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Abstract Global climate models parameterize a range of atmospheric-oceanic processes, including gravity
waves (GWs), clouds, moist convection, and turbulence, that cannot be sufficiently resolved. These subgrid-
scale closures for unresolved processes are a substantial source of model uncertainty. Here, we present a new
approach to developing machine learning (ML) parameterizations of small-scale climate processes by fine-
tuning a pre-trained Al foundation model (FM). FMs are largely unexplored in climate research. A pre-trained
encoder-decoder from a 2.3 billion parameter FM (NASA and IBM Research's Prithvi WxC)—which contains a
latent probabilistic representation of atmospheric evolution—is fine-tuned (or reused) to create a deep learning
parameterization for atmospheric gravity waves (GWs); a process unseen during pre-training. The
parameterization captures GW effects for a coarse-resolution climate model by learning the fluxes from an
atmospheric reanalysis with 10 times finer resolution. A comparison of monthly averages and instantaneous
evolution with a machine learning model baseline (an Attention U-Net) reveals superior predictive performance
of the FM parameterization throughout the atmosphere, even in regions excluded during pre-training. This
performance boost is quantified using the Hellinger distance, which is 0.11 for the baseline and 0.06 for the fine-
tuned model. Our findings emphasize the versatility and reusability of FMs, which could be used to accomplish
arange of atmosphere- and climate-related applications, leading the way for the creation of observations-driven
and physically accurate parameterizations for more earth system processes.

Plain Language Summary Climate models struggle to accurately capture the physical effects of
small-scale atmospheric processes like gravity waves, turbulence, and clouds, which are critical to accurately
predicting future climate states. These processes evolve on scales finer than typical model grid resolutions. As a
result, they continue to rely on approximations, known as physical parameterizations, to represent their missing
effects. The use of parameterizations introduces uncertainty and makes climate predictions less reliable. Here,
we propose a new approach to improving these parameterizations using modern advances in deep learning.
Specifically, we use Prithvi WxC, a large Al model trained on multiple decades of one reanalysis, and fine-tune
it using limited years of gravity wave (GW) data from another reanalysis to develop an emulator capable of
predicting a physically consistent atmospheric GW flux evolution. The novel approach of leveraging a large Al
model pre-trained on vast volumes of atmospheric data and augmenting it with limited process-specific data
allows the creation of compact and easily trainable data-driven physical parameterizations. While we focus on
gravity waves, our approach is flexible and can be generalized to developing data-driven parameterizations of
other earth system processes.

1. Introduction

Accurate prediction of future climate is a trillion-dollar challenge with critical consequences for the world
economy, food security, global health, and urban planning. Currently, state-of-the-art climate projections are
highly uncertain, and much of the inherent model uncertainty stems from approximations made in subgrid-scale
parameterizations (Lee et al., 2023; Morrison & Lawrence, 2020). For instance, it has been suggested that model
uncertainty accounts for 98% of the total uncertainty in precipitation projections (Wu et al., 2022). This study aims
to demonstrate the untapped potential of Al foundation models (FMs) to improve traditional numerical climate
models by facilitating the creation of subgrid-scale parameterizations.
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FMs can be broadly defined as task-agnostic large Al models which are pre-trained using a self-supervised
learning objective (Bommasani et al., 2022), such as learning weather evolution from time ¢ to t + At. Real-
izing the single-task limitation of existing Al weather forecasting models (Bi et al., 2023; Lam et al., 2023; Price
et al., 2025), despite their massive compute requirements, FMs are developed to be versatile and present the next
frontier in Al research. Pre-trained FMs are subsequently fine-tuned to perform a broad range of sub-tasks, a.k.a.,
downstream tasks. FMs are largely unexplored in climate science, and only a couple of weather and geospatial
FMs exist to date: AtmoRep (Lessig et al., 2023), Aurora (Bodnar et al., 2025), and Prithvi HLS (Jakubik
et al., 2023). To our knowledge, only weather-related downstream applications of FMs have been explored thus
far, including hurricane track and intensity prediction, air quality predictions, downscaling, vegetation burn-scar
detection, etc.

Here, we use a recently developed, state-of-the-art FM, Prithvi WxC (Schmude et al., 2024) (hereafter Prithvi), to
demonstrate a climate-related application of FMs, that of developing deep learning parameterizations for unre-
solved earth system processes for climate models. The parameterization for atmospheric gravity waves (GWs)
presented here is capable of representing the missing effects of atmospheric GWs in global climate models. We
blend the pre-trained encoder-decoder pair from Prithvi with high-resolution GW momentum flux data (see
Section 2) to create a fine-tuned Al model that skillfully predicts subgrid-scale GW activity and outperforms
existing benchmarks (Gupta, Sheshadri, Roy, et al., 2024) for deep-learning-based GW flux prediction. The study
motivates and calls for the strategic use of FMs for climate-related tasks by demonstrating how to leverage
observations and FMs to efficiently achieve predictive tasks that might otherwise require much larger volumes of
training data.

Atmospheric GWs are ubiquitous multiscale (spatial scale O(1)-O(1,000) km) oscillations generated by atmo-
spheric convection, jet stream disturbances, geostrophic imbalance, and flow over mountains (Fritts & Alex-
ander, 2003). GWs dynamically couple different layers of the atmosphere by carrying near-surface momentum
and energy to stratospheric and mesospheric heights. In the troposphere, GWs play a critical role in setting the
location and strength of the jet streams (Palmer et al., 1986). In the stratosphere, they influence the quasi-biennial
oscillation of tropical winds (Giorgetta et al., 2002), and the springtime breakdown of the Antarctic polar vortex
(Gupta et al., 2021). In the mesosphere, GWs are the primary driver of the pole-to-pole overturning circulation
(Becker, 2012). GW-induced cold anomalies in the polar winter stratosphere provide suitable conditions for the
formation of polar stratospheric clouds, enabling reactions that promote the destruction of ozone (Ddrnbrack
et al., 1999; Hoffmann et al., 2017; Hopfner et al., 2006). Aside from their influence on climate variability, GW-
induced clear air turbulence can influence commercial air travel and is believed to have caused the sudden
plunging of Singapore Airlines flight SQ321 on 21 May 2024 (Hirschfeld, 2024).

The current climate model grid resolution (50-100 km) is insufficient to fully resolve dynamically important
processes like GWs, clouds, and turbulence. The traditional approach to represent these missing processes has
been to couple the numerical fluid solver with a suite of sub-grid scale parameterizations to approximately
capture the unresolved effects of these processes (Alexander & Dunkerton, 1999; Lott & Miller, 1997; Bogen-
schutz et al., 2012; Iacono et al., 2000, to name a few).

Parameterizations are often not well constrained by observations and, for computational reasons, have
simplified assumptions that compromise their physical accuracy. For GWs, these assumptions include an
idealized source spectrum and, generally, complete neglect of their transient evolution and horizontal prop-
agation (Achatz et al., 2024). Further, their parametric tuning is often sub-optimal because the parameters are
optimized to replicate only certain atmospheric features of interest. These inductive biases (due to simplifying
assumptions) often add up and result in inaccurate model dynamics, such as the prominent “cold-pole bias”
(McLandress et al., 2012), leading to large uncertainties in future climate projections (Golaz et al., 2013;
Mauritsen et al., 2012; Zhao et al., 2018).

Data-driven approaches are increasingly being used to develop fast GW flux (GWF) emulators for climate models
of varying complexity (Chantry et al., 2021; Connelly & Gerber, 2024; Espinosa et al., 2022; Hardiman
et al., 2023; Lu et al., 2024; Sun et al., 2024; Ukkonen & Chantry, 2024). These emulators complement existing
efforts to develop nonlocal GW parameterization using physics-based approaches (Eichinger et al., 2023; Voelker
et al., 2023). Despite being effective, these emulators are trained on parameterization data itself and do not offer
an improved process physics representation. Here, we fine-tune the FM on resolved GWFs. Training on resolved
GWFs allows the neural networks to learn key physical effects of GWs directly from fine-tuning data sets.
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GWs in the Southern Hemisphere, 30 km (10 hPa), 22-05-2015 16 UTC

GW structure, ERA5 true flux, ERAS predicted flux: fine-tuned model

Temperature T’ (K) Flux u'w’ (mPa)

Figure 1. Predictions from the fine-tuned gravity wave (GW) parameterization. The left plot shows the temperature structure
of GWs over the Drake Passage, as seen in ERAS reanalysis (Hersbach et al., 2020). Temperature perturbations 7/ were
computed by removing the large scales, here defined as the first 21 total wavenumbers. The middle and right plots show the true
and predicted momentum flux carried by the waves. 30 km is an approximate representative height since the fluxes are evaluated
on a pure pressure level. Here (and throughout the study), “true” flux refers to the flux derived from the ERAS reanalysis, and
the predicted flux is the prediction from the machine learning models trained on ERAS. Almost all GWs in ERAS are model-
generated. Therefore, the GW structure and the inferred flux might not be a precise representation of the actual atmospheric
conditions.

Our fine-tuned parameterization, created by blending Prithvi and ERAS reanalysis skillfully predicts the resolved
GW momentum fluxes for a provided background atmospheric state (as shown in Figure 1). The GW structure on
22 May 2015 and the momentum flux carried by the waves are shown in Figure 1. The fine-tuned model
accurately predicts the fluxes over the Drake Passage and the Southern Ocean. The fluxes over the Andes extend
sufficiently leeward (up to 80° longitude) over the Southern Ocean, indicating that the fine-tuned model can learn
and represent the lateral propagation and transient evolution of the generated waves; a physical feature absent in
most current GW parameterizations (Plougonven et al., 2020).

This fine-tuned parameterization for GWs can be coupled to a coarse-resolution climate model to represent
“missing” GW effects. Since Prithvi was pre-trained on key atmosphere-ocean-land variables, the scope of this
approach transcends GWs, and fosters and expedites the creation of physically accurate Al parameterizations of
other small-scale earth system processes, ultimately contributing to the development of accurate and interpretable
hybrid climate prediction systems.

2. Methods
2.1. The Prithvi WxC Foundation Model for Weather and Climate

Prithvi WxC, jointly developed by NASA and IBM Research, is a transformer-based deep learning architecture
that combines features from several recent transformer architectures to effectively process regional and global
dependencies of the input data and to efficiently process longer sequence lengths of tokens. Any image input to a
transformer is broken down into smaller square patches that are then projected to a higher-dimensional space to
represent the image in numerical space. These projections, which represent discrete amounts of information, are
referred to as a token. This allows the model to, for instance, run in different spatial contexts or infuse additional
tokens (i.e., adding more information as tokens into later stages of the model instead of the input to preserve or
enhance context) from off-grid measurements into the model during fine-tuning. Prithvi has 2.3 billion trainable
parameters and is trained on 160 data channels (10 variables over 14 pressure levels and 20 surface variables)
using 40 years of 3-hourly MERRA-2 reanalysis (Gelaro et al., 2017) data at a 0.5° X 0.625° spatial resolution.
The channels include 20 surface variables (winds, pressure, latent heat flux, surface roughness, etc.) and 10 at-
mospheric variables (winds, clouds, humidity, etc.) on 14 vertical pressure levels each. These variables are
tabulated in Tables 2 and 3 in Appendix A of Schmude et al. (2024).
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The validation of Prithvi extends from zero-shot evaluations for reconstruction and forecasting to other down-
stream tasks, such as the downscaling of weather and climate models, the prediction of hurricane tracks, and
climate model parameterization. The architecture of the pre-training backbone is shown in Figure 2a. As shown in
the figure, Prithvi was trained on a masked reconstruction objective, which means that in addition to minimizing
the root mean square for the predictions, the model also minimized reconstruction error from masked input data. A
fixed fraction (50%) of the input cells were masked, and the model was tested on how well it could fully
reconstruct the global field from the masked data. More details are provided in Schmude et al. (2024), where
Equation 1 and Section 2.5.1 focus on masked reconstruction.

The fine-tuning task presented in this manuscript is identical to that presented in Section 3.2 of Schmude
et al. (2024), that is, the “Climate Model Parameterization for GW Flux” task. Schmude et al. (2024) only briefly
showecase it as one among many applications of an Al foundation model, but here, we delve deeper and provide a
full detailed analysis of the task.

2.2. Preparing Training Data for GW Flux Prediction

The fine-tuning data for GW flux prediction was prepared using ERAS global reanalysis data (Hersbach
etal., 2020) retrieved at a 0.25° X 0.25° horizontal resolution, 137 vertical levels, and at an hourly frequency. The
effective resolution of GWs in ERAS depends on the truncation of the underlying model in spectral space, which
includes spherical harmonics up to total wavenumber 639, and its native N320 reduced Gaussian grid with
~31 km resolution. Given the need to damp small-scale motions for numerical stability, waves in ERAS are
poorly represented on scales below ~150 km. Since the model output is interpolated and publicly presented on a
0.25° latitude-longitude grid, which corresponds to roughly 25 km around the Equator, we refer to ERAS as
having 25 km resolution, but expect GWs to be accurate on scales of 150 km and larger.

We aim to represent the missing GW fluxes in a coarse-climate model by learning it from a higher resolution data
set (ERAS) that resolves a substantial portion of the mesoscale GW spectrum. Therefore, we select a target model
resolution of 280 km, which is an order of magnitude coarser than ERAS's underlying forecast model. A climate
model at this resolution typically captures some large GWs and employs numerical parameterizations to represent
the remaining unresolved GWs. So, we first filter out the large-scale non-divergent motions in ERAS, attempting
to capture only the “unresolved” portion of the GW spectrum. Hence, we compute the resolved GW fluxes in
ERAS5 by applying a Helmholtz decomposition (HD) (Kéhler et al., 2023; Lindborg, 2015) on the raw output as
follows. First, the horizontal winds (x and v) are decomposed into rotational and divergent components:

u=wv)=-Vo+VxXy (1)
where ¢ is the potential function such that V¢ is irrotational. Similarly, y is the rotational streamfunction such

that V X y is non-divergent. ¢ and y are used to reconstruct the divergent (div) and rotational (rot) parts of the
horizontal flow as:

- HD
u= (M, V) - (udiw Vdiv) + (urat’ Vrol)' (2)
The target climate model with ~280 km resolution could resolve GWs with wavelengths greater than ~1,400 km.

To remove these “resolved” large GWs (including equatorial Kelvin waves) from the small-scale flux estimate,
we apply an additional T21 high-pass filter on the divergent velocity field. This operation is expressed as:

(Wi Vi) = (i = Ui 721 Vaiv = Vain,21) 3)

These are multiplied with the zonal mean removed pressure velocity anomaly (') to compute the directional
GW momentum fluxes:

F= (F:w Fy) = g_l (u/divwl’V:iiL'w/)' (4)

which we aim to learn using the machine learning (ML) models. Here, g = —9.81 m/s? is the acceleration due to
gravity. Hereafter, we use the shorthand notation u’®’ and v/ @’ to denote the directional fluxes in Equation 4.
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(a) Prithvi WxC Foundation Model Architecture
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Figure 2. (a) Pre-training model architecture for Prithvi WxC. The encoder and decoder blocks from Prithvi are frozen and used for fine-tuning. 10 atmospheric variables
on 14 vertical levels, 20 surface variables, 4 static variables, and 8 climatology variables for 366 days in a year, all on a 360 (lat) X 576 (lon) grid, for the input. (b) Model
Architecture for attn unet using 3 input variables, each on 122 vertical levels and a 64 (lat) X 128 (lon) grid (schematically identical to Oktay et al. (2018)). (c) The
foundation model (FM) fine-tuning architecture comprises (in order) 4 learnable convolutional layers, the frozen encoder, the frozen decoder, and 4 more learnable
convolutional layers. A skip connection connects the former and latter convolutional layers. Takes four input variables, each on 122 vertical levels, and on a 64

(lat) x 128 (lon) grid. The blue block in the bottom left in (a) refers to the additional infused context or relevant information added at later stages in the hidden layers, for

example, the lead time at which the FM makes the predictions.
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The procedure is applied to create the fine-tuning training data. The top 15 of the 137 vertical levels are discarded
due to artificial model damping. All input-output pairs are coarse-grained from a 0.25° km resolution to a 64
latitudes X 128 longitudes grid (roughly 2.8°~ 280 km resolution in the tropics) to obtain conservative wave
averages (as the momentum flux carried by the waves is defined as an average over single or multiple wave
cycles). The fluxes are computed for four years: 2010, 2012, 2014, and 2015. This corresponds to roughly 35k
training + validation samples since one 64 X 128 X 122 hyperslab makes up 1 training sample. We are thus in a
data-scarce regime, in which the number of observations is insufficient to cover the possible degrees of freedom.

Variables for training the U-Net: the input consists of winds u, v, and potential temperature 6, which is a function
of temperature T and pressure p (inhPa)as 8 = T(p/1 000)_0'286, each on 122 vertical levels, 64 latitudes and 128
longitudes. Similarly, the output comprises fluxes u’w’ and v/ @’, each on 122 vertical levels, 64 latitudes, and
128 longitudes (Figure 2b).

Variables for fine-tuning the FM: this is slightly different from the baseline. The fine-tuning input consists of
winds u, v, temperature 7, and pressure p (instead of u, v, and #), each on 122 vertical levels, 64 latitudes, and 128
longitudes. Similarly, the outputs are potential temperature § (for validation) and fluxes u’ @’ and v/ @', each on
122 vertical levels, 64 latitudes and 128 longitudes (Figure 2¢). Using T and p as inputs and € as an output also
allowed us to test whether the fine-tuned model can learn a well-defined nonlinear analytical relation between the
input and the output, arguably presenting a more stringent learning problem compared to the baseline.

Variable Normalization: Each variable is normalized differently. The zonal wind u is normalized as:
U = (U — Upean)/Ugq, Where U, and ug, are the global mean and standard deviation. Similarly for v and T.
Pressure was scaled as p — log;(p), and potential temperature was scaled as & — 6/1000. Lastly, global mean
and global standard deviations of u’w’ were used to scale the flux as u’w’ - [(u'@’ — u’a),’nean)/u’w;td]l/3.
Here, applying a cuberoot helps constrain the range of flux magnitudes by shifting both inordinately large and
inordinately small flux values toward 1. For instance, the cuberoot of 0.064 and 64 (normalized) GW flux is 0.4
and 4, respectively. The cuberoot makes it more convenient to constrain and learn extreme values by bringing

them closer to 1.

All the data-driven models considered in this study are trained on resolved wave fluxes from ERAS. The objective
is to reproduce the ERAS fluxes as accurately as possible. For this reason, the fluxes in ERAS are occasionally
referred to as “true” fluxes, since they comprise the training and validation set.

ERADS provides multi-decadal atmospheric coverage at a moderately high resolution; however, we caution against
the limited GW representation in ERAS, due to which GW fluxes in ERAS might not be a true representation of
the actual GW fluxes in the atmosphere. Multiple recent studies have reported both substantial similarities and
systematic differences between GWs in ERAS and GWs in high-resolution models and observations (Gupta,
Reichert, et al., 2024; Lear et al., 2024; Pahlavan et al., 2023; Yoshida et al., 2024). This could be due to multiple
factors. First, with a resolution of 25 km, ERAS does not resolve a portion of the atmospheric GWs with
wavelengths shorter than 150 km. These waves likely make notable contributions to the large-scale atmospheric
circulation (Polichtchouk et al., 2022, 2023). Second, while the large-scale winds and temperature are constrained
by observations to some degree, small-scale GWs in ERAS are model-generated in response to the constrained
background state. Third, known biases in precipitation, clouds, land, and upper surface winds can result in biased
GW generation in response to changes in these fields. This can be particularly important for small-scale con-
vectively generated GWs which have a wide phase spectrum, and are likely to transport the momentum to
mesospheric heights before dissipation (Achatz et al., 2024; Kim & Chun, 2015). Lastly, the use of a hydrostatic
dynamical core to produce ERAS means a compromised representation of non-hydrostatic GWs, potentially
leading to an incorrect wave aspect ratio for a given angular frequency. Such differences could also exist among
identically initialized high-resolution models with different underlying numerics, as noted by Stephan
et al. (2019), Kruse et al. (2022), and Prochazkova et al. (2023).

2.3. Baseline Model

An advanced baseline was created by training an Attention U-Net model (hereafter attn unet) (Oktay et al., 2018)
on the ERAS data. The input is downsampled using four convolutional blocks and then upsampled using four
convolutional blocks. The skip connection at each level comprises learnable attention layers. For every down-
sample (upsample), the number of channels increases (decreases) by a factor of 2, but all spatial dimensions
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reduce (increase) by a factor of 2. As a result, the baseline model consists of over 35 million learnable parameters
and provides a robust comparison benchmark for the fine-tuning model. The learning rate for the model was set to
107*. On a single 80 GB A100 GPU, the model needed around 110 hr for 100 epochs of training.

2.4. Designing the Fine-Tuning Model

The architecture schematic for the fine-tuning is shown in Figure 2c. During fine-tuning, we freeze the encoder
and decoder from Prithvi WxXC. The frozen encoder is preceded by 4 learnable convolutional blocks, each with an
increasing number of hidden channels, that is, C, 2C, 4C, and then 8C, where C = 160. Likewise, the frozen
decoder is succeeded by 4 new learnable convolutional blocks. For instantaneous prediction of GW fluxes, we fix
Prithvi's lead time 6t to zero. The instantaneous model input for fine-tuning has the shape [1, 488, 64, 128] where
the 488 channels comprise the four background variables u, v, T, and p on 122 vertical levels each, and on a
64 x 128 horizontal grid, as discussed above. The model was fine-tuned to produce an output with shape [1, 366,
64, 128] comprising of the potential temperature @, and fluxes u’w’, and v/ @’ on 122 vertical levels each. The
model was trained for 26 hr on 2 nodes of 4 80 GB A100 GPUs for 100 epochs. However, the model error
converged to lower than the final baseline model error after just 40 epochs of training.

2.5. Training Both Models

Both models use global information as input to predict global fluxes as output. This provides a strong contrast to
traditional “single-column” parameterizations. Access to the global atmospheric state allows the models to learn
spatio-temporal correlations and the effects of horizontal propagation of GWs.

Both models were trained and validated for 100 epochs on 4 years, that is, 48 months, of ERAS background
conditions and fluxes. The baseline model's global RMSE loss dropped from an epoch 1 loss of 0.38 to plateauing
near 0.17 over 100 epochs (a 40% reduction). In contrast, the fine-tuned model showed much faster convergence,
dropping from an epoch 1 loss of 0.275 to 0.16 (40% reduction) over just 5 epochs and finally converging to 0.106.

Since the main focus of the study is to highlight the application of FMs to make quick emulators, at present, only
the month of May 2015 was used for validation; the remaining 47 months were used for training. Both models
leveraged a U-Net-like architecture with skip connections to promote the extraction of high-frequency infor-
mation from the source data. Both models were trained with an identical minibatch size of 4, that is, four randomly
selected timeframes of each variable formed input during a single forward and backward pass of the model. We
re-emphasize that Prithvi WxC was pre-trained on the MERRA-2 data set, but the fine-tuning was accomplished
using ERAS data instead. Both models yielded similar inference times on a single A100 GPU for an identical
minibatch size of 4.

Both models were optimized using MSE Loss, which is defined as:
Lo 1 2
L(x,y) = . z (% —w) )
i=1
where x; is the ith prediction compared against the ith measured sample y;.

2.6. Hellinger Distance

Given two probability densities, p and ¢, their Hellinger distance, H (Hellinger, 1909), is defined as:

Hpog)=1- f N ©)
xeX

By definition, H € [0, 1]. A Hellinger distance of 0 means the distributions are identical almost everywhere,
while a Hellinger distance of 1 implies the distributions are disjoint, that is, p is non-zero wherever q is zero, and
vice versa.
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Figure 3. Instantaneous (non-dimensional/normalized) fluxes for May 2015 resolved in ERAS reanalysis (black), predicted fluxes from attn unet (blue), and from the
fine-tuned parameterization (red), over six well-known gravity wave (GW) hotspots. The numbers show the respective Pearson correlation coefficients with respect to

ERADS. The fluxes in the winter

hemisphere are shown at 30 km, whereas the fluxes in the summer hemisphere are shown at 12 km, as GW activity in the summer

stratosphere is substantially weaker. Fluxes in the tropics are shown at 18 km. These altitudes are approximate representative heights since the fluxes are evaluated on
pure-pressure and hybrid-pressure levels, respectively, which do not equate to similar geopotential heights throughout the domains. The Pearson correlation coefficient
(between ERAS and attn unet) is computed as the covariance between the ERAS fluxes and attn unet fluxes divided by the product of ERAS and attn unet standard

deviations.

Hellinger distance measures the statistical distance between two distributions. In Section 3, Hellinger distance is
used to quantify the difference (or statistical distance) between the flux distributions from ERAS and the pre-
diction flux distributions to estimate the quality of predictions by both the attn unet and the fine-tuned model.

3. Results
3.1. Instantaneous, Intermittent Evolution of Gravity Waves

We focus on predicting u’ w’, which is the vertical flux of zonal momentum carried by GWs. Its vertical derivative
equals the net forcing tendency (acceleration) exerted by GWs on the zonal wind. The findings are similar for the
vertical flux of meridional momentum, v’ ®@’, and equivalent plots for v/ @’ are shared in the Appendix. In all
instances, the predictions are compared to both the fluxes from ERAS and to predictions from the existing
benchmark, the attn unet model.

The time evolution of box-averaged fluxes for May 2015 over six well-known hotspots of GW activity is
illustrated in Figure 3. The fine-tuned parameterization generates a remarkably accurate prediction of the
intermittent generation and temporal coherence of GW packets, even though no explicit considerations were
made to embed recurrence in the underlying fine-tuning architecture. The three predominantly orographic hot-
spots (Newfoundland, European Mountains, and Drake Passage) and three nonorographic hotspots (the tropical
Pacific Ocean, Southeast Asia, and the Southern Ocean) were selected using the zonal GW flux and lateral GW
flux climatology presented in Hindley et al. (2020), Wei et al. (2022), and Gupta, Sheshadri, Alexander and
Birner (2024). Nonlocal propagation of GWs is more prominent in the winter stratosphere due to a stronger
vertical shear (Gupta, Sheshadri, Alexander, & Birner, 2024; Sato et al., 2012), so wherever possible, the transient
evolution is shown in the upper winter stratosphere (10 hPa ~ 30 km), that is, the Southern Hemisphere for May.
For regions in the summer/Northern hemisphere, the fluxes are instead analyzed in the upper troposphere
(200 hPa ~ 12 km). In the tropics, the GW fluxes are analyzed in the lower stratosphere (80 hPa ~ 18 km) to
ensure minimal contribution from convective fluxes.
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Figure 4. May 2015 averaged gravity wave momentum flux distributions divided according to hotspots and vertical regions in the atmosphere. The figure shows non-
dimensional fluxes as predicted by the models for ease of comparison. The y-axis is the distribution density. The fluxes are averaged over the corresponding boxes
outlined in A3. The numbers in orange and green indicate the Hellinger distances for the time-averaged flux distributions for the attn unet and the foundation model,
respectively. Lower troposphere: 500 hPa to surface (0—10 km height), upper troposphere: 100-500 hPa (10—16 km height), lower stratosphere: 30—100 hPa (16-25 km
height), upper stratosphere: 10-30 hPa (25-45 km height).

The fine-tuned FM generates substantially better predictions over all six hotspots. Most notably, for the Drake
Passage (predominantly orographic waves) and the Southern Ocean (nonorographic waves), the Pearson corre-
lation coefficients of the predictions from the fine-tuned model (vs. ERAS) are as high as 0.99 and 0.97,
respectively. In comparison, the respective correlations for the attn unet are 0.84 and 0.76. The correlation with
ERAS is the weakest over the Tropical Pacific Ocean, but even then, the fine-tuned model has a higher correlation
of 0.85, higher than attn unet's 0.76. The results in the lower stratosphere are mixed. Even though the fine-tuned
model has a higher correlation over the tropical box, flux magnitudes from attn unet match better with ERAS.
Noisier fluxes due to tropical convective GWs with a broad range of phase speeds appear to be more challenging
to predict than extratropics GWs. Expanding the feature set to include diabatic heating or precipitation-related
information could potentially lead to performance gains in the region.

The successful prediction of spontaneous bursts of flux intensification in both the tropics (from tropical storms
and convective systems) and the midlatitudes (from mountains and storm tracks) shows that the fine-tuned model
proficiently learns the intermittent excitation and horizontal evolution of medium-to-small-scale atmospheric
variability directly from data. This is further corroborated by the spatial structure of the predicted flux in Figure 1,
which shows that the model predicts both the fluxes over the Southern Andes and the laterally propagated fluxes
in its vicinity. The wave packets preserve their coherence in time as they propagate away from their sources of
excitation (see the animation provided as Supporting Information, https://doi.org/10.17605/OSF.I0/8W6AZ).
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3.2. Regionwise Averaged Flux Distribution

The dynamical evolution of atmospheric GWs can vary substantially with height (troposphere vs. stratosphere),
region (latitude and longitude), and season (summer vs. winter). Figure 4 shows the monthly-averaged predicted
and “true” GW flux distributions partitioned by individual hotspots and varying atmospheric altitudes. To also
focus on tropical orography, here we show the flux distribution over the Himalayas and the East Asian mountains,
instead of the tropical Pacific and Southeast Asian hotspots in Figure 3. The fine-tuned model captures the entire
range of flux magnitudes over the different GW hotspots (Figure 4). In the troposphere and the lower stratosphere,
the models provide comparable performance. In fact, in some regions, such as the lower stratosphere over
Newfoundland, and the troposphere over the Southern Ocean, the Hellinger distances are slightly better for the
attn unet model. In the upper stratosphere, however, the fine-tuned model generates a substantially more
consistent distribution than the baseline. Such distributions are challenging to replicate, as the waves excited near
the surface are progressively filtered and dissipated as the waves propagate to stratospheric and mesospheric
altitudes.

The Hellinger distances of the distributions for both the baseline and the fine-tuned model (w.r.t. ERAS) are
shown for each hotspot and height. A Hellinger distance of O indicates that the predicted distribution is
identical to the distribution from ERAS. In the stratosphere, the fine-tuned model outperforms the baseline,
yielding a lower Hellinger distance in all regions except the lower stratosphere over Newfoundland and the
European Mountains. The improvement is more evident in the upper stratosphere. Both models generate low
Hellinger distances in the troposphere and most of the lower stratosphere, indicating a distribution similar to
ERAS, at least in a cumulative sense. However, all regions in the upper stratosphere have higher Hellinger
distances than down below, with Hellinger distances reaching up to 0.82 for the baseline over Newfoundland,
revealing key biases in the summer hemisphere. The GWs in the summer upper atmosphere are likely much
smaller due to filtering below by the easterly winds. Since the RMSE training loss used for finetuning would
penalize the large scales more, one might expect these smaller waves to be less accurately captured by the
neural nets.

Most interestingly, the baseline model has a lower variance (and hence poorer predictive skill) than the fine-
tuned model in multiple stratospheric blocks, even though Prithvi was initially not trained on upper atmo-
spheric data; Prithvi's vertical spacing is shown in Figure A1l. This highlights another benefit of using an FM's
encoder-decoder that allows the creation of a consistent mapping between the FM's learned embedding space
and the fine-tuning data. The performance improvement, then, can be attributed to a combination of two factors.
First, the substantially higher volume (404 years) of data used for pre-training, as opposed to merely four years
of ERAS data used for fine-tuning and training the baseline. Second, the fine-tuning model efficiently leverage
the latent space of the pre-trained Prithvi and unify the learning from both MERRA?2 during pre-training and
ERAS during fine-tuning. As a result, the fine-tuning model substantially outperforms the attn unet baseline
when trained on the same set of fine-scale data. Despite not being trained on upper atmospheric data during
development, training on over four decades of atmospheric data on a masked reconstruction objective (as
described in Section 2.1) likely allows more consistent mappings between Prithvi's embedding space and the
fine-tuning input.

A similar partition of the ERAS and predicted monthly mean distributions, but partitioned by different latitude
bands, is shown in Figure A4.

3.3. Vertical Mean Profile and Variability

While both models generate mean vertical profiles that are very similar to ERAS over the five hotspots, the fine-
tuned model generates both richer and more accurate variability in the stratosphere than the baseline (Figure 5).
The difference in variability is substantial in the stratosphere. Both models generate weaker stratospheric vari-
ability than ERAS in the summer stratosphere (European mountains, Himalayas, and Newfoundland) owing to
weak GW activity in the region. The shading in Figure 5 shows the range of the true and predicted fluxes. Yet, the
wintertime stratospheric variability over the Drake Passage and Southern Ocean in the fine-tuned model is more
consistent with ERAS. This is consistent with the lower variance noted for baseline predictions in the upper
stratosphere. The observed and predicted mean vertical flux profiles and their variability over different hotspots
for the meridional flux are shown in Figure AS.
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Figure 5. May 2015 mean ERAS5 and predicted vertical profiles of the normalized (unitless) zonal flux, F, = u’®’ over five hotspots. The exact boundaries of the
hotspots are shown in Figure 3. The (normalized) ERAS flux is shown in black, the prediction from attn unet is shown in orange, and the prediction from the fine-tuned
model is shown in green. The gray, orange, and green shadings show the range of flux variability in the respective models. The regional extent for the hotspots is shown
in Figure A3. The fluxes converge to near-zero in the stratosphere over all hotspots, due to successive wave filtering and dissipation, but appear to converge to non-zero
values due to non-dimensionalization.
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Figure 6. Histogram of the (a) May 2015 averaged and (b) daily averaged gravity wave flux u’@’. Gray shading shows the
underlying ERAS distribution, orange is the attn unet prediction, and green is the fine-tuning prediction. Numbers indicate
the Hellinger distance for the corresponding predictive model. The dotted lines show the 2.5th and 97.5th percentile,
respectively (note the log-scaled y-axis). Scatter plot of the ERAS versus predicted flux at each grid point for (c) May 2015
monthly average and (d) daily average. Red and green markers show the scatter for the baseline and fine-tuned model. The
scatter for four orographic (Drake Passage, Himalayas, Newfoundland, and European Mountains) and nonorographic hotspots
(tropical Pacific, North Atlantic, Southeast Asia, and Southern Ocean) for the fine-tuned model is shown in yellow and brown,
respectively. The regional extent of the hotspots is shown in Figure A3. A gray box is added for reference over the

[1,1] x [~1,1] interval.
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3.4. Global Averaged Flux Distribution

Global flux distributions provide insight into how well our models generate the possible range of flux responses
globally, which are crucial to modeling extreme GW events. The observed and predicted global distribution of the
GW momentum fluxes at different sampling frequencies (monthly vs. daily averages) is shown in Figures 6 and
A6. The histogram represents the distribution of the May 2015 monthly mean momentum flux globally, that is,
over all points in the troposphere and stratosphere. Both the baseline and the fine-tuned models simulate the
distribution on monthly time scales with remarkable accuracy, both in the bulk of the distribution and its tails
(Figure 6a). The baseline and the fine-tuned model have a Hellinger distance of 0.005 and 0.003 from the un-
derlying training (ERAS) distribution, suggesting that despite clear differences in predictive skill, the two dis-
tributions are nearly identical to the underlying ERAS distribution. The fine-tuned model emulates the
distribution tails slightly better than the baseline.

For monthly averages, the fine-tuned model provides excellent prediction of the mean flux field, as is gauged by
the scatter plot in Figure 6¢. The fine-tuned (green) model exhibits a reduced dispersion compared to attn unet
(red). The fluxes over orographic hotspots (yellow) account for a larger scatter, and fluxes from nonorographic
hotspots (brown) are clustered around smaller values.

Both models, however, struggle to accurately capture the daily-sampled histogram around small values. In the
[-0.5,0.5] interval, the models fail to accurately learn the small values and instead predict close-to-zero values
more frequently. This implies that the models learn the strong GW events more readily than the weak ones.
Accordingly, the daily sampled flux distributions from both attn unet and the fine-tuned models produce higher
Hellinger distances of 0.116 and 0.062, respectively. Our choice of loss function, that is, training to minimize the
root-mean square error, could partly explain this magnitude-selective learning.

Even for daily samples, the attn unet model exhibits a visibly larger scatter against ERAS compared to the fine-
tuned model (Figure 6d, red markers vs. green markers). The points from the non-orographic regions (NOROG;
brown markers) exhibit less scatter in panels (c) and (d), implying a tighter clustering around the diagonal compared
to points from the orographic hotspots (OROG; yellow markers). Regardless, this indicates that the misrepresented
fluxes around zero in panel (b) are due to the misrepresentation of both orographic and nonorographic GWs.

4. Conclusion and Discussion

Our analysis establishes that the atmospheric evolution learned by large transformer-based FMs (developed for
weather research) can be leveraged to improve and expedite the creation of subgrid-scale parameterizations for
climate models. The FM parameterization more accurately predicts lateral propagation effects than traditional
parameterizations and outperforms the advanced attn unet benchmark with fewer learnable parameters, even in
upper atmospheric regions where the foundation model was not pre-trained. This provides a fresh avenue to
develop Al-driven representations of small-scale processes that have the potential to replace traditional param-
eterizations, which for over four decades have been envisioned as single-column plugins that often neglect key
process physics. Coupling these parameterizations with existing climate models can promote and expedite the
development of hybrid climate prediction models.

Since Prithvi is trained on large amounts of data, its latent encoder-decoder space contains a rich abstract rep-
resentation of atmospheric evolution. The training data includes atmospheric variables like winds, humidity,
radiation, and even leaf area index and soil moisture. The application of this approach transcends GWs and, with
appropriate observational data for fine-tuning, could be used to create parameterizations for other atmosphere-
ocean-land processes unseen during pre-training. As an added benefit, this approach allows using data from
multiple streams for finetuning—high-resolution model data, satellite trains, terrestrial remote sensing data,
ground observations, etc.

In the context of atmospheric GWs, the FM outperforms the attn unet benchmark in representing GW effects in
the upper stratosphere. It learns the effects of three-dimensional propagation and dissipation of GWs in the at-
mosphere better than the attn unet. As a result, this model is capable of representing the missing GW effects in
coarse-climate models. These effects are critical to getting a more realistic middle atmospheric circulation and
seasonal wind transitions in climate models and in alleviating the “cold-pole bias” of the stratosphere that un-
dermines the accuracy of these models.
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Recent studies, for instance Bretherton et al. (2022), have discussed using deep learning models trained on high-
resolution model simulations to “bias-correct” coarse-climate models. While effective, these techniques are less
interpretable, as it is challenging to learn the true source of prevailing biases and to distinguish structural model
errors from model errors due to inaccurate physics. Given the versatility of FMs, our approach enables the
development of process-specific emulators for representing a suite of subgrid-scale processes, resulting in bias
correction through a data-driven representation that is closer to observations.

To demonstrate the central idea, we have fine-tuned our models on limited years of ERAS reanalysis data
spanning a few variables. As noted above, the GWs in ERAS5 are not assimilated but model-generated, and
owing to a 25 km resolution, they miss a broad range of mesoscale GWs (with wavelengths shorter than 150—
200 km). In addition, while the fluxes computed from ERAS using HD better reflect fluxes carried by GWs, in
the troposphere, it could include contributions from convection in regions with precipitation (Alexander
et al., 2006; Wei et al., 2022). As a consequence, there is much scope for improvement in the parameterization.
These improvements can be achieved by fine-tuning on longer periods of high-resolution (high-fidelity) data
sets, through better estimates of tropospheric GW fluxes, and by including more convection-related variables
(for instance, humidity, diabatic heating, and latent heat fluxes). This will be the focus of future work, where the
fine-tuning will be accomplished using a kilometer-scale, high-resolution model output and an expanded
feature set.

Admittedly, the nonlocal architecture adopted in this study presents a contrast with the widely adopted column-
based discretization used by climate models. Yet, such a coupling is possible, and work is underway to couple the
nonlocal fine-tuned scheme to an atmospheric model (National Center for Atmospheric Research (NCAR)'s
CAM?7) and evaluate its online performance on atmospheric variability and generalizability on warming sce-
narios. To this end, in collaboration with the Institute of Computing for Climate Science at the University of
Cambridge and NCAR, we have identified inbuilt pooling and discretization functions that make this coupling
possible using ftorch, without adding latency (Atkinson et al., 2025; Chapman & Berner, 2025).

Nevertheless, foundational models open avenues to using multisource observations to facilitate not just Al-
powered weather research but also climate research. Due to constraints on computing power, we are still far
away from being able to run climate models (such as those participating in CMIP) multiple decades and cen-
turies into the future at kilometer or sub-kilometer resolutions. This means climate prediction will continue to
miss crucial sub-grid physics and will continue to rely on physical parameterizations of unresolved processes.

We have demonstrated an appealing application of an existing foundation model in improving the sub-grid scale
physics representation in a climate model. These emulators are not just intended to be coupled to a climate model,
but can also serve as standalone plugins to improve small-scale variability in Al-based weather models and other
fine-tuned models. In principle, FMs (like Prithvi WxC) could be strategically applied to address a range of
climate applications, including, but not limited to, heat wave prediction, land-use trend detection, and cross-
domain learning. This can be accomplished by fine-tuning the base FM on event-specific data sets, to enhance
performance on rare events as, for instance, is discussed in Cui et al. (2025). First, the FMs can be pre-trained on
global forecasts to optimize the global mean squared error. Subsequently, parts of the FM, when retrained on
event-specific data using a specialized loss function, can be used to quickly re-train and develop specialized task-
emulators. Used in conjunction with other FMs, such as Prithvi HLS (Jakubik et al., 2023), this approach can be
leveraged to create lightweight, fine-tuned models for key weather and climate applications, including the pre-
diction of wildfires, hurricane storm surge, and regional heatwave impacts, potentially improving climate change
preparedness.
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Appendix A: Additional Model Information and Meridional Flux Predictions
See Figures A1-A6.

Vertical grid spacing

- ERA5
X  Prithvi WxC

10{ ¢

Pressure height (hPa)

100+

1000

30 60 90 120
ERA5 model level

Figure Al. Prithvi was pre-trained on very sparse data in the vertical. The ERAS5 fine-tuned data were computed on 137
model levels, and the top 15 model levels (i.e., levels above 1 hPa ~ 45 km) were discarded due to an artificial model sponge
imposed at those levels. So, effectively 122 model levels between 1,000 hPa (surface) to 1 hPa (45 km) height were used. In
contrast, Prithvi is trained on MERRA-2 data interpolated to 14 vertical levels: [985, 970, 925, 850, 700, 600, 525, 412, 288,
245, 208, 150, 109, 48] hPa. No training data were provided between 50 hPa and 1 hPa during pre-training. This means that the
frozen encoder-decoder has no prior knowledge about the dynamic evolution of gravity waves at these heights. Still, as shown in
Figures 4 and 5, the fine-tuned model outperforms the baseline in this region.
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Figure A2. Same as Figure 3 but for v/’ - instantaneous fluxes for May 2015 from ERAS (black), and predictions from the baseline (teal) and the fine-tuned model
(light green) over six different hotspots.
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Figure A3. Figure showing all the gravity wave hotspots considered for regional analysis in this work. Yelllow: Tropical
Pacific (170°W, 130°W) X (10°S, 40°N), Red: Newfoundland Mountains + Southern Greeland (70°W, 30°W) X (45°N,
70°N), Orange: European Mountains (0°, 30°E) X (40°N, 70°N), Green: Himalayas and East Asian Mountains (75°E, 120°E) x
(28°N, 58°N), Light Pink: Northern Atlantic (45°W, 15°W) X (0°, 30°N), Brown: Southeast Asia (90°E, 135°E) X (5°N, 25°N),
Blue: Drake Passage (90°W, 45°W) X (78°S, 33°S), Dark Pink: Southern Ocean (30°E, 65°E) X (65°S, 45°S).
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Figure A4. Gravity wave flux distributions similar to Figure 4, but divided according to latitude and height. The poles are defined as latitudes 60°-90°, the midlatitudes
as 30°-60°, and the tropics as 15°S—15°N. The numbers indicate the respective Hellinger distances w.r.t. the distribution from ERAS (black). For each latitude band,
averaging is conducted over the whole latitude circle, that is, over all longitudes.
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Figure A6. Same as Figure 6 but for v/ @’. The distribution of the (a) May 2015 averaged and (b) daily averaged gravity wave
flux v/ ’. Gray shading shows ERAS5's underlying distribution, orange is the baseline prediction, and green is the fine-tuning
prediction. Numbers indicate the Hellinger distance for the corresponding predictive model. The dotted lines show the 2.5th and
97.5th percentile, respectively (note the log-scaled y-axis). The bottom row shows the respective scatter of the ERAS flux and
the predicted meridional flux v/ w’.
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