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Abstract Gravity waves (GWs) make crucial contributions to the middle atmospheric circulation. Yet, their
climate model representation remains inaccurate, leading to key circulation biases. This study introduces a set of
three neural networks (NNs) that learn to predict GW fluxes (GWFs) from multiple years of high-resolution
ERAS reanalysis. The three NNs: a 1 X 1 ANN, a3 X 3 ANN-CNN, and an Attention UNet embed different
levels of horizontal nonlocality in their architecture and are capable of representing nonlocal GW effects that are
missing from current operational GW parameterizations. The NNs are evaluated offline on both time-averaged
statistics and time-evolving flux variability. All NNs, especially the Attention UNet, accurately recreate the
global GWF distribution in both the troposphere and the stratosphere. Moreover, the Attention UNet most
skillfully predicts the transient evolution of GWFs over prominent orographic and nonorographic hotspots, with
the 1 X 1 model being a close second. Since even ERAS does not resolve a substantial portion of GWFs, this
deficiency is compensated by subsequently applying transfer learning on the ERAS5-trained ML models for
GWFs from a 1.4 km global climate model. It is found that the re-trained models both (a) preserve their learning
from ERAS, and (b) learn to appropriately scale the predicted fluxes to account for ERAS's limited resolution.
Our results highlight the importance of embedding nonlocal information for a more accurate GWF prediction
and establish strategies to complement abundant reanalysis data with limited high-resolution data to develop
machine learning-driven parameterizations for missing mesoscale processes in climate models.

Plain Language Summary Gravity waves (GWs) are ubiquitous atmospheric oscillations generated
by flow disturbances in the atmosphere. Since they operate on smaller scales than a climate model can resolve,
their effects are mostly unresolved in coarse-resolution climate models. So, climate models typically
parameterize/approximate their effects, but these parameterizations can often be oversimplified, leading to
physical inaccuracies in models. We propose a set of three fully machine learning (ML)-based
parameterizations whose architectures are chosen to capture both horizontal and vertical GW propagation:
single column, multiple columns, and globally nonlocal, to learn GW effects from data. Following training on
multiple (four) years of modern reanalysis, these purely data-driven schemes generate accurate flux statistics,
time evolution, and variability. The globally nonlocal ML model offers the best prediction, indicating the
importance of nonlocality for data-driven GW schemes. We subsequently re-train the models on 4 months of a
1.4 km climate model and find that iteratively training on high-volume, low-resolution reanalysis and low-
volume, high-resolution climate model output allows the model to learn GW effects from both data sets
effectively. Our results establish the capability of ML-based schemes to learn essential GW physics from a mix
of data, to represent these missing effects in climate models, and improve their prediction.

1. Introduction

Atmospheric gravity waves (GWs) are ubiquitous multiscale oscillations generated by a myriad of atmospheric
disturbances, including strong convective storms, flow over mountains, storm tracks, fronts, etc. They manifest
over spatial scales ranging from O(1) km to ©(1,000) km and evolve over timescales ranging from ~5 min (high-
frequency oscillations) to over a day (near-inertial oscillations).

GWs dynamically couple the different layers of the atmosphere and are among the key drivers of the meridional
overturning circulation in the middle atmosphere (Fritts & Alexander, 2003). They provide an important
contribution to the driving of the tropical quasi-biennial oscillation (QBO) (Giorgetta et al., 2002). They influence
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the springtime breakdown of the Antarctic polar vortex (Gupta et al., 2021), and, in turn, Antarctic surface
temperatures (Choi et al., 2024). They also potentially contribute to rapid breakdowns of the wintertime polar
vortex, that is, sudden warmings (Albers & Birner, 2014; Song et al., 2020), eventually influencing tropospheric
storm tracks (Domeisen & Butler, 2020; Kidston et al., 2015). In the mesosphere, they play a critical role in
driving the pole-to-pole mesospheric circulation and in maintaining the observed equator-to-pole temperature
gradient (Becker, 2012; Holton, 1982).

Climate models, such as those used in CMIP6 ScenarioMIP, typically have a grid resolution of 100-200 km, and
thus fail to explicitly capture the effects of most of the GW spectrum. As a result, these effects are approximated
using numerical parameterizations (Achatz et al., 2024; Kim et al., 2003).

Depending on the source, GW parameterizations can be broadly classified as orographic (e.g., Garner, 2005; Lott
& Miller, 1997; van Niekerk & Vosper, 2021) or nonorographic (e.g., Alexander & Dunkerton, 1999; Garcia
etal., 2017; Hines, 1997; Lott & Guez, 2013; Orr et al., 2010). Similar to parameterizations for other atmosphere-
ocean processes, these GW parameterizations are often developed as single-column reduced-order analytical
models and are, therefore, subject to various simplifying assumptions. For instance, all single-column GW pa-
rameterizations assume purely vertical propagation and steady-state GW dissipation. Additionally, orographic
parameterizations often assume idealized ellipsoidal subgrid-scale topography. Likewise, nonorographic
parameterizations—in the absence of sufficient observations and source/sink information—assume a highly
idealized source spectrum of monochromatic GWs. As argued by McLandress et al. (2012), such total neglect of
horizontal GW propagation is the leading hypothesis for the occurrence of the prominent “cold-pole” bias (delays
in seasonal wind and temperature transitions) associated with unrealistically low springtime ozone concentration
over the Antarctic. Practically all operational GW parameterizations neglect these observed GW properties
(Plougonven et al., 2020).

Developing GW parameterizations that capture the effects of lateral propagation and transient evolution is
challenging. To date, only a few of such parameterizations exist (Amemiya & Sato, 2016; Eichinger et al., 2023;
Voelker et al., 2023). However, none of them are operational yet due to their own set of limitations. To this end,
machine learning (ML)-based, a.k.a. data-driven parameterizations, present a fast, promising approach to
improving the climate model representation of GW effects. An ML scheme can learn GWF evolution (generation,
propagation, dissipation) directly from data (empirically) without relying on analytical models. This approach has
been applied to develop data-driven schemes for atmosphere-ocean processes ranging from precipitation, tur-
bulence, and radiation, to ocean heat transport, ice sheet modeling, and vegetation (see Eyring et al., 2024;
Mansfield et al., 2023 for a review).

The data-driven approach is also being increasingly used to develop fast GWF emulators for numerical weather
prediction models and climate models of varying complexity (Chantry et al., 2021; Connelly & Gerber, 2024;
Espinosa et al., 2022; Hardiman et al., 2023; Lu et al., 2024; Sun et al., 2024; Ukkonen & Chantry, 2024). While
quite effective, a major limitation of these works lies in the fact that all these ML models have been trained on
parameterized GWFs, implying that these emulators learn the biases and assumptions of the underlying pa-
rameterizations used to train them. As a result, the emulators offer little to improve the physics aspects of GW
representation in climate models. In this work, we move beyond parameterized training data and use modern
advances in deep learning to develop ML models (NNs or NNs) that learn GW evolution from resolved GWFs.
Training on resolved GWFs allows the NN to learn key physical properties of GWs directly from multiple GW-
resolving data sets.

We present a set of three NNs that learn to predict GWF for a given background atmospheric state using three
different degrees of horizontal nonlocality: a single-column artificial NN motivated by single-column parame-
terization design, a multiple-column artificial NN inspired by Wang et al. (2022), and a globally nonlocal
Attention UNet NN. The models are first trained on multiple years of high-resolution global reanalysis, which
partly resolves the mesoscale spectrum of GWs, and then re-trained on GWF from merely months of a kilometer-
scale global model, which resolves a greater part of the spectrum of GWs. This allows the model to learn from a
mix of high-volume, low-fidelity data and low-volume, high-fidelity data and use the blend to provide accurate
predictions of GWFs. A glimpse of the offline performance of our scheme is shown in Figure 1, which illustrates
our Attention UNet NN's considerable skill in predicting GW excitation from multiple sources scattered across
the Southern Ocean. While not apparent in this figure, the NNs also represent lateral propagation of the GWFs
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GWEF prediction in the Southern Hemisphere, 30 km (10 hPa), 18-07-2015 06 UTC

GW structure, ERAS true flux, ERAS prediction: Attn UNet model
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Figure 1. (left) Temperature perturbations (in K) associated with gravity waves (GWs) over the Drake Passage and the
Southern Ocean on 18 July 2015 06 UTC, as resolved in ERAS, (middle) the momentum flux u’ @’ (units mPa) associated
with the excited GWs, and (right) the momentum flux predicted using an Attention UNet convolutional neural network trained
on 3 years of ERAS data.

well. Moreover, the NN predicted fluxes exhibit temporal coherence despite no explicit embedding of the
temporal structure (recurrence) in the ML architecture.

The paper is structured as follows: Section 2 outlines the procedure to compute GWF from GW-resolving
reanalysis and climate model output using Helmholtz Decomposition. The experimental setup, including the
three different kinds of NNs and the TL approach to learn from multiple data sets, is described in Section 3.
Following that, a complete description of the ML training data and the recipe to scale it prior to ML training is
provided in Section 4. Section 5 presents the key results. Finally, a summary of the key findings along with a
discussion of the next steps, related to coupling the neural nets to a climate model, is provided in Section 6.

2. Computing Resolved Gravity Wave Momentum Fluxes

Per the EP-Flux theory, the momentum fluxes associated with GWs can be estimated using wind and temperature
covariances. The covariances u’®w’ and v/ @’ respectively represent the vertical flux of zonal and meridional
momentum. Here, u/, v/, and @’ are the small-scale wind perturbations associated with GWs. The vertical de-
rivative of the covariances equates to the total acceleration/deceleration of the zonal and meridional flow provided
by these waves upon dissipation. Since climate models cannot resolve the small-scale perturbations, model pa-
rameterizations focus on emulating these covariances and their derivatives to represent the missing GW effects
(excitation, propagation, and dissipation) in the atmosphere.

Multiple approaches exist to retrieve the small-scale GW perturbations from high-resolution data. Inspired by
recent studies that compute GW fluxes from observations and high-resolution climate models (Kohler et al., 2023;
Lindborg, 2015), we use Helmholtz decomposition (hereafter HD) to extract the covariances from global, high-
resolution wind output.

HD is often used in fluid dynamics research to decompose the horizontal flow into purely rotational and purely
divergent flow components. The rotational part is associated with the large-scale balanced flow, whereas the
divergent part, which typically has a finer-scale structure, is associated with small-scale GWs. Mathematically,
the decomposition can be expressed as:

u=wv)=-Vo+VxXy (1)
where (u,v) is the full horizontal flow, ¢ is the potential function such that V¢ is irrotational, that is, the curl of V¢
is 0. Similarly, y is the rotational streamfunction such that V X y is non-divergent, that is, the divergence of

V X y is zero. Thus, HD provides ¢ and y, which, following an application of inverse spectral transforms, yield
the divergent and rotational parts of the horizontal flow as:

- HD
u= (l/t, V) - (udiv’vdiv) + (urot’ Vrot) (2)
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Next, to ensure that the large-scale background is completely removed from the divergent flow, an additional
fixed-wavenumber high-pass filter is applied by removing the T21 truncated divergent velocity, (U, 721> Vain 721)>
from the divergent flow. This operation is expressed as:

(Wi Vi) = iy = Ui 721 Vaiv = Vain21) 3)

Finally, the high-pass filtered divergent velocities were used to compute the fluxes by multiplying with the eddy
vertical velocity (w’). @’ was obtained by removing the zonal mean component @ of the full velocity (@), that is
o' = w — @. The zonal and meridional components of the vertical momentum flux were then computed as:

F=(F.F) =g (0 Vo) )

Here, g = —9.81 m/s? is the acceleration due to gravity. We refer the readers to Kohler et al. (2023) and Gupta,
Sheshadri, and Anantharaj (2024) for more technical details on the momentum flux computations.

Comparing differences among GW flux distributions: To compare histograms of GW fluxes predicted by different
neural nets, we use the Hellinger distance, which measures the distances between two probability distributions.

First proposed by Hellinger (1909), the Hellinger distance (H) between two probability densities p and ¢ is a
measure of their statistical distance and is defined as:

H(p.q) = 1 / eX<\/l,,(_x —q() )2dx =1- / Exmdx. )

2

By definition, H € [0, 1]. A Hellinger distance of 0 means the distributions are identical almost everywhere,
while a Hellinger distance of 1 implies the distributions are disjoint, that is, p is non-zero wherever g is zero, and
vice versa.

3. Deep Learning Model Description

To learn the nonlocal horizontal propagation of atmospheric GWs and to contrast it with the traditional single-
column parameterization approach, we create three different ML architectures or NNs (or NNs in short) that
employ three varying degrees of horizontal nonlocality. A schematic outlining the three nonlocal architectures is
shown in Figure 2.

3.1. The Three Neural Network (NN) Architectures

M1: A single-column Artificial Neural Network (ANN)-based ML model that takes a single column of input
conditions to predict the GWF within that single column—hereafter referred to as M1 or simply 1 X 1. The
model comprises one input layer, followed by 6 hidden layers, and then one output layer, which outputs the
fluxes u’ @’ and v/ w’.

M2: A multiple-column ANN with a convolutional layer with a 3 X 3 filter preceding the ANN, which takes the
input background state of the atmosphere over nine neighboring vertical columns to predict the GWF within
one central column. The 3 X 3 filter reduces the input from nine columns into a single column. This design
choice is based on the nonlocal parameterization setup proposed in Wang et al. (2022), with the main
difference being the additional 3 X 3 convolutional layer. This NN is hereafter interchangeably referred to as
M2 or simply 3 X 3.

M3: A globally nonlocal Attention U-Net that takes the full three-dimensional background state of the atmo-
sphere as input and predicts the fluxes over the whole domain. The architecture is adopted from Oktay
et al. (2018) and is hereafter referred to as M3 or UNet. The NN comprises four downsampling blocks and a
bottleneck, followed by four upsampling blocks. A skip connection and a learnable attention gate are added
between the downsampling and upsampling blocks at each level. The attention gate allows the UNet to
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Figure 2. A schematic of the three machine learning architectures used in the study. Inspired by the three-dimensional propagation of atmospheric gravity waves, we
define three neural net architectures with different extents of horizontal nonlocality: a (local) single-column artificial neural network M1, a (locally nonlocal) 3 X 3
columns artificial neural network (NN) M2 with one preceding convolutional layer, and a (globally nonlocal) Attention UNet convolutional NN M3. As shown, M1 and
M2 respectively take 1 and 9 columns of input data and predict GWFs u/ »’ and v/’ for a single vertical column, while M3 takes input over the full spatial domain to
predict the fluxes over the full spatial domain. The NN architectures are shown in more detail in Figure 3.

localize the parts of the domain that contain information critical to making accurate predictions. Finally, a
convolutional layer at the end reshapes and projects the output to the appropriate number of output channels.

The model architectures are illustrated in detail in Figure 3.

3.2. Runs

For each of the three NN architectures described above, we train two different networks. The two networks differ
in terms of their prediction domain in the vertical: global (i.e., troposphere + stratosphere) and stratosphere. A
summary of the runs is also provided in Table 1.

o Global: networks which use the scaled dynamical variables over all levels in the troposphere and the
stratosphere as input to predict the fluxes at all levels.

o Stratosphere: networks which use the scaled dynamical variables for all levels in the troposphere and the
stratosphere as input, but predict the fluxes only for the 60 levels in the stratosphere (1 to 200 hPa).

Since the tropospheric small-scale fluxes can have some unwanted divergent contributions from strong
convective fluxes and not GWs, predicting fluxes only in the stratosphere allows us to eliminate this source of
uncertainty.

3.3. Model Hyperparameters
For brevity, the model hyperparameters are outlined in the Appendix in Table S1 in Supporting Information S1.

The respective ML model hyperparameters for all the runs, such as the number of hidden layers, optimizers,
learning rates, etc., remain unchanged. For M3, only the input and output layers' dimensions change, and for M1
and M2, both the input and output dimensions and the hidden layers' widths change.

For the most discussed NN configuration in this study, that is, the stratosphere only NN with input features
{u,v,0,w}, M1 has approximately 17 million, M2 has 19 million, and M3 has 38 million learnable parameters,
respectively.
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3.4. Transfer Learning

At 25 km resolution, ERAS resolves only a portion of the mesoscale GW spectrum. Recent studies have shown
that even a 9 km global model might only resolve roughly half of the actual GW forcing in the midlatitudes as
compared to a 1 km model (Polichtchouk et al., 2023). This means that ERAS either underestimates the amplitude
of some resolved wave packets or does not resolve finer-scale components of some wave packets at all. As
measured by Gupta, Reichert, et al. (2024), the fluxes in ERAS could even be a factor of 2-2.5 weaker than in a
full mesoscale-resolving NWP model. Ideally, a straightforward way to address this shortcoming would be to
train the ML models on resolved GWFs from higher-resolution NWP and climate models. However, due to a lack
of high-volume, high-resolution global climate model output/data, this approach is currently infeasible. Even
prominent high-resolution climate modeling projects, including the DYAMOND (Stevens et al., 2019), GEOS
(Gelaro, 2015), and IFS (Wedi et al., 2020), publicly provide not more than several months of high-frequency
high-resolution output at best.

To alleviate this issue, we apply TL principles to train the NNs on both multiple years of low-resolution ERAS
data and limited high-fidelity data from a global kilometer-scale climate model, which resolves most of the GW
spectrum. This is carried out in two steps, as illustrated in Figure 4.

First, all the NN are trained on 3 years of (relatively) high-volume, low-fidelity ERAS data. Then, part of the
NNs are re-trained on low-volume high-fidelity IFS-1 km data. The data sets are described in detail in the
following section. For M1 and M2, only the final two layers, that is, Linear Layer 6 and the Output Layer, are re-
trained for TL. For M3, only the Upsampling Block 1 and the Conv2D Layer are re-trained for TL. All the other
model weights and biases are frozen during TL. We also ran an ablation/sensitivity study by freezing the last two,
last three, and last four layers of M1 and M3 (Linear Layers 4, 5, and 6, and the Output Layer for M1, and
Upsampling Blocks 3, 2, and 1, and Conv2D layer for M3). To assess the improvements due to TL, all NNs were
evaluated on both ERAS and IFS both after regular training (Step 1), and TL (Step 2). Identical hyperparameters
were used for both Step 1 and Step 2 trainings, and in Step 2, all the models were trained for 200 epochs. For more
details and background on TL, see F. Zhuang et al. (2020) and references therein.

To summarize, each NN in this study is characterized by its:

1. ML Architecture: what architecture the NN uses—[1 X 1, 3 X 3, UNet]

2. Feature set: what feature set the NN uses as input—[{u, v, w},{u, v, 0},{u,v,w,6}]

3. Vertical domain: the vertical extent domain for the input-output pairs—[global, stratosphere]

4. Training procedure: whether the NN was trained on just ERAS data, or it was re-trained on IFS Fluxes as well.

4. Preparing ML Training Data

The ML training data used in this work were sourced from a combination of modern reanalysis (ERAS) and ultra-
high-resolution climate model outputs (IFS-1 km), both from the European Center for Medium-Range Weather
Forecasts (ECMWEF).

ERA5 Reanalysis: Most of the training data was computed using the publicly available hourly reanalysis,
ECMWF's ERAS (Hersbach et al., 2020). ERAS is originally produced by assimilating observations with a
forecast model that uses 639 spherical harmonics (~0.3° X 0.3°) in the horizontal at 137 hybrid o-p levels in the
vertical, ranging from the surface to 0.01 hPa. Among all current publicly available reanalysis products, ERAS
offers the finest resolution. Accounting for grid-scale hyperdiffusion and other numerical effects, ERAS still
resolves GWs with wavelengths 200 km and longer.

()

To numerically “absorb” vertically propagating GWs, stratospheric and mesospheric sponges are applied at

pressures less than 10 hPa and 1 hPa, respectively. To prevent the NNs from learning the strong artificial damping

Figure 3. A schematic for the three neural networks (M1-M3) introduced in Figure 2 and described in Section 3. (a, b) M1 and M2 both have 1 input layer, 6 hidden
layers, and 1 output layer. Since the input to M2 is a 3 X 3 image, its input layer is a 3 X 3 learnable convolutional layer that transforms the 3 X 3 column data into a single
column. The input and output dimensions vary based on the vertical domain. For the feature set shown here (lat, lon, z;,u,v,0, ®), the input dimension is

491 =3 X 1+4 X 122, and the output dimension is 244 =2 X 122. B is the minibatch size. M3 is inspired from Wang et al. (2022). (c) For M3, the input dimension is
491 vertical channels X 64 latitudes X 128 longitudes, while the output dimensions are 244 vertical channels X 64 latitudes X 128 longitudes. The Attention gate, not shown
here, is identical to the one defined in Oktay et al. (2018). The PyTorch implementation of the models is provided at: https://doi.org/10.5281/zenodo.16415113.
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Table 1 in the mesosphere and above, we discard the topmost 15 levels and only use

The Six Models Were Trained for Different Feature Sets: {u,v,0}, {u,v,w},

and {u,v,0,w)}

Neural net type

Prediction domain in the vertical

M1: 1 x 1 ANN

M2: 3 X 3 ANN-CNN

Ma3: Attention-UNet

Mil1: 1 X 1 ANN
M2: 3 X 3 ANN-CNN
Ma3: Attention-UNet

Troposphere + Stratosphere (surface to
1.5 hPa)

Troposphere + Stratosphere (surface to
1.5 hPa)

Troposphere + Stratosphere (surface to

model levels 16 (1.5 hPa ~ 45 km) to 137 (surface), that is, 122 levels, for
training purposes.

IFS-1 km: The high-fidelity training data for TL experiments (as described in
the next section) was created using the 1.4-km experimental nature runs
performed using ECMWF's IFS model (Wedi et al., 2020). The hydrostatic
model simulates global atmospheric evolution at an unprecedented horizontal
resolution of ~1 km for November-February Boreal Winter 2018-2019. It
does so by employing a total of 8,000 spherical harmonics to solve the

Stratosphere only (200-1.5 hPa)
Stratosphere only (200-1.5 hPa)
Stratosphere only (200-1.5 hPa)

1.5 hPa) primitive equations of fluid flow. The grid resolution is at least a factor of 2
higher than any existing high-resolution simulations conducted to study GWs,
and provides a glimpse into global GW activity and fluxes in unprecedented

detail.

Note. Each of the models were also re-trained on IFS-1 km data using TL. For
the 1 X 1 and 3 X 3 neural networks, positional encodings {lat, lon, z,;} were
also used as input features to embed spatial information.

Step 1: Regular Training

High-volume low-fidelity ERAS5 data

3 years of ERA5
training data

Numerically, the model has a design similar to ERAS but it is a free-running
model tuned to provide forecasts at a 1.4 km resolution without using any
explicit GW parameterizations. Grid-scale hyperdiffusion and other numer-
ical method choices in the model reduce its effective grid resolution from
Ax = 1.4 km to about 6Ax—8Ax (Klaver et al., 2020; Skamarock, 2004). Thus, the model resolves the complete
mesoscale GW spectrum (wavelengths > 10 km). We use 3-hourly instantaneous fields on model levels to
calculate the small-scale momentum flux due to resolved GWs. The model configuration is described in detail in
Polichtchouk et al. (2022, 2023) and the procedure to compute the fluxes used in this study is described in Gupta,

Sheshadri, and Anantharaj (2024).
The same set of input and output features are computed from both ERAS and IFS-1 km:

Input features: We extract horizontal and vertical winds, temperature, pressure, and potential temperature from
the data sets. The features extracted from the high-resolution data sets are conservatively coarse-grained to a
coarse 2.8° ~ 280 km Gaussian grid, which is the typical resolution at which climate models resolve these
quantities. The coarse-graining was accomplished using a first-order conservative regridding function using
Python's XESMF library (J. Zhuang et al., 2024).

We explore three different feature combinations, viz., {u,v,0}, {u,v,w}, and {u,v,w,6} to train the NNs. This
allows for assessing the relative importance of different input features toward flux prediction. For each feature set
for ANNSs, positional variables, including latitude, longitude, and surface geopotential, were also appended to the

Step 2: Transfer Learning
Low-volume high-fidelity IFS data

—]

- = "
] ]
' ' Re-evaluate on 1
' ' " yearof ERA5 data
]
Re-train on . :
three months of |, . . -
IFS-1km data ' .
] ]
' ' Re-evaluate on 4
' ' months of IFS data
] ]
“ - J

ANN with 6 hidden

Evaluate on 1 year of
ERAS data and 4

Re-train only the last
months of IFS data

layers two layers of the ANN

Figure 4. Schematic for the Transfer Learning (TL) experiment. The three types of neural nets M1-M3, which were pre-trained on 3 years of ERAS data, were re-trained
on 4 months of IFS-1 km data. Only the final couple of layers of each model were trained. For M1 and M2, the Linear Layer 6's and Output Layer's weights and biases
were re-trained; all other weights were frozen. For M3, the Upsampling Block 1 and the final Conv2D Layer were re-trained; all other weights were frozen. Following
both regular training (Step 1) and TL (Step 2), the three models were tested on ERAS5 2015 data and the IFS-1 km data.
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input variables. We note that positional variables were not included as inputs to the globally nonlocal Attention
UNet.

Output features: The momentum fluxes u’®’ and v/ @’ form the output of our ML models. For a given set of
background dynamic variables, the ML models predict the momentum fluxes associated with the state. Similar to
the input variables, the fluxes computed from the high-resolution data set are conservatively coarse-grained to a
~280 km grid. This ensures that the fluxes are averaged over the largest resolved wavenumbers associated
with GWs.

Data scaling: Proper scaling of the input-output data is crucial to ensuring ML model stability and efficient
training. Since different physical variables have different magnitudes, a lack of proper scaling can lead to
imprecise or spurious weight updates during backpropagation. The use of nonlinear activation functions would
worsen the issue as large values, for instance, near-surface pressure in Pascals, would tend to get more importance
during model weight updates than, say, near-surface winds. We use different scaling parameters for different
variables, based on their underlying distributions, to ensure that a bulk of the input and output training data have
values € [-2,2] and [-6, 6] respectively. We use the following scaling:

(a) Positional variables: longitude (1) and latitude (¢) were normalized by dividing by 360° and 90° respec-
tively. The surface geopotential (z,) was scaled by 5 X 10* m? /52,

(b) Horizontal winds u and v: were normalized using their 4-year global mean (u) and global standard deviation
(6) computed from ERAS5 as X — (X - ,ux)/ 30y, X being the respective variable. The mean and standard
deviation were computed only for data between the surface and 50 km height.

(c) Potential temperature 6: ranges from ~300 K near the surface to ~2,000 K near the stratopause. Thus, € was
normalized by dividing by 1,000 K.

(d) Vertical wind o and momentum fluxes u’ ®', and v’ ' : have more fine-scale variations and exhibit a Laplace
distribution centered around 0. To scale them, the quantities were first scaled using the mean and standard
deviation following which a cube root was applied, that is, X — ((X - ,uX)/ (TX)I/3, X being the respective
variable. Applying the cube root moves both close-to-zero and large values toward 1.

For the 4 years of ERAS considered, p, = 6.3954 m/s, 6, = 22.1755 m/s, p, = 0.0203 m/s, o, = 9.8414 m/s,
Uyt =—0.51 mPa, 6, =507 mPa, u, » =—0298 mPa, and 6/, = 3.79 mPa. To prevent scaling in-
consistencies across data sets, for all the variables, the same variable normalizations were used for both ERAS and

IFS-1 km.

Training-test split: for all experiments in this study, the years 2010, 2012, and 2014 were used for training, and the
year 2015 was used for testing. Having a whole year for validation allows for testing how well the models learn
seasonal variations. As a result, M1 and M2 have approximately 215 million and 72 million (single-column)
training and validation samples, respectively, while M3 has approximately 27,000 and 9,000 (three-dimensional)
training samples, respectively. For TL experiments, all 4 months of 3-hourly data from IFS-1 km were used for re-
training.

Training time: The NNs were trained on a single NVIDIA A100 GPU. M1 and M2 require roughly 80 and 120 hrs
to train over 100 epochs on global ERAS data with four features {u, v, 0, w}. Likewise, M3 requires 14 hrs to train
over 100 epochs.

The TL training times are relatively faster. For instance, for M1, TL over 200 epochs on an A100 GPU (though for
four months of IFS-1 km data) takes 1.5 hrs when only the final two layers are retrained, 1.75 hrs when the final
three layers are retrained, and 2 hrs when the final four layers are retrained. All corresponding variations of the
UNet took roughly 40-50 min of training time on the same GPU.

5. Results

We first show the predictions from the vertically global simulations. Following that, we exclusively focus on
stratosphere-only runs. For simplicity, we only show the results from the best-performing feature set, {u, v, 0, w},
unless specified. Results for other feature sets are shared as Supporting Information S1 wherever appropriate.
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JJA 2015 mean zonal flux, 200-500 hPa avg

(a) ERAS resolved (b) 1x1 ANN
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Figure 5. JJA 2015 mean resolved momentum fluxes for (a) ERAS, (b) M1, (c) M2, and (d) M3, in the 200-500 hPa
troposphere. Fluxes are shown for the vertically global configuration with feature set {u,v,0,w}.

5.1. Global Simulation

The time-averaged global prediction of GWF in the troposphere from ERAS and the three types of NNs is shown
in Figure 5 and the difference in model predictions w.r.t. ERAS is shown in Figure 6. All of M1-M3 demonstrate
substantial skill in predicting the mean GWFs. The difference between ERAS resolved fluxes and the ML pre-
dicted fluxes is the lowest for M3 (Figure 6¢). The fluxes predicted from M1 and M2 have similar biases, with the
largest biases around the Andes, North America, and Western Asia. Moreover, the true fluxes from ERAS and the
deviations in these regions have an order-of-magnitude similar to the fluxes.

In contrast, in the stratosphere, the prediction skill for the vertically global M3 is poorer than M1 and M2 at all
latitudes, as shown in Figures 7 and 8, which show the fluxes and the difference w.r.t. ERAS, respectively. In
particular, while all models contain biases over the Southern Ocean and the tropics, the biases for Attention UNet
over these regions are much stronger. A similar comparison of the DJF troposphere and stratosphere for vertically
global NN is shown in Figures S1 and S2 in Supporting Information S1. Similar conclusions are drawn for the
DIF period as well, but now the biases are concentrated in the Northern Hemisphere.

In a seasonally-averaged sense, the ML models generate an extremely accurate prediction of the global GWF
distribution, including over well-known hotspots. These predictions are also qualitatively consistent with the
GWEF climatology presented in past studies (Gupta, Sheshadri, Alexander, & Birner, 2024; Hindley et al., 2020;
Wei et al., 2022). This is further corroborated by the global flux distribution for all four seasonal averages in
Figure 9 (left column). All NNs capture the tails of the distribution with considerable accuracy. The similarity
between the predicted and the ERAS flux distribution is quantified using the Hellinger distance defined in
Section 2. The three NNs consistently generate low Hellinger distances and show impressive skill in capturing the
tails of the GWF distribution. The Hellinger distances are lowest for the 1 X 1 model, but the distances are low
enough for these differences to be considered small.

JJA 2015 mean zonal flux difference, 200-500 hPa avg

Figure 6. Similar to Figure 5 but shows the difference (w.r.t. ERAS) of the JJA fluxes in the troposphere for the three models
(a) M1, (b) M2, and (c) M3.
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JJA 2015 mean zonal flux, 10-30 hPa avg

(a) ERAS resolved (b) 1x1 ANN
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Figure 7. Same as Figure 5 but for the stratosphere (10-30 hPa or 3045 km average). Mean resolved fluxes for (a) ERAS, (b)
M1, (c) M2, and (d) M3. Fluxes are shown for the global configuration with feature set {u, v, 6, »}.

5.2. Stratosphere-Only Simulation

Despite outperforming M1 and M2 in the troposphere, the M3 Attention UNet's sub-par performance in the
stratosphere can be understood in terms of data imbalance and receptive fields, as discussed by Sun et al. (2024)
and Pahlavan et al. (2024), respectively. ERAS has double the number of vertical levels (channels) in the
troposphere than in the stratosphere. Moreover, each vertical level/channel in the UNet model is treated inde-
pendently due to which it has a much more restricted receptive field in the vertical than the ANNSs. This negatively
impacts the predictions in the stratosphere, away from the dominant source of GW excitation, that is, the
troposphere.

To overcome these limitations, we now restrict the prediction domain to just the stratosphere, using stratosphere-
specific ML models described in Section 3, that take the input dynamical conditions over both the troposphere and
stratosphere (as before) but only predict fluxes in the stratosphere (1 to 200 hPa). This does not increase the
vertical receptive field, but it reduces the data imbalance between the stratospheric and tropospheric fluxes, which
could have quite different magnitudes. Since the GW fluxes retrieved using Helmholtz decomposition can also
contain some contributions from strong convective fluxes not associated with GWs, this also allows us to focus
exclusively on predicting GWFs. Such a strategy is also somewhat consistent with the present treatment of
nonorographic drag in coarse-climate models where a fixed launch level (~200-300 hPa) is assumed for non-
orographic GW packets.

Predicting fluxes only in the stratosphere results in much-improved prediction skills for all models in the Drake
Passage (Figure 10). While earlier the UNet failed to model the JJA belt of GW activity over the Southern Ocean
(top row), predicting fluxes only in the stratosphere alleviates this bias (bottom row). Reevaluating the JJA av-
erages for the stratosphere-specific models, we find that while M1 and M2 models offer similar performance as in
the global case (Figures 11b and 11c¢), the UNet's performance now surpasses both the ANNs (Figure 11d). Most
importantly, we now obtain lowest biases over the Southern Ocean for M3. A similar comparison for the DJF
period is shown in Figure S3 in Supporting Information S1.

JJA 2015 mean zonal flux difference, 10-30 hPa avg

(a) 1x1 ANN - ERA5S
e = e

UL

Figure 8. Similar to Figure 7 but shows the difference (w.r.t. ERAS) of the JJA fluxes in the stratosphere for the three models
(a) M1, (b) M2, and (c) M3.
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(a) DJF (b) MAM

ERAS : : 0.001 : : 0.002

101 5

-3 2 -1 0 1 2 3 -3 -2 -1 0o 1 2 3
normalized flux u'w’ normalized flux v'w’

Figure 9. Histogram of the seasonally averaged predicted zonal flux u’ @’ from ERAS (gray shading), M1:1 X 1 M1 (orange),
M2:3 x 3 (violet), and M3:Attention UNet (Green), for (a) December-January-February, (b) March-April-May, (c) June-
July-August, and (d) September-October-November 2015. The numbers on the top right corner show the Hellinger distance
for a corresponding predicted distribution w.r.t. ERAS distribution. The vertical axis shows the flux density. Distribution is
shown for the vertically global configuration with feature set {u,v,0,w}. The dotted vertical bars mark the 2.5th and 97.5th
percentile.

We break down the time-averaged flux distribution by latitude and height (Figure 12). For visual clarity, we only
show ERAS5, M1, and M3. In many regions, most notably the tropics and the midlatitudes, the UNet provides a
better prediction than the 1 X 1 ANN, as determined by the Hellinger distance. In some regions, like the upper
stratospheric northern hemisphere polar regions, both models fail to capture the underlying flux distribution

ERA5 JJA mean 1x1 ANN 3x3 ANN Attention U-Net

global
training

stratosphere
only

-0.8 -0.6 -0.4 -0.2 0.0
zonal GW flux (mPa)

Figure 10. The first column shows JJA 2015 mean zonal flux ¥’ @’ in ERAS at 10 hPa over the Drake Passage and the
Southern Ocean. The second to fourth columns show the JJA 2015 fluxes as predicted by M1-M3, respectively. The first row
shows the true and predicted fluxes at 10 hPa from the vertically global configuration, while the second row shows the
prediction from the stratosphere-only models.
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JJA 2015 mean zonal flux, 10-30 hPa average

(a) ERAS5 seasonal mean (b) 1x1 ANN - ERAS
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Figure 11. Same as Figure 7 but for the stratosphere-only model configuration and {u,v,0,w} feature set.

accurately. Even in regions where the ANN has a lower Hellinger distance, we note its tendency to underestimate
the range of flux values, leading to a higher concentration of fluxes around the mode, that is, its density around the
mode is often higher than ERAS in the summer hemisphere. This is not the case for UNet. As with the global ML
models, the Hellinger distances for daily sampled fluxes are consistently lower for UNet, indicating its prowess in
predicting the tails more accurately than M1 (Figure 17).

From a deep learning perspective, alternative strategies to obtain improved performance could be to either (a)
increase the vertical receptive field by introducing vertical convolutions as well (Pahlavan et al., 2024), or (b)
perhaps use an iterative recurrence-based approach introduced in Ukkonen and Chantry (2024) to level-wise
predict the GWF in the vertical.

We now focus on the time evolution of the predicted fluxes. To analyze their transient wintertime evolution, we
select six distinct orographic + nonorographic GW hotspots (Figure 13, center). The choice is based on the ERAS-
derived lateral flux climatology presented in Gupta, Sheshadri, Alexander, and Birner (2024).

1x1 unet [ era5
0.02 0.06 0.05 0.12 0.24
0.04 0.09 0.14 0.03 0.38

upper
stratosphere

03 04 05 06 0.7 0.4 0.5 0.6 0.40 0.45 0.50

0.01

0.07 0.13
0.03 0.08

lower
stratosphere

-0.2 00 02 04 -0.3 0.0 03 0.0 0.2 0.4 0.6 0.0 0.5 0.40 0.45

SH poles SH midlat tropics NH midlat NH poles

Figure 12. Histogram of the true versus predicted normalized fluxes u’ @’ in the stratosphere for JJA 2015 partitioned into
five latitude bands and two altitude levels. M1 is shown in orange, M3 is shown in green, and ERAS is shown in black.
Latitudes 75° to 90° are treated as polar regions, latitudes 30° to 60° as midlatitudes, and latitudes —20° to 20° as the tropics.
The stratosphere between 1 and 30 hPa (30 km) is considered the upper stratosphere, and between 30 hPa (30 km) and 100 hPa
(15 km) is considered the lower stratosphere. The numbers in the top-left show the Hellinger distance w.r.t. ERAS distribution.
Fluxes are shown for the stratosphere-only vertical configuration and features {u,v,6,®}.

GUPTA ET AL.

13 of 22

ASUDIT suowwo)) AAnea1) d[qedorjdde oy £q pauIaA0S A SAONIR Y SN JO SA[NI 10J AIeIqIT duIUQ AI[IAL UO (SUONIPUOI-PUB-SULID) WO KI[1m" KIeIqiaul[uo//:sdny) suonipuo) pue swia, 3y 23S [$z0z/c /1] uo Kreiqy autjuQ L3I ‘LL6V00SINSTOT/6Z01 01/10p/wod Aafim’ Krelqrjaurjuorsqndnge//:sdny woiy papeojumo( ‘01 ‘STOT ‘99¥CTH61



. Y d N |
MI
ADVANCING EARTH
AND SPACE SCIENCES

Jo

urnal of Advances in Modeling Earth Systems 10.1029/2025MS004977

0.4

0.2

Flux

0.0
-0.2

-0.4

(c) Tropical Pacific, 12 km, Jan 2015

(a) Newfoundland, 30 km, Jan 2015 (b) Scandinavian Mountains, 30 km, Jan 2015

0.3
Vo 0.1

Flux

\/\yﬂ r=0.98 0.0
r=0.98 -0.1
r=0.97 -0.2

r=0.95
r=0.97
r=0.94

5 10 15 20 25

15 20 25 30

Jan 2015 Jan 2015

(d) South East Asia, 12 km, July 2015

5 10
r=0.69
r=0.87
r=0.89
0.1
0.0
x —0.1
2
% -0.2
r=0.95
r=0.94 —03
r=0.93 -0.4

15

Jan 2015

(e) Drake Passage, 30 km, July 2015

N

20 25 30

July 2015 r=0.43

(f) Southern Ocean, 30 km, July 2015

.'g ‘
— ERA5
— 1Ix1
— 3x3
—— unet
5 10 15 20 25 30 5 10 15 20 25 30
July 2015 July 2015

Figure 13. Timeseries of the normalized zonal momentum flux u’®’ over six hotspots highlighted over the map projection: (a) Newfoundland, (b) Scandinavian

Mountains, (c) Tropical Pacific Ocean, (d) Southeast Asia, (¢) Drake Passage, and (f) Southern Ocean. The fluxes are shown for January 2015 for (a—c), and for July
2015 for (d-f). For the midlatitudes, the fluxes are shown in the upper stratosphere (30 km), while for the tropics, the fluxes are shown in the upper troposphere (12 km).
ERAS is shown in black, M1 in blue, M2 in violet, and M3 in red. The Pearson correlation coefficients for each model w.r.t. ERAS are provided next to each plot.

First focusing on the orographic hotspots, we note that all models predict the transient evolution of the GWF over
Newfoundland, the Scandinavian Mountains, and the Drake Passage with high accuracy (Figures 13a, 13b, and
13e). In most cases, the Pearson correlation coefficient measures above 0.95, explaining more than 90% of the
variance. In contrast, a mixed performance is obtained over nonorographic hotspots. Over the Southern Ocean
away from the Drake Passage, the models exhibit exceptional prediction skill, with correlation coefficients around
0.95, correctly predicting the intermittent rise and decay of the GWF (Figure 13f). The correlation coefficients are
much weaker in the tropics where the (presumably convective) GWFs are more prevalent and intermittent than in
the extratropics due to the inherent stochasticity of convection. In the lower stratosphere, over the Tropical
Pacific, Attention UNet has the highest correlation (0.89), 3 X 3 being a close second (0.87), and the 1 X 1 model
the lowest (0.69) (Figure 13c). The correlation coefficients are even lower over the Southeast Asian region, with
the correlation being 0.77 for the UNet and merely 0.43 for the 1 X 1 ANN (Figure 13d). A similar pattern is
noticed for the meridional momentum flux v/ @’ (Figure S4 in Supporting Information S1).

No clear pattern in prediction skill over the nonorographic hotspots is obtained, but the skill appears to be the
poorest in the tropics. While this has not been explored here, because a bulk of the GW activity in the tropics is
convectively generated, it is possible that adding specific humidity as a feature could alleviate some of these
biases. Here, vertical velocity serves as a proxy to represent tropical convection.

The zonal mean flux profiles of the predicted fluxes, and the vertical profile of flux variability are shown in
Figures S5 and S6 in Supporting Information S1, respectively. The NNs generate strong predictions of the zonal
mean profile and flux variability of the predicted fluxes. Moreover, the variability generated by M3 matches the
variability in ERAS much more closely than the variability generated by M1. The deviations are the strongest in
the upper stratosphere.

Based on the analysis, a stratosphere-only Attention UNet-based architecture with a global receptive field in the
horizontal and a limited receptive field in the vertical consistently predicts the GWF skillfully over all latitudes.
Many of these differences are not apparent when analyzing the time-averaged flux maps and are only revealed
while analyzing the GWF's transient evolution.
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Transfer learning on Attention UNet | u, v, 6, w | 10-30 hPa
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Figure 14. (a, b) True resolved gravity wave flux u’®’ (units mPa) for the NDJF 2015 period and the NDJF 2018-2019
period for ERAS and IFS-1 km, respectively. Predicted fluxes for (c) ERAS5 NDJF 2015 and (d) IFS-1 km NDJF 2018-2019
input from the stratosphere-only Attention UNet model before transfer learning (TL). (e, f) Respective neural network
predicted fluxes after TL on IFS-1 km. Fluxes are shown for the model with input features {u,v,0,w}.

5.3. Correcting Flux Magnitudes Using Transfer Learning (TL)

To systematically correct the magnitudes of the predicted GWF, we apply TL, as described in Section 3 and
illustrated in Figure 4. All the NNs were re-trained on IFS-1 km fluxes using TL, but for clarity here we only
discuss the results for the stratosphere-only Attention UNet model. The models were re-trained by “unfreezing”
the last 2 layers, the last 3 layers, and the last 4 layers. The losses were the lowest when only the last 4 layers were
unfrozen for re-training (while keeping the preceding layers unchanged) (Figure S9 in Supporting Informa-
tion S1). Here, we only show the results for these 4-layer runs and share the results from the other runs as
Supporting Information S1.

To assess the efficacy of TL, we first evaluate/validate the ERAS5-trained NNs on input-output pairs from IFS-
1 km. Then, following TL, we evaluate the re-trained neural nets on input-output pairs from both ERAS and IFS-
1 km. This serves two key purposes. First, it allows assessing the model's predictive capability on out-of-set data
from IFS-1 km. Before retraining, one can expect the ERAS5-trained models to underestimate the IFS-1 km GWF.
Second, it allows a direct assessment of the improvements in model prediction due to TL. After retraining, the
models should ideally predict stronger GWF for ERAS and provide magnitudes that are comparable to IFS-1 km.

The time-averaged predictions from the TL experiments are shown in Figure 14. Before TL, the predictions from
UNet strongly match the GWF from ERAS (Figures 14a—14c). In addition, the UNet predicts significantly weaker
GWEF for IFS-1 km: the positive fluxes in the tropics, the Southern Ocean belt, the fluxes over Central Asia are all
weaker (Figures 14b—14d). Following TL, however, a striking increase in the flux magnitudes is noted for both
ERAS and IFS inputs. The predicted flux map qualitatively agrees with ERAS prediction prior to TL but has much
stronger magnitudes (Figures 14c—14e). Also, the predicted fluxes for IFS input now largely agree with the GWF
mean from IFS-1 km (Figures 14d—14f). Thus, the models preserve their learning from the low-resolution ERAS
data and update the model parameters to appropriately scale it, while also matching the fluxes from the high-
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Figure 15. (left column) Resolved ERAS flux u’w’ (units mPa), (middle column) its prediction on ERAS test set before
transfer learning (TL), and (right column) its prediction on ERAS test set after TL. The fluxes are shown for three different
months: (top row) April 2015, (middle row) July 2015, and (bottom row) October 2015. The color bars for the third column
are differently scaled than those for the first two columns. Predictions are shown for stratosphere-only M3 with input
features {u,v,0,w}.

resolution IFS-1 km. Sequentially using the two data sets thus allows learning GWFs from one data set and then
using another, better-quality data set, to enhance learning and provide improved GWF magnitudes. The pre-
dictions generated by models when only the last two and three layers were re-trained are shown in Figures S10 and
S11 in Supporting Information S1, respectively.

Similar conclusions are drawn for the out-of-set months of April, July, and October 2015 (Figure 15). Note that
since we had access to only 4 months (NDJF) of IFS-1 km data, it is only possible to test the re-trained models for
these months on ERAS. For all 3 months, we find that before TL, the UNet predicts a global GWF distribution
similar to ERAS (Figures 15b,e and 15h), but following TL, the UNet preserves the global features/hotspots for
GW activity while yielding much stronger GWFs, correcting for ERAS's low resolution (Figures 15¢, 15f, and
151). Most notably, the positive fluxes in the tropics are enhanced by a factor of 2. Likewise, the wintertime belts
of midlatitude GW activity identified in Hendricks et al. (2014) and Gupta, Sheshadri, Alexander, and
Birner (2024) are enhanced by at least a factor of 2. For April, the fluxes are scaled similarly in both hemispheres.
For July and October, the fluxes are scaled more strongly in the winter (Southern) hemisphere. The predictions
generated by models when only the last two and three layers were re-trained are shown in Figures S12 and S13 in
Supporting Information S1, respectively.

Finally, we illustrate the time evolution of the fluxes from the TL models on two prominent features of variability
in the stratosphere: the tropical QBO and the Southern final warmings (Figure 16). Both the features are strongly
influenced by GW forcings. For the QBO, M3 UNet correctly learns the GWF transition around easterly-to-
westerly phase transitions (Figures 16a,b,c). Following TL, the magnitude of the positive GWF change signifi-
cantly between Jan 2015 to July 2015, and is accompanied by an increase in the negative fluxes from August 2015
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Figure 16. Evolution of the true resolved flux u’ @’ (units mPa) from (a, d) ERAS, (b, ) predicted flux from stratosphere-only
Attention UNet before transfer learning (TL), and (c, f) predicted flux after TL for two prominent patterns of variability in the
stratosphere: (left column) tropical quasi-biennial oscillation and (right column) Antarctic final warmings. Tropical fluxes
are averaged over 10°S—10°N and the winter midlatitude fluxes are averaged over 55°S—65°S. In (a—c), the black dashed line
separates the training period from the testing period, and thus, fluxes to the left of the bar are identical for all three plots, while
the fluxes to the right of the bar in (b) and (c) show the predicted fluxes. In contrast, in (d)—(f), the black dashed line shows the
final warming date for the SON 2015 period. For all plots, the fluxes are shown in color, and the solid black curves show the
zonal mean zonal wind with a contour interval of 20 m/s. Fluxes are shown for TL-updated stratosphere only M3 Neural
Network with input features {u,v,0,w}.
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Figure 17. Same as Figure 9 but for daily averages instead of seasonal averages. (a) December-January-February, (b) March-
April-May, (c) June-July-August, and (d) September-October-November 2015. For daily averages, the Attention UNet
model consistently has the lowest Hellinger distances, and offers better predictions over both the distribution bulk and tails.
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to December 2015. Likewise, a striking increase in the negative GWF flux magnitudes is obtained during the final
warming period following TL (Figures 16d,e,f). Re-training on IFS-1 km fluxes enhances the GWF around 60°S
by a factor of 2-3 during the final warming period. These magnitudes are consistent with the calculations in Gupta
et al. (2021), which revealed a 60% underestimation of the resolved fluxes by ERAS during the final warming
period.

6. Conclusion and Discussion

Climate prediction models represent GW effects using simplified parameterizations that often neglect their
horizontal propagation, leading to key biases. We developed three deep-learning NNs to represent atmospheric
GWs in coarse-climate models. The three NNs represent three different degrees of horizontal nonlocality: single-
column, 3 X 3 neighboring columns, and globally nonlocal. All NNs take background winds and temperature as
input and produce the vertical momentum fluxes u’ @’ and v/ @’ as output. The NNs were trained and tested on
4 years of resolved GW fluxes from modern reanalysis, ERAS, using three different feature sets, and evaluated in
both the troposphere and the stratosphere. Since the 25 km ERAS only resolves a fraction of the mesoscale GW
spectrum, the NNs were subsequently partially re-trained using transfer learning on mesoscale-resolving GWF
data extracted from a 1.4 km global climate model, to compensate for and correct the fluxes underestimated in
ERAS.

The offline performance of the NNs was assessed on both the seasonal mean and transient evolution. The NNs
provide a reasonable prediction of the DJF and JJA global fluxes in the troposphere and the stratosphere. Using the
tropospheric and stratospheric background conditions to predict the GWFs only in the stratosphere led to better
model performance and accurately modeled the belt of GW activity in the midlatitude stratosphere. The NN,
especially the Attention UNet, also demonstrated proficiency in predicting the fluxes over both orographic and
nonorographic hotspots, with some remaining biases in the tropics. This is despite the Attention UNet being
trained on a substantially lower number of training samples (215 million single columns vs. 27k global time
slices). Our experiments, thus, demonstrate the importance of embedding horizontal nonlocality in the deep
learning architectures for a more accurate ML-based flux prediction.

Following TL trials, the NNs preserved their learning from training on low-fidelity ERAS, while also learning to
correct the resolved flux magnitudes from re-training on high-fidelity IFS-1 km. As a result, the final NNs showed
skill both in (a) identifying GWFs in space and time, and (b) consistently amplifying (or correcting) the GWF
magnitudes for all seasons. The NNs also predicted consistent momentum fluxes in the tropics and the mid-
latitudes associated with the QBO and the Austral final warmings, respectively.

Stable offline performance of NNs does not always equate to stable online performance (Brenowitz et al., 2020).
Given the promising offline performance of the data-driven “schemes,” efforts are underway to couple them to a
coarse-climate model (National Center for Atmospheric Research's Community Atmosphere Model (CAM7))
and evaluate its online performance. Due to computational feasibility, particular focus will be on coupling the
single-column and the globally nonlocal UNet to CAM and assessing their contributions to overall stratospheric
variability, stratospheric extremes, and their predictions for various global warming scenarios. This will present a
rigorous test of the scheme's generalizability to unseen dynamical conditions.

The results obtained indicate the following regarding the development of data-driven sub-grid scale
parameterizations:

i. Embedding nonlocal dynamical information can be crucial to improving deep learning-based process rep-
resentation and flux predictions. The increase in performance from M1 to M2 to M3 is not monotonic, as M2
has a higher bias than M1 and M3, despite having comparable or lower training errors. Ultimately, the model
with the best performance (Attention UNet) was the one that embedded the most nonlocal information to
make the prediction. The training errors too decreased more rapidly for the nonlocal models (M2 and M3)
than for the single-column model (M1).

ii. Since GWFs have a fine-scale structure, having vertical velocity as an input feature improves model pre-
diction. NNs with just {u,v,w} as input fail to predict the finer-scale flux features. This contrasts the findings
from the parameterized drag emulator (WaveNet) of Espinosa et al. (2022), where training on just u leads to
R? values > 0.9 and adding  as a feature results in marginal improvements.
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iii. High-resolution climate model output, while scarce, can serve as invaluable training data for developing data-
driven parameterizations of subgrid-scale processes. As argued in Parthipan and Wischik (2022), high-
resolution climate data from multiple projects and initiatives can be combined to prepare a unified high-
volume, high-fidelity training set covering a broad range of scenarios and numerics. Our TL experiments
strengthen their argument. The ERAS + IFS-1 km approach adopted here highlights a pathway to use a
combination of heterogeneous high-resolution GW data sets to develop future data-driven parameterizations,
also potentially improving their generalizability.

Multiple avenues exist to further improve the deep learning schemes developed in this work, and efforts are
underway to address some of the following limitations:

o Predicting small values: Unlike the seasonally-averaged GWFs with Hellinger distances less than 0.01
(Figure 9 and Figure S7 in Supporting Information S1), the histogram of daily averaged fluxes (Figure 17 and
Figure S8 in Supporting Information S1) reveals the NNs' tendency to underestimate GWFs. With Hellinger
distances of 0.1 and higher, the daily predictions underestimate a portion of the bulk of the bimodal spectrum
and instead generate a unimodal spectrum centered around 0. This reveals the models' inability to distinguish
between weak atmospheric variability and noise.

o Validating TL: GWF corrections following TL appear to be consistent with our understanding of GW
modeling. Yet, there is no direct way to rigorously validate the GWFs except either through (a) testing on other
high-resolution climate model outputs, or (b) by coupling the NN to a coarse-climate model and assessing the
resolved wind fields and variability like the QBO period, sudden stratospheric warming frequency, and final
warming dates.

o Training data: Extracting GWF from high-resolution data sets is computationally intensive. For this reason,
we only used 4 years of ERAS data and complemented it with 4 months of IFS-1 km data. Given the
remarkable performance on 4 years of data, expanding the training set can undoubtedly lead to key perfor-
mance gains, especially in the case of extreme events and low-frequency climate variability. However, due to
significant latency in model-level data retrieval from the Copernicus Climate Data Store with added issues
related to storage, we have restricted the analysis to only 4 years. These years, however, do capture almost two
complete QBO cycles and major portions of ENSO-related variability and serve as a robust, if not exhaustive,
data set for training. Part of the ongoing work addresses this issue of data (in-)sufficiency head-on by
developing data-driven schemes with sparse training data but superior skill by leveraging large Al foundation
models already pre-trained on high volumes of global weather and climate data.

o Feature set: The neural architectures and feature sets used in this study were inspired by traditional param-
eterizations. Because the ML model size scales proportionally to the square of the number of features, we have
restricted ourselves to using up to four features. While not amply explored in this study due to data limitations,
we surmise that adding other relevant fine-scale variables, like specific humidity and convective fluxes, can
lead to notable performance gains.

In conclusion, our analysis demonstrates the strong capability of machine learning methods to learn physically
consistent GW fluxes from a blend of high-volume low-resolution and low-volume high-resolution climate data
to skillfully represent their missing effects in coarse-climate models; especially nonlocal horizontal propagation
and transience. Ours being the first-ever deep learning model to be trained on globally resolved GW fluxes, we
identify both the strengths of this approach and avenues for future improvements, while also providing a
benchmark for future studies. The models provide a remarkable prediction of both the seasonally averaged fluxes
and their time evolution over prominent hotspots. Upon coupling with coarse-climate models, these NNs can
potentially replace existing GW parameterizations and serve as fast emulators to represent missing GW effects.
These missing small-scale effects present as one of the leading sources of structural uncertainty in future climate
projections. Adopting this approach for a broader cohort of sub-grid scale processes can potentially improve the
representation of global circulation in climate models and open avenues to generate more precise future climate
projections.
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