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Abstract—The paper considers multi-user ALOHA-
type communication in a game-theoretical framework.
First, we show that classical communication metric,
which reflects the trade-off between throughput and
transmission cost could lead to multiple equilibria, and
so, instability in communication protocols. The other
challenge that might arise is that such users might
work with battery-powered communication tools, and,
so, efficient energy management might have a crucial
role. To deal with these two challenges (stability in
communication and energy saving) we introduce an ad-
vanced communication metric reflecting the fair trade-
off between throughput and energy saving. As fairness
criteria, we consider a-fairness utility and model the
problem in a game-theoretical framework. We establish
such fairness coefficients for which the equilibrium is
unique, i.e., such fairness coefficients that allow main-
taining stability in such multi-user communication. Fi-
nally, to design the optimal protocol among the derived
continuum of unique fair communication protocols (a
unique protocol per fairness coefficient), the criterion
of total throughput maximization is suggested and
illustrated.

Index Terms—Energy saving, Fairness, Multi-user

I. INTRODUCTION

The ALOHA protocol, proposed in [1], presents a decen-
tralized approach to MAC protocol in a multi-user setting,
operating without carrier sensing. The ALOHA protocol
stands as a significant benchmark for the evaluation of
other multi-access communication protocols. In [2], the
concept of slotted-ALOHA was put forth, incorporating
device synchronization. This distributed mechanism has
paved the way for numerous extensions and serves as
the underlying principle for several cellular network pro-
tocols, including the Global System for Mobile Commu-
nications. There have been numerous studies conducted
on the non-cooperative relation among users in ALOHA-
type networks. One such study, referenced as [3], focuses
on an ALOHA non-cooperative game-theoretical model,
where users determine their transmission probability while
keeping their desired throughput confidential. The au-
thors analyzed the presence of equilibrium points that
users may potentially achieve based on their throughput
requirements. The research conducted by [4] delved into
the incorporation of channel state information, which has
a direct influence on the transmission policy. The study
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demonstrated the presence of certain configurations that
lead to multiple equilibria.

The existence of these multiple equilibria poses a chal-
lenge in the design of communication protocols as it can
destabilize users’ communication. To deal with possible
multiple equilibria, on an example of a homogeneous
ALOHA network, an advanced communication metric that
effectively balances throughput and proportional trans-
mission fairness was introduced in [5]. Moreover, in [5],
is was shown that in contrast to the flat-fading multi-
access communication network [6], [7], in an ALOHA
network, users’ communication might not be stabilized
via switching from throughput to latency communication
utility.

The other challenge is that since such users might work
with battery-powered communication tools, efficient en-
ergy management schemes have a crucial role. To deal with
this challenge an efficiency function of power efficiency
defined as the ratio of the throughput to transmit power
is used (please see [8]).

In this paper, to deal with these two challenges (stability
in communication and energy saving) we suggest a novel
approach. Specifically, on an example of the ALOHA-type
network we introduce an advanced communication metric
reflecting the fair trade-off between throughput and energy
saving. As fairness criteria, we consider a-fairness criteria.
We model the problem in a game-theoretical framework.
We establish such fairness coefficients for which the equi-
librium is unique, i.e., such fairness coefficients that allow
maintaining stability in such multi-user communication.
Finally, to design the optimal protocol among the de-
rived continuum of unique fair communication protocols
(a unique protocol per fairness coefficient), the criterion
of total throughput maximization is suggested and illus-
trated.

II. Basic COMMUNICATION MODEL

In this section, we describe the basic communication
model with a trade-off between throughput and transmis-
sion cost and show that in general it leads to multiple equi-
libria, and, so, instability in communication which is based
on such classical protocol. Specifically, we consider an
ALOHA-type network with a set of nodes N' = {1,...,n}
transmitting data over a shared collision channel to a base
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station. Each node i chooses a transmission probability
pi, to transmit a packet (per time slot), which could
be regarded as the transmission rate. Let (p;,p—;) be a
strategy profile, i.e., a set consisting of one strategy for
each node, where p_; denotes the strategies of all the nodes
except node i. A node succeeds in packet transmission at
a time slot if it is the only node who transmits a packet
at this time slot. Otherwise it fails to transmit. Then the
probability of node i to succeed in a packet’s transmission,
which also reflects the average throughput, is

Ti(pip—i) =pi [] (1—p)), (1)

JEN_;
where N_; = M\{i} is the set of all nodes except node i.
Traditionally, difference between throughput and trans-
mission cost is considered as the payoff to the node, i.e.,

vi(pi,p—i) = Ti(pi,p—i) — Cipi for i € N (2)

where C; is the transmission cost of node ¢ per a trans-
mission.

Each node wants to maximize its payoff. Denote this
non-zero sum game by Iy, and we look for a (Nash)
equilibrium [9]. Recall that strategies p1,...,p, of the
nodes 1,...,n are equilibrium strategies, if and only if
each of them is the best response to others, i.e., they are
solution of the following n best response equations:

p; = argmax{v;(p;,p—;) : p; € [0,1]} for i e N.  (3)

PROPOSITION 1: In game 'y there exists at least one
equilibrium.
PROOF: Since the payoff v;(p;,p—;) of node i given by
(1) and (2) is linear on p;, the result follows by the Nash
theorem [9]. [ |

We will find equilibrium by a constructive method
solving the best response equations.

PROPOSITION 2: For a fized set of strategies p_; of nodes
N_; the best response p; of node i is given as follows:

07 HJEN_I(l_pJ) <Ci7
pi=9€[0,1] [lien ,(1—pj)=Ci (4)
PROOF: By (1) and (2), payoff v;(p;, p—;) of node i is linear
on p;, and the result follows. [ |

To derive equilibrium let us split set of nodes into two
set with transmission cost larger and smaller then one, i.e.,

NELieN:C;>1}, (5)

NE2{ieN:C; <1} (6)

Note that to avoid bulkiness in formulas we assume that
C; # 1 for any i.

PROPOSITION 3: Let none of the nodes have transmis-

sion cost smaller than one, i.e., set of nodes N be empty,
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or, in other words, N = N. Then there is the unique
equilibrium (p1,...,pn) and it is

pi=0 forie N (7)
PRroOF: For feasible strategies (p1,...,p,) we have that
H(l—pj)glforanyiej\/. (8)
JEN_;
By (4) and (8), we have that
if C; > 1 then p; = 0. (9)
Thus,
pi =0 forieN, (10)
and the result follows. ]

PROPOSITION 4: Let set of nodes N be not empty. Then
multiple equilibria arise. Moreover, each nodes’ strategies
(p1,---,pn) given by (a) and (b) bellow is an equilibrium,
namely

(a)  for fized each j € N :

i =7,

i J,

(b)  for each fized subset L C N such that (18) holds
below:

(11)

1
[£]-1

1<

jec (12)

, 1E€L,
0, i gL,

where |L| is the number of nodes in subset L and
the following condition has to hold for L :

>clfTt e,
I | Cj cl-1 .
< C; , 1€ L.

JEL

(13)

PRrOOF: Let (p1,...,pn) be an equilibruim, Then these
strategies have the following property:
(P)  if there exists i € A such that p; = 1 then p; =0
for all j # i.
Property (P) follows from (4), and the fact that if there
exists ¢ € A such that p; =1, then, [[,c\ (1 —p;) =0,
for all j # 4, and (a) follows.

(b) Let (p1,...,pn) be an equilibrium. Then, by (4), (9)
and property (P), we have that there is a subset £ of A/
such that

€(0,1), i€eL,
p 0D (14)
=0, 1€ L.
This and (4) imply that
=C;, 1€L,
I <1pj>{<o o (15)
P iy 1 .
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Multiplying both sides of (15) on 1 — p; implies

:Ci(]-*pi), 7 GL,
jg(l_pj){< cO-py=c ige. 0
By (14), we have that
[Ta=p)=T10-pp (17)

JEN
Multiplying up (16) over i € £, by (17), we have that

1£]
[Ta-») =[Ta-s)]]c
JEN JEN ieL
Thus, [[;en (1 —pj) = (ITicr Ci) YUEED This and the
first row of (16) solved for p; imply (12) with (13), and
(b) follows. [

JjEL

(18)

III. FAIR THROUGHPUT AND ENERGY SAVING
COMMUNICATION

In this section, we introduce a node’s payoff reflecting
the trade-off between its throughput and energy saving.
Note that, an increase in probability p; to transmit by
node ¢ leads to an increase in its throughput and to
a reduction in energy saving. Meanwhile, an increase in
probability 1 — p;, that node 7 does not transmit, leads to
an increase in energy saving and a decrease in throughput.
To find a trade-off between these two goals (throughput
and energy saving) for the node i we employ fairness
criteria, specifically, a-fairness criteria [10] as follows:

0o (Pi(pip—i),pi) =

(Ti(pi,p—i))' = | (Ci(1 —pi))' =
l1—« l—«a

In(P;(pi, p—i)) + In(Ci(1 = pi)),

This fairness utility is payoff to node i. For convenience
let us re-denote this payoff as follows:

a#1,

a=1.

i

(19)

Via(pisp—i) = 0a(Pi(pi, p—i),pi)- (20)

We look for a Nash equilibrium. Thus, for such strategies
P1,- - -, Pn that each of them is the best response to others.
In other words, these strategies are given as solution of the
following n best response equations:

pi = BRi(p—;) = argmax{V; o(pi,p—i) : pi € [0,1]}, (21)

where for i € N.

Denote this non-zero sum game by I',.

Note that for @ = 0 equilibrium of this game coincides
with the equilibrium of the game with the traditional
payoff considered in the previous section since these games’

payoffs differ by transmission cost, which is a constant, i.e.,
Vio(pisp—i) = vi(pi,p—i) = Ci for i e N. (22)

PROPOSITION 5: In game T’y there exists at least one
equilibrium.

cessing Advances in Wireless Communications (SPAWC)

PRrROOF: By (19) and (20), we have that

o (Hje/\/,i (1- Pj)) o

Vi a(pisv—i)
8]?12 - ptilJrl
ozC'f‘_l

Thus, payoff V; o(p;, p—i) to node i is concave on p;. This
jointly with the fact that set of feasible strategies of node
i, 1 € N is compact set [0,1] imply the result by Nash
theorem [9]. [

PROPOSITION 6: The best response p; of node i to
strategies p_; of other nodes is given as follows:
1
bi = Ci(lia)/a (24)

1+

(1—a)/a
(Hjexv,i (1- pj))
PRrROOF: Note that, by (19), (20) and (21), we have that

11—«
Ci

(1—p)
(25)

11—«
WVia(Pi,p—i) _ (Hje/\/,i(l —pj))
Op; s

Left side of Eqn. (25) is strictly decreasing from infinity
for p; tending to zero to negative infinity for p; tending
to one. Thus, the best response p; to p_; is given as the
unique inner root in (0,1) of the following equation

l—o
(Mjen. 0= p9) Ay
P (1 —pi)>
Solving this equation for p; implies (24). ]

COROLLARY 1: (a) If « = 1 then equilibrium p
(p1,---,pn) 18 an unique, and implementing this unique
equilibrium strategy each node transmits or does not
transmit with equal probabilities, i.e., (p1,...,Pn)
(1/2,...,1/2).

(b) If « > 1 then nodes’ strategies assigning them to
transmit with certainty, and so, to block transmission of
others, i.e., (p1,...,pn) = (1,...,1) compose an equilib-
TIUm

PROOF: (a) follows by substituting a = 1 into (24). By
(24), if @ > 1 and p; = 1 for an j € N_; then p; = 1, and
(b) follows. [ |

Corollary 1 implies that for large fairness coefficient
(o« > 1) communication protocol might be unstable since
for any network parameters (1,...,1) is an equilibrium,
and this equilibrium completely block communication al-
though each node makes it the best to communicate. For
fairness coefficient o = 1 although equilibrium is unique,
it is indifferent to network parameters, namely, all nodes
implement a fifty-fifty strategy to communicate or not.
This puts forward a question of whether there is such
fairness coefficient 0 < a < 1 that maintains stability in
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communication, and whether its equilibrium strategies are
flexible to network parameters. In response to this question
below we can assume that 0 < o« < 1 and, first, in the
following proposition, we derive the relation between the
probability of transmitting by a node, and the probability
P that none of the nodes transmits, i.e.,

P& J[a-py.

JEN

(27)

ProposITION 7: Let (p1, ...
Then, (a)

,Pn) be an equilibrium.

p; >0 fori e N; (28)

(b) these strategies (p1,...,pn) are a solution of the equa-

tions:
F(p;) = P/C; forie N (29)
with P given by (27) and
F(§) £ /01— gUmz/lize), (30)

PrOOF: First (24) implies (28). Then, Eqn. (26) is
equivalent to

C’ip?/(l_“)
H (1—pj)=(1_pi)m- (31)

JEN_;
Multiplying both sides of this equation on 1 — p; implies

[T —p) =m0 @ —p)t=2/0) (32)
JjeEN
This and (27) imply (29) with F(-) given by (30). [ |

Let us establish auxiliary properties of function F.

PROPOSITION 8: Function F(§) given by (32) has the
following properties:

(a) Let 0 < oo < 1/2 then F(§) is increasing in [0, /(1 —
a)] and decreasing in [a/(1 — ), 1], and F(0) = F(1) = 0.

(b) Let o = 1/2 then F(§) = &, and it is increasing in
[0,1] from F(0) =0 to F(1) = 1.

(c) Let 1/2 < o < 1 then F(&) is increasing in [0,1]
from F(0) =0 to F(1) = cc.

PRrROOF: These properties follow from (32) and

dF(f) 5(20471)/(17(1)(1 _ g)fa/(lfa)

. — (a = (1= 9.
(33

Proposition 9(b) and Proposition 8(a) imply that for
0 < a < 1/2 multiple equilibria might arise since Eqn.
(29) could have two roots. Meanwhile, as it will be proven
in the following proposition for 1/2 < « < 1 equilibrium
is always unique.

PROPOSITION 9: Let 1/2 < o < 1. The equilibrium p =

(p1,---Dn) is unique and it is given as follows:
P, .
pi=F1 <C’) forie N, (34)
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where F~Y(-) is the inverse function to F(-), i.e.,
F=YF(€)) = € for £ € [0,1], and Py is an unique root
in [0, B] (with B defined in (37) and detailed in (39) and
(i)-(iii) of the proof below) of the following equation

U(P,) & P, —®(P,) =0, (35)
where
P
®(P) £ 1-F ' = (36)
ne-=())
and
s )L 1/2<a<1,
B {min{l,min{C’i cieN}, a=1/2 (37)

This unique P, can be found via the bisection method.

PROOF: By Proposition 8, the inverse function F~1(:)
exists and it is is increasing function,Thus, by (29), strat-
egy p; is given uniquely as follows:

p; = FY(P/C;) fori e N (38)
and
[0,1], 1/2<a<1,
Pe{[O,B}, a=1/2 (39)

with B given by (37).

The first row of (39) follows from (38) and Proposi-
tion 8(c). If & = 1/2 then by Proposition 8(b) (38) turns
into

pi=P/C; forie N (40)

Since p; € [0,1] for ¢ € N (40) implies the second row of
(39).
Further, Eqn. (38) is equivalent to

1—pi=1—-FYP/C;) fori e N. (41)

Multiplying up (41) over 4 € N and taking into account
(27) imply (35) with ®(P) given by (36).

By Proposition 8, F~1(¢) € [0, B] for £[0, B], and it is
increasing. Since 0 < B < 1, then ®(P) is decreasing in
[0, B].

Thus, ¥(P), given by (35), is increasing in [0, B] and
T(0)=0—P(0) = —1 and:

(i) for 1/2 < a < 1, i.e., B = 1, we have that ¥(1) =
1—[Ley (L=F1(1/Cy)) > 0.

(ii) for « = 1/2 and B =1, i.e., 1 < min; C;, we have
that W(1) =1 — [[;en (1= 1/C;) > 0.

(iii) for « = 1/2 and B < 1, i.e., B = min; C; < 1 we
have that W(B) = B — [[,cn (1 = B/C;) = B > 0.

This implies that Eqn.(35) has the unique root in [0, B],
which can be found by the bisection method. |
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IV. ILLUSTRATION OF THE RESULTS

Let us illustrate the unique equilibrium strategies de-
rived in Proposition 9 by an example of a heterogeneous
network where the nodes do not differ essentially from
each other by their characteristics. Specifically, let network
consist of n 3 nodes with transmission costs C' =
(1.1,1.15,1.2). First note that in contrast to the classical
metric reflecting the linear trade-off between throughput
and transmission cost, in which, by Proposition 3, none
of the nodes transmit due to large transmission cost, the
suggested fairness metric allows maintaining transmission
for each node. An increase in fairness coefficient leads to an
increased probability to transmit, i.e., in nodes’ strategies
and they turn into fifty-fifty communication strategies,
which are indifferent to network parameters when the
fairness coefficient becomes equal to 1 (see, Fig. 1(a)).
Proposition 9 allows designing the unique communication
protocol for each fairness coefficient o € [1/2,1]. Thus,
a question arises which of these protocols might be the
best for the network? In response to this question note
that the node’s throughput is non-monotonous in general
and it leads to that the total throughput of all the nodes
T = 3 ;cn Ti(pi, p—s) could achieve its maximum for an
inner fairness coefficient. Then such a fairness coefficient
where the total throughput achieves maximum (in the
considered example, it is o« = 0.58) can be considered
as the optimal one for the network as a whole since it
allows maintaining the maximal total throughput as well
as an individual trade-off for each node between its energy
saving and throughput.

V. CONCLUSIONS

An advanced communication metric reflecting the fair
trade-off between throughput and energy saving has been
introduced for multi-user ALOHA-type communication. It
has been shown that in contrast to classical communi-
cation metric, which reflects the linear trade-off between
throughput and transmission cost and leading to multiple
equilibria, the suggested advanced metric leads to the
unique equilibrium, and, so, to stability in multi-node
communication. The other advantages of the suggested
metric are that it allows maintaining: (a) uninterrupted
communication of all nodes for any network parameters
and (b) trade-off between throughput and energy-saving
for each (individual) node as well as maintaining the
maximal throughput of all the network using control over
the fairness coefficient.
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