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Abstract

Post-wildfire housing recovery is a complex process for which systematically collected data remains scarce. Con-
sequently, our ability to anticipate obstacles and plan for housing recovery from future events is limited. This study
leverages housing permit datasets collected in Santa Rosa and Unincorporated Sonoma County, impacted by the 2017
Tubbs Fire, and Paradise, impacted by the 2018 Camp Fire. Permit and tax assessor data are combined to gain insights
into the recovery processes for these communities. Although the percentage of rebuilt destroyed homes varies signif-
icantly between regions, the peak construction demand occurs around 1.5 years after each wildfire, with a substantial
decline in the reconstruction rate after 2.5 years. Moreover, the pace of transition from permit application to recon-
struction completion is similar across all three regions. Using this finding, we propose a methodology to forecast the
number of parcels rebuilt per unit of time based on observations from prior events. A proof-of-concept application of
the proposed methodology indicates that it estimates long-term housing recovery patterns based on permit application
data collected within one year of the event. These findings indicate that a longitudinal housing recovery data database
would help forecast housing recovery from future disasters by providing a source for early empirical validation of
predictive models.

1 Introduction
The combined effects of climate change, multi-decade fire suppression, and increasing development in wildland-
urban interfaces (WUI) make wildfires an increasing threat to communities across the globe, with quickly growing
event frequencies and resulting impacts [e.g., 84, 6]. In California, wildfire risk has become so significant that the
biggest home insurers are halting the sale of new policies [75]. Wildfires cause extensive damage to physical and
social infrastructure within a community and have long-lasting impacts. Post-wildfire recovery for communities is a
complex multi-year process where quick decisions must be made to address societal needs and mitigate future risks.
There is a growing effort to start recovery planning before an event to improve equity in recovery outcomes [e.g.,
41, 29, 55, 58].

Significant empirical work documents factors that impede successful post-disaster housing recovery for individuals
and demographic groups after disasters [e.g., 80, 95, 5]. Recent efforts to document disaster recovery longitudinally
have increased. Robust longitudinal studies of disaster recovery have been launched by interdisciplinary teams [e.g.,
93], and the International Journal of Mass Emergencies and Disasters recently dedicated a special issue to longitudinal
recovery research [45]. However, to what extent lessons from one disaster or community can be transferred to new
contexts is unclear. While community-level factors dictate some aspects of housing recovery, others are a function of
individual characteristics [e.g., 1, 64, 21]. With the increasing need to better plan for future disasters, we need tools to
gain insights into potential yet previously unobserved phenomena.

Scholars have suggested that computational models can complement knowledge from empirical studies, allowing
decision-makers to anticipate disaster recovery patterns better. Existing models tend to represent housing recovery
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as a two-step process. Models often assume that housing recovery may be delayed due to a lack of resources (e.g.,
financing) and homeowners’ capacity and willingness to stay in the community before a building permit is obtained.
After obtaining the permit, housing recovery is often modeled as a zero-sum game where homeowners compete for
limited resources (e.g., skilled workers and construction materials). Although several housing recovery models have
been proposed recently [e.g., 26, 69, 2], only a few are validated (e.g., [7]). Moreover, housing recovery is a complex
problem influenced by multiple forces, as discussed in the following section. Thus, it is challenging to represent these
dynamics properly using computer models.

This study makes three contributions to housing recovery modeling efforts. First, we collect and analyze housing
recovery data from three municipal regions: Santa Rosa and Unincorporated Sonoma County, impacted by the 2017
Tubbs Fire, and Paradise, struck by the 2018 Camp Fire. These data are combined with tax assessor and demographic
data. We investigate disparities in the housing recovery outcomes between these communities, considering community
and individual factors, and common patterns across all communities. The insights from these analyses can guide the
development and improvement of housing recovery models for similar events. Second, we publicly share anonymized
permit application and reconstruction completion data from these communities to foster the development of a publicly
available database of post-disaster housing recovery curves. Third, we propose and evaluate a methodology that uses
permit application data collected in the initial months following a disaster to estimate long-term housing recovery
patterns. The proposed approach implicitly accounts for the community context because it builds on local recovery
patterns. Thus, the proposed approach can be used to gain insights into future housing recovery rates or to calibrate
more sophisticated housing recovery models deployed after a disaster.

2 Housing Recovery: Empirical Evidence and Existing Models
This section provides an overview of post-disaster housing recovery literature, focusing on empirical and simulation-
based studies. Wildfire-related studies are emphasized, though studies that focus on other hazards are discussed when
their findings are likely transferable to wildfire contexts.

2.1 Empirical Studies of Post-Disaster Housing Recovery
Studies of post-disaster housing recovery based on surveys, interviews, and secondary data sources (e.g., satellite
imagery, postal code changes, and Census data) highlight multiple community-level factors that influence recovery
outcomes [e.g. 67, 33, 47]. Disasters may increase community cohesion and collaborative action among individuals
[56, 61], but also tend to create conflicts between the community and local and federal agencies [16, 62]. Post-disaster
conflict may result in cascading social effects, increasing inequalities in recovery between those who can fund their
own rebuilding project and those who must rely on government aid [35, 70]. Long-term recovery groups (LTRGs)
and voluntary organizations active in disasters (VOADs) can play key roles in building community engagement in
the post-disaster recovery process by serving as a bridge between affected individuals and local organizations, non-
profits, funding sources, and government agencies [40, 60]. In addition to helping shape recovery policies, they
identify and address various unmet needs including immediate food and shelter, blind spots of financial assistance,
and emotional support [66, 71]. Significant differences in post-fire recovery are also observed between rural and urban
areas. Citizen-agency conflicts in rural areas may persist for years [16, 78]. In rural areas, where destroyed homes are
few and far apart, economies of scale for recovery are often absent, leading to increased repair costs compared to urban
environments [83, 51]. Regional and national economic conditions may also influence post-fire patterns of housing
recovery, redevelopment, or resettlement. Groups that benefited or lost financially from a series of 2008 fires in Trinity
County, California, were partly influenced by that year’s recession [28]. New development (rather than reconstruction)
is often observed after wildfires [1], and house prices often increase in communities affected by wildfires, as in the
Colorado Front Range [63].

Recovery for disaster-impacted homeowners may also be delayed due to factors such as underinsurance: an insur-
ance policy that does not cover the home’s replacement cost due to home appreciation, post-disaster price surges, or
required improvements from enhanced building codes [12, 54, 77, 68]. Place attachment (individuals’ deep bonds with
their communities) also influences recovery [27, 68, 81], particularly in rural areas [3]. Place attachment may motivate
individuals to rebuild to support their community [49], or to leave if community ties are disrupted and landscapes are
irreversibly damaged [72, 34, 79]. Housing type and ownership also impact post-disaster recovery [59, 85, 23, 95].
Post-disaster financing in the US prioritizes owner-occupied homes, making it more difficult to fund rental unit repairs
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[22, 95]. Federal program objectives, decision-making methods, and eligibility prerequisites may limit an individual’s
access to housing recovery financing [88].

2.2 Predictive Models for Post-Disaster Housing Recovery
Predictive models may complement empirical studies by simulating potential recovery scenarios before disasters and
informing preventive action. Although each model’s number of recovery stages varies, many proposed models split
recovery into pre- and post-permit stages [e.g. 2, 7, 57, 94]. The pre-permit stage includes initial damage assessment,
securing financial assistance, and permit review. The post-permit stage represents subsequent activities until the com-
pletion of construction, including physical reconstruction and inspection of the constructed structure. Some factors
affect both stages, but may have different effects. For instance, heavily damaged structures may be prioritized in the
pre-permit phase [2] but require longer inspection times when completed [53].

Pre-permit stage models consider constraints such as utility loss [7, 65], severity of damage [2, 30, 7, 53], post-
disaster inspector availability [30, 57, 94], and availability of reconstruction crew and materials [2, 94], along with non-
tangible factors such as sense of community [7], permit processing time [94, 57], household income [94, 7, 57], and
insurance coverage [87, 7, 65]. Household decision-making models for this stage often emphasize sociodemographic
factors [73, 7, 8].

Predictive models for the post-permit stage focus on the availability of construction crews and materials. Some
develop supply and demand models to capture the dynamics of labor and physical resources [31], while others intro-
duce the scarcity of these resources as a constraint (i.e. a unit household or agent cannot proceed to the next sub-step
without securing these resources) [26, 25, 57, 90]. The duration of the post-permit process is often simulated based on
theoretical [94] or empirical [7, 2] distributions of reconstruction time due to the difficulty in capturing these dynamics.

Due to the complexities highlighted above, there are no consensus best practices for housing recovery model-
ing, partly because it is difficult to validate or demonstrate that models are transferable across hazards and regions.
Moreover, existing models often include many parameters that must be calibrated to an application, and systematic
calibration methods are unavailable. Consequently, state-of-the-art regional risk assessments [e.g., 52] still employ
standard but less sophisticated approaches (e.g., the Hazus methodology [38]) because they do not require data be-
yond the damage state of a building. As such, a gap exists regarding validated and generalizable approaches for
predicting post-disaster housing recovery.

3 Wildfire Events and Data
This section discusses empirical data collected for this study. We consider three California regions recently impacted
by wildfires: Santa Rosa, Unincorporated Sonoma County, and Paradise. The City of Santa Rosa is located in Sonoma
County. Unincorporated Sonoma County (referred to as ’Sonoma’ in subsequent sections) encompasses multiple
townships around the City of Santa Rosa. We distinguish the post-fire recoveries in Santa Rosa and Sonoma because
different authorities managed them. These three regions are studied because each lost more than 1,500 structures,
faced significant recovery challenges, and have systematically documented data on their reconstruction processes.

3.1 Tubbs Fire
The October 2017 Tubbs Fire destroyed 5,636 structures [9], including more than 3,000 homes in Santa Rosa—approximately
5% of the city’s housing inventory [82]. In Sonoma, impacts were concentrated in the more rural towns of Glen Ellen
and Kenwood. Figure 1 shows the locations of destroyed parcels and parcels undergoing recovery. (In the following
discussion, we use parcels to refer to plots of land that also include the homes built on them and structures to refer to
the homes themselves.) There are destroyed structures that have not yet begun reconstruction (red points in the left
panel of Figure 1 with no corresponding point in the right panel), as well as new development on plots of land affected
by the wildfire (blue or green points without a corresponding red point). FEMA issued a Presidential Major Disaster
Declaration following the wildfire event (FM-5215-CA) [36], and the direct losses were estimated to be $7.9 billion
[15]. At the time, the Tubbs Fire was the most destructive wildfire in California’s history.

In the weeks following the Tubbs Fire, the VOADs in Sonoma County jointly created a long-term recovery group
called Rebuilding Our Community (ROC) Sonoma County that comprised more than 60 nonprofit organizations. The
ROC linked residents and the local government by identifying the most vulnerable populations, particularly renters at
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high risk of migrating and initiated the conversion of affordable dwelling units to provide shelter. Particularly relevant
to housing recovery are the housing committee, which helped secure numerous Department of Housing and Urban
Development (HUD) grants and provide rental assistance not limited to rebuilding, and the construction committee,
which helped residents navigate the evolving building codes and provided realistic estimates of reconstruction costs
through a team of dedicated construction analysts [17].

Santa Rosa City limits
Destroyed building
County boundary

Santa Rosa
Sonoma

Rebuilt or under reconstruction 

(a) (b)

Figure 1: Parcels affected by the Tubbs Fire. (a) Destroyed by the wildfire and (b) rebuilt or under reconstruction.
Note the different color scatter to denote independent jurisdictions.

3.2 Camp Fire
The November 2018 Camp Fire burned roughly 18,000 structures near Paradise and Concow—approximately 95% of
the cities’ housing stock [10]. Figure 2 shows the locations of destroyed parcels and parcels undergoing recovery in
Paradise. FEMA issued Major Disaster Declaration FM-5278-CA [37] in response to the fire. In addition to structural
losses, the Camp Fire severely affected infrastructure and disrupted basic services in Paradise, including its water
supply, power supply, and access to healthcare. The claims filed for direct losses five months after the wildfire were
estimated at $8.5 billion by the California State Insurance Commissioner [13].

Based on a year-long series of meetings from 2018 to 2019, the Town of Paradise created a long-term commu-
nity recovery plan nicknamed “Make It Paradise.” This plan outlined the key long-term recovery goals and delineated
town-led and partner-led projects [91]. Key voluntary LTRGs included the Rebuild Paradise Foundation and North
Valley Community Foundation, which provided grants, and Camp Fire Collaborative, which provided extensive disas-
ter case management to residents [91, 66]. To alleviate the housing needs of residents in a one-stop-shop approach, the
town initiated a building resiliency center in October 2019 that connected residents to partner organizations, includ-
ing CalOES, North Valley Community Foundation, HCD-Community Development Block Grant Program (CDBG),
FEMA, and the State of California Insurance Commissioner. The center addressed hurdles throughout the housing
recovery process, from site issues and insurance to home financing and final permitting [39].
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Figure 2: Parcels affected by the Camp Fire. (a) Destroyed by the wildfire, and (b) rebuilt or under reconstruction.

3.3 Housing Recovery Data
We consider data quantifying the reconstruction of single-family housing as of October 15, 2022, which corresponds
to 60 months after the Tubbs Fire and 47 months after the Camp Fire. Data used in this analysis include the locations of
parcels destroyed by the fires, the dates of construction permit applications for parcels that have started reconstruction,
tax assessor data indicating the value of the parcel and whether the owner or a renter occupies the structure, and
aggregate information about the demographics of each region.

Permit data were collected via personal communication with city officials and data portals for disaster recovery
for Santa Rosa [20], Sonoma [89], and Paradise [18]. Although each region tracks different milestones in the recovery
process, all three provide dates for the initial construction permit application and the completion of construction, so
we use those two dates for the subsequent analysis. When a parcel had a permit application date but no construction
completion date, we assumed that the parcel had not yet finished reconstruction. We also used 2022 tax assessor
data to determine whether a parcel was an owner-occupied primary home based on tax deductions and to determine
the appraised value of structures on the land [43, 74]. We note that tax assessor data may be influenced by the
shifting political and economic dynamics that may shape the process and timing of the post-disaster tax assessment.
Consequently, the 2022 tax assessor data are an imperfect proxy of the housing stock in 2017. Not all destroyed parcels
are in the data sets available for this study. The subsequent analyses focus on the parcels that applied for a permit by
the time of data collection.

Table 1 presents aggregated statistics for each region. Santa Rosa had the highest population density at 7,587
persons per square mile compared to less than 400 persons per square mile in Sonoma and Paradise. Paradise had
the highest percentage of owner-occupied homes and a median household income approximately 2/3 of that of Santa
Rosa and Sonoma (consistent with national trends of regions with high home values having lower ownership rates
[44]). Approximately 84% of Paradise’s housing units were insured before the Camp Fire, versus more than 98%
in Santa Rosa and Sonoma [14, 48] before the Tubbs Fire. These differences in damage and demographics result in
substantial differences in the housing recovery by October 2022. While Santa Rosa and Sonoma rebuilt 57% and 36%
of the destroyed housing stock, Paradise had rebuilt only 9% of its destroyed homes. We note that less time had passed
since the damages to Paradise at the time of the data collection. However, in July 2024, Paradise rebuilt only 17% of
its homes, reinforcing that recovery is slower in the city than in Santa Rosa and Sonoma [92]. To capture potential
correlations between the community-level and individual-level factors on the overall recovery progress, statistical
analyses are conducted on (a) the relationship between permit application time Tp and repair time Tr as well as (b) the
potential effects of homeownership status, home value, and neighborhood density on permit application time Tp and
total recovery time T . All three factors are statistically significant in some cases, but the trends vary based on each
region. For additional discussion, the reader is directed to the Appendix.
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Table 1: Summary of aggregated demographic and damage statistics for the three study regions. As throughout
the manuscript, “Sonoma” refers to Unincorporated Sonoma County townships around the City of Santa Rosa.

Santa Rosa Sonoma Paradise Source

Population 176,938 5,187 5,268 US Census
Population density [persons/sq. mi] 7,587 145 320 US Census
Owner rate [%] 55.3 62.8 72.2 US Census
Median household income [$] 84,823 72,861 51,396 US Census
Median home value [$] 598,700 577,400 287,400 US Census
Insurance penetration [%] 98 99 84 CDI/US Census
Parcels destroyed 3,0431 1,963 14,352 Municipality3/Cal Fire [19, 89, 11]

Parcels in dataset 2,693 1,423 2,544 Municipality3

Parcels with a permit2 1,856 880 1,524 Municipality3

Parcels rebuilt2 1,733 719 1,322 Municipality3

Parcels with permit [% of destroyed]2 61 45 11 Municipality3

Parcels rebuilt [% of destroyed]2 57 36 9 Municipality3
1: Santa Rosa tracks structures destroyed, while Sonoma and Paradise track parcels.
2: Among those with complete records.
3: Data obtained from each municipality is based on a cutoff date of October 15, 2022.

4 Analysis of Post-Wildfire Housing Recovery
Consistent with the previous sections, we treat recovery as a two-stage process, as shown in Figure 3. The first
milestone in the collected data is the permit application, which we use as a proxy for the decision to rebuild. The
time between the disaster and the permit application is denoted Tp in the following. The time between the permit
application and the completion of reconstruction and the repair is denoted by Tr. After the permit is obtained, we
assume that homeowners actively seek to rebuild their homes, competing for limited access to skilled workers and
resources. Thus, Tr may be extended if available reconstruction resources are insufficient to meet the demand. In the
following, we refer to Tp as ”permit application time” and Tr as ”repair time.” The total recovery time, T , is defined as
as

T = Tp+Tr (1)

Figure 4 shows statistics of housing recovery times for each region. Figure 4a shows the number of permit ap-
plications and parcels rebuilt in each region over time. Note that we compare the first four years of the recovery in
each region. For Santa Rosa and Sonoma, the four-year period represents 2017-2021, and for Paradise, 2018-2022.
Santa Rosa rebuilt the most parcels (1,733) and the highest percentage of destroyed parcels (57%). Paradise rebuilt
more parcels than Sonoma (1,322 versus 719) within four years of the disasters. However, this represents only 9% of
Paradise’s destroyed parcels, compared to 36% rebuilt in Sonoma. Figure 4b shows the ratio of the of parcels rebuilt,
as a percentage of those that had obtained a permit to reconstruct by October 2022, ρ(t), calculated as

ρ(t) =
R(t)
Pall

(2)

where R(t) is the number of buildings rebuilt at time t, and Pall is the number of permit applications in the dataset. In
this case, all regions have similar recovery curves. This indicates that once a homeowner starts their reconstruction
process, their timeline to complete it is similar across the regions. However, there are large differences in the number
of households initiating and engaging in the reconstruction across the regions.

Figure 5 shows histograms of permit application time Tp, repair time Tr, and total recovery time T . The vertical
dashed lines indicate the medians for each region. The median time to permit application in Paradise is about 0.5 years
later than in the other two regions. Conversely, the distributions of total recovery time are similar across the three
regions, with medians of about 2.5 years. This is partly explained by Paradise’s shorter repair times. The Spearman
correlation coefficients between permit application time and total recovery time are 0.70, 0.56, and 0.78 for Santa
Rosa, Sonoma, and Paradise, respectively. As expected, this indicates that as permit application time increases, total
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Parcels rebuilt

[61%] [45%] [11%]
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Figure 3: Schematic representation of a household’s post-disaster housing recovery process. Note that only those
parcels that applied for a permit are considered in the dataset which includes data up to October, 15 2022. Values in
percentages are with respect to the total number of parcels destroyed for each region shown in the top row.

57%

9%

36%

% of total 
destroyed 
buildings

(a) (b)

Figure 4: Housing recovery progress based on data available in October 2022. (a) Number of parcels with a permit
and/or rebuilt (b) number of reconstructed parcels as a percentage of those with a permit application.

recovery time tends to increase. Interestingly, the Spearman correlation coefficients between permit application and
repair time are 0.09, -0.01, and -0.33 for Santa Rosa, Sonoma, and Paradise. This shows that homeowners who applied
for a permit later did not complete their reconstruction significantly more slowly.

Figure 6 provides insights into the demands for permit processing, construction workers, and materials. Figure 6a
shows the number of permit applications applied for per 90-day period. For Santa Rosa and Sonoma, most homeowners
with approved permits applied within the first year, and the peak in applications happened six months after the Tubbs
Fire. In Paradise, the to-date peak occurred approximately one year after the Camp Fire. Figure 6b shows the number
of parcels rebuilt per 90-day period, showing that the curves flattened around the 1.5-year mark in all regions. This
suggests that the demand exceeded the region’s reconstruction capacity, and the rates of housing completions were
limited for this period by available capacity. Figure 6c shows the number of parcels with a permit but not yet fully
reconstructed. The maximum number of parcels that meet these criteria occurs 1.25 years after each disaster for
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(a) (b) (c)

Figure 5: Histograms of duration in recovery process. (a) Permit application time, (b) repair time, and (c) total recovery
time. Dashed vertical lines indicate the median values from each histogram.

all regions. At this peak, 1,029 parcels in Santa Rosa (34% of the destroyed parcels) had permits but had not been
repaired. Assuming that the owners of these parcels were actively seeking to rebuild their homes at this period, this is
a proxy for the peak demand for construction materials and contractors. This similarity across regions and disasters
suggests some predictability in expect peak demands for workers and materials.
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Figure 6: Indicators of variation in demand during the recovery process. (a) Permit processing, (b) construction
workers, and (c) materials.

An Appendix provides additional analyses of how recovery times correlate with characteristics such as number of
neighbors and housing value.

5 Forecasting Housing Recovery Using Early-Stage Data
In this section, we use permit application statistics from the early stage of the recovery process to anticipate the rate
of housing reconstruction. Figure 4 shows that, although the number of rebuilt parcels varied, around 75% to 85% of
homeowners who applied for a permit in each region could rebuild within 4 years. Figure 5a shows that substantial
data on permit application times are available within one year of the events, while 5c shows that data on reconstruction
completions are scarce.

Figure 7 summarizes the proposed methodology to forecast reconstruction progress based on permit applications.
Step 1 is to develop a database of housing recovery data from past disasters containing information on the ratio of
rebuilt parcels to parcels with a permit over time for each event. We anticipate that this will become available as cities
and researchers systematically collect housing recovery data [e.g. 93, 76]. The data in Figure 4 are initial contributions
to this database and can be accessed through the DesignSafe Data Depot at [50]. Steps 2 and 3 focus on estimating
housing recovery for a new event. Step 2 is to collect early housing permit data for the new event (e.g., within the first
year) of the recovery process and use this data to forecast the rate of permit applications over the subsequent years,
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Pnew(t). Finally, Step 3 combines the estimated permit application data with recovery curves from previous disasters
to estimate the rate of housing reconstruction for the new event. These steps are described in detail in the following.

Database of housing recovery 
curves from N events

Early permit data

Use !!"#(#) and %(#)	to 
estimate the housing 

reconstruction curve for the 
community where the new 
disaster happened, Eq. 5:

For each relevant past event i, 
calculate the ratio of rebuilt 
parcels to permit applications 

over time, Eq. 2: 

%$(#) = ($(#)/!$,&''

1

Estimate permit application curve2
(!"# # = %(#) ⋅ !!"#(#)

%(#)

!!"#(#)

3
Estimate the housing 
reconstruction curve

To be developed over time

!!"# # = + # ⋅ !&''

! !
"#
(#
)

#

Fig. 9

( !
"#
(#)

#

Fig. 10

and calculate the mean of %$(⋅) at 
each t, i.e., %(#). 

Use early permit 
data to estimate the 
permit application 

curve, Eq. 3:

Permit application curve Housing reconstruction curve

#

!"
#$

%	'
$(
)*
+,	
[%
]

Fig. 4

Figure 7: Workflow to forecast housing reconstruction rates based on early permit application data.

5.1 Developing a Database of Housing Recovery Curves
Recent efforts to collect longitudinal disaster recovery data, including those in this paper, will result in a database
of housing recovery curves similar to the example shown in Table 2. Recovery curves from multiple events can be
stored in a matrix where columns represent events, E∗, and the rows are time intervals since the disasters, t∗. Suppose
permit and reconstruction data are collected for each event-time pair. In that case, the database can store the ratio of
the parcels rebuilt as a percentage of those that had applied for a permit (i.e., ρ(t) in Equation 2). Finally, the database
can be screened to select only events relevant to the current situation (e.g., in terms of severity, hazard, or geography).
Earthquake engineers use a similar process when designing a new building. They select the most relevant events from
a database of ground motion records for the new building’s site. We believe that best practices for selecting events
from a database of recovery curves will be developed over time. In this case, the mean ρ∗(t) across selected events
can be calculated at each t:

ρ(t) =
1
m

m

∑
i=1

ρi(t) (3)

where m is the number of selected events, and ρi(t) are the ratio of parcels rebuilt as a fraction of parcels with permits,
from Table 2.
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Table 2: Database of housing recovery information to be built over time. Columns indicated with E∗ are past relevant
events.

Time E1 E2
... Em Row mean

t1 ρ1(t1) ρ2(t1)
... ρm(t1) ρ(t1)

t2 ρ1(t2) ρ2(t2)
... ρm(t2) ρ(t2)

. . . . . . . . . . . . . . . . . .

tn ρ1(tn) ρ2(tn)
... ρm(tn) ρ(tn)

5.2 Estimating the Permit Application Curve for a New Event
In Step 2 of Figure 7, we must estimate the permit application curve, Pnew(t), that specifies the number of applications
received at any point in time:

Pnew(t) = π(t) ·Pall (4)

where π(t) is the fraction of applications that are received by time t, and Pall is the expected number of permit
applications at the end of the period of interest. The observed applications in the first year following a disaster are
used to estimate these parameters and permit application curve.

Figure 8 illustrates the procedure used to estimate π(t). The histograms in Figure 8 show distributions of permit
application times available after one year (in gray) and the entire dataset (in color). A lognormal probability distribu-
tion fitted to the data available within one year would result in the dash-dot lines in each panel. This “naı̈ve model”
does not account for future permit applications that have not yet been received, and so is unsuitable for forecasting.
Instead, we log-transform the available data and fit a truncated normal distribution to the data. This process results in
the fitted distributions shown as solid lines in Figure 8 (and labeled as “proposed model”). These distributions fit the
entire dataset histograms well, despite not using the data with times greater than one year. Integrating these probability
density function curves over the study period yields cumulative distribution functions that quantify the probability that
a permit application will happen within t time of the event, π(t).

Santa Rosa Sonoma Paradise

π(!!=1) ~ 0.62

(a) (b) (c)

Permit application time, "" [years] Permit application time, "" [years] Permit application time, "" [years]

Figure 8: Fitting of distributions to available permit application data. Note that the naı̈ve and proposed curves are
fitted with data after 1 year (gray). The entire dataset (color) is only shown for comparison.

We next need to estimate Pall . At the time of the analysis, t0, we know how many permit applications have been
made, Pnew(t0), and the probability that a randomly selected building applied for a permit in this period, π(t0), is
obtained from the proposed model in Figure 8. With this, we estimate Pall as

Pall =
Pnew(t0)

π(t0)
(5)

Using Santa Rosa as an example, 1,130 permit applications were received within one year, and Figure 8a shows
that π(t0 = 1) = 0.62, so we estimate Pall = 1,130/0.62 = 1,818 permit applications in Santa Rosa. This procedure
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is repeated for Sonoma and Paradise, and the results are summarized and compared to their empirical counterparts in
Table 3, showing good agreement between estimated and actual values of Pall for these cases.

Table 3: Summary of estimated recovery parameters for each region after one year of each event. As throughout the
manuscript, “Sonoma” refers to Unincorporated Sonoma County townships around the City of Santa Rosa.

Region π(1) Pnew(1) Estimated Pall Empirical Pall

Santa Rosa 0.62 1,130 1818 1856
Sonoma 0.63 560 887 880
Paradise 0.28 445 1594 1524

With the π(t) function estimated using a procedure like in Figure 8, and Pall estimated using Equation 5, Equation
4 can be evaluated for the event of interest.

The abovementioned procedure can be employed at different t0 times after a disaster. However, with less data, the
method will perform worse. Figure 9 presents the forecasts based on limited data and compares them to the empirical
permit application curves. From left to right, the panels use 0.5, 0.75, and 1 year of permit application data to fit the
models. The agreement between the empirical data and the model increases the more data are used. A substantial
increase in model accuracy is obtained between panels Figure 9a and Figure 9b, but diminished returns are observed
between Figure 9b and Figure 9c suggesting that the model can perform well if employed 0.75 years (i.e., 9 months)
after these disasters. However, in the results in Figure 9c the model performs better at representing the shape of the
curves.
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Figure 9: Estimate rates of permit applications, based on early-stage data. Empirical observations (solid lines) and
forecasts using the proposed model (dashed lines). Colors indicate each region. The shaded areas indicate the portion
of the empirical curves (i.e., 0.5, 0.75, and 1 year) used to fit the models.

It is worth noting that this transition rate may not be so similar between disparate events (e.g., between housing
recovery following tornadoes and wildfires), and thus, the user should select the most relevant set of events to the
current situation from the database of housing recovery curves as discussed in Section 5.1.

5.3 Estimating the Housing Recovery Curve for a New Event
The final step of the procedure is to estimate the permit application curve, Rnew(t). Figure 4b showed that the transition
rate from permit application to reconstruction completion was similar following the three regions investigated in this
study. Here, we posit that the user identified a subset of relevant events and that the rate of transition from permit
application to completion is similar among this subset. With this, the number of reconstructed buildings overtime after
a new event, Rnew(t), is a fraction of the number of permit applications, Pnew(t). This fraction is the ratio of parcels
rebuilt to parcels with a permit in Table 2. With this, Rnew(t) is estimated as

Rnew(t) = ρ(t) ·Pnew(t) (6)
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where ρ(t) comes from Equation 3 and Pnew(t) comes from Equation 4.
As a proof of concept, Figure 10 shows a forecasted recovery rate for a given community (e.g., Paradise) using

early permit data from that community to estimate Pnew(t) and recovery curves from the two events to estimate ρ(t)
using Equation 3. The forecasts obtained with the proposed approach are similar to the empirical results available later
in time, and improve as more permit data are used to estimate the number of parcels rebuilt. It is also worth noting that
the estimates are relatively consistent between Figure 10b and Figure 10c. This suggests that the proposed approach
has the potential to provide valuable insights into long-term reconstruction based on data available within 0.75 years
of the event.

The results in Figure 10 are only a proof of concept because they relied on data that would not have been available
at the time of the fires. But if a new region is struck by a wildfire in the future, data from Santa Rosa, Sonoma, and
Paradise can be used as predictors in Equation 6. As more longitudinal housing reconstruction data sets are available,
the proposed procedure can rely on a larger data set tailored to particular event conditions.
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Figure 10: Estimate rates of reconstruction rate, based on early-stage data. Empirical observations (solid lines) and
forecasts using the proposed model (dashed lines). Colors indicate each region. The shaded areas indicate the portion
of the empirical permit application curves (i.e., 0.5, 0.75, and 1 year) used to fit the models.

5.4 Limitations
Due to the available data, we only investigate the recovery of single-family housing. Empirical studies suggest that
the recovery process for multi-family housing is more complex [46, 42, 86, 24]. Consequently, the observation that
data collected in the first few months of the recovery process can anticipate long-term housing recovery trends merits
a critical assessment if applied to communities where multi-family buildings represent a large fraction of the housing
stock.

Similarly, we did not have data regarding households that never applied for a permit. With sufficient data (e.g.,
nine months or more), Equation 6 represents well the number of households that will eventually rebuild, providing
an indirect estimate of the number that will not rebuild. However, our methodology cannot identify the root causes
for this outcome. We envision that the proposed methodology can be used to anticipate if many households will not
rebuild, triggering an in-depth study with community members.

Finally, by reducing the recovery process to the permit application and building reconstruction phases, the method-
ology cannot explicitly capture some of the nuances of the housing recovery process. For example, households may
face difficulty obtaining financing, delay reconstruction due to economic reasons (e.g., assessing the housing mar-
ket), disaster impacts on neighborhood amenities, and personal preferences, among other things. Thus, the proposed
methodology is a support tool for recovery planning but should be employed alongside other strategies for understand-
ing community and household needs and challenges.
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6 Conclusions
In this study, we investigate housing reconstruction after recent wildfires using housing permit data collected over more
than four years in Santa Rosa and Unincorporated Sonoma County, following the 2017 Tubbs Fire, and in Paradise,
following the 2018 Camp Fire. We analyze the numbers and timing of permits to understand how the recovery process
unfolded and propose a predictive model that can forecast the timing of reconstruction over multiple years based only
on the rate of permit applications in the first few months following a disaster.

We consider two milestones in the housing reconstruction process: permit application and reconstruction com-
pletion. Comparing the housing reconstruction processes in these regions four years after each event highlights their
differences. While Santa Rosa and Sonoma rebuilt 36% and 57% of their destroyed parcels, respectively, only 9%
of the destroyed parcels in Paradise were rebuilt within four years. However, we identify similarities across regions
when focusing only on rebuilt parcels. The peak of the reconstruction demand occurred after 1.5 years, and the median
reconstruction time was close to 2.5 years in all regions. Moreover, the rate of reconstruction plateaus after 1.5 years,
indicating that the reconstruction processes did not progress as quickly as they could. This observation is corroborated
by news articles indicating that labor shortages limited the reconstruction processes in these communities [4, 32].

We then propose a methodology that uses permit application data available within the first year since a disaster to
project the rate of housing reconstruction completion for the subsequent years. The methodology relies on a database
of housing reconstruction curves, which we envision will become available as more longitudinal housing recovery
studies are deployed. This study contributes to the development of this database by publicly sharing three such hous-
ing reconstruction curves [50]. For the considered cases, the methodology provides valuable insights based on data
available within six months of a disaster. Using permit data available nine months after each disaster, the methodol-
ogy accurately forecasts the empirical permit application and housing reconstruction curves. Since the peak demand
for reconstruction in each region happened more than one year after the event, the methodology can help recovery
planners anticipate this demand. With this information, local authorities can take actions such as facilitating the influx
of contractors and industry agreements for the supply of reconstruction materials that can minimize the likelihood of
resource shortages and bottlenecks in the recovery processes.

Another feature of the proposed methodology is that it employs local data and trends from previous disasters.
Thus, the methodology partially captures aspects specific to the community and disaster being investigated. How-
ever, the methodology cannot explain the local trends in the observed recovery, nor can it identify causal relationships
between reconstruction speed and community or household characteristics. We envision that the methodology can
uncover that a community is experiencing a slower-than-anticipated recovery process and trigger a more robust as-
sessment to identify the root causes (e.g., by engaging with community members). Another alternative would be to
employ more sophisticated models built upon lessons from previous disasters, such as those discussed in Section 2.2
to gain insights on the potential causal relationships. We envision that the proposed methodology can help calibrate
sophisticated models by providing constraints on the long-term rate of recovery based on empirical data available in
the short term. Then, sophisticated models can be used in ’what-if’ analyses to evaluate the benefits of target actions
in improving recovery. This synergistic combination of approaches can improve our ability to manage post-disaster
housing recovery in future events.
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A Appendix
The following sections discuss additional results from the analyses carried out in Section 4. Section A.1 analyzes
correlations between the permit application time Tp and repair time Tr. The remaining sections study the effects of
homeownership status, home value, and neighborhood density on permit application time Tp and total recovery time
T . While all three factors are statistically significant in some cases, their effects vary in degree, and in some cases
direction (i.e., leads to an increase in duration in one community while a decrease in other), across the three regions.
These data sets thus do not provide clear evidence of strong relationships between these factors and recovery times.

Appendix A.5 illustrates fitting of the truncated lognormal distribution discussed in Section 5.2 in greater detail.

A.1 Repair Time as a Function of Application Time
Figure 11 shows the relationship between permit application time and median repair time. For instance, the left-most
dots in Figure 11 are obtained by grouping all parcels within each region that applied for a permit within 0.5 years after
the respective wildfires and finding the median repair times of these parcels. To compute an accurate median value, we
account for the fact that data are censored (i.e., some parcels have not completed reconstruction within the available
timeframe, T > 4 years). We thus consider all parcels that have applied for a permit after x years, even those that have
not yet completed the repair, when computing the median. For example, if 100 parcels applied for a permit within 0.5
years in one of the regions and only 70 completed reconstruction at the time of analysis, we still set the median as
the repair time of the 50th parcel in the sorted list (recognizing that the remaining 30 parcels have large repair times).
An increase in median repair time for permit application times of 0.5-1.5 years is seen across the three municipalities.
This increase matches the peak demand for workers shown in Figure 6. Beyond this period, the median repair times
are relatively constant, which indicates a minor influence from resource constraints.

Figure 11: Median repair time (Tr) of households binned by permit application time (Tp). Some dots for Sonoma do
not appear because the data censoring due to incomplete construction prevents the calculation of a median repair time.

A.2 The Effect of Homeownership Status on Housing Recovery
Figure 12 highlights differences in permit application time Tp and total recovery time T for renter-and owner-occupied
homes. The boxes in Figure 12 indicate the 25th-percentile and 75th-percentile of the metrics in the ordinate axis. The
black horizontal line within each box is the median, and outliers are marked as individual scatter points. The lefthand
side panel shows only parcels that applied for a permit—61% in Santa Rosa, 45% in Sonoma, and 11% in Paradise.
Among these, 52%, 60%, and 45% are owner-occupied in Santa Rosa, Sonoma, and Paradise, respectively. The panel
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indicates that, on average, renter-occupied parcels were slower to apply across the three regions, with Paradise showing
the largest disparity. Moreover, in all regions, the 75th percentile is higher for renter-occupied parcels, indicating more
variability in the application times for these parcels. The right-hand side panel shows the total recovery time including
only parcels that have completed reconstruction—57% in Santa Rosa, 36% in Sonoma, and 9% in Paradise. There
are negligible disparities in averages or percentiles in Santa Rosa and Sonoma; however, renter-occupied parcels were
slower to reconstruct in Paradise.

Figure 12: Recovery progress as a function of occupancy. Permit application time (left), total recovery time (right).

A.3 The Effect of Home Value on Housing Recovery
Figure 13 shows the influence of the destroyed structure’s improvement value on recovery time. Improvement value
refers to a parcel’s total value minus the value of the land. We expect highly valued structures to be owned by
wealthier households with more resources to reconstruct, but also to be more expensive to rebuild. All three regions
display significant differences in the mean permit application times between the below-median and above-median
improvement value groups (p< 0.01). However, the above-median (i.e. higher value) groups generally took less time
to apply for a permit in Sonoma and Paradise, while the opposite is true for Santa Rosa. In Santa Rosa, the above-
median group also took longer to complete reconstruction, as seen in the bottom left plot of Figure 13. Although
not shown in the figure, parcels with improvement value above median have fewer neighbors in Santa Rosa. That is,
highly valued structures tend to be in less dense regions. This may explain the unique trend observed, as parcels with
fewer neighbors tended to take longer to apply for a permit and reconstruct, as seen in Figure 14.
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t(1730) = -8.21 
p < 0.01

t(811) = 2.54
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t(1221) = 0.59
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Santa Rosa Sonoma Paradise

Figure 13: Recovery progress as a function of improvement value. Permit application time on top, total recovery time
below. The projections of the horizontal lines on the ordinate axis represent the median times for the parcels with
improvement values below (left) or above (right) average. The median improvement value is the point on the abscissa
axis where the horizontal lines meet. The results of Welch’s t-test comparing Tp and T for parcels with below-median
and above-median improvement values are shown in the respective panels.

A.4 The Effect of Neighborhood Density on Housing Recovery
Figure 14 shows how proximity to other destroyed parcels affected the recovery in each region. Clusters of destroyed
structures can create an economy of scale for reconstruction services and facilitate recovery. Conversely, it can also
act as a barrier due to competition for resources and a reduced sense of community due to the extent of the damage.
The plots consider the number of destroyed parcels within a one-kilometer radius, called neighbors in the following.
The plots show that parcels with more neighbors applied for a permit and recovered faster in Santa Rosa and Sonoma.
To test for statistical significance, we conduct Welch’s t-test on the means of the two groups in each region (i.e., below
vs. above average neighbors). The differences are significant in Santa Rosa and Sonoma for both permit application
time and total recovery time (p< 0.01). The similarities between Santa Rosa and Sonoma are interesting because the
damage in Santa Rosa, although heavy, was concentrated in a few blocks, as indicated by many parcels with more than
500 neighbors in Figure 14. In contrast, the impact in Sonoma was mostly in sparsely populated areas, as indicated
by most parcels having fewer than 100 neighbours in Figure 14. No meaningful differences across the number of
neighbors are observed for Paradise, where losses were distributed and severe.
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t(1137) = 14.41
p < 0.01

t(848) = 6.45
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p = 0.19

Santa Rosa Sonoma Paradise

Figure 14: Recovery progress as a function of number of neighbors (i.e., destroyed parcels within 1 km). Permit
application time is on top, and total recovery time is below. The projections of the horizontal lines on the ordinate
axis represent the median times for the parcels with fewer (left) or above (right) average neighbors. The point on the
abscissa axis where the horizontal lines meet defines the below-average and above-average number of neighbors. The
results of Welch’s t-test comparing Tp and T for parcels with below-average and above-average neighbors are shown
in the respective panels.

A.5 Truncated Lognormal Distribution Fitting
In this section, we illustrate the fitting of the truncated lognormal distribution to estimate housing recovery curves

described in Section 5.2 in greater detail using Santa Rosa as an example. Figure 15(a) shows a histogram of the
distribution of permit application times for Santa Rosa, as seen in Figure 8. The corresponding log-transformed
version of the histogram is shown in Figure 15(b). The lognormal distribution to the original data T can be obtained
by finding a normal distribution to the log-transformed data ln(T ). In order to fit this normal distribution, we employ
the maximum likelihood estimation. Under maximum likelihood estimation, we find a set of optimal parameters that
define a statistical distribution (mean µlnT and standard deviation σlnT for a normal distribution) that will yield the
highest likelihood of obtaining the given set of observations.

In order to account for data truncation, we place a numerical upper bound for which any values greater than the
upper bound will have a zero probability. In this case, the upper bound is set to ln(Tp = 1year) = 0, as shown in
Figure 15(b). We observe that the proposed model shown in solid lines provides a better fit than the naı̈ve model
shown in dash-dot lines. The normal distribution parameters can be converted to equivalent lognormal parameters via
the following relationship:

µlnT = lnµT −
1
2

σ2
lnT (7)
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The curves fit using the method above are probability distributions (i.e. they have been normalized such that the
area under the distribution sums up to 1). As such, the corresponding cumulative distributions plateau at 1, with an
example for Santa Rosa shown in Figure 15(c). We transform this cumulative distribution into a curve that estimates
raw permit application counts. For Santa Rosa, we observed 1,130 permit applications after one year. The proposed
cumulative distribution has a value of 0.62 at one year, suggesting that 62% of the total households that would apply
would have done so by one year. Thus, the cumulative distribution is scaled by 1130/0.62 which yields the curve in
Figure 15(d). The estimated number of permit applications after four years is 1818, compared to 1856 in the empirical
data. Estimates are obtained for Sonoma and Paradise using a similar approach.

Santa Rosa Fitting

Santa Rosa CDF

π(Tp=1) ~ 0.62

Santa Rosa Scaled CDF

Pnew(Tp=1) = 1,130

Pnew(Tfinal) = 
1,130/0.62 = 1,818

Santa Rosa

π(Tp=1) ~ 0.62

(a) (b)

(c) (d)

Figure 15: Illustration of truncated lognormal distribution fitting for Santa Rosa
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