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Abstract Global climate models parameterize a range of atmospheric‐oceanic processes, including gravity

waves (GWs), clouds, moist convection, and turbulence, that cannot be sufficiently resolved. These subgrid‐

scale closures for unresolved processes are a substantial source of model uncertainty. Here, we present a new

approach to developing machine learning (ML) parameterizations of small‐scale climate processes by fine‐

tuning a pre‐trained AI foundation model (FM). FMs are largely unexplored in climate research. A pre‐trained

encoder‐decoder from a 2.3 billion parameter FM (NASA and IBMResearch's Prithvi WxC)—which contains a

latent probabilistic representation of atmospheric evolution—is fine‐tuned (or reused) to create a deep learning

parameterization for atmospheric gravity waves (GWs); a process unseen during pre‐training. The

parameterization captures GW effects for a coarse‐resolution climate model by learning the fluxes from an

atmospheric reanalysis with 10 times finer resolution. A comparison of monthly averages and instantaneous

evolution with a machine learning model baseline (an Attention U‐Net) reveals superior predictive performance

of the FM parameterization throughout the atmosphere, even in regions excluded during pre‐training. This

performance boost is quantified using the Hellinger distance, which is 0.11 for the baseline and 0.06 for the fine‐

tuned model. Our findings emphasize the versatility and reusability of FMs, which could be used to accomplish

a range of atmosphere‐ and climate‐related applications, leading the way for the creation of observations‐driven

and physically accurate parameterizations for more earth system processes.

Plain Language Summary Climate models struggle to accurately capture the physical effects of

small‐scale atmospheric processes like gravity waves, turbulence, and clouds, which are critical to accurately

predicting future climate states. These processes evolve on scales finer than typical model grid resolutions. As a

result, they continue to rely on approximations, known as physical parameterizations, to represent their missing

effects. The use of parameterizations introduces uncertainty and makes climate predictions less reliable. Here,

we propose a new approach to improving these parameterizations using modern advances in deep learning.

Specifically, we use Prithvi WxC, a large AI model trained on multiple decades of one reanalysis, and fine‐tune

it using limited years of gravity wave (GW) data from another reanalysis to develop an emulator capable of

predicting a physically consistent atmospheric GW flux evolution. The novel approach of leveraging a large AI

model pre‐trained on vast volumes of atmospheric data and augmenting it with limited process‐specific data

allows the creation of compact and easily trainable data‐driven physical parameterizations. While we focus on

gravity waves, our approach is flexible and can be generalized to developing data‐driven parameterizations of

other earth system processes.

1. Introduction

Accurate prediction of future climate is a trillion‐dollar challenge with critical consequences for the world

economy, food security, global health, and urban planning. Currently, state‐of‐the‐art climate projections are

highly uncertain, and much of the inherent model uncertainty stems from approximations made in subgrid‐scale

parameterizations (Lee et al., 2023; Morrison & Lawrence, 2020). For instance, it has been suggested that model

uncertainty accounts for 98% of the total uncertainty in precipitation projections (Wu et al., 2022). This study aims

to demonstrate the untapped potential of AI foundation models (FMs) to improve traditional numerical climate

models by facilitating the creation of subgrid‐scale parameterizations.
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FMs can be broadly defined as task‐agnostic large AI models which are pre‐trained using a self‐supervised

learning objective (Bommasani et al., 2022), such as learning weather evolution from time t to t + Δt. Real-

izing the single‐task limitation of existing AI weather forecasting models (Bi et al., 2023; Lam et al., 2023; Price

et al., 2025), despite their massive compute requirements, FMs are developed to be versatile and present the next

frontier in AI research. Pre‐trained FMs are subsequently fine‐tuned to perform a broad range of sub‐tasks, a.k.a.,

downstream tasks. FMs are largely unexplored in climate science, and only a couple of weather and geospatial

FMs exist to date: AtmoRep (Lessig et al., 2023), Aurora (Bodnar et al., 2025), and Prithvi HLS (Jakubik

et al., 2023). To our knowledge, only weather‐related downstream applications of FMs have been explored thus

far, including hurricane track and intensity prediction, air quality predictions, downscaling, vegetation burn‐scar

detection, etc.

Here, we use a recently developed, state‐of‐the‐art FM, Prithvi WxC (Schmude et al., 2024) (hereafter Prithvi), to

demonstrate a climate‐related application of FMs, that of developing deep learning parameterizations for unre-

solved earth system processes for climate models. The parameterization for atmospheric gravity waves (GWs)

presented here is capable of representing the missing effects of atmospheric GWs in global climate models. We

blend the pre‐trained encoder‐decoder pair from Prithvi with high‐resolution GW momentum flux data (see

Section 2) to create a fine‐tuned AI model that skillfully predicts subgrid‐scale GW activity and outperforms

existing benchmarks (Gupta, Sheshadri, Roy, et al., 2024) for deep‐learning‐based GW flux prediction. The study

motivates and calls for the strategic use of FMs for climate‐related tasks by demonstrating how to leverage

observations and FMs to efficiently achieve predictive tasks that might otherwise require much larger volumes of

training data.

Atmospheric GWs are ubiquitous multiscale (spatial scale O(1)‐O(1,000) km) oscillations generated by atmo-

spheric convection, jet stream disturbances, geostrophic imbalance, and flow over mountains (Fritts & Alex-

ander, 2003). GWs dynamically couple different layers of the atmosphere by carrying near‐surface momentum

and energy to stratospheric and mesospheric heights. In the troposphere, GWs play a critical role in setting the

location and strength of the jet streams (Palmer et al., 1986). In the stratosphere, they influence the quasi‐biennial

oscillation of tropical winds (Giorgetta et al., 2002), and the springtime breakdown of the Antarctic polar vortex

(Gupta et al., 2021). In the mesosphere, GWs are the primary driver of the pole‐to‐pole overturning circulation

(Becker, 2012). GW‐induced cold anomalies in the polar winter stratosphere provide suitable conditions for the

formation of polar stratospheric clouds, enabling reactions that promote the destruction of ozone (Dörnbrack

et al., 1999; Hoffmann et al., 2017; Höpfner et al., 2006). Aside from their influence on climate variability, GW‐

induced clear air turbulence can influence commercial air travel and is believed to have caused the sudden

plunging of Singapore Airlines flight SQ321 on 21 May 2024 (Hirschfeld, 2024).

The current climate model grid resolution (50–100 km) is insufficient to fully resolve dynamically important

processes like GWs, clouds, and turbulence. The traditional approach to represent these missing processes has

been to couple the numerical fluid solver with a suite of sub‐grid scale parameterizations to approximately

capture the unresolved effects of these processes (Alexander & Dunkerton, 1999; Lott & Miller, 1997; Bogen-

schutz et al., 2012; Iacono et al., 2000, to name a few).

Parameterizations are often not well constrained by observations and, for computational reasons, have

simplified assumptions that compromise their physical accuracy. For GWs, these assumptions include an

idealized source spectrum and, generally, complete neglect of their transient evolution and horizontal prop-

agation (Achatz et al., 2024). Further, their parametric tuning is often sub‐optimal because the parameters are

optimized to replicate only certain atmospheric features of interest. These inductive biases (due to simplifying

assumptions) often add up and result in inaccurate model dynamics, such as the prominent “cold‐pole bias”

(McLandress et al., 2012), leading to large uncertainties in future climate projections (Golaz et al., 2013;

Mauritsen et al., 2012; Zhao et al., 2018).

Data‐driven approaches are increasingly being used to develop fast GW flux (GWF) emulators for climate models

of varying complexity (Chantry et al., 2021; Connelly & Gerber, 2024; Espinosa et al., 2022; Hardiman

et al., 2023; Lu et al., 2024; Sun et al., 2024; Ukkonen & Chantry, 2024). These emulators complement existing

efforts to develop nonlocal GW parameterization using physics‐based approaches (Eichinger et al., 2023; Voelker

et al., 2023). Despite being effective, these emulators are trained on parameterization data itself and do not offer

an improved process physics representation. Here, we fine‐tune the FM on resolved GWFs. Training on resolved

GWFs allows the neural networks to learn key physical effects of GWs directly from fine‐tuning data sets.
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Our fine‐tuned parameterization, created by blending Prithvi and ERA5 reanalysis skillfully predicts the resolved

GWmomentum fluxes for a provided background atmospheric state (as shown in Figure 1). The GW structure on

22 May 2015 and the momentum flux carried by the waves are shown in Figure 1. The fine‐tuned model

accurately predicts the fluxes over the Drake Passage and the Southern Ocean. The fluxes over the Andes extend

sufficiently leeward (up to 80° longitude) over the Southern Ocean, indicating that the fine‐tuned model can learn

and represent the lateral propagation and transient evolution of the generated waves; a physical feature absent in

most current GW parameterizations (Plougonven et al., 2020).

This fine‐tuned parameterization for GWs can be coupled to a coarse‐resolution climate model to represent

“missing” GW effects. Since Prithvi was pre‐trained on key atmosphere‐ocean‐land variables, the scope of this

approach transcends GWs, and fosters and expedites the creation of physically accurate AI parameterizations of

other small‐scale earth system processes, ultimately contributing to the development of accurate and interpretable

hybrid climate prediction systems.

2. Methods

2.1. The Prithvi WxC Foundation Model for Weather and Climate

Prithvi WxC, jointly developed by NASA and IBM Research, is a transformer‐based deep learning architecture

that combines features from several recent transformer architectures to effectively process regional and global

dependencies of the input data and to efficiently process longer sequence lengths of tokens. Any image input to a

transformer is broken down into smaller square patches that are then projected to a higher‐dimensional space to

represent the image in numerical space. These projections, which represent discrete amounts of information, are

referred to as a token. This allows the model to, for instance, run in different spatial contexts or infuse additional

tokens (i.e., adding more information as tokens into later stages of the model instead of the input to preserve or

enhance context) from off‐grid measurements into the model during fine‐tuning. Prithvi has 2.3 billion trainable

parameters and is trained on 160 data channels (10 variables over 14 pressure levels and 20 surface variables)

using 40 years of 3‐hourly MERRA‐2 reanalysis (Gelaro et al., 2017) data at a 0.5° × 0.625° spatial resolution.

The channels include 20 surface variables (winds, pressure, latent heat flux, surface roughness, etc.) and 10 at-

mospheric variables (winds, clouds, humidity, etc.) on 14 vertical pressure levels each. These variables are

tabulated in Tables 2 and 3 in Appendix A of Schmude et al. (2024).

Figure 1. Predictions from the fine‐tuned gravity wave (GW) parameterization. The left plot shows the temperature structure

of GWs over the Drake Passage, as seen in ERA5 reanalysis (Hersbach et al., 2020). Temperature perturbations Tʹ were

computed by removing the large scales, here defined as the first 21 total wavenumbers. The middle and right plots show the true

and predicted momentum flux carried by the waves. 30 km is an approximate representative height since the fluxes are evaluated

on a pure pressure level. Here (and throughout the study), “true” flux refers to the flux derived from the ERA5 reanalysis, and

the predicted flux is the prediction from the machine learning models trained on ERA5. Almost all GWs in ERA5 are model‐

generated. Therefore, the GW structure and the inferred flux might not be a precise representation of the actual atmospheric

conditions.
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The validation of Prithvi extends from zero‐shot evaluations for reconstruction and forecasting to other down-

stream tasks, such as the downscaling of weather and climate models, the prediction of hurricane tracks, and

climate model parameterization. The architecture of the pre‐training backbone is shown in Figure 2a. As shown in

the figure, Prithvi was trained on a masked reconstruction objective, which means that in addition to minimizing

the root mean square for the predictions, the model also minimized reconstruction error frommasked input data. A

fixed fraction (50%) of the input cells were masked, and the model was tested on how well it could fully

reconstruct the global field from the masked data. More details are provided in Schmude et al. (2024), where

Equation 1 and Section 2.5.1 focus on masked reconstruction.

The fine‐tuning task presented in this manuscript is identical to that presented in Section 3.2 of Schmude

et al. (2024), that is, the “Climate Model Parameterization for GW Flux” task. Schmude et al. (2024) only briefly

showcase it as one among many applications of an AI foundation model, but here, we delve deeper and provide a

full detailed analysis of the task.

2.2. Preparing Training Data for GW Flux Prediction

The fine‐tuning data for GW flux prediction was prepared using ERA5 global reanalysis data (Hersbach

et al., 2020) retrieved at a 0.25° × 0.25° horizontal resolution, 137 vertical levels, and at an hourly frequency. The

effective resolution of GWs in ERA5 depends on the truncation of the underlying model in spectral space, which

includes spherical harmonics up to total wavenumber 639, and its native N320 reduced Gaussian grid with

∼31 km resolution. Given the need to damp small‐scale motions for numerical stability, waves in ERA5 are

poorly represented on scales below ∼150 km. Since the model output is interpolated and publicly presented on a

0.25° latitude‐longitude grid, which corresponds to roughly 25 km around the Equator, we refer to ERA5 as

having 25 km resolution, but expect GWs to be accurate on scales of 150 km and larger.

We aim to represent the missing GW fluxes in a coarse‐climate model by learning it from a higher resolution data

set (ERA5) that resolves a substantial portion of the mesoscale GW spectrum. Therefore, we select a target model

resolution of 280 km, which is an order of magnitude coarser than ERA5's underlying forecast model. A climate

model at this resolution typically captures some large GWs and employs numerical parameterizations to represent

the remaining unresolved GWs. So, we first filter out the large‐scale non‐divergent motions in ERA5, attempting

to capture only the “unresolved” portion of the GW spectrum. Hence, we compute the resolved GW fluxes in

ERA5 by applying a Helmholtz decomposition (HD) (Köhler et al., 2023; Lindborg, 2015) on the raw output as

follows. First, the horizontal winds (u and v) are decomposed into rotational and divergent components:

u⃗ = (u,v) = −∇ϕ + ∇ × ψ (1)

where ϕ is the potential function such that ∇ϕ is irrotational. Similarly, ψ is the rotational streamfunction such

that ∇ × ψ is non‐divergent. ϕ and ψ are used to reconstruct the divergent (div) and rotational (rot) parts of the

horizontal flow as:

u⃗ = (u,v)→HD (udiv,vdiv) + (urot,vrot). (2)

The target climate model with ∼280 km resolution could resolve GWs with wavelengths greater than ∼1,400 km.

To remove these “resolved” large GWs (including equatorial Kelvin waves) from the small‐scale flux estimate,

we apply an additional T21 high‐pass filter on the divergent velocity field. This operation is expressed as:

(uʹ

div,v
ʹ

div) = (udiv − udiv,T21,vdiv − vdiv,T21) (3)

These are multiplied with the zonal mean removed pressure velocity anomaly (ωʹ) to compute the directional

GW momentum fluxes:

F⃗ = (Fx,Fy) = g−1 (uʹ

divωʹ ,vʹ

divωʹ). (4)

which we aim to learn using the machine learning (ML) models. Here, g = −9.81 m/s2 is the acceleration due to

gravity. Hereafter, we use the shorthand notation uʹωʹ and vʹωʹ to denote the directional fluxes in Equation 4.
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Figure 2. (a) Pre‐training model architecture for Prithvi WxC. The encoder and decoder blocks from Prithvi are frozen and used for fine‐tuning. 10 atmospheric variables

on 14 vertical levels, 20 surface variables, 4 static variables, and 8 climatology variables for 366 days in a year, all on a 360 (lat) × 576 (lon) grid, for the input. (b) Model

Architecture for attn unet using 3 input variables, each on 122 vertical levels and a 64 (lat) × 128 (lon) grid (schematically identical to Oktay et al. (2018)). (c) The

foundation model (FM) fine‐tuning architecture comprises (in order) 4 learnable convolutional layers, the frozen encoder, the frozen decoder, and 4 more learnable

convolutional layers. A skip connection connects the former and latter convolutional layers. Takes four input variables, each on 122 vertical levels, and on a 64

(lat) × 128 (lon) grid. The blue block in the bottom left in (a) refers to the additional infused context or relevant information added at later stages in the hidden layers, for

example, the lead time at which the FM makes the predictions.
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The procedure is applied to create the fine‐tuning training data. The top 15 of the 137 vertical levels are discarded

due to artificial model damping. All input‐output pairs are coarse‐grained from a 0.25° km resolution to a 64

latitudes × 128 longitudes grid (roughly 2.8°≈ 280 km resolution in the tropics) to obtain conservative wave

averages (as the momentum flux carried by the waves is defined as an average over single or multiple wave

cycles). The fluxes are computed for four years: 2010, 2012, 2014, and 2015. This corresponds to roughly 35k

training + validation samples since one 64 × 128 × 122 hyperslab makes up 1 training sample. We are thus in a

data‐scarce regime, in which the number of observations is insufficient to cover the possible degrees of freedom.

Variables for training the U‐Net: the input consists of winds u, v, and potential temperature θ, which is a function

of temperature T and pressure p (in hPa) as θ = T( p/1000)−0.286, each on 122 vertical levels, 64 latitudes and 128
longitudes. Similarly, the output comprises fluxes uʹωʹ and vʹωʹ , each on 122 vertical levels, 64 latitudes, and

128 longitudes (Figure 2b).

Variables for fine‐tuning the FM: this is slightly different from the baseline. The fine‐tuning input consists of

winds u, v, temperature T, and pressure p (instead of u, v, and θ), each on 122 vertical levels, 64 latitudes, and 128

longitudes. Similarly, the outputs are potential temperature θ (for validation) and fluxes uʹωʹ and vʹωʹ , each on

122 vertical levels, 64 latitudes and 128 longitudes (Figure 2c). Using T and p as inputs and θ as an output also

allowed us to test whether the fine‐tuned model can learn a well‐defined nonlinear analytical relation between the

input and the output, arguably presenting a more stringent learning problem compared to the baseline.

Variable Normalization: Each variable is normalized differently. The zonal wind u is normalized as:

u → (u − umean)/ustd, where umean and ustd are the global mean and standard deviation. Similarly for v and T.

Pressure was scaled as p → log10(p), and potential temperature was scaled as θ → θ/1000. Lastly, global mean

and global standard deviations of uʹωʹ were used to scale the flux as uʹωʹ → [(uʹωʹ − uʹωʹ

mean)/uʹωʹ

std]1/3.
Here, applying a cuberoot helps constrain the range of flux magnitudes by shifting both inordinately large and

inordinately small flux values toward 1. For instance, the cuberoot of 0.064 and 64 (normalized) GW flux is 0.4

and 4, respectively. The cuberoot makes it more convenient to constrain and learn extreme values by bringing

them closer to 1.

All the data‐driven models considered in this study are trained on resolved wave fluxes from ERA5. The objective

is to reproduce the ERA5 fluxes as accurately as possible. For this reason, the fluxes in ERA5 are occasionally

referred to as “true” fluxes, since they comprise the training and validation set.

ERA5 provides multi‐decadal atmospheric coverage at a moderately high resolution; however, we caution against

the limited GW representation in ERA5, due to which GW fluxes in ERA5 might not be a true representation of

the actual GW fluxes in the atmosphere. Multiple recent studies have reported both substantial similarities and

systematic differences between GWs in ERA5 and GWs in high‐resolution models and observations (Gupta,

Reichert, et al., 2024; Lear et al., 2024; Pahlavan et al., 2023; Yoshida et al., 2024). This could be due to multiple

factors. First, with a resolution of 25 km, ERA5 does not resolve a portion of the atmospheric GWs with

wavelengths shorter than 150 km. These waves likely make notable contributions to the large‐scale atmospheric

circulation (Polichtchouk et al., 2022, 2023). Second, while the large‐scale winds and temperature are constrained

by observations to some degree, small‐scale GWs in ERA5 are model‐generated in response to the constrained

background state. Third, known biases in precipitation, clouds, land, and upper surface winds can result in biased

GW generation in response to changes in these fields. This can be particularly important for small‐scale con-

vectively generated GWs which have a wide phase spectrum, and are likely to transport the momentum to

mesospheric heights before dissipation (Achatz et al., 2024; Kim & Chun, 2015). Lastly, the use of a hydrostatic

dynamical core to produce ERA5 means a compromised representation of non‐hydrostatic GWs, potentially

leading to an incorrect wave aspect ratio for a given angular frequency. Such differences could also exist among

identically initialized high‐resolution models with different underlying numerics, as noted by Stephan

et al. (2019), Kruse et al. (2022), and Procházková et al. (2023).

2.3. Baseline Model

An advanced baseline was created by training an Attention U‐Net model (hereafter attn unet) (Oktay et al., 2018)

on the ERA5 data. The input is downsampled using four convolutional blocks and then upsampled using four

convolutional blocks. The skip connection at each level comprises learnable attention layers. For every down-

sample (upsample), the number of channels increases (decreases) by a factor of 2, but all spatial dimensions
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reduce (increase) by a factor of 2. As a result, the baseline model consists of over 35 million learnable parameters

and provides a robust comparison benchmark for the fine‐tuning model. The learning rate for the model was set to

10−4. On a single 80 GB A100 GPU, the model needed around 110 hr for 100 epochs of training.

2.4. Designing the Fine‐Tuning Model

The architecture schematic for the fine‐tuning is shown in Figure 2c. During fine‐tuning, we freeze the encoder

and decoder from Prithvi WxC. The frozen encoder is preceded by 4 learnable convolutional blocks, each with an

increasing number of hidden channels, that is, C, 2C, 4C, and then 8C, where C = 160. Likewise, the frozen

decoder is succeeded by 4 new learnable convolutional blocks. For instantaneous prediction of GW fluxes, we fix

Prithvi's lead time δt to zero. The instantaneous model input for fine‐tuning has the shape [1, 488, 64, 128] where

the 488 channels comprise the four background variables u, v, T, and p on 122 vertical levels each, and on a

64 × 128 horizontal grid, as discussed above. The model was fine‐tuned to produce an output with shape [1, 366,

64, 128] comprising of the potential temperature θ, and fluxes uʹωʹ , and vʹωʹ on 122 vertical levels each. The

model was trained for 26 hr on 2 nodes of 4 80 GB A100 GPUs for 100 epochs. However, the model error

converged to lower than the final baseline model error after just 40 epochs of training.

2.5. Training Both Models

Both models use global information as input to predict global fluxes as output. This provides a strong contrast to

traditional “single‐column” parameterizations. Access to the global atmospheric state allows the models to learn

spatio‐temporal correlations and the effects of horizontal propagation of GWs.

Both models were trained and validated for 100 epochs on 4 years, that is, 48 months, of ERA5 background

conditions and fluxes. The baseline model's global RMSE loss dropped from an epoch 1 loss of 0.38 to plateauing

near 0.17 over 100 epochs (a 40% reduction). In contrast, the fine‐tuned model showed much faster convergence,

dropping from an epoch 1 loss of 0.275 to 0.16 (40% reduction) over just 5 epochs and finally converging to 0.106.

Since the main focus of the study is to highlight the application of FMs to make quick emulators, at present, only

the month of May 2015 was used for validation; the remaining 47 months were used for training. Both models

leveraged a U‐Net‐like architecture with skip connections to promote the extraction of high‐frequency infor-

mation from the source data. Both models were trained with an identical minibatch size of 4, that is, four randomly

selected timeframes of each variable formed input during a single forward and backward pass of the model. We

re‐emphasize that Prithvi WxC was pre‐trained on the MERRA‐2 data set, but the fine‐tuning was accomplished

using ERA5 data instead. Both models yielded similar inference times on a single A100 GPU for an identical

minibatch size of 4.

Both models were optimized using MSE Loss, which is defined as:

L(x⃗, y⃗) = 1

n
∑n
i=1

(xi − yi)2 (5)

where xi is the ith prediction compared against the ith measured sample yi.

2.6. Hellinger Distance

Given two probability densities, p and q, their Hellinger distance, H (Hellinger, 1909), is defined as:

H( p,q) = 1 −∫
x∈X

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
p(x)q(x)

√
dx. (6)

By definition, H ∈ [0,1]. A Hellinger distance of 0 means the distributions are identical almost everywhere,

while a Hellinger distance of 1 implies the distributions are disjoint, that is, p is non‐zero wherever q is zero, and

vice versa.
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Hellinger distance measures the statistical distance between two distributions. In Section 3, Hellinger distance is

used to quantify the difference (or statistical distance) between the flux distributions from ERA5 and the pre-

diction flux distributions to estimate the quality of predictions by both the attn unet and the fine‐tuned model.

3. Results

3.1. Instantaneous, Intermittent Evolution of Gravity Waves

We focus on predicting uʹωʹ , which is the vertical flux of zonal momentum carried by GWs. Its vertical derivative

equals the net forcing tendency (acceleration) exerted by GWs on the zonal wind. The findings are similar for the

vertical flux of meridional momentum, vʹωʹ , and equivalent plots for vʹωʹ are shared in the Appendix. In all

instances, the predictions are compared to both the fluxes from ERA5 and to predictions from the existing

benchmark, the attn unet model.

The time evolution of box‐averaged fluxes for May 2015 over six well‐known hotspots of GW activity is

illustrated in Figure 3. The fine‐tuned parameterization generates a remarkably accurate prediction of the

intermittent generation and temporal coherence of GW packets, even though no explicit considerations were

made to embed recurrence in the underlying fine‐tuning architecture. The three predominantly orographic hot-

spots (Newfoundland, European Mountains, and Drake Passage) and three nonorographic hotspots (the tropical

Pacific Ocean, Southeast Asia, and the Southern Ocean) were selected using the zonal GW flux and lateral GW

flux climatology presented in Hindley et al. (2020), Wei et al. (2022), and Gupta, Sheshadri, Alexander and

Birner (2024). Nonlocal propagation of GWs is more prominent in the winter stratosphere due to a stronger

vertical shear (Gupta, Sheshadri, Alexander, & Birner, 2024; Sato et al., 2012), so wherever possible, the transient

evolution is shown in the upper winter stratosphere (10 hPa ∼ 30 km), that is, the Southern Hemisphere for May.

For regions in the summer/Northern hemisphere, the fluxes are instead analyzed in the upper troposphere

(200 hPa ∼ 12 km). In the tropics, the GW fluxes are analyzed in the lower stratosphere (80 hPa ∼ 18 km) to

ensure minimal contribution from convective fluxes.

Figure 3. Instantaneous (non‐dimensional/normalized) fluxes for May 2015 resolved in ERA5 reanalysis (black), predicted fluxes from attn unet (blue), and from the

fine‐tuned parameterization (red), over six well‐known gravity wave (GW) hotspots. The numbers show the respective Pearson correlation coefficients with respect to

ERA5. The fluxes in the winter hemisphere are shown at 30 km, whereas the fluxes in the summer hemisphere are shown at 12 km, as GW activity in the summer

stratosphere is substantially weaker. Fluxes in the tropics are shown at 18 km. These altitudes are approximate representative heights since the fluxes are evaluated on

pure‐pressure and hybrid‐pressure levels, respectively, which do not equate to similar geopotential heights throughout the domains. The Pearson correlation coefficient

(between ERA5 and attn unet) is computed as the covariance between the ERA5 fluxes and attn unet fluxes divided by the product of ERA5 and attn unet standard

deviations.
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The fine‐tuned FM generates substantially better predictions over all six hotspots. Most notably, for the Drake

Passage (predominantly orographic waves) and the Southern Ocean (nonorographic waves), the Pearson corre-

lation coefficients of the predictions from the fine‐tuned model (vs. ERA5) are as high as 0.99 and 0.97,

respectively. In comparison, the respective correlations for the attn unet are 0.84 and 0.76. The correlation with

ERA5 is the weakest over the Tropical Pacific Ocean, but even then, the fine‐tuned model has a higher correlation

of 0.85, higher than attn unet's 0.76. The results in the lower stratosphere are mixed. Even though the fine‐tuned

model has a higher correlation over the tropical box, flux magnitudes from attn unet match better with ERA5.

Noisier fluxes due to tropical convective GWs with a broad range of phase speeds appear to be more challenging

to predict than extratropics GWs. Expanding the feature set to include diabatic heating or precipitation‐related

information could potentially lead to performance gains in the region.

The successful prediction of spontaneous bursts of flux intensification in both the tropics (from tropical storms

and convective systems) and the midlatitudes (from mountains and storm tracks) shows that the fine‐tuned model

proficiently learns the intermittent excitation and horizontal evolution of medium‐to‐small‐scale atmospheric

variability directly from data. This is further corroborated by the spatial structure of the predicted flux in Figure 1,

which shows that the model predicts both the fluxes over the Southern Andes and the laterally propagated fluxes

in its vicinity. The wave packets preserve their coherence in time as they propagate away from their sources of

excitation (see the animation provided as Supporting Information, https://doi.org/10.17605/OSF.IO/8W6AZ).

Figure 4. May 2015 averaged gravity wave momentum flux distributions divided according to hotspots and vertical regions in the atmosphere. The figure shows non‐

dimensional fluxes as predicted by the models for ease of comparison. The y‐axis is the distribution density. The fluxes are averaged over the corresponding boxes

outlined in A3. The numbers in orange and green indicate the Hellinger distances for the time‐averaged flux distributions for the attn unet and the foundation model,

respectively. Lower troposphere: 500 hPa to surface (0–10 km height), upper troposphere: 100–500 hPa (10–16 km height), lower stratosphere: 30–100 hPa (16–25 km

height), upper stratosphere: 10–30 hPa (25–45 km height).
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3.2. Regionwise Averaged Flux Distribution

The dynamical evolution of atmospheric GWs can vary substantially with height (troposphere vs. stratosphere),

region (latitude and longitude), and season (summer vs. winter). Figure 4 shows the monthly‐averaged predicted

and “true” GW flux distributions partitioned by individual hotspots and varying atmospheric altitudes. To also

focus on tropical orography, here we show the flux distribution over the Himalayas and the East Asian mountains,

instead of the tropical Pacific and Southeast Asian hotspots in Figure 3. The fine‐tuned model captures the entire

range of flux magnitudes over the different GW hotspots (Figure 4). In the troposphere and the lower stratosphere,

the models provide comparable performance. In fact, in some regions, such as the lower stratosphere over

Newfoundland, and the troposphere over the Southern Ocean, the Hellinger distances are slightly better for the

attn unet model. In the upper stratosphere, however, the fine‐tuned model generates a substantially more

consistent distribution than the baseline. Such distributions are challenging to replicate, as the waves excited near

the surface are progressively filtered and dissipated as the waves propagate to stratospheric and mesospheric

altitudes.

The Hellinger distances of the distributions for both the baseline and the fine‐tuned model (w.r.t. ERA5) are

shown for each hotspot and height. A Hellinger distance of 0 indicates that the predicted distribution is

identical to the distribution from ERA5. In the stratosphere, the fine‐tuned model outperforms the baseline,

yielding a lower Hellinger distance in all regions except the lower stratosphere over Newfoundland and the

European Mountains. The improvement is more evident in the upper stratosphere. Both models generate low

Hellinger distances in the troposphere and most of the lower stratosphere, indicating a distribution similar to

ERA5, at least in a cumulative sense. However, all regions in the upper stratosphere have higher Hellinger

distances than down below, with Hellinger distances reaching up to 0.82 for the baseline over Newfoundland,

revealing key biases in the summer hemisphere. The GWs in the summer upper atmosphere are likely much

smaller due to filtering below by the easterly winds. Since the RMSE training loss used for finetuning would

penalize the large scales more, one might expect these smaller waves to be less accurately captured by the

neural nets.

Most interestingly, the baseline model has a lower variance (and hence poorer predictive skill) than the fine‐

tuned model in multiple stratospheric blocks, even though Prithvi was initially not trained on upper atmo-

spheric data; Prithvi's vertical spacing is shown in Figure A1. This highlights another benefit of using an FM's

encoder‐decoder that allows the creation of a consistent mapping between the FM's learned embedding space

and the fine‐tuning data. The performance improvement, then, can be attributed to a combination of two factors.

First, the substantially higher volume (40+ years) of data used for pre‐training, as opposed to merely four years

of ERA5 data used for fine‐tuning and training the baseline. Second, the fine‐tuning model efficiently leverage

the latent space of the pre‐trained Prithvi and unify the learning from both MERRA2 during pre‐training and

ERA5 during fine‐tuning. As a result, the fine‐tuning model substantially outperforms the attn unet baseline

when trained on the same set of fine‐scale data. Despite not being trained on upper atmospheric data during

development, training on over four decades of atmospheric data on a masked reconstruction objective (as

described in Section 2.1) likely allows more consistent mappings between Prithvi's embedding space and the

fine‐tuning input.

A similar partition of the ERA5 and predicted monthly mean distributions, but partitioned by different latitude

bands, is shown in Figure A4.

3.3. Vertical Mean Profile and Variability

While both models generate mean vertical profiles that are very similar to ERA5 over the five hotspots, the fine‐

tuned model generates both richer and more accurate variability in the stratosphere than the baseline (Figure 5).

The difference in variability is substantial in the stratosphere. Both models generate weaker stratospheric vari-

ability than ERA5 in the summer stratosphere (European mountains, Himalayas, and Newfoundland) owing to

weak GW activity in the region. The shading in Figure 5 shows the range of the true and predicted fluxes. Yet, the

wintertime stratospheric variability over the Drake Passage and Southern Ocean in the fine‐tuned model is more

consistent with ERA5. This is consistent with the lower variance noted for baseline predictions in the upper

stratosphere. The observed and predicted mean vertical flux profiles and their variability over different hotspots

for the meridional flux are shown in Figure A5.

Journal of Advances in Modeling Earth Systems 10.1029/2025MS005075

GUPTA ET AL. 10 of 20

 1
9

4
2

2
4

6
6

, 2
0

2
5

, 1
1

, D
o

w
n

lo
ad

ed
 fro

m
 h

ttp
s://ag

u
p

u
b

s.o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

0
2

9
/2

0
2

5
M

S
0

0
5

0
7

5
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [1

4
/1

2
/2

0
2

5
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o

n
s L

icen
se



Figure 5. May 2015 mean ERA5 and predicted vertical profiles of the normalized (unitless) zonal flux, Fx = uʹωʹ over five hotspots. The exact boundaries of the

hotspots are shown in Figure 3. The (normalized) ERA5 flux is shown in black, the prediction from attn unet is shown in orange, and the prediction from the fine‐tuned

model is shown in green. The gray, orange, and green shadings show the range of flux variability in the respective models. The regional extent for the hotspots is shown

in Figure A3. The fluxes converge to near‐zero in the stratosphere over all hotspots, due to successive wave filtering and dissipation, but appear to converge to non‐zero

values due to non‐dimensionalization.

Figure 6. Histogram of the (a) May 2015 averaged and (b) daily averaged gravity wave flux uʹωʹ . Gray shading shows the

underlying ERA5 distribution, orange is the attn unet prediction, and green is the fine‐tuning prediction. Numbers indicate

the Hellinger distance for the corresponding predictive model. The dotted lines show the 2.5th and 97.5th percentile,

respectively (note the log‐scaled y‐axis). Scatter plot of the ERA5 versus predicted flux at each grid point for (c) May 2015

monthly average and (d) daily average. Red and green markers show the scatter for the baseline and fine‐tuned model. The

scatter for four orographic (Drake Passage, Himalayas, Newfoundland, and European Mountains) and nonorographic hotspots

(tropical Pacific, North Atlantic, Southeast Asia, and Southern Ocean) for the fine‐tuned model is shown in yellow and brown,

respectively. The regional extent of the hotspots is shown in Figure A3. A gray box is added for reference over the

[−1,1] × [−1,1] interval.
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3.4. Global Averaged Flux Distribution

Global flux distributions provide insight into how well our models generate the possible range of flux responses

globally, which are crucial to modeling extreme GW events. The observed and predicted global distribution of the

GW momentum fluxes at different sampling frequencies (monthly vs. daily averages) is shown in Figures 6 and

A6. The histogram represents the distribution of the May 2015 monthly mean momentum flux globally, that is,

over all points in the troposphere and stratosphere. Both the baseline and the fine‐tuned models simulate the

distribution on monthly time scales with remarkable accuracy, both in the bulk of the distribution and its tails

(Figure 6a). The baseline and the fine‐tuned model have a Hellinger distance of 0.005 and 0.003 from the un-

derlying training (ERA5) distribution, suggesting that despite clear differences in predictive skill, the two dis-

tributions are nearly identical to the underlying ERA5 distribution. The fine‐tuned model emulates the

distribution tails slightly better than the baseline.

For monthly averages, the fine‐tuned model provides excellent prediction of the mean flux field, as is gauged by

the scatter plot in Figure 6c. The fine‐tuned (green) model exhibits a reduced dispersion compared to attn unet

(red). The fluxes over orographic hotspots (yellow) account for a larger scatter, and fluxes from nonorographic

hotspots (brown) are clustered around smaller values.

Both models, however, struggle to accurately capture the daily‐sampled histogram around small values. In the

[−0.5,0.5] interval, the models fail to accurately learn the small values and instead predict close‐to‐zero values

more frequently. This implies that the models learn the strong GW events more readily than the weak ones.

Accordingly, the daily sampled flux distributions from both attn unet and the fine‐tuned models produce higher

Hellinger distances of 0.116 and 0.062, respectively. Our choice of loss function, that is, training to minimize the

root‐mean square error, could partly explain this magnitude‐selective learning.

Even for daily samples, the attn unet model exhibits a visibly larger scatter against ERA5 compared to the fine‐

tuned model (Figure 6d, red markers vs. green markers). The points from the non‐orographic regions (NOROG;

brownmarkers) exhibit less scatter in panels (c) and (d), implying a tighter clustering around the diagonal compared

to points from the orographic hotspots (OROG; yellowmarkers). Regardless, this indicates that themisrepresented

fluxes around zero in panel (b) are due to the misrepresentation of both orographic and nonorographic GWs.

4. Conclusion and Discussion

Our analysis establishes that the atmospheric evolution learned by large transformer‐based FMs (developed for

weather research) can be leveraged to improve and expedite the creation of subgrid‐scale parameterizations for

climate models. The FM parameterization more accurately predicts lateral propagation effects than traditional

parameterizations and outperforms the advanced attn unet benchmark with fewer learnable parameters, even in

upper atmospheric regions where the foundation model was not pre‐trained. This provides a fresh avenue to

develop AI‐driven representations of small‐scale processes that have the potential to replace traditional param-

eterizations, which for over four decades have been envisioned as single‐column plugins that often neglect key

process physics. Coupling these parameterizations with existing climate models can promote and expedite the

development of hybrid climate prediction models.

Since Prithvi is trained on large amounts of data, its latent encoder‐decoder space contains a rich abstract rep-

resentation of atmospheric evolution. The training data includes atmospheric variables like winds, humidity,

radiation, and even leaf area index and soil moisture. The application of this approach transcends GWs and, with

appropriate observational data for fine‐tuning, could be used to create parameterizations for other atmosphere‐

ocean‐land processes unseen during pre‐training. As an added benefit, this approach allows using data from

multiple streams for finetuning—high‐resolution model data, satellite trains, terrestrial remote sensing data,

ground observations, etc.

In the context of atmospheric GWs, the FM outperforms the attn unet benchmark in representing GW effects in

the upper stratosphere. It learns the effects of three‐dimensional propagation and dissipation of GWs in the at-

mosphere better than the attn unet. As a result, this model is capable of representing the missing GW effects in

coarse‐climate models. These effects are critical to getting a more realistic middle atmospheric circulation and

seasonal wind transitions in climate models and in alleviating the “cold‐pole bias” of the stratosphere that un-

dermines the accuracy of these models.
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Recent studies, for instance Bretherton et al. (2022), have discussed using deep learning models trained on high‐

resolution model simulations to “bias‐correct” coarse‐climate models. While effective, these techniques are less

interpretable, as it is challenging to learn the true source of prevailing biases and to distinguish structural model

errors from model errors due to inaccurate physics. Given the versatility of FMs, our approach enables the

development of process‐specific emulators for representing a suite of subgrid‐scale processes, resulting in bias

correction through a data‐driven representation that is closer to observations.

To demonstrate the central idea, we have fine‐tuned our models on limited years of ERA5 reanalysis data

spanning a few variables. As noted above, the GWs in ERA5 are not assimilated but model‐generated, and

owing to a 25 km resolution, they miss a broad range of mesoscale GWs (with wavelengths shorter than 150–

200 km). In addition, while the fluxes computed from ERA5 using HD better reflect fluxes carried by GWs, in

the troposphere, it could include contributions from convection in regions with precipitation (Alexander

et al., 2006; Wei et al., 2022). As a consequence, there is much scope for improvement in the parameterization.

These improvements can be achieved by fine‐tuning on longer periods of high‐resolution (high‐fidelity) data

sets, through better estimates of tropospheric GW fluxes, and by including more convection‐related variables

(for instance, humidity, diabatic heating, and latent heat fluxes). This will be the focus of future work, where the

fine‐tuning will be accomplished using a kilometer‐scale, high‐resolution model output and an expanded

feature set.

Admittedly, the nonlocal architecture adopted in this study presents a contrast with the widely adopted column‐

based discretization used by climate models. Yet, such a coupling is possible, and work is underway to couple the

nonlocal fine‐tuned scheme to an atmospheric model (National Center for Atmospheric Research (NCAR)'s

CAM7) and evaluate its online performance on atmospheric variability and generalizability on warming sce-

narios. To this end, in collaboration with the Institute of Computing for Climate Science at the University of

Cambridge and NCAR, we have identified inbuilt pooling and discretization functions that make this coupling

possible using ftorch, without adding latency (Atkinson et al., 2025; Chapman & Berner, 2025).

Nevertheless, foundational models open avenues to using multisource observations to facilitate not just AI‐

powered weather research but also climate research. Due to constraints on computing power, we are still far

away from being able to run climate models (such as those participating in CMIP) multiple decades and cen-

turies into the future at kilometer or sub‐kilometer resolutions. This means climate prediction will continue to

miss crucial sub‐grid physics and will continue to rely on physical parameterizations of unresolved processes.

We have demonstrated an appealing application of an existing foundation model in improving the sub‐grid scale

physics representation in a climate model. These emulators are not just intended to be coupled to a climate model,

but can also serve as standalone plugins to improve small‐scale variability in AI‐based weather models and other

fine‐tuned models. In principle, FMs (like Prithvi WxC) could be strategically applied to address a range of

climate applications, including, but not limited to, heat wave prediction, land‐use trend detection, and cross‐

domain learning. This can be accomplished by fine‐tuning the base FM on event‐specific data sets, to enhance

performance on rare events as, for instance, is discussed in Cui et al. (2025). First, the FMs can be pre‐trained on

global forecasts to optimize the global mean squared error. Subsequently, parts of the FM, when retrained on

event‐specific data using a specialized loss function, can be used to quickly re‐train and develop specialized task‐

emulators. Used in conjunction with other FMs, such as Prithvi HLS (Jakubik et al., 2023), this approach can be

leveraged to create lightweight, fine‐tuned models for key weather and climate applications, including the pre-

diction of wildfires, hurricane storm surge, and regional heatwave impacts, potentially improving climate change

preparedness.
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Appendix A: Additional Model Information and Meridional Flux Predictions

See Figures A1–A6.

Figure A1. Prithvi was pre‐trained on very sparse data in the vertical. The ERA5 fine‐tuned data were computed on 137

model levels, and the top 15 model levels (i.e., levels above 1 hPa ∼ 45 km) were discarded due to an artificial model sponge

imposed at those levels. So, effectively 122 model levels between 1,000 hPa (surface) to 1 hPa (45 km) height were used. In

contrast, Prithvi is trained on MERRA‐2 data interpolated to 14 vertical levels: [985, 970, 925, 850, 700, 600, 525, 412, 288,

245, 208, 150, 109, 48] hPa. No training data were provided between 50 hPa and 1 hPa during pre‐training. This means that the

frozen encoder‐decoder has no prior knowledge about the dynamic evolution of gravity waves at these heights. Still, as shown in

Figures 4 and 5, the fine‐tuned model outperforms the baseline in this region.
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Figure A2. Same as Figure 3 but for vʹωʹ ‐ instantaneous fluxes for May 2015 from ERA5 (black), and predictions from the baseline (teal) and the fine‐tuned model

(light green) over six different hotspots.

Figure A3. Figure showing all the gravity wave hotspots considered for regional analysis in this work. Yelllow: Tropical

Pacific (170°W, 130°W) × (10°S, 40°N), Red: Newfoundland Mountains + Southern Greeland (70°W, 30°W) × (45°N,

70°N), Orange: European Mountains (0°, 30°E) × (40°N, 70°N), Green: Himalayas and East Asian Mountains (75°E, 120°E) ×
(28°N, 58°N), Light Pink: Northern Atlantic (45°W, 15°W) × (0°, 30°N), Brown: Southeast Asia (90°E, 135°E) × (5°N, 25°N),

Blue: Drake Passage (90°W, 45°W) × (78°S, 33°S), Dark Pink: Southern Ocean (30°E, 65°E) × (65°S, 45°S).
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Figure A5. Same as Figure 5 but for the meridional flux vʹωʹ .

Figure A4. Gravity wave flux distributions similar to Figure 4, but divided according to latitude and height. The poles are defined as latitudes 60°–90°, the midlatitudes

as 30°–60°, and the tropics as 15°S–15°N. The numbers indicate the respective Hellinger distances w.r.t. the distribution from ERA5 (black). For each latitude band,

averaging is conducted over the whole latitude circle, that is, over all longitudes.
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Data Availability Statement

• ERA5 data: ECMWF's ERA5 data (Hersbach et al., 2023) can be freely accessed from https://cds.climate.

copernicus.eu/datasets/reanalysis‐era5‐pressure‐levels.

• Prithvi WxC FM and fine‐tuning: The code for the Prithvi WxC model is available at https://huggingface.

co/ibm‐nasa‐geospatial/Prithvi‐WxC‐1.0‐2300M. The fine‐tuning code for climate model parameterization

for GW flux is available at Roy and Gupta (2025): https://doi.org/10.5281/zenodo.16666812. Python scripts to

compute GW momentum fluxes from the publicly available ERA5 reanalysis are available at Roy et al.

(2025): https://doi.org/10.5281/zenodo.16666707.

• Python packages: The default WindSpharm Python package is publicly available at https://ajdawson.github.

io/windspharm/, and the PySpharm Python package is publicly available at: https://pypi.org/project/

pyspharm/. The xESMF package used for conservative coarsegraining is publicly available at: https://xesmf.

readthedocs.io/en/stable/.

• Animation: An animation showing the performance of the fine‐tuned scheme over the Southern Ocean, and

how it compares to resolved fluxes in ERA5 is available at: https://doi.org/10.17605/OSF.IO/8W6AZ.
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