2024 10th International Conference on Control, Decision and Information Technologies (CoDIT) | 979-8-3503-7397-4/24/$31.00 ©2024 IEEE | DOI: 10.1109/CoDIT62066.2024.10708189

2024 10th International Conference on Control, Decision and Information Technologies

CoDIT 2024 | Valletta, Malta / July 01-04, 2024

Technically co-sponsored by IEEE & IFAC

A Fair Detection Strategy of an Adversary

Andrey Garnaev' and Wade Trappe?

Abstract— Detecting malicious users or
unauthorized activities poses a critical challenge in
the realm of dynamic spectrum access. Traditionally,
in such a problem, an intrusion detection system
(IDS) aims to maximize the detection probability.
Meanwhile in the networks or radio spectrum
problems with multiple nodes or bands, respectively,
protocol maximizing detection probability might
lead to focusing on scanning the most plausible
nodes or bands for intrusion and neglecting to
scan less plausible nodes or bands for intrusion
due to restricted scanning resources. To deal with
this challenge in this paper we suggest a protocol
maximizing fairness of detection probabilities among
all the bands in the bandwidth. We consider a-fairness
as fairness criteria. Moreover, the proposed detection
protocol deals with the adversary, who endorses
artificial intelligence (AI) enabling the adversary
to not only infiltrate the bandwidth without being
detected but also to do so in a less predictable
manner for the IDS. The problem is modeled and
solved in the framework of a two-player game. An
advantage of fairness detection probability protocol
in comparison with maximizing detection probability
protocol is illustrated.

Index Terms— Detection probability, Equilibrium,
Entropy, Fairness

I. INTRODUCTION

The wireless medium’s inherent openness, while pro-
viding numerous advantages via dynamic spectrum ac-
cess, also makes cognitive radios a potent instrument for
carrying out malicious actions or violating policies by
secondary users. That is why, the development of an IDS
capable of detecting and identifying illegal or malicious
activity in the radio spectrum poses a significant chal-
lenge [1]. Game theory has been widely implemented to
model security issues and to develop security protocols,
as these problems involve different agents with different
objectives. For instance, one agent (say, an adversary)
aims to infiltrate the radio spectrum, while the other
agent (say, the IDS) aims to detect such illegal intrusion.
As examples of implementing game theory in such secu-
rity issues let us refer to [2]-[8]. In all of these papers,
the IDS aims to maximize the detection probability of
an intruder (adversary). Meanwhile in the networks or
radio spectrum problems with multiple nodes or bands,
respectively, maximizing detection probability strategies
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might lead to focusing on scanning the most plausible
nodes or bands for intrusion and neglecting to scan less
plausible nodes or bands for intrusion. Such neglecting to
adequately scan for potential threats could have serious
implications for the security of the network or bandwidth
since via changing behavior, the adversary might sneak
safely within missed nodes or bands by such protocol.
Motivated by this observation, in this paper, we suggest
a protocol that generalizes the protocol of maximizing
detection probability to the protocol maximizing fairness
of detection probabilities among all the bands in the
bandwidth. We consider a-fairness as fairness criteria.
It is worth noting that the model [8] is a boundary case
of the considered model in this paper when the fairness
coefficient is equal to zero. Moreover, the proposed de-
tection protocol deals with the adversary, who endorses
artificial intelligence (AI) enabling the adversary to not
only infiltrate the bandwidth without being detected but
also to do so in a less predictable manner for the IDS.
The problem is modeled and solved in a two-player game-
theoretical framework. The equilibrium is designed, and
its uniqueness is proven. The scanning protocol’s stability
is verified by the proven uniqueness of the equilibrium.
An advantage of fairness detection probability protocol
in comparison with maximizing detection probability
protocol is illustrated.

II. GAME THEORETICAL MODEL

In this section, we describe the considered game the-
oretical model of bandwidth scanning to detect an ad-
versary. The bandwidth consists of frequency bands K £
{1,2,...,K}. The adversary will try to sneak into one of
the bands for its illegal usage. Meanwhile, the primary
user equipped by the IDS wants to detect the adversary
via scanning the bandwidth. That is why we call the
primary user by scanner. It is assumed that the scanner is
capable of scanning only one band at a time to identify
any suspicious behavior. Let the scanner scan band &
and the adversary sneak into band m. Then, probability
p(k, m) that the adversary will be detected is equal to
i with v, € (0,1), if K = m, i.e., if the adversary sneaks
into the same band ¢ which is scanned by the scanner.
Otherwise, i.e., if £ # m, the detection probability is
zero. Thus,

k=
p(k,m>{g’“’ bt M

Note that these detection probabilities are closely related
to the associated signal-to-interference and noise ratio
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(SINR) [9).

A. Scanner’s strategy and adversary’s strategy

Let a scanner’s strategy be p = (p1,...,px) where py,
is the probability of scanning the band k. Thus,

ZpkzlandkaOforkEIC. (2)
ke

Let an adversary’s strategy be ¢ = (q1, ..., qx ) where g
is the probability of sneaking into band k. Thus,

quzlanquZOforkelC. (3)
kek

So, the set all probability vectors in R, which we denote
by P, is the set of feasible strategies for both players.

B. Scanner’s payoff

The probability for the adversary to be detected at
band k, if the scanner uses strategy p = (p1,...,PK)
and adversary uses strategy g = (q1,...,qk) is given as
follows:

P.(p,q) = VePrar, (4)

and detection probability of the adversary in all the
bandwidth is given as follows:

P(p,q) =Y Pi(p,q) = Y WkPrax- (5)

i€l keKx

Since the detection probability (5) is linear on the scan-
ner’s strategy p, it might lead to strategy maximizing
detection probability which is scanning the only band
within the bandwidth and neglecting to scan the others.
Such an optimizing strategy might lead to a drastic
consequence for all the protected bandwidth, since via
changing behavior, the adversary might sneak within
missed bands by such scanning protocol. That is why it is
important to suggest such a scanning protocol that allows
us to support scanning all the bands. Motivated by this
observation we suggest a protocol maximizing fairness of
detection probability among all the bands in the band-
width. Specifically, as the scanner’s payoff we consider
a-fair criteria (please see, for example, [10] and [11] for
optimization and game-theoretical scenarios) allocating
detection probabilities Py(p,q), k& € K among all the
bands if the scanner and adversary apply strategies p
and q, respectively, i.e.,

Vsa:@) £ va (Pr(p, ), (6)
€L

where a-fairness utility ¢4 (+) is given as follows:

nlfa
pa2{1-a *71h (7)
In(n), a=1.
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C. Adversary’s payoff

The adversary, besides aiming to be undetected, wants
to achieve it in the most unpredictable way for the scan-
ner. Such unpredictability in the adversary’s strategy for
the scanner is measured by the entropy of its strategy
(please see also [12], [13] as application of entopy), i.e.,

&(q) =— Z ar In(g)- (8)

ke

For that reason, the payoff to the adversary is taken as
a weighted sum of the entropy of its strategy and the
negative of its detection probability, i.e.,

Va(p,q) = —(1 —w)P(p,q) + w&(q), 9)

where 1 — w and w, with w € [0,1], are normalized
weighting coefficients.

D. Nash equilibrium and its existence

To complete the definition of the game with scanner
and adversary as players we have to define what type of
equilibrium we look for. Here each of the players, the
scanner and adversary, wants to maximize its payoff,
i.e., look for a (Nash) equilibrium [14]. Thus for such
strategies p and q of the players that each of them is the
best response to the other, i.e., p and q are the solution
of the best response equations:

(10)
(11)

PROPOSITION 1: This game has is at least one equilib-
rium.
PROOF: Payoff Vg ,(p,q) is concave in p and payoff
Va(p, q) is concave in g, since

p = argmax{Vs .(p,q) : p € P},
q = argmax{Va(p,q) : ¢ € P}.

8‘/2 , l1-a
op;; pf’
ov3
M:—B«)ﬁ)rken (13)
aqk qk
Then, the Nash Theorem [14] implies the result. [ |

III. EQUILIBRIUM STRATEGIES

In this section, we derive equilibrium strategies and
verify their uniqueness using a constructive approach in
three steps: (A) we derive the dependence of the solution
of best response equations (10) and (11), which are Non-
linear programming (NLP) problems, on their Lagrange
multipliers # and v (please, see (28) and (30) below),
respectively; (B) we establish the auxiliary monotonicity
properties of the solution on such Lagrange multipliers
and (C) we suggest a modified Gaussian elimination
method to find these Lagrange multipliers, and, so,
to find the equilibrium, and based on the established
monotonicity properties we verify its uniqueness.
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A. Solution of the best response equations

In the following proposition, we establish the depen-
dence of the solution of NLP problems (10) and (11),
i.e., the best response equations, on their Lagrange mul-
tipliers. In other words, we derive the dependence of
equilibrium on the corresponding Lagrange multipliers.

PROPOSITION 2: Let o # 1. Probabilities vectors p =

(p1,.-.,0K) and q = (q1, .- .,q9K) are equilibrium strate-
gies if and only if they are given as follows:
Pk = Pk(G, V), (14)
qr = Qk(ea V)a ke ’Ca (15)

where Px(0,v) and Qk(0,v) are unique roots in (0,1) of
Eqgn. (16) and Eqn. (17), respectively:
]:k(P/C(Hvy)aG) =,
gk(Qk(07V)79) =V,

where

Fr(&,0) = —(1 —w)’ykf—w—wln(

504/(1—04)91/(1—01) )
Yk ’

(18)
,yi/ag(l—a)/a

Gu(&,0) 2 —(1 -

—w —wln(§).

(19)
Furthermore, this 0 and v are given as a solution of the
following equations:

— W)

P@,v) =1, (20)
Q0,v) =1 (21)
subject to
6 >0, (22)
v>u, (23)
where
P(0,v) £ > Pu(6,v), (24)
ke
QO v) 2 Qil,v), (25)
keK

vE—w—-(1-w)/7-—w Z In (1/(v7)) /(v7), (26)
kek
T2 (/).

ke
PROOF: Let Lg o.9(p) be Lagrangian of the NLP problem

(10) and 6 be its Lagrange multiplier, i.e.:

(27)

Ls,a6(p) =Vsalp,q)+0 <1 - ZPk) . (28)

kel

Then, scanner’s strategy p € P is the best response to q
if and only if the following condition holds:

OLso(p) _ (year)' ™ pd=0 P >0,
Opk Py <0, pp=0.

(29)
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Similarly, let £4,,(q) be Lagrangian of the NLP problem
(11) and v be its Lagrange multiplier, i.e.:

Lawv(a)=Valp,q)+v <1 -3 qk> . (30)

kex

Then, adversary’s strategy q € P is the best response for
p if and only if the following condition holds:

0Lanl® _ (1 _ wyyp — w0 — wina) — v
dqx
<0, q=0.

Since p € P and g € P, by (29) and (31), we have that

0<pr<landO<gq<1forallkek. (32)
By (32), conditions (29) and (31), respectively, turn into
the following equations:

(’quk)l_a/pg = 93 ke IC7

— (I —w)ypr —w—wln(qx) =v, iek.
Then, by (32) and (33), we have that Ineq. (22) holds.
Dividing both sides of Eqn.(34) by 7, implies

1
w ol v

, kek.
Tk Vi Tk

—(1 —w)pr — (35)

Summing up (35) over i € K and taking into account
that p € P and notation (27) implies

—(1—w) —wy— wz In(gx) = 7.

ek Ik

(36)

Note that ®(q) £ — Y, . In(qx)/vk is a convex func-
tion on g and it achieves its minimum in P at q =

(1/(m7%),---,1/(vx7)). This and (36) yield (23).
Solving (33) for py implies

P = (yeqe) '~/ 01 (37)
Substituting py given by (37) into (35) implies

l/aqlgl—a)/a

—(l—w)wk%“ /e —w—wln(g;) =v,k € K,
(38)
and (15) with (17) and (19) follow.
Solving (37) for g implies
gr = py/ TV 70 oy (39)

Finally, substituting (39) into (34) implies (14) with (16)
and (18). [
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B. Monotonicity properties of P(6,v) and Q(0,v)

In this section, we establish auxiliary properties al-
lowing to verify further that the Gaussian elimination
method to solve Eqn. (20) and Eqn. (21) leads to the
unique equilibrium.

PROPOSITION 3: Let o« < 1. Then functions P(6,v)
and Q(0,v) have the following properties:

(a) Function P(0,v) is continuous and strictly decreas-
ing on both parameters 6 and v;

(b) Function Q(6,v) is continuous and strictly increas-
ing on 6 and decreasing on v.

PROOF: Note that for a < 1, by (18), function (&, 6),
k € K is continuous while £ € (0, 1) and 6 > 0. Moreover,
it has two properties (P-F-1) and (P-F-2) given below:

(P-F-1) For a fized 0 > 0 function Fy(§,0) is strictly
decreasing on § from lime o Fi(§,0) = oo to

Fill,6) = —(1 = w)y —w+wh(y) — In (6) /(1 - );

(40)
(P-F-2) For a fized & € (0,1) function Fr(&,0) is
strictly decreasing on 0 from limgjo Fr(€,0) = oo to
HmOToo ]:k(f, 9) = —00.
By (P-F-1), we have that for each v such that
v>—(1-—wy —w+wln(y) —In(0) /(1 —a) (41)
there is such Py(6,v) that
fk(Pk(gaV)ve):Va (42)

and this Pj(,v) can be found by the bisection method.
Furthermore, this Py(0,v), k € K, has three properties
(P-P-1)-(P-P-3) given below:

(P-P-1) Py(0,v) is continuous and strictly decreasing
on both parameters 0 and v;

(P-P-2) lim, o0 Pr(0,v) = 0 and Py(0,v) =1 forv =
—(1=w)y —w+wln(y) —In(0) /(1 — a);

(P-P-3) All these Pi(0,v), k € K, are correctly defined
for each 8 > 0 and

v+ (0) /(1 - @) 2 max{—(1 — w)y. +In(ye/e)}.
(43)

This and (16) imply that Py(6,v) for each k € K is
continuous and strictly decreasing on both parameters 6
and v. Then P(6, v) has the same monotonicity properties
as sum of functions P (6,v).

By (19), function Gi(&,0), k € K is continuous for
(&,0) € (0,1) x (0,00), and it has two properties (P-G-1)
and (P-G-2) given below:

(P-G-1) For a fixed 0 function Gi(&,0) is strictly de-
creasing on & from lime o G (§,6) = oo to

Ge(1,0) = —(1 — w)y,/* /61 — w; (44)

(P-G-2) For a fized & € (0,1) function Gp(&,0) is
strictly increasing on 6 from limg o Gr(€,0) = —oo to
limgyoo G (€,0) = —w — wn(§).
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By (P-G-1), we have that for each v such that

v > —(1—w)y/* /0" —w (45)
there is £ = Qk(0,v) such that
Gr(Qr(0,v),6) =v. (46)

This Q (60, v) can be found via the bisection method.

Finally, these Qx(6,v), k € K, have three properties
(P-Q-1)-(P-Q-3) given below:

(P-Q-1) Qr(8,v) is continuous strictly increasing 0 and
decreasing on v;

(P-Q-2) limytoo Qx(0,v) =0 and Qi(0,v) =1 forv =
—(1 = w)y/ 0 —

(P-Q-3) All these Qi (0,v), k € K, are correctly defined
for each 8 > 0 and

1— e jgi/e > . 4

v+ (1 - w)maxy," /6% > —w (47)
Then, by (25), Q(0,v) also is continuous and strictly
increasing on # and decreasing on v, and (b) follows. ®

C. FEquilibrium and its uniqueness

In the following theorem, equilibrium is found and its
uniqueness is proven.

THEOREM 1: Let o < 1. Then -equilibrium is
an unique. Moreover, scanner’s and adversary’s equi-
librium  strategies are (Py(0x,Vi), ..., Px(0x,vs)) and
(Q1(04,vi), ..., QK (04, 14)), Tespectively, with their en-
tries given by Proposition 2, and 0, and v, uniquely given
by (48) and (52) below.

Specifically, 0, is an unique positive root of the follow-
ing equation

Z(6,) =0 (48)

with

Z(0) =0 -0 N (), (49)

where ©(v) is the unique root for a fixed v of the equation
PO(v),v) =1, (50)
and N (0) is the unique root for a fized 0 of the equation
QO.N(0)) = 1. (51)

Moreover, this unique root 0, of Eqn. (48) can be found
by the bisection method, and v, is given as follows:

ve = N(0,). (52)
Note that, by Proposition 3, this ©(r) and N (v) as the
unique roots of equations (50) and (51), respectively, can
be found via the bisection method.

PRrROOF OF THEOREM 1: By Proposition 3, we have
that scanner’s and adversary’s equilibrium strategies
are (P1(0,v),...,Px(0,v)) and (Q1(0,v),...,Qk(0,v)),
respectively, with their entries given by Proposition 2
where 6 and v are solution of Eqn. (20) and Eqn. (21).
By Proposition 3, function P(6,r) decreases on both
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parameters 6 and v. Then for a fixed v there is the unique
root

0=0() (53)

of Eqn. (21). Moreover, the bisection method converges
to this unique root of Eqn. (21). Thus, (50) holds.
Moreover, since function P(6, v) decreases on parameters
0 as well as on v, such root ©(v) of Eqn. (21) decreases
on v.

By Proposition 3, function Q(6, v) is strictly increasing
on # and decreasing on v. Then for a fixed 0 there is the
unique root

v=N(0) (54)

of Eqn. (20), and the bisection method can be applied
to find it . Thus, (51) holds. Moreover, since Q(6,v) is
continuous and strictly increasing on 6 and decreasing
on v, such root N'(#) of Eqn. (20) is continuous strictly
increasing on 6.

Substituting (54) into (53) implies that 6 has to be
the root of Eqn. (48) with Z(6) given by (49). Note
that © (NV(0)) is decreasing function as a superposition
of decreasing function O(-) and increasing function N/ (-).
Thus, Z(0) given by (49) increases on 6, and, so, the root
of Eqn. (48) is an unique. [ |

THEOREM 2: Let o« = 1. Then scanner’ equilibrium
strategy p = (p1,-..,pr) and adversary’s equilibrium
strategy q = (q1, - - ., qx ) are unique and given as follows:

1

?a

__exp(=(1 = w)y/(nw))
> exp (—(1 = w)ym/(nw))

mek
PROOF: Let p = (p1,...,pK) be scanner’s equilibrium

strategy and ¢ = (q1, - . ., i) be adversary’s equilibrium
strategy. Then, substituting o = 1 into (33) implies

Pk = 1/93

Since ), cx pr = 1, summing up (57) implies 1 = K/6.
Thus, § = K, and (57) implies (55).
Substituting (55) into (38) implies

Pk = (55)

kek.

qk (56)

kek. (57)

-1 —-wy/n—w—-wln(q) =v, keK. (58)
Solving (58) for ¢ implies
1_
qk:exp<— ka_w—l—l/>’ kek. (59)
won w
Since ) cxc qx = 1, summing up (59) implies
w+ v 1—wyk
1=exp(— SR (60
eXp< ” )ZeXp< ” n) (60)

ke

Solving this equation for exp(—(w + v)/w) and substi-
tuting into (59) implies (56). [ |
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Fig. 1. (a) Scanner’s strategy and (b) adversary’s strategy as
functions on fairness coefficient a.

IV. NUMERICAL EVALUATION

Let us consider an example of the bandwidth to show-
case how the equilibrium strategies in Theorem 1 are
influenced by the fairness coefficient of the scanner’s
payoff and the weighting coefficients of the adversary’s
payoff. This particular example involves a spectrum com-
prising of K = 4 bands, with the detection probabilities
distributed according to an exponential law v, = ne %"
with n» = 1 and 6 = 0.3, weighting coefficient w €
{1/4,1/2,3/4} and o-fairness coefficient varying from
0 to 1. Fig. 1 illustrates that tending « to zero makes
the scanner scan band 1 with an increasing probability
and finally when « = 0 the scanner focuses its scanning
on the only band 1 that corresponds to the maximizing
detection probability protocol (please, see, [8, Theo-
rem 1]]. An increasing « to 1 makes the scanner tend to
equiprobability scanning protocol (Theorem 2), i.e., the
scanning protocol which does not depend on bandwidth
parameters, and, so, designed according to the principle
of insufficient reasons. Due to its sophisticated nature,
the adversary does not focus on a particular node to
sneak into but employs each band from the bandwidth for
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Fig. 2. (a) Minimal detection probability, (b) detection probability
and (c) entropy of adversary’s strategy as functions on fairness
coefficient a.

an attempt to sneak. Since increasing o makes the scan-
ner scan all the bands the minimal detection probability
among all the bands also increases (Fig. 2). Furthermore,
it increases the adversary’s strategy’s entropy. Finally,
note that due to the difference in the goal of the scanner
(to maximize fairness) and the basic goal of the adversary
(to minimize detection probability) detection probability
as a function on « might achieve its maximum for an
inner fairness coefficient (say, in the considered example
it is @ = 0.161 for w = 1/4 and a = 0.08 for w = 3/4).
Such fairness coefficient might be considered as the one
reflecting a trade-off between protocols designed on the
principles of insufficient reasons (o = 1) and maximizing
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detection probability (o = 0).

V. CONCLUSIONS

A novel approach to identifying an adversary by the
scanner has been explored, which focuses on maximizing
the fairness of detection probabilities across all bands. An
advantage of such protocol, in contrast to maximizing de-
tection probability protocol, is that it maintains scanning
through all the bands even in case of restricted resources.
a-fairness has been considered as a fairness criterion. The
problem has been modeled and solved in the framework
of a resource allocation game. An approach has been
suggested to find the fairness coefficient reflecting the
trade-off between two boundary protocols designed on
the principles of insufficient reasons and maximizing
detection probability. Finally, note that a goal of our
future research is to extend the problem to multi-step
scanning based on Bayesian learning.
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