC , compute and store (xPiAj′ , c

Pi
Aj′

) ←
E .Encaps(pkAj′E ).

4) For each honest pair of user Pi and honest assisting node
Aj , Sim picks xr

$← KΣ and sets xPiAj = xr.

Aggregation phase:
1) In each iteration t of the protocol, each honest user picks

a random y′Pi
t . It then computes two signatures σPi

S ←
Π.Sign(skPiΠ ,m) and σPi

Aj
← Π.Sign(skPiΠ ,m′) and sends

(m,σPi
S ) and (m′, σPi

Aj
) to the aggregation server and the

assisting node Aj (for j ∈ [1, . . . , k]), respectively.
2) The aggregation server S first adds the user Pi to the list
LS,t and then calls the α-summation ideal functionality
Fx,α(LS,t\PC) (where PC is the set of corrupt users) to
get wt.

3) Next, the simulator samples w′Pi
t

$← Md for all
Pi ∈ LS,t\PC such that wt =

∑
i∈PC

w′Pi
t and com-

putes a′
Pi
t = y′Pi

t − w′Pi
t . Sim sets {a′PiAj ,t}Aj∈AH

=

{RO(xPiAj , t)}Aj∈AH
such that a′

Pi
t =

∑
Aj∈AH

{a′PiAj ,t},
and for each Aj ∈ AH , it computes a′

Aj
Pi,t =∑

Pi∈PH
a′

Pi
j,t.

The hybrids are provided below. We note that each hybrid
represents a view of the system seen by the adversary. The
proof relies on the indistinguishability of each hybrid. The
hybrids are constructed by the simulator Sim.
Hyb0 The random variable is identical to the real execution

of the protocol (i.e., REAL).
Hyb1 Now, Sim that knows the secrets of all honest entities are

introduced in this hybrid. The distribution of this hybrid
remains identical to the one above.

Hyb2 This hybrid replaces the shared keys between the users
and assisting nodes with a random shared secret key
sampled from KΣ. The indistinguishabilityof this hybrid
is delivered by the security of the key encapsulation
mechanism (Definition 9). Our protocol delivers this by
the security of the CRYSTALS-Kyber algorithm [29],
which is based on the Module-LWE problem which is
post-quantum secure.

Hyb3 This hybrid starts with each honest user picking a
random vector y′Pi

t . The user then computes a signature
σPi
S ← Π.Sign(skPiΠ , < y′Pi

t , t >) and sends (y′Pi
t , σPi

S )
to the server. The indistinguishabilityof this hybrid is
due to the following. 1) Given we need at least one
assisting node to remain honest, and since A does not
have the secret of honest entities, in REAL, the masked
gradient vector will have the same distribution as y′Pi

t and
therefore indistinguishable. 2) The indistinguishabilityof

σPi
S is delivered via the security requirement (Definition

8) of the underlying signature scheme.
Hyb4 The ideal functionality Fx,α(LS,t\PC) and random ora-

cles are used to substitute the aggregated mask outputted
by the honest assisting nodes Ai ∈ AH with a′

Aj
Pi,t

(computed in Step 3 of the simulated Aggregation phase
presented above). This hybrid outputs (a′

Aj
Pi,t, σ

Ai
S ) where

σAi
S ← Sign(sk

Aj
Π ,m′′). Given the ideal functionality,

random oracles, and digital signatures, and since A does
not have the secret of honest entities, the view of this
hybrid is indistinguishabilitywith the previous hybrid.

Hyb5 In the final hybrid, Sim outputs the output of the ideal
functionality (Step 2 in the simulated Aggregation phase)
as the global update wt. Given the assumption of the
fraction of honest users/nodes, the ideal functionality will
not output⊥ with an overwhelming probability. Thus, this
hybrid is indistinguishabilityfrom the previous one.

In the above, we have shown that the view of all the corrupted
parties controlled by A is computationally indistinguishable.
This ensures that the masked gradients are essentially random
values, providing full privacy and thereby protecting the pri-
vacy of the clients’ dataset in the sense of TM1.

Corollary 1. The protocol presented in Algorithm 2 protects
privacy against a malicious adversary capable of controlling
communication and arbitrarily dropping users.

Proof. The privacy guarantee of Beskar against user
dropouts is provided by the α-summation ideal functionality
(Definition 3) and enforced by a condition check during the
Aggregation phase (Algorithm 2). More specifically, to prevent
privacy leakages, in the protocol each assisting node checks
if at least αPH users are participating in the training phase.
This ensures that the aggregation process continues only when
a sufficient number of users are contributing, preventing the
adversary from inferring individual data through selective
dropouts.

Corollary 2. Given a malicious user, the protocol presented in
Algorithm 2 combined with the CDP method provides (ϵc, δc)-
privacy in the context of TM2, and TM3.

Proof. Following the proof of Theorem 1, Beskar protects
the privacy of user gradients and allows the aggregation server
to compute the intermediate (or final) model without revealing
any information about the gradients. The Central Differential
Privacy (CDP) method is applied on the server side, ensuring
that the intermediate (or final) model is (ϵc, δc)-protected
against malicious clients during training and deployment.

However, it is essential to note that since CDP is imple-
mented on the server, a malicious server can access the plain
intermediate (or final) model before CDP is applied. Conse-
quently, while CDP provides (ϵc, δc)-privacy from malicious
clients during training and deployment, it still assumes an
honest aggregation server. ϵc and δc define the central privacy
budget and the failure probability computed by a privacy
accountant on the server side.
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Corollary 3. Given a malicious aggregation server, the proto-
col presented in Algorithm 2 combined with the LDP method
provides (ϵl, δl)-privacy in the context of TM1, TM2, and TM3.

Proof. Compared to the previous one, the key distinction in
this corollary lies in the use of Local Differential Privacy
(LDP) alongside Beskar and the removal of the trusted
server assumption. Specifically, in the LDP setting, obscuring
user gradients occurs on the client side, ensuring that the
intermediate and final models computed by the aggregation
server maintain (ϵl, δl)-privacy at all times. It is important to
note that Beskar fully conceals user gradients. Here, ϵl and
δl represent the largest privacy budget and the corresponding
probability of failure among the participating clients.

V. PERFORMANCE EVALUATION

A. Analytical Evaluation

We present a comparative analysis of the computational
performance of Beskar and several state-of-the-art protocols
in Table II.

1) Setup Phase: The setup phase of Beskar involves two
runs of the key generation protocol and k runs of the key
agreement protocol for the user, or |U | runs for the assisting
node. Additionally, each user and assisting node perform T×k
and T × |U | PRF invocations, respectively, to precompute
T groups of masks, along with N Precmp operations to
precompute N groups of signing parameters.
Beskar offers improved computational efficiency over

Flamingo, as it requires fewer participating decryptors—k
can be as low as 2—compared to a minimum of 64 in
Flamingo [26]. Moreover, Beskar is more efficient than
the maliciously-secure version of MicroFedML [27], which
involves a linear number of operations, including signature
verification, key agreement, secret sharing, and symmetric
encryption/decryption, leading to higher computational costs.
While Beskar incurs additional overhead in precomputing
signing parameters and masks compared to e-SeaFL, this
cost is offset by the increased efficiency in the subsequent
aggregation phase, with minimal impact on the offline setup
phase. Additionally, in contrast to the protocol by Bell et
al. [7], which requires the setup phase to be repeated in every
aggregation round due to the inability to reuse key material,
Beskar avoids this repetitive overhead, further enhancing its
overall efficiency.

2) Aggregation Phase: During the aggregation phase,
Beskar further reduces computational overhead. The user
only needs to perform k + 1 summations and two optimized
signature generation operations to achieve security against
malicious adversaries. Notably, PRF computations are not
required during aggregation since the masks are precomputed
in the Setup phase. Given that k is much smaller than the
number of participating users or decryptors, Beskar offers
significantly higher efficiency compared to alternative proto-
cols.

B. Implementation

We implement Beskar with 2.5k lines of code, involving
two components, namely the secure aggregation for gradient

updates and the model training with multiple DP protections.
Our code is available at https://github.com/kydahe/Beskar.
Secure Aggregation. Beskar builds on ABIDES [44], a
discrete event simulation framework commonly used in FL
research [26], [27], enabling the simulation of multi-iterative
aggregation protocols. We incorporated two post-quantum
algorithms, i.e., the Kyber key encapsulation algorithm for
negotiating shared secrets between clients and assisting nodes,
and Dilithium signing algorithm for generating and verifying
digital signatures during aggregation phase. These algorithms
are implemented based on existing libraries [45], [46], with
Dilithium modified to support signing with precomputation in
C. For the Pseudo-Random Function (PRF) used in mask gen-
eration, we employed ASCON [47], known for its lightweight
and efficient cryptography, making it suitable for resource-
constrained client devices.
Model Training with Multiple DP Protections. We adopt the
Flower FL framework [48] and integrate our DP protections
using PyTorch Opacus [49]. In particular, Opacus determines
the required noise multiplier through an iterative procedure
that balances privacy and utility. It first converts the training
configuration into a total number of steps (via the number of
iterations and client fraction fits), then uses a DP accountant
(e.g., Rényi differential privacy [50]) to assess ϵ for a given
noise multiplier. The algorithm locates an appropriate noise
multiplier by expanding an upper bound until ϵ is satisfied,
followed by a binary search for finer precision. We implement
two different DP methods—tailored to distinct threat mod-
els—alongside a baseline FL model without DP protection.
Each model is trained five times, and the highest accuracy is
reported, accounting for random variations in initialization and
privacy mechanisms.

C. Experimental Environment
The secure aggregation experiments were conducted on

an x86 64 Linux machine with AMD Ryzen Threadripper
PRO 5965WX 24-Cores and 256 GB RAM. The models
(with DP schemes) were trained using a NVIDIA RTX 6000
Ada Generation GPU on another x86 64 Linux machine with
Intel(R) Xeon(R) w7-2475X and 256 GB RAM.

D. Experimental Setup and Evaluation Metrics
We systematically evaluated Beskar with respect to two

key dimensions: efficiency and performance. Efficiency was
measured by empirical time complexity during the setup
and aggregation phases, along with corresponding bandwidth
usage. Performance was assessed based on accuracy using five
standard vision benchmarks that grow in difficulty and size:
MNIST [51], EMNIST [52], CIFAR-10 [53], CIFAR-100 [53],
and CHMNIST [54]. We pair each dataset with a representative
architecture of ascending capacity: a lightweight MLP for
MNIST and EMNIST, ResNet-18 for CIFAR datasets, and a
larger AlexNet-style network for CHMNIST. In the following,
we describe the three empirical metrics employed in our
experiments.
Metrics for Efficiency: We use two metrics, i.e., computation
time and communication bandwidth, for efficiency measure-
ment. Comparative analysis was conducted using Flamingo

https://github.com/kydahe/Beskar
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TABLE II: Analytical performance of the secure aggregation of Beskar and its counterparts

Scheme Setup Phase Aggregate Phase

User Assisting/Helper
Nodes Server User Assisting/Helper

Nodes Server

MicroFedML [27] 1Kg + 1Sgn + |U ′ − 1|(1Vfy+
1Ka + 1sshl + 1AEnc + 1ADec)

N/A |U |Vfy
(|w|+ 1)ex + 1Sgn+

|U − 1|(1su + 1Vfy) + 1su
N/A 1Rsshe + |w|ex+

1mu

Flamingo [26] |D′|Vfy
2PIL + 3Sgn + 2sshl+
|D|(3|D′|+ 1)Vfy+

(|D′| · |D|)mu

(|D′| · |D|)Vfy
2PRG + |D′|(1ex + 1Hash + 1PRF+
1su + 1AEnc + 1Sgn + 1SEnc) + 1sshl

1Sgn + |U ′|SDec+
(|D|+ |U ′|)Vfy

|D|PIL + |U ′|(1su+
1mu + 1Rssh) + 2PRG+

(|U ′|+ 1)su

e-SeaFL [6] 2Kg + kKa 2Kg + kKa 1Kg kPRF + |k + 1|su + 2Sgn
|U ′|(1Vfy + 1su+
1PRF) + 1Sgn

(|U ′|+ |k|)(1Vfy+
1su)

Beskar 2Kg + kEncp +NPrecmp + (T × k)PRF 2Kg + |U |Decp + (T × |U |)PRF +NPrecmp 1Kg |k + 1|su + 2PSgn
|U ′|(1Vfy + 1su)

+1PSgn

(|U ′|+ |k|)(1Vfy+
1su)

Kg, Sgn, Vfy, and Hash denote key generation, signature generation, verification, and hash function, respectively. Ka denotes the shared key computation in the key agreement protocol. |D| and |D′| denote the number of
all decryptors and the threshold of participating decryptors [26], respectively. PIL denotes polynomial interpolation of length L. sshl, Rssh, and Rsshe denote secret sharing operation to l shares, share reconstruction, and
share reconstruction in the exponent, respectively. mu, su and ex denote multiplication, summation and exponentiation operations, respectively. PRG and PRF denote pseudorandom generators and pseudorandom functions,
respectively. AEnc, ADec, SEnc, and SDec denote asymmetric encryption, decryption, symmetric encryption, and decryption, respectively. |w| denotes the number of model parameters. k is the set of assisting nodes in
Beskar.

[26], PQSA [10], e-SeaFL [6], and MicroFedML [27], where
MicroFedML includes two variants, MicroFedML1 and Mi-
croFedML2.

• Computation Time. To assess the efficiency of our secure
aggregation method with post-quantum protection, we
measured the time required for computational operations
such as key encapsulation, mask generation, signing,
and verification. The number of clients (n) was varied
from 200 to 1000, with three assisting nodes (k = 3)
and one aggregation server. We also tested performance
with a gradient vector size of 16,000 to simulate high-
dimensional data.

• Communication Bandwidth. We recorded the bandwidth,
i.e., total message size exchanged between clients, as-
sisting nodes, and the server, to evaluate communication
costs. The reason why we use message size instead of
transmission time is because message transmission time
highly depends on current network conditions. Variations
in hardware and network quality can greatly affect la-
tency.

Metric for Performance: We assessed the performance of
our DP methods by evaluating the noise multiplier and the
accuracy of the final models. Client data allocation adheres
to standard protocols [35], [26]. Unless specified otherwise,
training proceeds with 5 clients, 50 communication rounds,
and a client-sampling fraction of 1.0—in other words, each
client contributes to every round. Pilot runs showed that
fifty rounds are already enough for the models to converge
under DP noise; extending training beyond that point improves
accuracy only marginally while increasing computation. Using
a sampling fraction of one eliminates variability due to partial
participation, allowing us to isolate the sole effect of injected
noise. Starting from this baseline, we varied the privacy budget
ϵ values across {5, 10, 15, 20} to evaluate the privacy–utility
trade-off. We then fixed ϵ at 10 and varied the two factors
independently. First, we shortened training to as few as a single
iteration and gradually extended it through {1, 5, 10, 15, 20} to
reveal how DP noise hinders convergence when updates are
scarce. Second, with 10 clients in total, we adjusted sampling
fraction over {0.3, 0.5, 0.7, 0.9} so that different number of
clients participate in each iteration, to evaluate the impact of
the size of the actively participating subset on both noise levels
and final accuracy.

VI. EVALUATION RESULTS

In this section, we present the experimental results evaluat-
ing the efficiency and performance of Beskar. Our findings
address the following key research questions:

• Section VI-A (Efficiency Measurement): How efficient
is post-quantum enhanced secure aggregation in FL?
What gains in efficiency does Beskar achieve through
the use of pre-computation?

• Section VI-C (Model Performance Measurement):
How does Beskar ’s differential privacy module per-
form under different threat models? What is the impact
of DP-enhanced methods on FL performance across dif-
ferent training datasets?

A. Efficiency Measurement

1) Computational Cost: We systematically compare the
computational cost of Beskar in the Setup phase and Ag-
gregation phase with four state-of-the-art approaches, i.e.,
Flamingo, PQSA, e-SeaFL, and MicroFedML.

Setup Phase. Fig. 3 shows the computation costs of each
method during the Setup phase. Beskar stands out for its
nearly constant computation time on the server (Fig. 3 (a))
and client (Fig 3 (b)) side, even as the number of clients
increases. This is because the operations Beskar performs
on the client side are primarily dependent on the number of
assisting nodes, which typically remains constant in general
FL settings, and the fact that server-side operations have
a constant computational cost. In contrast, the computation
time for assisting nodes increases as the number of clients
grows (Fig. 3 (c)). This increase results from tasks performed
by assisting nodes, such as shared secret generation, which
become more intensive as the number of clients rises.

Our results also show that, in the setup phase, Beskar
incurs higher computation times compared to Flamingo, e-
SeaFL and MicroFedML across all entities. The reason is
that Beskar incorporates an additional precomputation step
in the setup phase, where several digital signature param-
eters are precomputed for subsequent runtime signing (see
Section IV-E). PQSA is excluded from this comparison as it
only distributes several public parameters without performing
significant computations. It is also worth noting that Flamingo
does not involve any client-side operations, as it relies on a
trusted third party to generate and distribute signing keys for
each entity.
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Fig. 3: Computation Time of the Setup phase (The dimension of the weight list is set to 16K.)
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Fig. 4: Computation Time of the Aggregation phase (The dimension of the weight list is set to 16K.)

Aggregation Phase. Fig. 4 shows the computation time of
Beskar in the aggregation phase compared with that of
Flamingo, PQSA, e-SeaFL, and MicroFedML. A key advan-
tage of Beskar is that client-side computation time remains
constant (Fig. 4 (b)), , even as the number of clients grows.
This stability minimizes client-side resource demands, mak-
ing Beskar particularly suitable for settings with resource-
constrained FL clients. Moreover, the computation time in-
creases for the server (Fig. 4 (a)) and assisting nodes (Fig. 4
(c)) as the number of clients grows. This increase is primarily
due to the need for assisting nodes and the server to verify the
signatures of messages sent by clients, making computation
time proportional to the number of clients.

The results demonstrate that all entities in Beskar in-
cur minimal computational overhead, with computation times
significantly lower than those of Flamingo, PQSA, and
MicroFedML, with the exception of e-SeaFL. Specifically,
Beskar has a similar computation time to e-SeaFL on the
client side, but a higher computation time on the assisting
nodes and server. This difference arises because both Beskar
and e-SeaFL clients perform similar operations, including
gradient masking and a few signing operations. However,
the assisting nodes and server in Beskar must conduct a
large number of signature verifications, which scale with the

number of clients. The post-quantum signing algorithm (i.e.,
Dilithium) used by Beskar is originally slower than the
traditional algorithm (i.e., ECDSA) used in e-SeaFL, leading
to higher computation times as the number of clients increases.
Beskar outperforms Flamingo, PQSA, and MicroFedML

in terms of computation time across clients, assisting nodes,
and the server. Flamingo requires additional steps to remove
masks for dropout clients, necessitating extra information (e.g.,
shares of secrets used to generate the masks) from clients
and decryptors to allow the server to recover the gradient
vectors of those offline clients. PQSA uses SHPRG-based
encryption for gradient masking, which involves an extra step
between clients and the server to decrypt and recover the
masks and calculate the aggregated result. In MicroFedML,
each client must additionally compute H(k)Xi and H(k)Ri ,
and the server has to recover the gradient vector by calculating
the discrete logarithm of H(k)Xi−H(k)Ri . Such discrete log-
arithm calculation is computationally very intensive, especially
as the vector dimensions increase.

Overall, compared with the existing approaches, Beskar
employs a straightforward strategy for dropout clients by
ignoring the masked vectors of dropped clients and utilizes a
post-quantum algorithm with precomputation for optimization.
This approach reduces the number of messages, eliminates un-
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necessary calculations, and significantly reduces time overhead
while maintaining quantum security.

2) Communication Cost: We analyze the communication
cost, specifically the outbound bandwidth, of Beskar during
the setup and aggregation phases in comparison to existing
approaches.

Setup Phase. Fig. 5 presents the outbound bandwidth costs
of all entities in Beskar during the setup phase. In general,
the outbound bandwidth of Beskar remains constant on the
server (Fig. 5 (a)) and client (Fig. 5 (b)) sides while increases
on the assisting nodes (Fig. 5 (c)) as the number of clients
grows. This is due to the fact that during the setup phase, the
server only needs to broadcast its public key for signing, and
each client sends the public keys for key exchange and signing
to the assisting nodes, whose number keeps constant in our
experimental setting. However, each assisting node must send
these public keys to all clients, making its outbound bandwidth
dependent on the number of clients.
Beskar incurs less outbound bandwidth than Flamingo

and MicroFedML but it is generally comparable to e-SeaFL
across all three entities. Specifically, during the setup phase,
Beskar and e-SeaFL perform the same public key exchange
operations, resulting in similar outbound bandwidths, both of
which depend on the size of the public keys. In contrast,
in Flamingo, the server and decryptors participate in DKG
protocols, where their outbound bandwidth depends on the
number and size of the messages in DKG protocols and is
proportional to the number of decryptors, but constant relative
to the number of clients. This results in greater outbound
bandwidth for the server and decryptors in Flamingo compared
to Beskar, which only involves public key exchanges. As
for MicroFedML, the server has to forward all the commu-
nications, i.e., the public keys and secret shares generated by
Shamir’s secret sharing scheme, from one client to each of
the others, making its bandwidth proportional to the number
of clients and higher than that of Beskar. Each client in
MicroFedML should send its public key and n−1 mask shares
to all other clients, making its bandwidth increase proportional
to the number of clients, which is significantly higher than that
of Beskar.

Additionally, PQSA and the clients of Flamingo are ex-
cluded from this comparison for the same reasons previously
mentioned.
Aggregation Phase. We present the outbound bandwidth cost
of all entities in Beskar during the runtime aggregation phase
in Fig. 6. Generally, the outbound bandwidth of Beskar
remains constant across all three entities, i.e., the server (Fig. 6
(a)), the clients (Fig. 6 (b)), and the assisting nodes (Fig. 6
(c)) as the number of clients increases. This stability occurs
because the outbound messages for each entity do not depend
on the number of clients. Specifically, each client’s outbound
messages depend only on the number of assisting nodes and
the server, which remain constant in our experimental setup.
Assisting nodes send a single message (containing the sum
of partial masks) to the server, and the server broadcasts
the aggregated results, keeping their outbound bandwidth
unchanged.

TABLE III: Results of Precomputation Improvement (Compu-
tation Time in the Aggregation Phase) (ms): P - Precomputa-
tion

N Client Server Assisting Node
w/o P w/ P w/o P w/ P w/o P w/ P

200 135 1 77 76 8767 7
400 134 1 163 151 17703 14
600 135 1 227 225 27008 21
800 134 1 323 302 35281 28

1000 134 2 417 377 43144 35

When compared with existing approaches, Beskar demon-
strates lower outbound bandwidth costs across all entities
compared to Flamingo, PQSA, e-SeaFL, and MicroFedML.
Specifically, in Flamingo, the server is involved in forwarding
the messages between the clients and decryptors, leading to
a higher outbound bandwidth that is roughly proportional to
the number of clients. Clients have to send secret shares to
decryptors and neighbors (i.e., clients in the same group), in
addition to masked updates to the server, which increases their
outbound bandwidth proportional to the number of decryptors
and clients (i.e., neighbors), which is significantly higher than
Beskar. Decryptors also transmit decrypted secret shares
of each client to the server, resulting in higher bandwidth
proportional to the number of clients, compared to Beskar.
For PQSA, the server performs an additional communication
step with clients to decrypt and recover the masks, resulting
in a higher bandwidth that is proportional to the number
of clients. Similarly, clients have to additionally send the
decrypted secrets, except for the masked updates, leading
to a higher bandwidth, which is proportional to the number
of clients. While e-SeaFL performs the similar operations
to Beskar across all entities, the difference in outbound
bandwidth is primarily due to the size of each message,
especially the size of signatures. As for MicroFedML, similar
to Flamingo, the server has to forward the signature of each
client to other clients, incurring a higher outbound bandwidth
than Beskar, which is proportional to the number of clients.
Moreover, clients in MicroFedML send masks of online clients
along with the masked updates to the server, resulting in
bandwidth higher than in Beskar.

3) Precomputation Improvement: To assess the impact of
precomputation strategies on Beskar, we conducted a com-
parative experiment implementing Beskar without precom-
putation in the Dilithium signing algorithms and mask genera-
tion. The results, shown in Table III, indicate that precomputa-
tion significantly enhances efficiency for both assisting nodes
and clients as the number of clients increases.

Without precomputation, an assisting node must perform
additional mask generation operations for n clients and one
signing operation, while a client must perform additional
mask generation for k assisting nodes and k + 1 signing
operations. Consequently, precomputation notably reduces the
computational burden on these entities.

On the server side, the benefits of precomputation are less
pronounced. The reason is that the server performs relatively
fewer computational operations, limited to only one signing
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operation, compared to the assisting nodes and clients.

B. Feasibility of Employing Assisting Nodes

Following our computational and communication evaluation
of Beskar and its counterpart, we emphasize that a assisting
node incurs only minimal additional overhead—specifically,
about 6 ms more computation time than a regular client
(with a total of 200 clinets), and approximately 2 KB less
in communication. Given this lightweight cost, a simple dis-
tributed ledger-based method can be used to select a set of
clients in each iteration to serve as assisting nodes. This is not
a strong assumption since sharing metadata about the model
and training parameters is common in FL. Deploying assisting
nodes significantly reduces the trust assumption because the
privacy of the protocol holds as long as at least one assisting
node is honest. At the same time, it minimizes the overhead
on participating users and encourages broader participation in
the learning process.

C. Model Performance

Table IV presents accuracy results on MNIST, EM-
NIST, CIFAR-10, CIFAR-100, and CHMNIST under Non-
Differential Privacy (NDP), Central Differential Privacy
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Fig. 7: Effect of Epsilon, Iterations, and Clients on Noise.

(CDP), and Local Differential Privacy (LDP) across varying
privacy budgets ϵ, training iterations, and the fraction of par-
ticipating clients (fraction fit). Fig. 7 shows the corresponding
noise multipliers under these configurations. Below, we discuss
how ϵ, the number of training iterations, and the fraction fit
affect both model accuracy and noise.

1) Effect of Privacy Budget (ϵ): We first examine how
varying privacy budget ϵ impacts both the noise multiplier
and the model accuracy. As expected, NDP, which injects no
noise, yields the highest accuracy across all datasets. Once
privacy is enforced, both CDP and LDP see reduced accuracy
relative to NDP, with CDP generally outperforming LDP.
Noise Multiplier vs. ϵ. Fig. 7 underscores the inverse relation-
ship between ϵ and the noise multiplier. Smaller ϵ values offer
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TABLE IV: Results of Model Performance under Different Differential Privacy Parameters.

ϵ #Iters #Cli MNIST EMNIST CIFAR-10 CIFAR-100 CHMNIST
NDP CDP LDP NDP CDP LDP NDP CDP LDP NDP CDP LDP NDP CDP LDP

20 50 5/5 0.99 0.98 0.86 0.99 0.98 0.87 0.83 0.81 0.45 0.76 0.63 0.02 0.84 0.83 0.27
15 50 5/5 0.99 0.97 0.84 0.99 0.98 0.85 0.83 0.80 0.23 0.76 0.56 0.02 0.84 0.81 0.26
10 50 5/5 0.99 0.87 0.78 0.99 0.90 0.82 0.83 0.77 0.20 0.76 0.23 0.02 0.84 0.76 0.23
5 50 5/5 0.99 0.77 0.71 0.99 0.80 0.77 0.83 0.57 0.17 0.76 0.02 0.01 0.84 0.52 0.22

10 1 5/5 0.95 0.09 0.09 0.94 0.10 0.09 0.38 0.28 0.10 0.02 0.02 0.01 0.40 0.42 0.11
10 5 5/5 0.96 0.54 0.53 0.94 0.41 0.71 0.68 0.60 0.20 0.64 0.18 0.01 0.64 0.65 0.13
10 10 5/5 0.98 0.91 0.72 0.95 0.91 0.77 0.78 0.68 0.20 0.73 0.25 0.02 0.73 0.68 0.23
10 15 5/5 0.98 0.92 0.77 0.97 0.93 0.80 0.78 0.72 0.10 0.75 0.30 0.02 0.79 0.71 0.26
10 20 5/5 0.98 0.93 0.79 0.98 0.94 0.83 0.79 0.73 0.24 0.76 0.33 0.02 0.81 0.72 0.27

10 50 3/10 0.99 0.48 0.78 0.99 0.56 0.82 0.83 0.73 0.23 0.72 0.43 0.02 0.84 0.72 0.22
10 50 5/10 0.99 0.87 0.78 0.99 0.90 0.82 0.83 0.77 0.20 0.74 0.44 0.02 0.84 0.76 0.23
10 50 7/10 0.99 0.95 0.77 0.99 0.96 0.81 0.81 0.79 0.15 0.75 0.45 0.02 0.84 0.81 0.27
10 50 9/10 0.99 0.97 0.75 0.99 0.97 0.80 0.80 0.79 0.13 0.75 0.45 0.01 0.84 0.81 0.27

stronger privacy guarantees but require to increase the noise
multiplier, which injects more noise at each training iteration.
This additional noise hampers the model’s ability to learn,
explaining the sharper accuracy decline observed for lower ϵ.
Model Accuracy vs. ϵ. Table IV shows that accuracy under
both CDP and LDP improves as ϵ increases. At a relatively
high privacy budget (e.g., ϵ), the noise multiplier is moderate,
and the MNIST model under CDP achieves an accuracy of
0.98—close to the NDP baseline of 0.99—while LDP reaches
0.86. However, tightening privacy (e.g., ϵ = 5) forces a much
larger noise multiplier, causing significant accuracy drops and
widening the gap between the DP methods and NDP.

2) Sensitivity Analysis: We next explore how other key
hyperparameters—the number of training iterations and the
fraction fit of clients—further influence the trade-off between
model accuracy and noise levels. For these experiments, we
fix ϵ while varying one parameter at a time.
Number of Training Iterations. Increasing the number of
training iterations substantially improves model convergence,
even under noisy conditions. When training for only one
iteration under LDP on MNIST with ϵ = 10, accuracy can
be just under 10%. In contrast, extending the training to 50
iterations under the same ϵ raises accuracy to above 70%. This
indicates that additional iterations provide the model more
opportunity to learn from the data, thereby offsetting much
of the performance degradation caused by noise. Although
longer training may require additional noise injections (i.e.,
larger noise multiplier), the results show that the convergence
gains generally outweigh the potential downside of increased
noise, particularly when training has not yet converged.
Fraction fit of Clients. The fraction of clients selected to par-
ticipate in each training iteration—rather than merely the total
pool of clients—strongly influences both the noise multiplier
and model accuracy. Under CDP, noise is injected centrally
after aggregating client updates. When a larger fraction of the
total clients participate, the training process benefits from more
data per iteration, typically boosting accuracy. However, this
increase in participating clients can also raise the noise mul-
tiplier, since a larger collective update requires proportionally
more noise to preserve the privacy budget. Table IV shows

that as this fraction increases, more data is included in each
iteration, which improves convergence and often offsets any
added noise, ultimately leading to higher accuracy for CDP.
By contrast, in LDP, each client adds noise directly to its
own data or gradients. Hence, a larger fraction of participating
clients produces a greater cumulative amount of noise in the
aggregated update, which can reduce accuracy gains from
using more data. As a result, we observed in Table IV, for
LDP, larger client fractions can lead to lower accuracy.

In summary, both central differential privacy (CDP) and
local differential privacy (LDP) incur some loss of accuracy
relative to the non-private baseline (NDP); however, for tasks
of moderate complexity this reduction remains modest, allow-
ing both schemes to provide competitive performance while
markedly strengthening data protection. Therefore, one can
steer the privacy–utility trade-off by adjusting the privacy
budget ϵ, the number of training rounds, and the fraction
of participating clients, thereby meeting application-specific
privacy requirements without incurring unnecessary accuracy
loss.

On more demanding benchmarks such as CIFAR-100, the
strong noise injected under LDP hampers fine-grained fea-
ture learning and produces a noticeably sharper accuracy
decline. Although recent study [35] reports substantially higher
CIFAR-100 accuracy with LDP, we took a closer examination
which reveals that the reported gains hinge on non-standard
model architectures, and the publicly released code, when
adapted to our standardized experimental setup, fails to re-
produce the claimed performance.

VII. RELATED WORK

Research on FL’s security and privacy focuses on two
main streams: addressing attacks targeting the privacy of the
training data ([55], [4], [7]) and preventing client-side at-
tacks undermining the model’s reliability ([56], [57]). Privacy-
preserving methods can be categorized further into those that
protect privacy during training and those that protect privacy
post-training. Techniques safeguarding privacy during training
focus on protecting user updates during the training phase [58].
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They often leverage multi-party computation (MPC) or ho-
momorphic encryption to allow the central server to compute
the model in each iteration without accessing individual user
updates. However, the direct application of these methods
often fails to efficiently account for user dropouts, an inherent
challenge in FL, where mobile participants unexpectedly exit
the training process due to factors such as low battery or
unstable network connections. A series of follow-up works
have focused on designing more resilient, secure aggregation
methods capable of handling user dropouts [55], [59], [26].

Post-training privacy mechanisms rely on DP to address the
deployed model’s privacy leakage. These methods often focus
on computing a carefully calibrated noise to be injected either
at the user updates or the intermediate model to prevent the
leakage of sensitive information from the deployed model.

The other stream of research focuses on ensuring the
reliability of the final model. Since the global model is derived
from user updates, an adversary can compromise its reliability
by injecting malicious updates. To mitigate these attacks,
various input validation mechanisms have been proposed with
the aim of ensuring that only legitimate updates are used to
compute the final model. This can be done by leveraging
various methods such as enforcing norm bounds [60], the use
of trusted hardware [61], [62], etc.

While existing approaches typically treat secure aggregation
and DP as separate solutions, Beskar is the first to integrate
both within a unified framework guided by a comprehensive
threat model for FL. To the best of our knowledge, it is
also the first protocol to address the emerging challenge of
post-quantum security while preserving practical efficiency
and model performance, particularly in resource-constrained
mobile environments.

VIII. CONCLUSION

In this paper, we propose Beskar, a secure framework to
enhance privacy protection in FL by integrating post-quantum
secure aggregation with differential privacy. We introduce
novel precomputation techniques to optimize the efficiency
of post-quantum signing algorithms and mask calculation for
secure aggregation. Additionally, we present a comprehensive
threat model for FL, addressing various adversarial scenarios
and systematically applying differential privacy strategies to
offer tailored defenses against diverse privacy threats. Through
detailed efficiency measurements and performance analysis,
we demonstrate that Beskar achieves a balanced trade-off
between security, computational efficiency, and model accu-
racy. Our contributions represent a significant advancement in
making FL both secure and practical in a post-quantum world,
addressing contemporary privacy challenges while adhering to
regulatory requirements.
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APPENDIX A
DETAILED SIGNING ALGORITHMS

Algorithm 4 Dilithium
(skE , pkE)← KeyGen(1κ)

1: A← Rk×ℓ
q

2: (s1, s2)← Sℓη × Skη
3: t := As1 + s2
4: return (pk = (A, t), sk = (A, t, s1, s2))

σ ← Sign(skΠ,m)

1: z :=⊥
2: while z =⊥ do
3: y← Sℓγ1−1

4: w1 := HighBits(Ay, 2γ2)
5: c ∈ B60 := H(m ∥ w1)
6: z := y + cs1
7: if ∥z∥∞ ≥ γ1 − β
8: or ∥LowBits(Ay − cs2, 2γ2)∥∞ ≥ γ2 − β,
9: then z :=⊥

10: return σ = (z, c)

{0, 1} ← Verify(pkΠ,m, σ)

1: w′
1 := HighBits(Az− ct, 2γ2)

2: if ∥z∥∞ < γ1 − β and c = H(m ∥ w′
1) then return 1

3: else return 0

The optimized signing algorithms with precomputation (Al-
gorithm 5) build upon the Dilithium algorithms [32] (Algo-
rithm 4). The precomputation process aims to enhance signing
efficiency by precomputing and storing parameters related to
the private key skΠ, reducing the need for new randomness and
complex lattice computations during each runtime signing op-
eration. The procedure iteratively computes values, including
a matrix A (derived from a seed ρ) and a masking vector
y, generated through the ExpandMask function. This function
combines the private key and random inputs to expand values.
The computed sets are stored in LS[skΠ] until N precomputed
groups are achieved.

During signing, the precomputed values in LS[skΠ] are used
to generate signatures more efficiently. The algorithm iterates
through LS[skΠ], checking for compliance with validity con-
ditions defined by threshold parameters (γ1, γ2). When a valid
set is identified, it is used for signature construction, and that
set is removed from the precomputed list. If no precomputed
sets meet the conditions, the algorithm reverts to the original
Dilithium signing method, computing parameters in real-
time. This fallback ensures that the signing process remains
functional, even when precomputed values are unavailable or
unsuitable.

APPENDIX B
CRYPTOGRAPHIC SECURITY NOTIONS

Definition 8 (EU-CMA). Existential Unforgeability under
Chosen Message Attack (EU-CMA) experiment ExptEU-CMA

Π,A

Algorithm 5 Dilithium with Precomputation
Precomputing: LS ← Precmp(skΠ, N)
Input: Dilithium private key skΠ and the number of groups
for Dilithium parameters to be precomputed N .
Output: LS , in which LS[skΠ] including N groups of
precomputed Dilithium parameters for skΠ

1: LS[skΠ] := ∅
2: A ∈ Rk×l

q := ExpandA(ρ)
3: u ∈ {0, 1}384 := CRH(tr)

▷ In original Dilithium: µ← CRH(tr||m)
4: κ := 0
5: while Length of LS[skΠ] < N do
6: y ∈ S lγ1−1 := ExpandMask(K ∥ u ∥ κ)

▷ Using u not µ
7: w := Ay
8: w1 := HighBits(w, 2γ2)
9: if (A, u, y, w,w1) not in LS[skΠ] then

10: Add (A, u, y, w,w1) into LS[skΠ]
11: end if
12: κ := κ+ 1
13: end while
14: return LS

Signing with precomputation: σ ← PSgn(skΠ,m,LS)
Input: Dilithium private key skΠ, message to be signed m,
and the list of precomputed Dilithium parameters LS .
Output: the signature σ.

1: for (A, u, y, w,w1) in LS[skΠ] do
2: c ∈ B60 := H(m ∥ u ∥ w1)
3: z := y + cs1
4: (r0, r1) := Decompose(w − cs2, 2γ2)
5: if ∥z∥∞ ≤ γ1 − β and ∥r0∥∞ ≤ γ2 − β then
6: Remove (A, u, y, w,w1) from LS[skΠ]
7: return σ = (z, c)
8: end if
9: end for

▷ If none of the precomputed parameters are
satisfied, invoke the original Dilithium signing algorithm.

10: µ← CRH(tr||m)
11: z := ⊥
12: while z = ⊥ do
13: y ∈ S lγ1−1 := ExpandMask(K ∥ µ ∥ κ)
14: w := Ay
15: w1 := HighBits(w, 2γ2)
16: c ∈ B60 := H(µ ∥ w1)
17: z := y + cs1
18: (r0, r1) := Decompose(w − cs2, 2γ2)
19: if ∥z∥∞ > γ1 − β or ∥r0∥∞ > γ2 − β then
20: z := ⊥
21: end if
22: end while
23: return σ = (z, c)
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for a signature scheme Π:(KeyGen, Sign, Verify) with an
adversary A is defined as follows.

• (sk, pk)← Π.KeyGen(1κ)
• (m∗, σ∗)← AΠ.Sign(·)(pk)
• If 1 ← Π.Verify(·) and m∗ was never queries to
Verify(·), return ‘success’ otherwise, output ‘⊥’.

Definition 9 (IND-CCA). The indistinguishability of a key
encapsulation scheme E = {KeyGen, Encaps, Decaps} with
key space K under chosen ciphertext attack (IND-CCA) exper-
iment ExptIND-CCA

E,A with an adversary A is defined as follows.
• (sk, pk)← Π.KeyGen(1κ)
• b← {0, 1}, (cx, x0)← Π.Encaps(pk)
• x1 ← K
• b′ ← AΠ.Encaps(·),Π.Decaps(·)(pk, cx, xb)

The advantage of the adversary in the above experiment is
defined as Pr[b = b′] ≤ 1

2 + ε for a negligible ε.
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