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Abstract—The paper considers a network’s commu-
nication, where nodes, communicating with a base
station, could differ by the access to information they
have on their fading channel gain (channel state).
Specifically, some of the nodes know their channel
states exactly, while other nodes have only statistical
state information. Such difference can be motivated
by the fact that the channel gain is a function of
the distance to the receiver, and some of the nodes
might not know their own location, meanwhile, the
others might have complete information about their
own location via global positioning system (GPS). This
scenario is common in IoT networks, particularly those
situated in remote or challenging environments where
GPS signals may be unreliable or inaccessible. The
problem is modeled by a Bayesian game with latency as
a communication metric. A novel approach is developed
to solve such a heterogeneous problem by access to
information in closed form for any number of channel
states even for the continuum of them.The uniqueness
of equilibrium is proven which reflects the usability of
using latency metric and stability in communication
based on the suggested communication protocol even
when the nodes might differ by access to information
about channel states. The equilibrium strategies are
numerically illustrated.

Index Terms—IoT, Latency, Bayesian Equilibrium

I. Introduction
Wireless networks, such as IoT networks, encompass a

variety of mobile devices, nodes, and users. These networks
are typically found extensively in the environment and
distribute resources in a decentralized manner. Due to
their inherent nature, they possess multiple objectives and
have been extensively examined within a game theoretic
framework [1]. Examples of decentralized communication
can be found in various studies such as [2]–[6], where game
theory was utilized to analyze a fading multi-access com-
munication scenario. Additionally, in [7]–[9], the focus was
on studying an orthogonal frequency division multiplexing
(OFDM) scenario. In the works [3]–[10], the communi-
cation nodes have complete information on the channel
states. In [2], [4], [7]–[9], the communication metric is
throughput. In [11], it was shown that depending on the
network parameters the throughput metric may return
multiple equilibria even in case of complete information
on network parameters, meanwhile latency metric leads to

the unique equilibrium, and so, to stability in communica-
tion. In [5], an anti-jamming strategy in multiple access
communication with complete information and latency
metric is developed. Meanwhile, in [10], a network where
the users might differ by their communication metrics
is studied. In the above works the users have access to
complete information about network parameters such as
channel states. In other words, these studied networks
are homogeneous by users’ access to such information.
Meanwhile, in real-world networks such as IoT (Internet of
Things) networks, sensor nodes are usually widespread in
the environment, and these nodes might differ in access to
information about channel gains or states. The variation
in channel gain can be attributed to the distance from
the receiver, with some nodes lacking knowledge of their
location while others have GPS for accurate positioning.
This results in a scenario where nodes’ states form an
uncountable set in a continuous distribution of locations,
significantly increasing network complexity when nodes
are spread across a certain area.

Contribution of the paper:
(i) A Bayesian game-theoretical approach is employed

to model an IoT multi-node heterogeneous network by
accessing to channel state information. Communication la-
tency is considered as a communication utility. A challenge
of such a Bayesian game-theoretical approach is that it
might lead to a continuum set of optimization problems
associated with channel states if the set of channel states
might be a continuum, and a technique to solve such a
continuum of optimization problems is not developed in
the literature.

(ii) A novel technique has been introduced to create
equilibrium strategies that consider the transmission pro-
tocol in a multi-node heterogeneous communication game.
This approach is applicable in various scenarios, including
cases where a continuum of channel states arises.

(iii) It has been established that in a heterogeneous
network where latency serves as a communication met-
ric, each node consistently adopts a distinct equilibrium
strategy that fosters stability in communication. This
confirmation underscores the viability of employing the
latency metric, even in situations where nodes may differ
in their access to information regarding channel states.979-8-3503-7786-6/24/$31.00 © 2024 IEEE
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II. The communication model

In this paper we consider scenario of flat-fading multi-
access communication in a single cell network consisting
of n nodes transmitting data to a base station. To model
this scenario in game-theoretical framework we have to
define: (a) a set of players, (b) set of feasible strategies for
each player and (c) payoff to each player [12]. Moreover, in
scenario where player’s payoff might depend on knowledge
the player has the prior we have to associate a player type
per such knowledge it has [12]. In our scenario each of the
nodes is a player. Thus, the set of the players coincides
with the set of nodes N ≜ {1, . . . , n}.

A strategy of node i is its transmit power level Pi, with
Pi ∈ R+.

The SINR of each node at the base station depends on
its transmit power level as well as transmit power levels
of others due to mutual signal interference. Specifically,
following [4], the SINR of node i at the base station is

SINRi(Pi, P−i) = λihiPi/(N +
∑

j∈N−i

hjPj), (1)

with (Pi, P−i) is a strategy profile for node i where P−i ≜
{Pj : j ∈ N−i} and N−i ≜ {j ∈ N , j ̸= i}, and λi is
the spreading gain, hi is the channel gain, and N is the
ambient noise in the network.

According to [11], we will adopt a modeling approach
to estimate the latency in communication between node i
and the base station as follows

Li(Pi, P−i) ≜ 1/SINRi(Pi, P−i). (2)

It is noteworthy to mention that SINR and negative
latency may be integrated into a consistent scale of α-
fairness utilities, where α is equal to 0 and 2, respectively
[13].

1) Channel states: We assume that channel of node i
can be in state ti, ti ∈ Di with cumulative distribution
function (CDF) Hi(ti) where Di is set of feasible states.
Also, let hi(ti) be the channel gain when channel state ti

occurs (please see an example (32) in section IV “Discus-
sion of the results” below).

Also, let us introduce the following auxiliary notations
associated with channel states further used to define
nodes’ payoffs:

(I) Let (ti, t−i) be a channel state profile, where

t−i ≜ {tj : j ∈ N−i}; ‘ (3)

(II) Let (Di, D−i) be a profile for sets of channel states,
where D−i is a Cartesian product of sets of channel states
for each node except node i, i.e.,

D−i ≜
∏

j∈N−i

Dj ; (4)

(III) Let (dHi(ti), dH−i(t−i)) be the distribution den-
sity profile, where dH−i(t−i) is a product of distribution
densities for each node except node i, i.e.,

dH−i(t−i) ≜
∏

j∈N−i

dHj(tj). (5)

2) Strategies of the nodes: Regarding access to (local)
information, i.e., information about own channel state, the
nodes have the prior, the nodes are split into two sets N
and N , i.e., N = N ∪ N , where

(a) N is the set of nodes who has such access to
exact information, i.e., know their channel state. This set
consists of n nodes;

(b) N is the set of nodes, who only have statistical
information on its channel states, i.e., only know the
distribution of their channel states. This set consists of
n = n − n nodes.

Meanwhile regarding channel states of other nodes each
node has only statistical information, i.e., the correspond-
ing distributions.

Base on such heterogeneous structure regarding in-
formation the nodes have access to, let us associate a
node type to a channel state for each node from set N .
Specifically, a node i ∈ N is type-ti (ti ∈ Di), if channel
of node i is in state ti, i.e., in other words, its fading gain is
hi(ti). Denote by Pi(ti) the strategy (power level) of such
type-ti N set node i. Further, each node of set node N
does not depend on its channel state, i.e., strategy of such
node i, i ∈ N , is power level Pi.

Let P be the set of strategies of all nodes’ types and
nodes, i.e.,

P ≜ {Pi(ti) : ti ∈ Di, i ∈ N and Pi, i ∈ N }, (6)

and let

P −i ≜ {Pj(tj), tj ∈ Dj , j ∈ N −i and Pj , j ∈ N −i}, (7)

where

N −i ≜ {j ∈ N , j ̸= i} and N −i ≜ {j ∈ N , j ̸= i}. (8)

Thus, the problem is heterogeneous by access of the nodes
to information on channel states. Note that, in [10], the
other type of heterogeneous structure was studied where
nodes differ in applied communication metrics.

3) Payoffs to Nodes: The node wishes to find the trade-
off between a reduction in latency of the signal received
by the base station and transmission cost [4]. Thus node’s
payoff is

vi(Pi, P−i) = −Li(Pi, P−i) − CiPi, (9)

with Ci is a constant reflecting transmission cost per power
unit.

Based on such trade-off utility we can define expected
payoff to each node depending on the knowledge on the
channel state it could have the prior, i.e., depending on
which of the set of nodes N or N it belongs to. Specifically,
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(a) If node i belongs to set N , i.e., it knows its channel
state, then the expected payoff to type-ti node i, with ti ∈
Di is given as follows:

Vi,ti (Pi(ti), P −i) = −CiPi(ti)

−
∫

D−i

N +
∑

j∈N −i

hj(tj)Pj(tj) +
∑

j∈N −i

hj(tj)Pj

λihi(ti)Pi(ti)
dH−i(t−i);

(10)

(b) If node i belongs to set N , i.e., it knows only
statistical information on its channel states, then the
expected payoff to node i is given as follows:

Vi(Pi, P −i) = −CiPi

−
∫

Di

∫
D−i

N +
∑

j∈N −i

hj(tj)Pj(tj) +
∑

j∈N −i

hj(tj)Pj

λihi(ti)Pi
di{H},

(11)

where di{H} = dHi(ti)dH−i(t−i).
The objective of every node is to maximize its payoff.

Consequently, we are dealing with a Bayesian game and
our aim is to identify its equilibrium. We shall refer to this
game as Γn,n.

Recall that set of strategies P = {Pi(ti) : ti ∈ Di, i ∈
N and Pi, i ∈ N } is equilibrium if and only if each of these
strategies is the best response to the other, i.e.,

(a) for state ti with ti ∈ Di and i ∈ N :

Pi(ti) = argmax{Vi,ti(Pi(ti), P −i) : P̃i(ti) ≥ 0}; (12)

(b) for i ∈ N :

Pi = argmax{Vi(P̃i, P −i) : P̃i ≥ 0}. (13)

A remarkable feature of game Γn,n is that it deals with
any set of nodes’ types including even uncountable sets,
i.e., with uncountable sets of best response equations (12)
which are not covered by the classical Nash theorem [12].

III. Solution of the game
In order to ascertain the equilibrium and validate its

uniqueness, we will adopt a constructive approach via
solving the best response equations (12) and (13).

First note that payoffs (10) and (11) can be respectively
written in the following equivalent form:

(a) For the nodes who know their channel states

Vi,ti
(Pi(ti), P −i) = −CiPi(ti)

− νi(P −i)
λihi(ti)Pi(ti)

for ti ∈ Di, i ∈ N ; (14)

(b) For the nodes who only have statistical information
on their channel states

Vi(Pi, P −i) = −CiPi − νi(P −i)
λiPi

Ei

( 1
hi

)
for i ∈ N , (15)

where Ei(ξ) is the expected value of function ξ(·) defined
on Di according to distribution Hi, i.e.,

Ei(ξ) ≜
∫

Di

ξ(ti)dHi(ti) (16)

and νi(P −i) is the sum of background noise and the
expected interference generated by all nodes except node
i, i.e.,

νi(P −i) ≜ N +
∑

j∈N −i

∫
Dj

hj(tj)Pj(tj) dHj(tj)

+
∑

j∈N −i

PjEj(hj). (17)

In the following proposition we find the best response for
each node type and corresponding expected latency.

Proposition 1: (a) Let i ∈ N and P −i be fixed. Then
the best response of type-ti node i is

Pi(ti) =

√
N +

∑
j∈N−i

Pj

λiCihi(ti)
with ti ∈ Di, (18)

where Pj is the expected fading power gain of node j, j ∈ N ,
i.e.,

Pj ≜


∫

Dj

hj(tj)Pj(tj) dHj(tj), j ∈ N ,

PjEj(hj), j ∈ N .

(19)

(b) Let i ∈ N and P −i be fixed. Then the best response
of node i is

Pi =

√
N +

∑
j∈N−i

Pj

λiCi
Ei

( 1
hi

)
. (20)

(c) The expected latency Li of node i, with i ∈ N , is

Li = (N +
∑

j∈N−i

Pj)1/2Bi, (21)

where

Bi ≜

√
Ci

λi

{
Ei

(
1/
√

hi

)
, i ∈ N ,√

Ei (1/hi), i ∈ N .
(22)

The proof, please, find in Appendix.
In the following proposition we find the total expected

fading power gain of all nodes.
Proposition 2: Let P be an equilibrium. Then the

expected fading power gain Pi of node i is a function of
the expected total fading power gain of all nodes P, i.e.,

Pi = Fi(P), i ∈ N , (23)

where
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P ≜
∑
j∈N

Pj , (24)

Fi(P) ≜ A2
i

2

(√
1 + 4N + P

A2
i

− 1
)

i ∈ N , (25)

Ai ≜
1√

λiCi

×

{
Ei(

√
hi), i ∈ N ,

Ei(hi)
√

Ei (1/hi), i ∈ N .
(26)

Moreover, P is equal to the unique positive root of the fixed
point equation

P = F (P), (27)

where

F (P) ≜
∑
i∈N

Fi(P). (28)

This root can be found via fixed point algorithm

Pk+1 = F (Pk), where k = 0, 1, . . . with P0 ≜ 0. (29)

Such sequence Pk is increasing and converges to the fixed
point of (27).
The proof, please, find in Appendix

In the following theorem we establish existence and
uniqueness of the equilibrium and derive it in closed form.

Theorem 1: In game Γn,n, there is a unique equilib-
rium, and it is equal to P = {Pi(ti) : ti ∈ Di, i ∈
N and Pi, i ∈ N }, where

(a) for nodes knowing their channel state, i.e., node i
with i ∈ N and its channel in state ti with ti ∈ Di :

Pi(ti) =

√√√√√N + P − A2
i

2

(√
1 + 4N + P

A2
i

− 1
)

λiCihi(ti)
; (30)

(b) for the nodes having access only to statistical infor-
mation on its channel states, i.e., for node i with i ∈ N

Pi =

√√√√√N + P − A2
i

2

(√
1 + 4N + P

A2
i

− 1
)

λiCi
Ei

( 1
hi

)
(31)

with Ai given by (26) and P is the unique root of Eqn.
(27).
The proof, please, find in Appendix.

IV. Discussion of the results
To illustrate our result in the most challenging case, i.e.,

the case where a continuum of node’s types arise, recall
that the fading channel gain depends on the distance of
the node from the base station. Thus, such distance ti for
node i can be considered as a channel state. Based on
this observation let us illustrate this by the following such
specific dependence:

hi(ti) = hi/tα
i , ti ∈ Di, (32)

where α > 0 is the path-loss factor.
Further, to model a continuum of node’s types, we

consider the scenario where nodes can be present equally
likely at any distance ti, ti ∈ Di, from the base station.
Thus, Hi(ti) corresponds to the uniform distribution on
Di = [ti, ti], where

Hi(ti) =


0, ti < ti,

(ti − ti)/(ti − ti), ti ∈ [ti, ti),
1, ti = ti.

(33)

Let the network consist of n = 10 nodes with h = 1, N =

Fig. 1. (a) The expected latency for N set node as function on n and
r, (b) the expected latency for N set node as function on n and r, (c)
the expected latency as function on n, and (d) the expected latency as
function on r.

1, C = 1, λ = 1, α = 1 and D = [d − r/2, d + r/2], where
d = 1 and n = 10−n. Note that, the boundary case n = n
(then, n = 0) reflects the case where each node has perfect
knowledge of its channel state. Meanwhile, the boundary
case n = 0 (then, n = n) reflects the case where each node
has knowledge of distribution of its channel state the prior.

Fig. 1(a) and Fig. 1(b) illustrate that an increase in
the number of nodes having complete channel information
(i.e., an increase in n) leads into a decrease in latency in
expected node’s communication with the base station. A
decrease in uncertainty (i.e., an increase in r) leads to a
decrease in latency. Fig. 1(c) illustrates that an increase
in the number of nodes, i.e. in n, leads to an increase
in latency. Also, an increase in r leads to an increase
in latency with the minimal latency at r = 0, which
corresponds to the complete information scenario. In this
case, of course N = N = N . To investigate how an
increase in the set of channel states of one node, or a group
of nodes impact latency let us consider a network of the n
nodes split into two groups. Each node of the first group,
consisting of node 1, ..., node k with k < n, has the same
set of channel states D = [d, d + r]. Similarly, each node
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of the second group, consisting of node k + 1, ..., node n,
has the same set of the channel states D0 = [d, d + r0]. All
the other network parameters are the same for the nodes.
Let N = 1, h = 1, C = 1, λ = 1, d = 1 and α = 3, and
n = n = 10. Also, let r0 = 1. Thus, each node of the first
group has the same equilibrium strategy as node 1, while
each node of the second group has the same equilibrium
strategy as node 10. Fig. 1(d) illustrates that an increase in
the set of channel states of the first node group leads to an
increase in communication latency of the first group nodes
and to a decrease in communication latency of the second
group nodes since it leads to an increase in probability
that the first group of nodes will be located far from the
base station.

Fig. 2. (a) Jain indexes, (b) throughput, (c) latency as functions on C,
and (d) the expected latency as function on n.

Finally, to compare latency and throughput metrics we
have to apply common characteristics for these metrics
of nodes communication with the base station. For such
characteristics it is natural to consider how fair latency
and throughput outputs in communication with the base
station are, when the nodes implement equilibrium strate-
gies. As fairness criteria we consider Jain’s fairness index
[14]. Recall that Jain’s fairness index J (η1, . . . , ηn) rates
the fairness of a set of values (η1, . . . , ηn), and it is given
as follows:

J (η1, . . . , ηn) ≜ (
n∑

i=1
ηi)2/(n

n∑
i=1

η2
i ). (34)

Jain’s fairness achieved maximum 1 (best case) when all
values are the same. In our case as the set of values we
consider latency and throughput outputs of the nodes
implementing the corresponding equilibrium strategies. By
[4], the throughput metric might make some nodes to be
non-active, while, by Theorem 1, in latency metric, all the
node are active. Base on this observation we might expect

that the latency metric might give fairer access to the
base station compared to the throughput metric. Let us
illustrate this observation via an example with n = 3 and
n = 5 nodes, N = 0.1, λi = 3, Ci = C, hi = 20/(3+0.1i)3,
ti = ti = 3 + 0.1i for i ∈ N . We consider here the
case ti = ti = 3 + 0.1i for i ∈ N so that the problem
corresponds to scenario with complete information on
channel state and throughput as communication metric
studied in [4] for throughput as a metric. To find the
equilibrium with a throughput metric we apply the best
response strategy algorithm [4]. Fig. 2 illustrates that the
Jain index resulting from the throughput metric is less
than that resulting from the latency metric. It is caused by
the fact that with an increase in power cost some node in
throughput metric becomes non-active, and throughput of
such nodes is zero. While in latency metric each node keeps
to be active. Also, the Jain index in both metrics decreases
with an increase in power cost C, but for the throughput
metric such decrease is more essential, while for the latency
metric it decreases non-essentially from 0.9990 and 0.9975
for C = 0.01 to 0.9989 and 0.9974 for C = 20 with n = 3
and n = 5, respectively.

V. Conclusions
A multi-node communication with a base station such

that the node could differ by the access to information
about fading channel gain has been investigated in a
Bayesian game formulation. Equilibrium strategies have
been determined in closed form using the inverse SINR to
measure latency. The uniqueness of equilibrium has been
proven which reflects the usability of using latency metric
and stability in communication based on the suggested
communication protocol even when the nodes might differ
by access to information about channel states. Finally,
comparing latency and throughput metrics via Jain’s fair-
ness index as a common characteristic for these metrics
of nodes’ communication with the base station, we have
shown that the latency metric might give more fair access
to the base station compared to the throughput metric.

Appendix
1) Proof of Proposition 1: Let i ∈ N . By (14), we have

that

∂Vi,ti (x, P −i)
∂x

= νi(P −i)
λihi(ti)

× 1
x2 − Ci. (35)

Thus, Vi,ti
(x, P −i) attains the maximum in [0, ∞) at

x = Pi(ti), where

Pi(ti) =

√
νi(P −i)

λiCihi(ti)
. (36)

Note that, by (19), the sum of background noise and the
expected interference generated by all nodes except node
i can be written as follows:

νi(P −i) = N +
∑

j∈N−i

Pj . (37)

Authorized licensed use limited to: Rutgers University. Downloaded on December 13,2025 at 11:37:06 UTC from IEEE Xplore.  Restrictions apply. 



Then, (37) and (36) imply (18).
Let i ∈ N . By (15), we have that

∂Vi(x, P −i)
∂x

= νi(P −i)
λi

Ei

(
1
hi

)
× 1

x2 − Ci. (38)

So, Vi(x, P −i) attains the maximum in [0, ∞) at x = Pi

where

Pi =

√
νi(P −i)

λiCi
Ei

(
1
hi

)
. (39)

Then, (37) and (39) imply (20). Finally, (18) and (20)
imply (21). Q.E.D.

2) Proof of Proposition 2: Let i ∈ N . Multiplying both
sides of (18) by hi(ti) implies

hi(ti)Pi(ti) =

√
hi(ti)
λiCi

√
N +

∑
j∈N−i

Pj . (40)

Integrating both sides of (40) by dHi(ti) and substituting
the first row of (19) and the first row of (26) into (40)
imply that for i ∈ N the following relation holds:

Pi = Ai

√
N +

∑
j∈N−i

Pj . (41)

Let i ∈ N . Multiplying both sides of (20) by Ei(hi)
implies

PiEi(hi) = Ei(hi)

√
Ei (1/hi)

λiCi

√
N +

∑
j∈N−i

Pj . (42)

Substituting the second row of (19) and the second row of
(26) into (42) imply that (41) holds also for i ∈ N . Thus,
(41) holds for each i ∈ N .

Since
∑

j∈N−i
Pj = P − Pi, (41) implies that

Pi = Ai

√
N + P − Pi. (43)

We can rewrite this relation as follows:

P2
i /A2

i + Pi = N + P. (44)

Solving this quadratic equation on Pi implies (23) with
Fi(·) given by (25). Summing up (23) implies (27) with
F (P) given by (28). Finally, since each function Fi(P),
i ∈ N is concave and increasing such that Fi(0) > 0 and
Fi(P)/P = ∞ for P tending to infinity, the result follows.
Q.E.D.

3) Proof of Theorem 1: Let P be an equilibrium. Then,
by Proposition 1, Pi(ti) and Pi are given by (18) and (20),
respectively, with Pj given by (19). By Proposition 2, Pi

is given by (23), where P is the unique root of the fixed
point equation (27). By (23) and (24), we have that∑

j∈N−i

Pj = P − Pi = P − Fi(P). (45)

Substituting this into (18) and (20) implies the result.
Q.E.D.
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