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New technologies have allowed researchers to better design,

build, and analyze complex consortia. These developments are

fueling a wider implementation of consortium-based

bioprocessing by leveraging synthetic biology, delivering on

the field’s multitudinous promises of higher efficiencies,

superior resiliency, augmented capabilities, and modular

bioprocessing. Here we chronicle current progress by

presenting a range of screening, computational, and

biomolecular tools enabling robust population control, efficient

division of labor, and programmatic spatial organization;

furthermore, we detail corresponding advancements in areas

including machine learning, biocontainment, and

standardization. Additionally, we show applications in myriad

sectors, including medicine, energy and waste sustainability,

chemical production, agriculture, and biosensors. Concluding

remarks outline areas of growth that will promote the utilization

of complex community structures across the biotechnology

spectrum.
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Introduction
Symbiotic intercellular relationships are ubiquitous. Such

cooperative ecosystems exist in diverse arenas, including

plant soil, mammalian guts, and hydrothermal vents [1–

3]. Inspired by nature, synthetic biologists have been

leveraging the capabilities of cellular communities for

over a decade [4–9]. Already, consortia have been

exploited in common processes such as anaerobic diges-

tion and food processing, but a deep understanding of

their complex interplay and how to improve upon it for

wider application is still in its infancy.

Rationally building synthetic multicellular communities

represents a major hurdle in biotechnology. These sys-

tems are inherently more complex and multifaceted than

their monoculture counterparts, yet this provides oppor-

tunities to extend our collective biotechnological reach.

Communities offer the potential for increased efficiency

[10,11], expanded capability [12�,13], greater resilience

[14,15], and modular functionality [16,17]. As a result, the

field has seen an explosion of interest, and it stands on the

cusp of widespread fluency in system design. A number of

tools and approaches have been developed to aid in the

synthetic design and application of these consortia [18–

25], but they need to be further developed to provide

tractability, predictability, and reliability.

This review provides a general overview of recent devel-

opments in this burgeoning field by presenting novel

technological advances in rational consortia design and

analysis, followed by a summary of the many contempo-

rary applications.

Engineering tools
Analytical methods

Relative abundance data are the de facto reporting mea-

sure in cellular communities, but new methodologies

have been proposed that could improve system insight

and understanding. One instance of this is through the

use of reference frames: by establishing a standard com-

parison microbe in the culture, data analysis yields more

consistent results with deeper insight into abundance

dynamics [26�]. Moreover, a less expensive, faster, and

easier diagnostic RNA toehold switch sensor can detect

and quantify specified biomarkers in microbiota [27].

Novel application of 13C isotope labeling has allowed for

specific determination of metabolic flux and inter-species

metabolite exchange in microbial consortia [28], which

can provide key insights into understanding species

interaction and suggest specific engineering targets to

optimize flux into desired products or to reduce wasteful

pathways. Furthermore, knowing population ratios of

species in consortia is key to normalizing metabolite

abundance and protein or enzyme levels. Levels of con-

sortium members in populations of unicellular organisms

can be quantified using techniques such as fluorescence-

activated cell sorting (FACS) flow cytometry [29]. How-

ever, for filamentous organisms or other microbes too

similar to separate via flow cytometry, individual popula-

tions are often determined by qPCR quantification of

well-characterized genes unique to each microbial partner

Available online at www.sciencedirect.com

ScienceDirect

Current Opinion in Biotechnology 2020, 66:292–300 www.sciencedirect.com

mailto:beten@jhu.edu
http://www.sciencedirect.com/science/journal/09581669/66
https://doi.org/10.1016/j.copbio.2020.10.010
https://doi.org/10.1016/j.copbio.2020.10.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.copbio.2020.10.001&domain=pdf
http://www.sciencedirect.com/science/journal/09581669


[30] or by quantification of a consistently expressed

unique protein or metabolite.

Computational analysis

Significant progress has also been made with respect to in

silico consortium analysis. One emerging area has been in

the application of machine learning: biological datasets

are now becoming large enough for this to be a viable

approach, as demonstrated by the analysis of anaerobic

digestion microbiome flow cytometry data [31] and the

prediction of unobserved metabolites from paired

metabolome–metagenome data [32�]. Additionally, soft-

ware such as QIIME 2 [33] has been developed and

updated to facilitate microbiome analysis, with plugin

support for taxonomy classification using machine learn-

ing [34].

The computational design of consortia has similarly seen

recent improvements. Constraint-based community met-

abolic models have proven effective in elucidating mech-

anisms underlying phototrophic–heterotrophic co-cul-

tures [35] and could be applied to better control the

population dynamics of multicellular biological systems.

Mixed-integer linear programming has also predicted

trade-offs between up to three Escherichia coli strains in

a consortium [36]. Furthermore, flux balance analysis has

been done on genome-scale metabolic models simulating

co-cultures of 773 human gut microbes to screen for the

overproduction of a compound of interest [12�], demon-

strating the potential for consortium analysis to extend

beyond current feasible experimental capabilities.

Dynamic flux balance analysis techniques can similarly

help screen consortia, even with non-model organisms, by

coupling it with minimal experimental data about the

strain and iteratively simulating through time [37]. A new

version of the COBRA Toolbox, which is commonly

leveraged to solve this family of optimization problems,

has been released and includes new functionalities,

including the ability to integrate metabolomic, proteomic,

transcriptomic, chemoinformatic, and thermochemical

data [38].

Combinatorial testing of artificial consortia can quickly

exceed our computational capabilities. This forces us to

rethink this approach for larger systems containing more

strains, perhaps by limiting higher-order analyses — in

other words, analyses with more strains in symbiosis — to

systems containing the best-performing consortia with

fewer members (Figure 1). Moreover, by analyzing the

number of artificial consortia that would need to be

tested, we can approximate how current computational

limits restrict exhaustively simulating a custom consor-

tium of given size from a pool of microbial candidates.

Adopting a similar approach as Perisin and Sund [12�], we

estimate that there are about 105 two-member combina-

tions of the 773 characterized human gut microbes [39],

but about 108 three-member and 1022 ten-member com-

binations (Table 1). The COBRA Toolbox can determine

a solution in the range of one second to two minutes [38].

Thus, at a minimum, one could expect combinatorially

testing all two-member pairings to take approximately

3.5 days, but combinatorially testing all three-member

groupings to take 888 days; a four-member system would

be well outside the range of feasibility, taking approxi-

mately 468 years. Supercomputers could possibly reduce

these times, but they would likely still struggle to test

beyond 10-member system combinations, as the fastest

supercomputer at the time of writing is capable of about
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Figure 1
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Diagram illustrating a reduced testing strategy. First, an initial combinatorial analysis would establish a set of co-cultures and assess a desired

characteristic, such as growth rate or metabolite production. Either a percentage or fixed number of the top performers, as determined by the

previous assessment, would then be further analyzed by testing all single-strain additions. This process would be continued until the desired

number of strains are present.
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1017 flops [40]. In contrast, only analyzing consortia group-

ings with the most potential could dramatically reduce

testing requirements (Figure 2).

Biomolecular design

Three objectives often prevail when engineering consor-

tia: controlling population ratios, splitting pathways across

multiple organisms, and grouping cells in a programmed

manner. Hence, several approaches have been developed

in order to implement these functions in practice

(Figure 3).

Population control

Cell-based

The maturation of consortia-building knowledge has led

to a deluge of novel molecular tools to increase control of

these communities. Quorum sensing is often the system

of choice for engineering cell–cell communication, but it
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Table 1

Estimates of the number of artificial consortia that would have to be tested for various computational reduction approaches. Previous

work has observed that three-member syntrophic systems with the greatest growth tend to have highly cooperative two-member subsets

[77], suggesting that one possibility for reducing computational burden could be by limiting analyses of consortia containing n members

to the top-performing consortia of n � 1 members, whereby top-performing consortia are determined by their growth rate,

metabolite production, or another property of interest. This table shows the effects of selecting a relative or absolute number of

top-performing candidates. Using 773 genome-scale models of human gut microbes as a basis [39], we assume the scenario in

which all subsequent consortium constructions are unique. This assumption means that the true number of consortia to test will

likely be less than the number presented here, as top-performing groupings likely share many common members.

Number of tests

Members in artificial

consortia (n of 773)

Combinationsa Selecting top 1%b Selecting top 0.25%c Selecting top 100d

2 105 105 105 105

3 108 106 106 106

10 1022 1013 109 106

100 10128 1095 1049 107

a Cn ¼
773

n

� �

¼ 773!

n! 773�nð Þ!.

b Cn�3 ¼ Cn�1 þ 0:01 � Cn�1 � 773 � n � 1ð Þ½ �, C2 ¼
773

2

� �

.

c Cn�3 ¼ Cn�1 þ 0:0025 � Cn�1 � 773 � n � 1ð Þ½ �, C2 ¼
773

2

� �

.

d Cn�3 ¼ Cn�1 þ 100 � 773 � n � 1ð Þ½ �, C2 ¼
773

2

� �

.
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Elaboration of the data in Table 1. The graph illustrates the number of artificial consortia that would need to be computationally analyzed using

different reduction approaches. By assuming a fixed number of top candidates, the growth rate of the number of tests required is low.

Additionally, the limits of our simplified independence assumption can be seen with the strategy selecting the top 1% of consortia: the number of

groupings to test exceeds the total number of combinations. Unfortunately, because we do not know a priori how many strains will be commonly

shared between top-performing consortia, it is impossible to calculate the actual number of tests required using these reductive approaches.
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can suffer from crosstalk when using multiple sensing

systems. Importantly, this approach has been shown to

improve product yield, as demonstrated by a 60% increase

in naringenin titer for an E. coli co-culture production

system [11]. To increase the number of partners in

a synthetic consortium, six acyl-homoserine lactone

quorum-sensing communication channels have been

analyzed for orthogonality and shown to effectively

regulate gene expression in three strains [41].

Other work has shown that the six two-member modes of

interaction (commensalism, amensalism, neutralism, coop-

eration, competition, and predation) can be built into con-

sortia; the two-member models can subsequently be used to

predict three-member and four-member population dynam-

ics [42��]. Syntrophic exchange is another tool that has been

adapted to build intercellular networks, often by making one

microbe dependent on another for an essential compound.

By cross-feeding amino acids, synthetic bacterial communi-

ties have exhibited enhanced evenness in environments as

complex as the murine gut [43], offering another means of

building stable communities.

Environment-based

While cell–cell signaling offers one approach for de novo

consortium control, population ratios can also be respon-

sive to environmental conditions. Fortunately, relatively

simple control mechanisms using external mediators

have been developed. A consortium of three Saccharo-

myces cerevisiae strains specializing in the fermentation of

either glucose, xylose, or arabinose were shown to have

more stable fermentation kinetics and were more able to

respond to fluctuations in feedstock sugar concentration

than a single generalist strain [15]. Population dynamics

can also be achieved using external signal factors; for

example, Lactococcus lactis strains were engineered to

have a predator–prey relationship that would fluctuate

in the presence of extrinsically mediated chlorampheni-

col concentrations [44]. Moreover, a pH-dependent

promoter has been successfully used in L. lactis to

modulate microbial community behavior [45], and an

orthogonal and inducible quorum sensing system in

E. coli has allowed for tighter peripheral control over

community dynamics [46��].

Biocontainment

Community-scale design has allowed scientists to think

about the creation of broader and longer-term solutions to

challenges that would require the release of engineered

organisms into the wild, as would be the case with human or

plant microbiome engineering [47]. One common chal-

lenge when building engineered consortia is maintaining

genotypic integrity, as new functionality often comes at the

cost of fitness. Sequentially adding strains that both kill the

previous strain and maintain the synthetic circuit of interest

can help prevent a loss of this engineered functionality [48],

resetting the culture’s biological mutation clock. Seques-

tration is often another challenge, which has prompted

discussion about gene drive development with regulated

control on separate chromosomes that can limit spread

across generations [49].

Consortia could uniquely address biosafety issues in a

number of ways. By linking the survival of cell strains to

one another by means of quorum sensing and syntrophic

exchange, microbial communities can be necessarily con-

fined to regions with its partners. These approaches can

be coupled with single-strain strategies, such as environ-

mentally responsive kill switches [50], to provide robust

redundancies. Furthermore, novel toxin–intein antimi-

crobials can target individual strains in microbiota based

on the presence of a unique transcriptional regulator

[51��], allowing engineers to restore an augmented and

unconfined consortium to its natural dynamic.
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Figure 3
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Overview of biomolecular techniques used to construct consortia. In order to control population levels, quorum sensing or syntrophic exchange

systems have typically been used [11,41,42��,43]; recent work has enabled inducible quorum sensing systems [46��]. Division of labor is often an

important part of a co-culture, with new research describing when this arrangement is advantageous and specific frameworks for how to divide a

pathway [52�]. Modern work has further enabled controlled patterning and morphology, leveraging nanobodies to build predetermined structures

[54��,55].
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Division of labor

Engineers often hope to marry ease of use with the

performance of complex tasks, but monocultures have

an upper threshold on their ability to deliver when it

comes to more challenging bioprocesses, frequently

sacrificing simplicity for functionality. Consortia could

address this discrepancy by either splitting a single path-

way or a parallel process across multiple convenient

organisms. Accordingly, more robust division-of-labor

systems have been recently described that allow for

improved synthetic consortia designs. For instance, help-

ful criteria have now been established based on 24 com-

mon metabolic pathway types — such as a two-step

extracellular conversions and three-step intracellular con-

versions — describing when division of labor would

benefit the system [52�]. Indeed, division of labor can

outperform monocultures in processes with many steps,

resource-intensive enzymes, toxic compounds, or extra-

cellular pathway steps [52�]. Job specialization in consor-

tia can reduce bioprocessing for complex molecules, as

demonstrated by the single-culture production of pure

translation machinery using up to 34 E. coli strains [53].

Multicellular circuits have also been demonstrated: in a

proof-of-principle study, a cell-signaling control scheme

was used to regulate sugar concentration, in which a

specified cell type functioned as either the controller’s

sensor, modulator, or effector [13].

Spatial organization

Observing nature’s intricate multicellular architecture has

led to a desire to engineer custom cell-based structures and

the subsequent development of programmed morphology.

To this end, a facile nanobody-antigen system has been

created in E. coli. This genetically encoded system can

design myriad multicellular patterns, including phase sep-

aration, differential adhesion, and sequential layering

[54��]. Similar work showing self-organization and pro-

grammed structure assembly was completed with murine

fibroblasts [55]. Other work has demonstrated encoded

control via AND-logic, in which E. coli cells expressed

yellow or cyan fluorescent protein when one of two signal-

ing lactones dominated, but red fluorescent protein when

both were present [56]. Additional work has allowed for the

physical separation of genetically distinct cell types based

on motility by programming plasmid segregation into only

one daughter cell during division [57].

Standardization

To accelerate the adoption and development of consortia

technology, standardized systems will be required. As of

now, the scientific community largely lacks model micro-

biomes for different use cases, hindering researchers’

ability to gain a detailed and comprehensive understand-

ing of a single consortium [58]. Additionally, metabolic

network reconstructions have the potential to rapidly

screen consortia, but the manual curation required to

obtain high-quality models limits scalability. As a result,

efforts such as AGORA [39] and CarveMe [59] have

attempted to produce a multitude of accurate genome-

scale models that can facilitate automated consortia test-

ing. Biomolecular tools can often be freely utilized across

different organisms, but low numbers of effective signal-

ing mechanisms have hindered the development of

designer consortia: to date, only three quorum sensing

systems have been shown to be orthogonal [41]. In order

to fully realize the capabilities of consortia, the research

community must come together to address and overcome

these standardization challenges to expand the generaliz-

ability of consortia across fields.

Applications
Medicine

The potential health impact of gut microbiota has

prompted a flurry of research on potential interventions

for various medical conditions. Oral administration of L.

lactis, for example, was shown to reduce Vibrio cholerae and

increase cholera survival rates of infant mice; L. lactis was

further engineered to produce a reporter enzyme easily

seen in fecal samples that could detect V. cholerae signals

[60]. Similarly, E. coli was engineered to metabolize

phenylalanine under anoxic conditions, and its use was

illustrated in mouse and primate models as a potential

therapeutic for phenylketonuria [61]. Although some

work has explored engineered interspecies consortia in

germ-free mice [43], microbiome interventions tend to be

single-strain additions, whereas the addition of commu-

nities could more strongly regulate the desired response

and enable more complex interventions. In contrast, co-

cultures have been utilized for pharmaceutical and nutra-

ceutical production, as illustrated by the production of

sakuranetin [16], rosmarinic acid [17], and apigetrin [62].

Energy and waste sustainability

Modern concerns surrounding availability of non-renewable

energy supplies and global climate conditions have triggered

a greater demand for renewable energy sources. Algal bicul-

tures, one example of a biological solution, can have a higher

energy return on investment and lower greenhouse gas

emissions compared to monocultures, based on life cycle

assessment [63]. By extending the products of photosynthe-

sis to heterotrophs, co-cultures between cyanobacteria and

fungus have been used to generate greater biomass and

altered lipid profiles compared to axenic cultures [64].

Microbial fuel cells are also an area of interest in which

co-cultures generate electricity by using lactate produced

from glucose and xylose as an electron donor [65].

Utilization of non-traditional feedstocks represents

another topic of interest for co-cultures due to the impact

on sustainability. Lignocellulosic biomass in particular

could be a useful carbon source to upcycle, and Bacillus

megaterium co-cultures secreting an endoglucanase and

cellulase have been shown to degrade cellulose, providing

a possible alternative to current high-cost pretreatment

296 Tissue, cell and pathway engineering
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and purification methods [66]. Analogously, work with

fungus co-cultures of Trichoderma reesei and Rhizopus

delemar has demonstrated how consolidated bioprocessing

can convert cellulose and lignocellulosic biomass into

fumaric and lactic acid [67]. Co-cultures have also been

applied to bioremediation: co-culturing cyanobacteria

Synechococcus elongatus with an engineered heterotrophic

bacteria Pseudomonas putida resulted in degradation of

2,4-dinitrotoluene [68].

Chemicals

There is now an increased interest in bioprocessing

because of its potential for green chemical manufacturing,

a trend often characterized by ambient reaction condi-

tions, the use of fewer harmful substances, and develop-

ment of safer product alternatives [69]. Here too consortia

can play a key role in producing platform chemicals. For

example, inefficiencies in glutarate production from L-

lysine were alleviated by splitting the pathway across two

different E. coli strains [10]. Indeed, E. coli co-cultures

have demonstrated versatility, able to produce com-

pounds such as phenol [70�], pyranoanthocyanins [71],

and naringenin [11]. In parallel, computational work on

genome-scale metabolic models has also predicted micro-

bial co-cultures that could provide a sound platform for

converting food waste to commodity chemicals [12�].

Agriculture

Soil microbiota are important for a plant’s health and have the

capacity to be engineered to address agricultural concerns.

Future food security has become a common concern, and

plant microbiome engineering presents a promising approach

to enhance current farming practices [72]. Current programs

involve adding nitrogen fixation capabilities to bacteria natu-

rally associated with a plant’s soil microbiome [73]. Also,

synthetic communication systems between plants and rhizo-

sphere bacteria form the basis for laterally transferring foreign

bacteria to a plant’s soil microbiome while simultaneously

providing a biocontainment mechanism  [74].

Biosensors

Applying biologics to detect molecules has the potential

to complement or even replace alternative analytical

methods. Cell-based biosensing systems can offer porta-

bility, training, and flexibility advantages compared to

traditional sensing systems [75]. Biosensors have yet to be

broadly commercialized but continue to be slowly

adopted, and consortia-based applications are gaining

traction. For example, a co-culture system can detect

organophosphorus pesticides with sensitivity on par with

electrochemical sensors [76]. Additionally, by linking

metabolite biosensors with growth-regulating genes, E.

coli co-cultures have been shown to self-select for cells to

increase phenol production [70�].

Conclusions
Consortial systems constitute a rapidly emerging field of

biotechnology due to the advantages offered in terms of

job specialization, adaptability to environmental changes,

and expanded bioprocessing capabilities. Indeed, these

natural and synthetic consortial systems are likely to

become important players in the medical, agricultural,

and green industries. Well-designed systems that take

advantage of new tools to predict community behavior,

program cell–cell interaction, and elucidate the rules

governing microbial partnerships will be able to remove

the bottlenecks currently limiting consortia. To be sure,

these technologies still require significant improvements

before they can transition into full-fledged industrial

applications; proof-of-concept studies do not yet meet

productivity or environmental benchmarks.

While there has been much progress, the field still has gaps

that will dramatically accelerate technology implementa-

tion when resolved. The lack of robust orthogonal systems

has stymied our ability to create predictable communities

consisting of several strains. Additionally, a high-through-

put means to effectively obtain detailed and accurate

participant levels and bioinformatic data for consortia is

lacking. As a result, computational tools to create and

predict community dynamics have also lagged, only able

to adopt contemporary techniques like machine learning in

narrow instances. Increased standardization in various areas

—such as theorganization ofmicrobiomedata,architecture

of genome-scale models, and use of more model consortia

systems — would help unite a fractured informational

landscape.Moreover, applications that involve engineering

consortia outside of controlled environments will require

the development of multiple redundant and robust biocon-

tainment strategies — a formidable obstacle for the field.

Nonetheless, recent advances serve as harbingers of the

field’s future: the successful design of artificial commu-

nities that are robust, efficient, and flexible, just like the

natural ones after which they are modeled. In such a

similar manner, researchers in our field must continue to

communicate and collaborate in order to ensure that

engineered microbial communities become an integral

part of the biotechnology and biomanufacturing land-

scape in what promises to be a consortium-based biotech-

nological revolution.
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