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Abstract

Epigenetic cell memory, the inheritance of gene expression patterns across subse-
quent cell divisions, is a critical property of multi-cellular organisms. In recent work
[10], a subset of the authors observed in a simulation study how the stochastic dynam-
ics and time-scale differences between establishment and erasure processes in chromatin
modifications (such as histone modifications and DNA methylation) can have a critical
effect on epigenetic cell memory. In this paper, we provide a mathematical framework
to rigorously validate and extend beyond these computational findings. Viewing our
stochastic model of a chromatin modification circuit as a singularly perturbed, finite
state, continuous time Markov chain, we extend beyond existing theory in order to char-
acterize the leading coeflicients in the series expansions of stationary distributions and
mean first passage times. In particular, we characterize the limiting stationary distribu-
tion in terms of a reduced Markov chain, provide an algorithm to determine the orders
of the poles of mean first passage times, and determine how changing erasure rates
affects system behavior. The theoretical tools developed in this paper not only allow us
to set a rigorous mathematical basis for the computational findings of our prior work,
highlighting the effect of chromatin modification dynamics on epigenetic cell memory,
but they can also be applied to other singularly perturbed Markov chains beyond the
applications in this paper, especially those associated with chemical reaction networks.

1 Introduction

1.1 Background

Epigenetic cell memory, the inheritance of gene expression patterns across subsequent cell
divisions [22], is a critical property of multi-cellular organisms of intense interest in the field
of systems biology [30,31]. It has previously been discovered that chromatin modifications,
such as DNA methylation and histone modifications, are key mediators of epigenetic cell
memory [1,14,21,24] (see references in [10] for more biological background). More precisely,
it was found via simulations of stochastic models that the time scale separation between



establishment (fast) and erasure (slow) of these modifications extends the duration of cell
memory, and that different asymmetries between erasure rates of chromatin modifications
can lead to different gene expression patterns [10-12|. Here, we provide a mathematical
framework to rigorously validate these computational findings and to further explore models
of chromatin modification circuits. We do this in a way that the results obtained and the
tools developed can be applied to other mathematical models beyond the applications in
this paper, especially stochastic models of chemical reaction networks.

1.2 Focus of our work

In this paper, we consider different versions of the chromatin modification circuit proposed
in [10]. In particular, we start with simpler circuits that include histone modifications only
and then we consider more elaborate circuits that include also DNA methylation. All of these
circuits can be viewed as examples of Stochastic Chemical Reaction Networks (SCRNs). A
SCRN is a continuous time Markov chain living in the non-negative integer lattice in d-
dimensions, where the components of the Markov chain track the number of molecules of
each of d species in the network over time, and each jump of the Markov chain corresponds
to the firing of a reaction in the network [2]. A more precise description is given in Section
3.2.

In order to analyze these stochastic models, we first determine how the stationary dis-
tributions and mean first passage times between states vary when a small parameter ¢
(non-dimensional parameter that scales the speed of the basal erasure of all the chromatin
modifications) tends to zero. To this end, we show that the stationary distributions and the
mean first passage times of these singularly perturbed Markov chains admit series expansions
in € and we develop theoretical tools to determine the coefficients in these expansions. Then,
we focus on determining how the different erasure rates of chromatin modifications affect
the behavior of the chromatin modification circuit models. This latter study is conducted
by exploiting comparison theorems for Markov chains recently developed in [13].

One of the key features of our work is that these tools and the associated mathematical
results are not only applicable to the chromatin modification models, but they can also be
used to analyze other models that respect the same set of assumptions.

1.3 Related work

As mentioned in the previous paragraph, the stochastic behavior of the chromatin modi-
fication circuit models can be described by singularly perturbed continuous time Markov
chains. There is some literature on discrete and continuous time, singularly perturbed
Markov chains, especially by Avrachenkov et al. [6], Hassin & Haviv [20], Beltran and
Landim |7, 8], and Yin & Zhang [32]. Avrachenkov et al. [6] gave general characteriza-
tions of series expansions for the stationary distribution and mean first passage times of a
singularly perturbed discrete time Markov chain with finite state space. While their theory
can be in principle translated to continuous time Markov chains, our work mostly deals
directly with the singularly perturbed continuous time Markov chains and provides more
concrete theoretical results for the leading coefficients of the stationary distribution series
expansion and the orders of the poles of the mean first passage times. For the leading coef-
ficients in the series expansion for the mean first passage times, we use in part the results of
Avrachenkov & Haviv [5] and Avrachenkov et al. [6] and adapt their work to the continuous



time Markov chain setting. We treat in detail the case where the chain for € = 0 has more
than one absorbing state and at least one transient state. Furthermore, we also provide an
interpretation of leading coefficients in the series expansion of the stationary distribution in
terms of a certain restricted Markov chain. An algorithm we give to determine the order of
the pole of the mean first passage time extends the work of Hassin & Haviv [20] from discrete
time to continuous time. We also extend the original algorithm’s scope to treat mean first
passage times to a subset of states, instead of just a single state. Beltran and Landim [7,§|
study metastable and tunneling behavior for a sequence {n" }3%_; of time-homogeneous con-
tinuous time Markov chains with countable state spaces. Under an acceleration of time by
a factor 6y, they give conditions under which the trace of the accelerated process on the
metastates is asymptotically Markovian as N — oco. For our case, this would correspond to
accelerating time for % = X¢ by Oy ~ % Beltran and Landim identified the transition rates
for the limiting Markov chain and proved that its stationary distribution can be obtained
as a limit from the stationary distribution for V. While this work is potentially related to
what we did, it requires knowing the stationary distribution for n a priori. Our approach
does not need to know that stationary distribution explicitly and we also study mean first
passage times, giving explicit asymptotics for both. Finally, Yin & Zhang [32] conducted
an extensive study focused on determining matched asymptotic expansions for the marginal
distributions at time ¢ of singularly perturbed continuous time Markov chains. Their in-
finitesimal generators, generalizing those of Phillips & Kokotovic [29] and Pan & Basar [28],
are of the form Q(g) = %Q(O) + QW and can be time dependent. For the time independent
case, this would correspond to studying the marginal distributions of our Markov chain X¢
in the "linear" case and at time é as ¢ — 0, ie., lim._g Xf(é). Thus, while their work
potentially might provide information about stationary distributions as € — 0, we directly
study the power series expansion (in &) of the stationary distribution of X¢, and we also
study series expansions of mean first passage times for X¢, and we develop more concrete

analyses for both.

1.4 Outline of the paper

In Section 2 we introduce two simplified models for the chromatin modification circuit that
do not include DNA methylation. Through these examples, we introduce the mathematical
setting and questions we address in this paper. We describe the basic setup and definitions
needed for this paper in Section 3. We present our main results in Section 4. Some proofs are
given there, whilst others are in the Supplementary Information (SI). Further applications of
the theoretical tools developed in Section 4 for chromatin modification circuits that include
DNA methylation are presented in Section 5. Concluding remarks are given in Section 6.

1.5 Preliminaries and notation

Denote the set of integers by Z. For an integer d > 2 we denote by Z¢ the set of d-
dimensional vectors with entries in Z. Denote by Z = {0, 1,2, ...}, the set of non-negative
integers. For an integer d > 2 we denote by Zi the set of d-dimensional vectors with entries
in Zy. We denote by 1 a vector of any dimension where all entries are 1’s. The size of 1 will
be understood from the context. The set of real numbers will be denoted by R, R4 = [0, 00),
R-o = (0,00), and d-dimensional Euclidean space will be denoted by R? for d > 2. For
integers n,m > 1, the set of n X m matrices with real-valued entries will be denoted by



R™ ™. The set of complex numbers will be denoted by C.

Let X be a finite set. If needed, we will enumerate the entries of X by {1,...,|X|}. For
a matrix A = (Azy)zyex with real-valued entries, we denote the kernel of A by ker(A) :=
{z € RI*l: Az = 0} and the nullity of A by nullity(A) := dim(ker(A)). We denote the
spectrum of A by sp(A) and the spectral radius by spr(4) = max{|A| : A € sp(4)}. A
matrix Q = (Quy)eyex Will be called a @Q-matrix if @, > 0 for every x # y € X and
Q1 = 0. We denote the identity matrix, which has 1’s on the diagonal and zeros elsewhere,
by I = (Izy)zycx. For a vector v = (vz)zex we denote by diag((vz)zex) the diagonal
matrix in X with entries given by v. Vectors are column vectors unless indicated otherwise
and a superscript of 7' will denote the transpose of a vector or matrix. For integers n,m > 1
and a matrix A € R™*™, we denote by [|Al| = (327, D27, |A; ;1?)'/? the Frobenius norm

of A, For a vector v € R", we denote the Euclidean norm of v by |jv|| = (31, [vi]?)"/2.

Definition 1.1. Given a matrix A© in R"*™  a real-analytic perturbation of A is a
matrix-valued function A : [0,e9) — R™ ™, where gy > 0, and

Ae) = ZakA(k), 0 <e < ey, (1.1)
k=0
in which {A®) : k£ > 0} is a sequence of matrices in R™*™ such that

ZekHA(k)H < 00, for every 0 < e < &o. (1.2)
k=0

Such a perturbation is called linear if A(g) = A©) + A for 0 < e < .

By (1.2), a real-analytic perturbation of A() can be extended to a function F(z) :=
S5 2R AR defined on B(0,g9) = {#z € C : |2| < &9}. The function F will be called an
analytic perturbation or complex-analytic perturbation of A(®). This extension will
allow us to invoke results in complex analysis in order to study real-analytic perturbations.
An example of this is the following result.

Proposition 1.1. Let A: [0,e9) — R™™ be a real-analytic perturbation of AO) such that
A~Y(e) emists for every 0 < e < 9. Then, there is 1 € (0,e0) and p € Z such that

A7 e) = Z BF 0<e<e, (1.3)

where 32 F| BB < oo for every 0 < e < &1, {B® : k > —p} is a sequence of matrices

in R™*", B(=P) is not the identically zero matriz and p is called the order of the pole at
e=0.

This result is given in the analytic setting as Theorem 2.4 in [6]. Proposition 1.1 follows
by extending A(-) to a complex disk, then using Cramer’s rule as in the proof of Theorem
2.4 in [6] and checking that the matrices {B*) : k > —p} obtained are real-valued.

'Here, we chose to fix a particular norm on R™*™, although other choices of norm will often work.



2 Motivating Example: Chromatin Modification Circuit

In order to understand how the interactions among known chromatin modifications influ-
ence epigenetic cell memory, we consider the chemical reaction model of the gene’s inner
chromatin modification circuit introduced in [10]. This model has the nucleosome with DNA
wrapped around it, D, as a basic unit that can be modified either with activating marks,
such as H3K4 methylation (H3K4me3) or H3K4 acetylation (H3K4ac), or repressive marks,
such as H3K9 methylation (H3K9me3) or DNA methylation. H3K4me3 and H3K4ac are two
histone modifications that promote a less compact DNA around the nucleosomes and they
are then associated with gene activation (see Chapter 3 of [1| and [33]). In the model, it is
assumed that H3K4me3 and H3K4ac co-exist and the nucleosome with either of these mod-
ifications is represented by D*. On the contrary, both the histone modification H3K9me3
and DNA methylation cause the DNA to be tightly wrapped around the nucleosome and
therefore, they are associated with gene repression [22]. A nucleosome with DNA methyla-
tion only, H3K9 methylation (H3K9me3) only or both is represented by DY, D} and D},
respectively.

One of the key parameters of the system is € > 0, a non-dimensional parameter that scales
the speed of basal erasure of all chromatin modifications. We are interested in studying the
behavior of the system in the limiting regime € — 0, in which the chromatin modification
system has a bimodal limiting stationary distribution [10]. One peak corresponds to the
active chromatin state (most of the nucleosomes are modified with activating marks) and
the other one is in the repressed chromatin state (most of the nucleosomes are modified with
repressive marks). We aim to derive formulas that characterize, as € goes to 0, the behavior
of the stationary distribution and the “time to memory loss” of the active (repressed) state,
defined as the mean first passage time to reach the repressed (active) state, starting from
the active (repressed) state.

Two other critical parameters of the system are p and p/: they capture the asymmetry be-
tween the erasure rates of repressive and activating chromatin modifications. More precisely,
p (i) quantifies the asymmetry between erasure rates of repressive histone modifications
(DNA methylation) and activating histone modifications. Part of our study is to analytically
determine how p and ' affect the stationary distribution and the time to memory loss of
the active and repressed states.

In this section, we introduce two simplified models of the chromatin modification circuit
in which, compared to the full model described above, DNA methylation is not included and
the only chromatin marks are histone modifications. We will use these simpler models in
Section 4 to directly apply and then better understand the theory developed in this paper.
Then, in Section 5 we deal with more elaborate models that also include DNA methylation.
Note that, for consistency, we use the same notation for the species and the reaction rate
constants as the one used in the paper where these models were introduced |[10].

2.1 1D model

We first consider a simplified model in which a gene has a total of Doy > 2 nucleosomes,
where each nucleosome either has an activating histone modification, D?, or a repressive
histone modification, D®, and there are no unmodified nucleosomes in this simplified model.
If the amounts of nucleosomes having repressive (D®) and activating (D?) modifications are
denoted as npr and npa, respectively, then we have the conservation law npr +npa = Dyot.
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Figure 1: 1D model. (a) Chemical reaction system. The numbers on the arrows correspond to
the chemical reactions associated with the arrows as described in (2.1) in the main text. (b) Markov
chain graph. Here, we consider D,y = 3 and we use black dots to represent the states, red arrows
to represent transition rates that are O(1), and blue arrows to represent transition rates that are
O(e). (c) Directions of the potential transitions of X¢ starting from a state x, whose rates are given
in equation (2.2).

We call this the 1D model because it suffices to keep track of the amount of D® (for example),
since the amount of D? can be deduced by the conservation law. Furthermore, the basal and
recruited erasure of D (D®) coincide with the basal de-novo establishment and maintenance
of DR (DA). The chemical reaction system for this 1D model is the following:

6+k

kA
O D" + DR £ DR DR @ DA —2 DR,

kR 5+ kR (2.1)
@ DR+ DA 5 DA+ DA @) DR —E DA,

where 9, kg, k4, kg, /%g > 0. Here, the form of the reaction rate constants is due to the fact
that reactions with the same reactants and products have been combined. We denote the

: Otk da - 7.A
reaction volume by V', and let ¢ := = where 04 := 0 + k7. We also

k4 (Dot /V) k£ (Dot /V)’

R
consider the constant p := :—ﬁ, which captures the asymmetry between the erasure rates
E

of repressive and activating histone modifications.We introduce the constant b such that

,ub—(S , with §p := 0 + k£. Then, 5A—5k 5““ and 0 1= daub=c¢ 5 t‘“ub So, as e — 0,

both 4 and dr go to 0, with Dtot, 7, 1, and b fixed.

Now, consider a continuous time Markov chain X¢, with state space X' := {0,..., Dot },
where Dyo, > 2 is an integer, which keeps track of npr through time. Given that we have
the conservation law npr 4+ npa = Dyot, npa can be obtained as a function of npr, that is
npa = Diot — npr. Assuming stochastic mass-action kinetics (including the usual volume
scaling of rate constants [16]), the infinitesimal generator Q(¢) 2 for X¢ is given by:

kg k2D ) (D — if 0 =1
Fx + e Diot ) (Diot — ) 1
Qx,m—i—f(g) =\ u (%(Dtot — 3:) + bE%Dtot> x iff=-1 (22)
0 otherwise,
forw € X, £ € Z\ {0} and z +{ € X, and Qr2(€) = = X ycx (o) Quy(€) for z € X We
extend this definition to ¢ = 0 by defining @, ,(0) := lim._,0 Quy(c) for z,y € X. We will

follow a similar convention for other examples. We consider X to be the continuous time
Markov chain with infinitesimal generator given by @Q(0). The process X corresponds to a

ZNote that Q(¢) is sometimes called an infinitesimal transition matrix. The entries Q. ,(¢) for x # y are
the infinitesimal transition rates of going from z to y: P[X*(t + h) = y|X°(t) = z] = Qa,y(e)h + o(h) as
h — 0.



SCRN model associated with the autocatalytic reactions (1) and (3) in (2.1), alone. Note
that

Q) =QYW+:QM,  =>0, (2.3)

for appropriate matrices Q@ and QM) in RI**I¥I. By (2.3), we can see that Q(-) is a
real-analytic (and moreover linear) perturbation of Q) (see Section 1.5 for definitions).
Note that for every € > 0, X¢ is irreducible, while X° has a transient communicating class
{1,...,Dgot — 1} and two absorbing states (0 and Dit) (see SI - Section S.8). Because of
this discontinuity at & = 0, we say that Q(-) is a singular perturbation of Q(©) (see Section
3.1 for a precise definition).

We first want to determine the probability for the gene to be in the active state a (z = 0),
repressed state r (x = Dyot) or one of the intermediate states (x € {1,..., Dot — 1}) after
a long time (life-time of the organism), as a function of . We are especially interested in
the limit of the stationary distribution for the system, (), as e — 0 (i.e., the basal erasure
rate of the chromatin modifications is much lower than their maintenance rate). Since X°¢ is
irreducible for € > 0 (and it has a finite state space), it has a unique stationary distribution
7(e). In Section 3.1 we show that 7 (0) := lim._,0 7(¢) exists and the function 7 (-) admits a
convergent power series expansion:

m(e) = Zskw(k) for 0 <e < ey, (2.4)
k=0

for some g1 > 0. In order to determine 7(0), we can take limits and observe that 7(0)Q(0) =
0 and so 7(0) is a stationary distribution for Q(0). Indeed, 7(0) is a specific mixture of atoms
on the two absorbing states (0 and Do) for X 0.

In Figure 2 we see how the function 7(e) changes as ¢ — 0 for several values of p with
Diot, @ and b fixed. Furthermore, for this simpler chromatin modification circuit, because
of the birth-death structure of X¢, we can obtain explicit formulas for 7(¢) when € > 0 (see

SI - Section S.8). On letting e — 0, we obtain:

buPtot

T buDiot ifx=0
72(0) =<0 if x€{l,..., Dyt — 1} (2.5)
71+6;Dt0t lf xr = Dtot-

Thus, 7,(0) # 0 only for x = 0 and x = Dy and 7mp(0) increases as p increases, while
D, (0) decreases as p increases.

For continuous time Markov chains beyond the one-dimensional birth-death processes seen
here, determining 7(0) will be a considerable task. In Section 4.1, we address the problem of
determining 7(0), together with the whole expansion (2.4), in a systematic way, for a class
of singularly perturbed Markov chains that includes our models of chromatin modification
circuits. For the 1D model considered here, the derivation of the first two terms in the
expansion is given in Section 4.1.2.

Now, in order to evaluate the time to memory loss of the active and repressed states, let
us define the first passage time as 75 = inf{t > 0 : X¢(t) = y} for a state y € X. We

y
will see in (3.4) that the mean first passage time (MFPT) for X¢ starting from x € X,
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Figure 2: Histograms for the stationary distribution 7(¢) of the Markov chain X¢ defined
by (2.2), for different values of ¢ and u. The plot was generated by numerically solving
m(e)Q(e) = 0 using the Eigenvector function in Mathematica. The parameters used were
Diot = 50,k/V =1, and b = 1.

hsy(e) = Eg[;], has a Laurent series expansion of the form:

c_ c_
hay(e) = —p+ —1—?1—1—00—1—5014—... for 0 <e <egp, (2.6)

for some ¢,y > 0, for some natural number p > 0 and where c_;, # 0. Then, considering
the repressed state r = Dyot and the active state a = 0, we define the time to memory loss
of the repressed state as h,q(c) and the time to memory loss of the active state as hq(€).
Now, we are interested in the derivation of analytical formulas for h,,(¢) and hq(g). This
will allow us to understand how the time to memory loss changes as ¢ — 0, and how the
asymmetry of the system, represented by u, affects this limit. For this case study, exploiting
its birth-death structure, we can directly derive relevant formulas (see SI - Section S.8, SI

- Equations (S.65)-(S.66)). In particular, defining A5 = Qm e+1(€), 75 = Quaz—1(e), with
Qza+1(€) and Q4—1(¢) defined in (2.2), and i = i;z E, for j = 1 2,...,Diot — 1, the

time to memory loss of the repressed state is given by

D . Dyot—1 Dot —1 re . 1
hra(e) = === (14 Z + > | 1+Z; +L @
J

’yDtot i=2 Vi =1 "N
Similarly, defining 7 = :?tot Dygr2 ’YD““ =7 for j =1,2,...,Diot — 1, the time to memory

A Dtot 1ADtot 2" Dtot J
loss of the active state is given by

]6:) ) Diot—1 Diot—1 e ) i—1 1 1

O 71—

hap(e) = =3 | 1+ E =)t E e ) =+t @9
0 Dtot—1 j=1"1J Dtot—1
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Figure 3: 2D model. (a) Chemical reaction system. The numbers on the arrows correspond to
the reactions associated with the arrows as described in (2.9) in the main text. (b) Markov chain
graph. Here, we consider Dyot = 3 and we use black dots to represent the states, red arrows to
represent transition rates that are O(1), and blue arrows to represent transition rates that are O(e).
(c) Directions of the possible one step transitions for X¢ starting from a state x = (21, 22)7, whose
rates are given in equation (2.10).

Since \j and 75, . are the only transition rates that are O(e) with the rest being O(1), the
time to memory loss of both the active and repressed states are O(¢~1), that is, p = 1, and
as € — 0, these mean times tend to infinity.

Furthermore, ~%, with « € {1,2,..., Dot }, are the only rates that depend on p (they are
linear in p). Examining (2.7) and (2.8) with this observation in mind, we see that, if u is
increased (that is, the erasure rate of the repressive histone modification is increased com-
pared to that of the active histone modification), h, (€) increases, while h, 4(¢) decreases.
The opposite happens when p is decreased.

More complicated situations arise when we do not have a birth-death structure to work
with, as in the model of the next example. To evaluate how critical system parameters
affect the time to memory loss for such more elaborate systems, in Section 4, we develop
an algorithm to determine p (see Section 4.2.1), we give an expression for the leading term
in the series expansion of the mean first passage time, and we exploit theoretical results
developed in our paper [13] for comparing continuous time Markov chains, to determine
how the asymmetry of the system affects the time to memory loss (see Section 4.3).

2.2 2D model

Let us consider a model in which, compared to the previous one, we assume that a nucleosome
can also be unmodified. More precisely, in this case we denote the number of nucleosomes
unmodified (D), modified with repressive modifications (D®), and modified with activating
modifications (D?) by np, npr and npa, respectively, and we have that np + npr + npa =
Dtot, with Dot representing the total number of nucleosomes within the gene. Furthermore,
each histone modification autocatalyzes its own production and promotes the erasure of the
other one [10,17]. The chemical reaction system is the following:

kivo + kA A K A | A A S+kp A MR kB R
O Db " DA 2)D+D* 24 DA+ DA, 3D —5 D, H)D*+DF -2 D+ DF,

kwo + ki R R ki R, MR R O+kE R, 1A k& A
® D W DR (6) D+ DY 4 DR DR, (1) DR 2 D, (8) D* +D* ~Z5 D + D4,
(2.9)



where k{f‘vo, k{,qv, kﬁ,é, ]_fé, k‘é, k{%m kﬁ,, kﬁ, l_fg, kaz > 0. Here, the form of the reaction rate
constants is due to the fact that reactions with the same reactants and products have
been combined. Now, similarly to what we did for the previous model, let us denote the

: — S+kp _ da : — LA
reaction volume by V', and let ¢ := D /V] — R DV’ with d4 = 0 + k7, and
R —
W= IZ—E. Additionally, consider the constant b such that pub = g—i, with dgp := 9 + k‘g. Then
E

O0p = dapb = 8@;11). So, as € — 0, both d4 and 6 go to 0 with Dyet, kff‘?mt,u and b
fixed.

We consider the continuous time Markov chain X¢ = {(X%(t), X5(¢))7, ¢ > 0}, which keeps
track of (npr, npa) through time. Since the total number of nucleosomes Dy is constant, the
state space is X = {x = (21, 22)T € Zi : 1+ 22 < Dot }. The potential one step transitions
for X¢ from = € X are shown in Figure 3(c), where the associated transition vectors are
given by v; = —v3 = (0,1)” and v3 = —v4 = (1,0)” and the infinitesimal transition rates
(assuming mass-action kinetics with the usual volume scaling of rate constants) are given

by

A
Qzatv,(€) = fa(z) = (Dioty — (71 + 72)) <k{§[/0 + k{f‘v + k{}/f@) ,

R
Qm,r+1)3 (5) = fR(x) = (Dtot - (xl + x2)) (k{}/o + k{}/ + k]\/lzl) 5

Vv
ki ki ki ki
Qurin(®) = g(0) = 12 (5D 40152 ) Qurins (0 = gile) = o (Db 22 5E ).
(2.10)

This is a more complicated model compared to the previous example and, in order to study
its stationary distribution and mean first passage times, we will exploit the theory developed
in this paper, as shown in Section 4.

3 Basic Setup and Definitions

In Section 3.1 we provide basic definitions for singularly perturbed continuous time Markov
chains and describe some key properties for them. In particular, we describe the form of
series expansions for their stationary distributions and mean first passage times. We will
study these quantities and apply our results to a class of continuous time Markov chains
called Stochastic Chemical Reaction Networks (SCRNs) which are defined in Section 3.2.
Our models of chromatin modification circuits will be SCRNs. All of the models considered
will have a finite state space.

3.1 Singularly perturbed, finite state, continuous time Markov chains

Suppose A is a finite set and |X| > 1. For a value g9 > 0, consider a family {X¢: 0 <
e < g0} of continuous time Markov chains with state space X and infinitesimal generators
{Q(e) : 0 <e < ep} where € — Q(e) is a real-analytic perturbation of (0). Thus,

Q) = QW + QW +2Q? + ... (3.1)

where {Q") : & > 0} is a family of |X| x || real-valued matrices such that "7 ¥ Q™) || <
oo for every 0 < & < gg. Assume that the continuous time Markov chains X¢ are irreducible
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for 0 < € < gp. In this context, the perturbation is singular when X° has more than
one recurrent class. This notion of singular will be the focus of our attention although
some of our work applies for the regular (non-singular) case too. All of our chromatin
modification circuit models have associated singular continuous time Markov chains, where
the perturbation is linear, i.e., Q%) = 0 for every k > 2.

When 0 < € < gq, there is an equivalent characterization of X¢ using holding times with
exponential parameters {g, ()} zex and a transition probability matrix P(e) for the embed-
ded discrete time Markov chain. Specifically, for each x € X, ¢,(¢) = —Qz2(¢) # 0,

since X°¢ is irreducible, and for all z,y € X, P, »(¢) =0, P, ,(c) = qu?g()s)’ for y # x in X.
Note that Q(e) = diag(q(e))(P(e) — I). The matrix P(e) has a power series expansion in
e for sufficiently small 0 < & < ep for some ep > 0 (the justification is similar to that for
(3.7) below).

The first quantities we are interested in studying are mean first passage times. Consider
a nonempty set B C X such that B # X and let

T = inf{t > 0: X°(¢t) € B}.
We define the mean first passage time (MFPT) (for X¢) from x € X to B as
hy p(e) = Elmg | X°(0) = z].

If B = {y} for some y € X, we adopt the notation: hy y(¢) := hy 1yy(¢). Using first step
analysis (see (3.1) in [26]), for 0 < & < &,

hos(e) = 4" ifr B .
z,B\E) = : ) .
q%(S) + 2 yex Poy(e)hyp(e) if z € B

Now, define P5°(e) and QF°(¢) as the matrices obtained by removing the columns and rows
of P(¢) and Q(g), respectively, corresponding to states in B. Then, by noting that I — P5°(¢)
is invertible (see SI - Lemma S.2) and that Q% (e) = — diag((qu(¢))eess)(I — P5(¢)) is
invertible, from (3.2), we obtain

hs(e) = —(Q% (e))7'1, (3.3)

where hg(e) := (hg B(€))zese, I is the identity matrix of dimension |B¢|, and 1 is the vector
of all 1’s, of size |B¢|. Proposition 1.1, yields that there is 0 < e < &g such that —(Q5(¢))~*
can be expanded as a matrix-valued Laurent series as in (1.3) for 0 < & < e, and then for
each x € B¢,

E.[m5] = haple) = Z pFlek 0 <e<ep, (3.4)
k=—p(x)
where p(x) > 0 is an integer, pg(fp(z)) > 0, pggk) € R for £ > —p(x), and the convergence is

absolute convergence for 0 < ¢ < 5. The quantity p(z) will be called the order of the
pole of (3.4). In Section 4.2.1 we will show how to find p(z) by using an algorithm that
uses the order, with respect to e, of the transitions of the Markov chain X¢.

A second quantity of interest is the stationary distribution for X¢. For 0 < ¢ < &g, since
X¢ is assumed to be irreducible and has finite state space, there is a unique stationary
distribution m(¢) = (m;(¢))zex, which is the unique probability row vector satisfying
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m(e)Q(e) = 0. We are interested in studying m(e) as ¢ — 0. For this, first consider
n, = inf{t > 0 : X°(t) # x} and ¢ = inf{t > n5 : X°(t) = x}, © € X. Note that
Ey (5] = hyz(e) for y # x. For each € X, E;[(]] is called the mean return time to the
state z, and for 0 < € < ¢ satisfies

Bl = o5y + 3 Pl =

1
oot ; Puy(e)hy o (). (3.5)

It is well known (see Theorem 3.8.1 in [26]) that for 0 < £ < &0,
1 1

(&) = B w@

From (3.4) and (3.5), we can see that ¢ — ¢(¢)E;[(] can be extended to an analytic
function on a punctured disk about 0 in C, with a Laurent series expansion having at most
a pole of finite order at 0. The radius of the punctured disk may be smaller than ¢y. This,
together with (3.6), implies that € — 7m;(¢) can be extended to an analytic function on a
punctured disk about 0 in C, also with a Laurent series expansion. Since this function is
bounded by one when restricted to sufficiently small positive values of €, we can remove the
singularity at 0 and obtain that 7(0) := lim._,o 7(g) exists and furthermore ¢ — 7(¢) is a
real-analytic perturbation of w(0). In other words,

, reX. (3.6)

m(e) =) W 0<e<e, (3.7)
k=0

for sufficiently small &1 > 0 and where {7(*) : k > 0} is a sequence of real-valued |X|-
dimensional vectors such that 72, e¥||7(®)|| < oo for every 0 < & < 1.

3.2 Stochastic Chemical Reaction Networks (SCRNs)

In this section, we provide some background on Stochastic Chemical Reaction Networks.
The reader is referred to Anderson & Kurtz [4] for a more in depth introduction to this
subject.

We assume there is a finite non-empty set . = {Si,...,S4} of d species, and a finite non-
empty set Z C Z‘j_ X Zf‘f_ that represents chemical reactions. We assume that (w,w) ¢ %
for every w € Zﬁlr. The set . represents d different molecular species in a system subject to
reactions & which change the number of molecules of some species. For each (v—,v") € Z,
the d-dimensional vector v~ (the reactant vector) counts how many molecules of each
species are consumed in the reaction, while v* (the product vector) counts how many
molecules of each species are produced. The reaction is usually written as

d d

Z(U_)z‘si — Z(UJr)z‘Sz'- (3.8)

To avoid the use of unnecessary species, we will assume that for each 1 < ¢ < d, there exists
a vector w = (wi,...,wg)T € Z4 with w; > 0 such that (w,v) or (v,w) is in Z for some
v E Z‘i, i.e., each species is either a reactant or a product in some reaction.

The net change in the quantity of molecules of each species due to a reaction (v=,v") € Z
is described by v — v~ and it is called the associated reaction vector. We denote the set
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of reaction vectors by V := {v € Z¢ | v = v — v~ for some (v—,v") € Z}, we let n := |V
the size of V and we enumerate the members of V as {vi,...,v,}. Note that V does not
contain the zero vector because # has no elements of the form (w,w). Different reactions
might have the same reaction vector. For each v; € V we consider the set %Z,, := {(v™, vt) €
Z |v; = vT —v~}. The matrix S € R¥I#! whose columns are the elements v+ — v~ for
(v™,v") € Z will be called the stoichiometric matrix.

Given (<, %) we will consider an associated continuous time Markov chain X = (X,

., Xg)T, with a state space X contained in Z%, which tracks the number of molecules of
each species over time. Roughly speaking, the dynamics of X will be given by the following:
given a current state x = (z1,...,24)7 € X C Zi, for each reaction (v—,v") € Z, there
is a clock which will ring at an exponentially distributed time (with rate A, ,+)(x)). The
clocks for distinct reactions are independent of one another. If the clock corresponding to
(v™,vT) € Z rings first, the system moves from z to x + v — v~ at that time, and then
the process repeats. We now define the continuous time Markov chain in more detail.

Consider sets of species . and reactions #, a non-empty set X C Zd and a collection of
functions A = {A(,- +) 1 & —> Ry} v+)e such that for each z € X and (v™,v") € Z,
ifo 4ot —ov” §é)( thenA( o (@ )—O Now for 1 < j < n, define

TJ(CL‘) = Z A(v—,v+)($)' (39)

(0= v T)EXy;

Note that for each x € X and 1 < j < n, if x + v; ¢ X, then T;(z) = 0. The functions
Aoty 1 & — Ry b w+)ez are called propensity or intensity functions. A common
form for the propensity functions is the following, which is associated with mass action
kinetics:

z&

A=) (T) = Ko, (3.10)

z:l
where {#(y~ y+)} (v wt)cz are non-negative constants and for m, £ € Z, the quantity (m),
is the falling factorial, i.e., (m)p:=1 and (m)p:=m(m—1)...(m—£¢+1).
A stochastic chemical reaction network (SCRN) (associated with (., Z, X, A)) is
a continuous time Markov chain X with state space X and infinitesimal generator ) given
for x,y € X by

T(x) if y — 2 = v; for some 1 < j < n,
0 otherwise.

A SCRN associated with (%, 2%, X, A) is said to satisfy a conservation law if there is a
d-dimensional non-zero vector m such that m?S = 0, and hence m’ X (t) = xtot for every
t > 0, for some constant zy.t. Consequently, we can reduce the dimension of the continuous

time Markov chain describing the system by one. For example, if m = (1,...,1)7, then
the projected process (X1i,...,X4_1)7 is again a continuous time Markov chain with state
space {(21,...,2q-1)7 € Z9 | (21, .., a1, Tror — Zf:_ll z;)T € X}. In our examples, we

will often use this type of reduction.
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4 Main Results

In this section we describe the main theoretical results of this paper, under assumptions
that go beyond those of our models of chromatin modification circuits. More precisely, we
present results on stationary distributions and mean first passage times in Sections 4.1 and
4.2. Then, in Section 4.3 we exploit theoretical results developed in our companion work [13]
to study monotonic dependence on parameters for a class of continuous time Markov chains
related to chromatin modification circuits and other SCRNSs.

4.1 Stationary distributions

This section focuses on characterizing the terms in the series expansion (3.7). In Section
4.1.1 we focus on determining the term 7(®) = 7(0), while in SI - Section S.2.1 we provide
a result which enables computation of all of the higher order terms 7®)_ for k > 0, under
additional assumptions. In Section 4.1.2 we apply these results to the examples introduced
in Section 2. Additional characterizations of (0) and 7(!) are given in the SI - Sections S.2.3
and S.2.4. Further examples for higher dimensional models of the chromatin modification
circuits will be given in Section 5. We remind the reader that to ease notation, we have
adopted the convention that stationary distribution vectors will be row vectors, even though
we do not use the transpose notation T' to indicate this.

4.1.1 The zeroth order term

As in Section 3.1, consider a family {X®: 0 < e < g} of continuous time Markov chains on
a finite state space X, with infinitesimal generators {Q(g) : 0 < e < g0} where € — Q(¢) is
a real-analytic perturbation of Q(0) with coefficients {Q™*) : k > 0} and additionally Q(e)
is irreducible for every 0 < € < 9. The matrix Q(0) = Q© is a Q-matrix for which X
decomposes into recurrent (or ergodic) states A and transient states 7. From now on, we
assume the following.

Assumption 4.1. The set A consists of |A| > 1 absorbing states for Q(0), while T consists
of |T| > 1 transient states for Q(0).

In other words, in the dynamics of Q(0) there is at least one transient state, at least one
recurrent state and all the recurrent states are absorbing. Now, we label the state space
starting with the states in A and followed by the ones in 7. For every k > 0, we can write

Q®) as
A | S
(k) — [ 2Kk | Pk
where Ay, € RAXMI G5, e RAXITI R, e RITIXIAl and Ty, € RI7TIXI71. In a similar fashion,
we can write © ©
A(e) | S(e

for 0 < € < g9, where A(e) € RMXMAIS(e) € RAXITI R(e) € RITXMI and T(e) € RITIXITI,
From Assumption 4.1, we obtain that

@ =) = (5-t7). (13)
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where Tp is an invertible matrix (see SI - Lemma S.4).

For each 0 < € < ¢p, we denote by m(¢) = (7z(€))zexr the stationary distribution for
Q(g). In Section 3.1, we showed that the limit 7(0) := lim._,o 7(¢) exists and that € — m(¢)
is a real-analytic perturbation of 7(0) with expansion given by (3.7) for 0 < ¢ < £;. For
convenience, decompose the row vector 7(e) as w(e) = [a(e),B(e)] for 0 < e < &1 where
ale) € RA and B(e) € RI71. From (3.7), letting 7*) = [a(®), 3)] we have

ale) = Zaka(k) and [(e) = Zekﬂ(k)
k=0 k=0

for 0 < e < e;7. Since m(e) is a probability distribution for every 0 < e < €1, we have that
S 0¥ (7®1) = 1, which yields that 7(0)1 = 1 and #®)1 = 0 for every k& > 1. Since
7(0)Q(0) = 0, 7(0) is a stationary distribution for X° and so, by Assumption 4.1, it must be
supported on A and so 500 = 0. In the next result we establish an equation that is satisfied
by o0 = a(0) and introduce a key matrix for our analysis. For convenience, let « := «(0).

Lemma 4.1. Under Assumption 4.1, m(0) = [«, 0], where 0 is the zero row vector of size
|T| and o is an |A|-dimensional probability vector satisfying the equation:

a(Ar + Sl(—To)flRQ) =0. (4.4)

In addition,
5(1) = aSI(—TO)_l. (4.5)

See SI - Section S.2.2 for the proof of Lemma 4.1. For convenience, we adopt the notation:
Q= A1+ 51(=Tp) ' Ro. (4.6)

In SI - Lemma S.9, we show that Q4 is a Q-matrix of size |A| x |A|. As a consequence,
there exists a continuous time Markov chain with state space A and infinitesimal generator
Q4. In general, a probability vector satisfying (4.4) needs not be unique. The following
condition will imply uniqueness.

Assumption 4.2. The Markov chain associated with Q4 has a single recurrent class.

By SI - Lemma S.1, Assumption 4.2 is equivalent to the condition dim(ker(Q%)) = 1. The
next result then follows from Lemma 4.1.

Theorem 4.1. Suppose Assumptions 4.1 and 4.2 hold. Then, w(0) = [«, 0], where « is the
unique probability vector on A such that aQ 4 = 0.

As we will see, all of the chromatin modification circuit models presented in this work
satisfy both Assumptions 4.1 and 4.2. Also note that Lemma 4.1 yields a characterization
of BN by means of (4.5).

Theorem 4.1 is simple to state, yet less easy to use since simple formulas for QQ 4 can be
seldom obtained, making Assumption 4.2 hard to verify directly using (4.6). In this regard,
we now introduce an auxiliary continuous time Markov chain X and use it to construct
(via time-change) a realization X 4 of the continuous time Markov chain with infinitesimal
generator (4. This will enable us to give assumptions on X that will imply Assumption 4.2
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and which can sometimes be easier to verify. Also, this explicit realization for X 4 can lead
to alternative ways to verify Assumption 4.2. Under Assumption 4.1, consider the matrix

o= (R “)

In SI - Lemma S.9 we prove that Q is a Q-matrix. Let X be a continuous time Markov
chain with infinitesimal generator Q For the purpose of illustration, if we assume that the
perturbation is linear (as in (2.3)) and gy > 1, then the transitions of X consist of the
transitions of X? augmented by the transitions of X! that emanate from A. See Figure
4(a)-(b) for an illustration related to the 1D and 2D models, respectively, introduced in
Section 2.

(@) X X X4
O+—@0—"0—"0 » - 0T==0—0— O——————=0
o O+—0F— T o
(b)
Npa X
A
T =
Npr

Figure 4: Graphs for the one-step transitions of X¢, X and X4 for the (a) 1D model
and (b) 2D model. Here, we consider Diot = 3 and we use gray dots to represent the states
belonging to A and black dots to represent all the other states, red arrows to represent transitions
that are O(1) for X¢, X and X 4, blue arrows to represent transitions that are O(e) for X¢, and
golden arrows to represent the transitions for X that were O(e) for X© and became O(1) for X.

Now, consider the occupation time of A by the Markov chain X up to time ¢ > 0, given
by xa(t fo 14(X(s))ds for t > 0. Denote by x.4(00) = limy—e0 x4(t) = [~ La(X(s))ds.
Since TO is invertible, SI - Lemmas S.4 and S.5 yield that P, [x4(c0) = } =1forallz e X.
Additionally, consider the right-continuous inverse of x4, 7(s) := inf{t > 0: xa(t) > s},
defined for s > 0. We define the restriction process X A as

X4(s) = X(7(s)), s>0. (4.8)

By properties of the right-continuous inverse (see Problem 4.5 in [23], for example), the
reader may verify that X 4 corresponds to observing X only on the time intervals where
X is in A. Roughly speaking, we are erasing the times where X is outside of A. In the
language of Blumenthal & Getoor [9], x4 is a continuous additive functional for X, and
by Exercise V.2.11 in 9], we obtain that X 4 is a continuous time Markov chain with state
space A. In the next result, we prove that X 4 is a realization of the continuous time Markov
chain associated with Q4. See Figure 4(a)-(b) for a representation of X 4 associated with
the 1D and 2D models, respectively.
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Lemma 4.2. Suppose Assumption 4.1 holds. Then, XA has infinitesimal generator Q 4.

The proof of Lemma 4.2 is given in SI - Section S.2.2. We now introduce some assumptions
that imply that Assumption 4.2 holds. In addition, these assumptions will allow for some
refinements (see SI - Section S.2).

Assumption 4.3. For X, there exists a communicating class C such that A C C.

We note that, if such a class C exists, then it has to be recurrent. In fact, if it was transient
then y 4(00) < oo with positive probability under P,, x € A, which is a contradiction.

Assumption 4.4. The Markov chain X is irreducible.

We note that Assumption 4.4 implies Assumption 4.3. Moreover, they are both related
to Assumption 4.2 in the following way.

Lemma 4.3. Suppose Assumptions 4.1 and 4.3 hold. Then, the process XA 1s 1rreducible.
As a consequence, either of Assumptions 4.4 or 4.3 implies that Assumption 4.2 holds.

The proof of Lemma 4.3 is given in SI - Section S.2.2. The next result follows from Lemmas
4.2, 4.3 and Theorem 4.1.

Theorem 4.2. Suppose Assumptions 4.1 and 4.3 hold. Then, 7(0) = [a, 0] where « is the
unique stationary distribution for the process X 4 and all entries of a are strictly positive.

Assumptions 4.3 and 4.4 can be understood graphically in some cases. For example,
Figure 4 illustrates that for the 1D-model, Assumption 4.4 is satisfied. For the 2D-model,
we can see that while Assumption 4.4 is not satisfied (since the state (0,0) forms its own
(transient) class for X ), Assumption 4.3 does indeed hold. In Section 5 we will see that
neither Assumption 4.4 nor 4.3 is satisfied by the 3D or 4D model. However, the weaker
Assumption 4.2 does hold.

In the SI, we give recursive formulae for the higher order terms #(*), k = 1,2, ..., under
the following additional assumption (see SI - Theorem S.1).

Assumption 4.5. The perturbation is linear, i.e., Q(e) = Q) +eQW for 0 < e < &.

4.1.2 TIllustrative examples: 1D and 2D model

1D model. We use the tools developed in the preceding section to derive the terms (%)

and 71 in the expansion (2.4) for the 1D model introduced in Section 2.1. Fix Dyt > 2
and let X¢ with infinitesimal generator Q(¢) be as in Section 2.1, with the expression for
Q™) given in (4.1). By (2.3), Assumption 4.5 holds. Moreover, for each 0 < £ < &g, with
g0 being a fixed, positive constant, Q(e) is irreducible, while Q(0) has a non-empty set
of transient states 7 = {1,...,Dit — 1} and a set of two absorbing states A = {a,r},
with a = 0 representing the fully active state (npa = Dyot) and r = Dyoy representing the
fully repressed state (npr = Dior). Then, Assumption 4.1 holds (see SI - Section S.8).
Furthermore, by defining f(x) := x(Dyot — ) for € X, we can write the matrices Ry and
Ty in the matrix Q@ as follows:

17



—AY+) A o 0

kA
pEf(1) 0 0 : :
0 s 0o
Ry = : E , Ty = 0 72 —(A+49) X0 o0
0 0 : 0o :
kg
0 Fr() : S : 0
0 0 '\/]%wrl —()\%wrl—o—v%mrl)

where Ry is a (Dgot — 1) X 2 matrix and Tp is a (Dgot — 1) X (Dot — 1) tridiagonal matrix,
A A

and 1) = ukvEf(a:), A\ = kVEf(x), and f(Dgot — 1) = f(1) = (Dtot — 1). In addition, we can

write A; and Sy of Q(l) as follows:

o ( —kEDz, 0 G _ KEpzooo0o ... 0
1= ’ 1= .
0 fbukEDfot 0 ... ... 0 bukEDfot

The process X, whose infinitesimal generator is defined in (4.7), is irreducible (see SI - Sec-
tion S.8). This is illustrated in Figure 4(a). Thus, Assumption 4.4 holds. Then, Assumption

4.3 is also satisfied and Theorem 4.2 can be applied. This yields that 7(0) = 7(9) = [a, 0] =

[, @, 0. .., 0] where « is the unique stationary distribution for the restriction process X 4
(defined by (4.8)), whose infinitesimal generator is Q4 = A1 + S1(—Tp) ' Ry by Lemma 4.2
and (4.6). Now,

_1-p kg2 1—p ki A
Q_A _ < I—MDtot VvV Htot lfy,Dtor, VvV Htot o ]‘ - /’L @DQ _1 1
- Dios . l—p k12 Dot 1—p ka2 ~ 1 _ , Dot tot |\ g Drot  _pDrot
bt Diot  —bu™*" = 7 Dio L= pPer V H .

1— ;LDtOt 174
(4.9)
and since « is the unique probability vector satisfying a@ 4 = 0, we have
bILLDtot 1
Q= "—"FTF—, Qp = —————.
@ 1+ bMDtot ’ 1+ bMDtot

These results are in agreement with (2.5) in Section 2.1, where we explicitly computed the
stationary distribution 7(e) and let e — 0 (see SI - Section S.8).

Now, since Assumptions 4.1, 4.3, and 4.5 hold, we can apply SI - Theorem S.1 to derive
an expression for (). For the transient states 7 = {1,...,Do — 1}, we have g1 =

[ng)7 "'vﬂlglt)orl] = a8 (~Tp)" !, and so for x € T

I 1 ka

by
1
B = mbﬂthot( T0) ey 1.0 (4.10)

" MEp2
T 1+b/,LDtOt VDtOt(

in which (—Tp); 2
(Dtot — 1, ) of the matrix (—Tp) ™!, respectively. After some calculations, we obtain

—To)l_jc +

and (—To)Btlot_l’m, for x € T, are the elements indexed by (1,x) and

1,z

)

kg Deot—2 l_IDmt ! £ () Dtot_l x 9 Dtot_l x 4

L () 7 R e ) (IR )
A\ Dtot—1 _ 1 . Dtot L
()™ 1 ) (1 T2 ) @) (1 T )
LA Dtot—2 11Dtot—1 fG 1 11—
(VE) %(14‘1_[1 1:“) Prov—l=e (1+Hz 1M) Prov =12

()™ IRy ) (L Ty ) ) (LTI )

18




and then 69(51), x € T, can be written as follows:

B = Dio bpP ™ _ Digy bl (4.11)
f(@) 1+ bpPrt 2(Dyoy — x) 1 + buProt

2D model. In this section we analyze the stationary distribution for the 2D model
introduced in Section 2.2. Fix Dy > 2 and let X¢ with infinitesimal generator Q(e) be
as in Section 2.1, with the expression for the Q) given by (4.1). By (2.10), for this
model Assumption 4.5 holds. Furthermore, Q(0) has a non-empty set of transient states

= {i1,...,im} where m = M 2,1 = (O Diot — 1), i = (Dioy — 1,0)7,
and absorbmg states A = {a,r}, w1th a = (0,D4)” corresponding to the fully active
state (npa = Dio) and with r = = (Diot,0)T corresponding to the fully repressed state
(npr = Dyot), respectively. Then, Assumption 4.1 holds (see SI - Section S.9).

From (2.10), we see that Ag =0, Sy = 0 and

4= Mip2, 0 g - Mip2,o0 L 0 _
0 MID2 b 0 ... ... 0 =p2 o

Furthermore, Ry € R™*? is given by

A A Ky
fa(0, Diov — 1) 0 kit + kil + 9 (Diog — 1) 0
0 0 0 0
0 0 0 0
R
0 fr(Dtot — 1,0) 0 ko + kb M (D — 1)
and R; = 0. The matrices Ty and 717 are more complex and examples of them, for

Diot = 2, are provided in SI - Section S.9. For X, C = X \ {(0,0)} is a communicat-
ing class such that A C C. This implies that Assumption 4.3 is satisfied. Given that
Assumptions 4.1 and 4.3 are satisfied, Theorem 4.2 can be applied and we obtain that
7(0) = 79 = [a, 0] = [, , 0. .., 0] where « is the unique stationary distribution for the
process X 4, whose infinitesimal generator is Q4 = A; + Sl( To) " 'Rg. This means that o
is the unique probability vector such that a(A; + S1(—Tp) ' Ro) = 0. Furthermore, given
that Assumption 4.5 is satisfied, we can apply SI - Theorem S.1 to derive an expression for

) = [71'2(11), ...,77(;)] = aS1(—Tp)~ . For example, if Dyt = 2, the matrix Q4 is given by

()

0u_ L kﬁ( ~(fp Ikl R + 5 (kg + kD) (ki + K+ 5 )
A Y
KV b2 (kifrg + ki) (ki + kil + 55) =i (ko + kb ) (ko + ki + - b &)
(4.12)
with
ki kR kR ki
K = (kjyo+kiy+=5 % +kwo+kw)(kwo+kw+7)+/~L(kwo+kw+ v +kwo+kw)(kwo+kw+7)

(4.13)
and then 7 is given by

A
b (kiyo +hiy )(k oty + M) = if £ = (0, Dyot)”
b (ko +kiy ) (kih o +kiy + M)+(k€%+kR><k otk +5)
MON B ifzeT (4.14)
(kR0+I<:R)(kRO+k + M)

: T
WF lf xr = (Dtot)o) .
L bp2 (ki o+ ki) (ki o +hi + M)+(k§;0+kR)(k otk +—0)
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See SI - Section S.9 for the evaluation of 7r§;1) for the transient states x € 7 when Dot = 2.

For this value of Dy, we see from (4.14) that 779(60) depends monotonically on p for each
fixed x. As Dyt increases, the algebraic complexity of a full parameter representation of
7r§;0) increases very rapidly. Thus, to investigate monotonic dependence on parameters for
biologically relevant values of Dyt (of the order of 50, considering an average gene length
of 10,000 bp [15] and one nucleosome per 200 bp [18]), we shall use comparison theorems

developed in [13], without calculating any explicit formula (Section 4.3).

4.2 Mean first passage times (MFPTs)

In this section we develop a theoretical framework to study mean first passage times for
continuous time Markov chains. We first develop an algorithm to determine the order of the
pole of MFPTs for singularly perturbed Markov chains (Section 4.2.1). In Section 4.2.2, we
focus on determining the leading coefficient for MFPTs, under some assumptions introduced
in Section 4.1. In Section 4.2.3, we apply these results to the examples introduced in Section
2.

4.2.1 Algorithm to find the order of the poles for MFPTs

Our algorithm is adapted from an algorithm developed by Hassin and Haviv [20] for discrete
time Markov chains. The idea used in [20] was to consider transitions between subsets of
states and to keep track of the sojourn times in the sets of states. This is used to define
a coarser version of the process, which may not be a Markov process and which moves
between groups of states of the original Markov chain. This idea can be adapted to the
continuous time setting as well. For this, we introduce stopping times to more explicitly
track the sojourn times than was done in [20]. In addition, we extend the original algorithm’s
scope to consider the mean first passage time to a subset of states, instead of just a single
state. The paper [20] uses r-cycles and notes that these could be replaced by more general
r-components. Here, we focus on using the latter and call the set of vertices in such an
r-component an r-connected set.

In this section, we consider a singularly perturbed, finite-state, continuous time Markov
chain X¢ on X with infinitesimal generator () as described in Section 3.1. We provide
an algorithm for finding the orders {p(v) : v € B¢} of the poles for the mean first passage
times to B C X for X¢ starting from states in B¢, where B # () is a strict subset of X'. We
begin with a few definitions and some notation and then present the algorithm.

Definition 4.1. Given g9 > 0 and a function f : (0,g9) — Rsg, we say f = O(e") if there
exist k € Z and strictly positive m, M € R~g such that, for all 0 < ¢ < &g,

mek < fe) < Me*.

If f = ©(c*) for some k € Z, we say the order (at the origin) of f is k. If f = O(c¢™%)
where k € Z., we say that the order of the pole of f is k.

Because the perturbation of X¢ is real analytic, |X| > 1 and X¢ is irreducible for £ > 0,
there exists emax > 0 such that for each x # y € X, either Q; 4(¢) = 0 for all € € (0, emax)
or Qg y(e) > 0 for all € € (0, emax). In the latter case, the order of @, ,(¢) is a non-negative
integer, which we denote by k. We let Ey = {(z,y) : Quy(e) > 0for all e € (0,emax)}.
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As the algorithm progresses, states of X' are gathered together to form composite nodes and
the graph of the states of X* progresses through a series of reduced graphs. If u is a node in
one of the graphs, then S(u) C X consists of the states in X that are collapsed to form the
(reduced) node u. In Steps 2 and 3 of the algorithm, the function I and the initial values
of p are inductively determined for all of these graphs. The final values of p for nodes in
B¢ are then determined in Step 4. With /Cy, being defined, a directed edge (u,v) in one
of the graphs is called an r-edge, where r is for regular, if Ky, = 0, and an r-path is a
directed path in the graph consisting of r-edges only. A set C in one of the graphs is called
an r-connected set if |C| > 1 and there exists an r-path from u to v for any u # v € C.
The order of the pole of the expected sojourn time spent in an r-connected set C'
depends only on the set C' and is denoted by p(c) where ¢ is a node representing the set C.
For any node w outside of C, K., and K. are the the order of the probabilities of a
one-step transition from c to w and from w to ¢, respectively. In Step 4 of the algorithm,
p(+) keeps being updated but will stay finite and eventually fixate. The algorithm statement
and related proof can be found in the SI - Sections S.3 - S.5.

4.2.2 Leading coefficient in MFPT series expansion

In Section 3.1, we have shown that for each 0 < € < g¢, the unique stationary distribution
m(e) for X¢ admits a real-analytic expansion in powers of €. By (3.5) and (3.6), for z € X,

= Ge(©Bo[GF] = 1+ ) Quy(e)hyale). (4.15)
y#T

Recall that Ey = {(z,y) : Qzy(c) > 0 for all € € (0,emax)} and kyy is the order of Q4 4(¢)

for each (z,y) € Ey. Using the algorithm in Section 4.2.1, we can obtain the order of the

pole, p,(y), of the mean first passage time hy ,(¢) from y to x for all y # x € X'. Therefore,

for each = € X, the order of m,(¢) is

72 (€)

ky = max{p,(y) — kuy : (x,y) € Ep;0} >0, (4.16)

and then .
() = Z bk,
k=kg

The following theorem is for continuous time and builds on discrete time results of
Avrachenkov et al. [5,6].

Theorem 4.3. Suppose Assumptions 4.1, 4.2 and 4.5 hold. Let Q4 be given by (4.6),
X 4 be as defined in (4.8), and « be the unique stationary distribution for X4 defined in
Theorem 4.1. Let D = (—Q 4 +1a)™! —1a. Fory € X, let ky be the order of the stationary
distribution m,(e) of X¢, defined by (4.16). Then, for xz,y € A, the mean first passage time
from x toy for X¢ is

Dyy—D;, 1 1
h%y(ﬁ) = ﬂ_(ky) gky+1 + O (Eky) . (417)
Y

Moreover, if X 4 is an irreducible Markov chain, then the order of the pole of hy 4(€) is one,

i.e., ky =0, and the coefficient of e~ in (4.17) is equal to the mean first passage time from
x to y for the process X 4.
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The proof of Theorem 4.3 is given in SI - Section S.7.1.

Remark 4.1. It may be possible that D, , — D, , = 0. In this case,

1 1 1
hoy(€) =0 g +0 <€ky) =0 <€k>

However, if we find that the order of the pole of h,,(¢) is ky + 1, using the algorithm in
Section 4.2.1, then we can rule out the possibility of D, , — D, being zero.

Input for the 1D model Step 1 o) = 6(%) = 0(1) Step 2 %oy = 0
— Q)= @(Ekxy) =01
©@ (&) = 0(eP™) = 0(1) © p@=0
@D ax(e) = 0(eP™) = 0(e) @® rx)=1
B B node a
0 —0—"0 0=0"10 - O=0=20-00F=0—=>0
NDR| Npr
Step 3 — %, =0 Output
_ @ EX[T{S tod] = G(E_l)'
© r@®=0 for eaDch x # Dot
(before 1% iteration) @ r=1
r-connected set C (1% iteration)
Q20O - 02O 0O O—O0—0—0O—0LO

NpR
(after 1% iteration) O

node ¢ @ . O B = {Dtot}

Figure 5: Key steps of the algorithm for the 1D model. The algorithm is described in
Section 4.2.1, and it finds the order of the pole of the mean first passage time to B C X from
each state in B¢. In our 1D model, the input for the algorithm is the order of each of the non-zero
off-diagonal entries in Q(¢) and the set B = {Dyot}. The order of the non-zero entries in Q(¢) is
represented by colored arrows in the graph in the “Input” panel. Step 1 transforms the orders in
the Q(g)-matrix into the orders in the P(e)-matrix and the exponential parameters g(g) to give an
equivalent construction for the continuous time Markov chain. The order of the non-zero entries
in P(e) is represented by colored arrows in the graph, and the number in the circle at a state
x € B¢ is the order of the pole p(z) of qie) (the mean sojourn time at the state x). In Step 2,
the set B is relabeled as the node a, and then all transitions from a to B® are removed. Step 3
for the 1D model involves only one iteration, where the collection of all nodes except the node a
(called an r-connected set C) is condensed to a single node ¢, and the order of the pole at ¢ is
p(c) = maxyec p(u) + min{Ky, : v € C,v ¢ C and (u,v) € E} = 140 = 1, where E denotes
the edge set of the graph in Step 3 before the 15! iteration. Moreover, K., = min{K,, : u €
C and (u,a) € E} —min{Ky, : v € C,v ¢ C and (u,v) € E} =0—0 = 0. Step 4 involves one
iteration. In this iteration, the node c is the only node other than a, so its value of p is fixed, and
then any edges leading to or from ¢ are removed. When all of the nodes other than a have been
fixed, the order of the pole of the mean first passage time from each state in B¢ to B is given by the
fixed value of the node to which the state belongs.
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4.2.3 Illustrative examples: 1D and 2D models

We first apply the algorithm given in Section 4.2.1 to find the order of the pole of the time
to memory loss in the 1D and 2D models introduced in Section 2. For the 1D model, we
could also directly derive the analytical expression for the time to memory loss by exploiting
first step analysis [26] and solve the system (3.2) introduced in Section 3.1 (see SI - Section
S.8). Figure 5 illustrates the key steps of the algorithm for the 1D model, which lead to
the conclusion that the time to memory loss for the active state is ©(¢~!). Because of
the symmetry in the input graph in Figure 5, the time to memory loss for the repressed
state is also ©(e~!). These orders found by the algorithm are consistent with what can be
directly derived by first step analysis. Similarly, SI - Figure S.1 illustrates the key steps of
the algorithm for the 2D model, which leads to the conclusion that the time to memory loss
of both the active and the repressed states is ©(¢71).

Next, we find the leading coefficient for the time to memory loss in the 1D and 2D
models, which is the coefficient of the e~! term in all cases. Recall from Section 4.1.2 that
Assumptions 4.1, 4.3 and 4.5 hold for both 1D and 2D models and hence by Lemma 4.3, so
does Assumption 4.2 and X 4 is irreducible. For the 1D model, Q 4 is given by (4.9). Thus,
by Theorem 4.3, the leading coefficient of the time to memory loss for the active state is the
mean first passage time from the fully active state a to the fully repressed state r in X4,

A
1-p kg2

which has an exponential distribution with parameter (QA)a,r = T Dt V Dot since X 4

has only two states. Thus,

1—pPet Vo1
1—,U, kéDgot

hay(e) = el 0(),

and similarly, the time to memory loss for the repressed state is

1= pPet v 1

hyq(e) = — e+ 0).
O S T e, .

Similarly, in the 2D model, by Theorem 4.3,

1
(QA)a,'r

As an example, when Dy = 2, Q4 is shown in (4.12) and we obtain that

har(e) = e +01) and  hu(e) =

1% K

har(€) = -1 e +O0(1) and
M 4(kifo + Eif) (ki + Kif + )
1% K

fral€) = 71 e +O0(),
M 4bp? (ki + kiyy) (ko + Kiy + 34

with K defined in (4.13).

4.3 Monotonic dependence on parameters

An important aspect to consider in the study of the stochastic behavior of the chromatin
modification circuit is that the erasure rate is different for each type of chromatin mod-
ification. These differences can introduce asymmetries in the system that can affect the
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stationary distribution and the time to memory loss of the active state and repressed state.
These asymmetries are captured by the two parameters p and p/. In particular, p quanti-
fies the asymmetry between erasure rates of repressive and activating histone modifications
and p/ quantifies the asymmetry between erasure rates of DNA methylation and activating
histone modifications. In order to determine how the different chromatin modification era-
sure rates affect the stochastic behavior of the system, we study how p and ' affect the
stationary distribution and the time to memory loss of the active and repressed gene states.

For the 1D model of the chromatin modification circuit, that does not include DNA
methylation, we have an analytical expression for the stationary distribution and the time
to memory loss ((2.5), (2.7), and (2.8)) and we can understand the effect of p by directly
studying the formulas. However, for the higher-than-1D models we do not have an explicit
expression for the stationary distribution or time to memory loss. This is the reason why for
these models we exploit the comparison theory developed in [13] that allows to determine how
w and p’ affect the stochastic behavior of the system through the construction of a coupling
between processes with different values for these parameters. In the next subsection, we
briefly summarize the relevant theory from [13].

4.3.1 Comparison theorems for continuous time Markov chains

Denote by < the usual componentwise partial order on R?, i.e., for 2,y € R¢, z < y whenever
x; < y; for every 1 < i < d. Let m,d > 1 be integers, consider a matrix A € IRde, where
no row of A is identically zero, and consider the following definition.

Definition 4.2 (Definition 3.1 from [13]). For z,y € R, we say that © <4 y whenever
A(y — x) > 0 and we say that © ~4 y whenever Az = Ay.

For the matrix A, consider the convex cone K4 := {x € R : Az > 0}, and, for any
x € RY, consider the set K4+ ={y € R?: A(y —x) >0} ={y € R?: x <4 y} and the
sets 0;(Ka+ ) :={y € Ka+x: (Aje,y) = (Aje, )} 3 for 1 < i < m. Then, the boundary
of K4 4+ x can be expressed as

m

O(Ka+1x) = U 0;(Ka + x).
i=1

Consider a non-empty set X C Zﬂlr, we will say that a set I' C X is increasing with
respect to <4 if for every z € T" and y € &', x <4 y implies that y € I'. We observe that,
for x € X, the set

(Ka+x)NX={yeX: z<ay} (4.18)

is increasing by the transitivity property of <4. On the other hand, we will say that a set
I' C X is decreasing with respect to <4 if for every x € I' and y € X, y <4 = implies that
yel.

Now, consider a non-empty set X C Zi and a finite set of distinct nonzero possible
transition vectors for a pair of continuous time Markov chains on X. We denote the set of

3Here, for convenience of notation, let A;e denote the row vector corresponding to the i-th row of A, for
1 <4 < m. In this article, we will adopt the convention of considering the inner product (-,-) as a function
of a row vector in its first entry and as a function of a column vector in the second entry. In particular,

<Ai., LE) = ZZ:I Alka:k
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vectors by {vi,...,v,} € Z%\ {0}, where 0 is the origin in Z?. Consider two collections
of functions T = (Tl, ..,Ty) and T = (Ty,...,T,) from X into Ry such that Y;(z) =
T(x) =0if x+v; ¢ X. Assume that Q = (Qu,y)a, yex, given by (3.11), is the 1nﬁn1te51mal

generator for a continuous time Markov chain X and Q defined by (3.11) but with functions

Tl, .. T in place of Tq, ..., Ty, is the infinitesimal generator for a continuous time Markov
chain X We call X and X the continuous time Markov chains associated with Y and T
respectively.

The following stochastic comparison result was proved in Campos et al. [13]. The condition
(i) of the theorem and A € Z™*¢ ensure that to go outside of K4 + x, the Markov chains
will necessarily hit the boundary of K4 + x.

Theorem 4.4 (Theorems 3.2, 3.4, 3.5 from [13|). With X, vy,...,v,, T and Y as described
above, assume that the continuous time Markov chains associated with T and T do not
explode in finite time. Consider a matric A € Z™*% with nonzero rows and suppose that
both of the following conditions hold:

(i) For each 1 < j <, the vector Avj has entries in {—1,0,1} only.

(i) For eachx € X, 1 <i<m andy € 0;(K4 + x) N X we have that

9

Ti(y) <Tj(x), foreach1l<j<n such that (Aje,vj) <0, (4.19)

and
Ti(y) > Ti(x), for each 1< j <n such that (Ase,vj) > 0. (4.20)

Then, for each pair z°, &° € X such that ° <4 x°, there exists a probability space (2, F,P)
with realizations of the two continuous time Markov chains X = {X(t) : t > 0} and
X = {X(t) : t > 0} defined there, each having state space X C Z%, with infinitesimal
generators given by Q and Q, associated with T and T, respectively, with initial conditions
X(0) = z° and X (0) = #°, and such that:

P | X(t) <4 X(t) for every t > 0| = 1. (4.21)

Furthermore, for a non-empty set I' C X, consider 7 := inf{t > 0: X(t) € I'} and 7r :=
inf{t > 0: X(t) € T'}. IfT is increasing with respect to the relation <4, then E[7r] < E[mr].
If T is decreasing with respect to the relation <4, then E[mr] < E[7r]. Finally, suppose that
the two continuous time Markov chains are irreducible and positive recurrent on X, and
denote the associated stationary distributions by m and 7, respectively. Then, if I' C X is
a non-empty set that is increasing with respect to <4, we have Y Ty < > 1 Tg, o if
I' C X is a non-empty set that is decreasing with respect to <4, we have Y Te < Y p Tz

4.3.2 Illustrative example: 2D model

We are interested in determining how the asymmetry of the system, represented by the
parameter pu = k&/ k‘A affects the stationary distribution m(¢) and the times to memory
loss, hqr(€) and hy (e ) of the active (a = (0, Dtot)?) and repressed (r = (Diot, 0)1) states,
respectively, for the continuous time Markov chain X¢ described in Section 2.2. For this, we
use Theorem 4.4. For € € (0,¢9), let X be the continuous time Markov chain with

Ti(z) = fa(x), To(z) =ga(e), Ts(z)=fr(z), Ta(z)=gR(x), zek  (422)
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with X, vi,...,v4, and fa(x), ¢5(x), fr(z), gx(x) as defined in Section 2.2, and introduce
the continuous time Markov chain X¢ defined on X, having the same transition vectors of
X¢, and having infinitesimal transition rates T1(x), ..., T4(z) defined as for Yy (z), ..., Y4(z),
with all the parameters having the same values except that u is replaced by i, where p > fi.
Let Lo

A= [O _1] (4.23)
and let us consider the partial order x <4 y. A similar example was analyzed by Campos
et al. [13] - Example 4.4, using the results of Theorem 4.4. The only differences are that,
in [13], the matrix A is the negative of the matrix given in (4.23) and the inequality between
w and [ is the opposite compared to the one considered here. The relationship between the
notation in [13] and our notation is kia = kit,y + ki, k1 = (k3 /V), Koa = ko + k5,
rop = (kR / V), Ksa = e(kiy/V), kap = (kp/V), ¢ =b.

From the analysis in [13], we can directly conclude that, if m(¢) is the stationary distri-
bution for X¢ and #(¢) the stationary distribution for X¢, then #4(e) < m,(e) and #,.(¢) >
7r(£). This implies that increasing p increases the probability of the system in steady-state
being in the active state a to the detriment of the repressed state r (and vice versa for
decreasing p). We can also conclude, using natural notation for quantities associated with
X¢ and X¢, that, defining 7, =inf{t >0: X°(t) =y} and 7, = inf{t > 0: Xe(t) =y},
hra(e) = BprE] < Bp[7] = hpa(e) and ho,(e) = Bo[75] < Eq[rE] = ha,(¢), implying that
the time to memory loss of the repressed state decreases for higher values of u, while the
time to memory loss of the active state increases for higher values of p.

5 Further Examples

In this section, compared to the models of the chromatin modification circuit introduced in
Section 2, which do not include DNA methylation, we introduce more elaborate models that
include DNA methylation and we study their stochastic behavior by exploiting the theory
developed in this paper.

5.1 3D chromatin modification circuit model

We now introduce a model in which DNA methylation is also a possible chromatin mark.
The species involved are D (unmodified nucleosome), D} (nucleosome with CpGme only),
DY, (nucleosome with both H3K9me3 and CpGme) and D* (nucleosome with an activating
histone modification). In particular, we assume that, in order to be modified with both
repressive modifications, D is first modified with DNA methylation, obtaining le, and then
with a repressive histone modification, obtaining D¥,. The opposite order of modifications
is not allowed.
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Figure 6: 3D Model and associated Markov chain. (a) Original chemical reaction system.
The numbers on the arrows correspond to the reactions associated with the arrows as described in
(5.1) in the main text. (b) Directions of the possible transitions of the Markov chain X¢, starting
from a state z = (71,22, 73)7 and whose rates are given in equation (5.2). (c) Graph for X¢. Here,
the red (blue) arrows correspond to O(1) (O(e)) transition rates. (d) Graph for the Markov chain
X. Here, the gold arrows correspond to transitions that were O(e) in X¢ and became O(1) in
X. (e) Graph for the Markov chain X 4. For (c), (d), and (e) the state of the Markov chain is
z = (npr , Npa, anz,)T and we consider Dyt = 2. In panels (c) - (e), we use gray dots to represent
the states belonging to A and black dots to represent all the other states.
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This enables us to simplify the model and the related analysis. This assumption will be
removed in the 4D model analyzed in Section 5.2. The chemical reaction system for the 3D
model, shown in Fig. 6(a), is the following:

@D e thr pa - @) ppa b paypa @ pa 2 p

@ D* + D} £, D 4 D, (B) D 4+ DY, 2%, 4 D,

©D o tMr ph @D Dl S0 DE DY, @ DE 4 DY, AR pE L pR o (5
@ DF Mo, DR @ DR 4 DI £, DR | DR @), DR‘S/*—’“%D

@D+ DA 1 D4 DA @ D, T DR @ DY, + DA M, DR 4 DA,

where ki}q, kv, ki, 0, ki, ki, klvos iy Kaos ks Ky kars kar, 8 Ky kgt B ER > 0 and the
form of the reaction rate constants is due to the fact that reactions with the same reactants
and products have been combined. As we did for the 2D model, define parameters ¢ =

S+ka kE S+kf

A - AJ A -

- and p = & with a constant b such that = A = bu. Furthermore, since this model
M Dyot

! /

includes DNA methylation, we also define u/ = ’Z ; and a constant 8 such that 2 = +k A = B

The parameter i/ quantifies the asymmetry between the erasure rates of DNA methylatlon
and activating histone modifications. The Markov chain X¢ associated with the system is a
linearly perturbed finite state continuous time Markov chain with the state x tracking NpR;

MpA; MpR, that is, the number of nucleosomes of types D}, DA, and DR respectively. If
the total number of modifiable nucleosomes is Dy, which is conserved, the state space is
X = {(x1,20,23)" € Zi : 21+ 22+ 23 < Dyt }. The transition vectors for X¢ are given by
v1 = —vg = (0,1,0)7, v3 = —vy = (0,0,1)T, and v5 = —vg = (1,0, —1)T. The infinitesimal
transition rates are

A
Qm,m+v1 (5) = fA(l’) = (Dtot — (Il + To + 133)) (kWO + kW + k‘/l‘2>

kA A

kg
Qurin() = o) = 72 (D + 5

v E(x3+ 2x1)) ,

k
Qz,x+v3 (5) = le({E) - (Dtot - (xl + T2 + xB)) (kévo + kII/V + yx1> 9

k4 k4
Qw,z+v4 (6) = g}sﬂ (J:) = .r3’u/ (g‘j}/IDtotﬁ + $2V€7> ,

k k x3 —1
Qz,z4vs(€) = frR12(2) = 23 <k‘2/Vo + 7M$1 + 7M (-Tl + 32 >) )

v ki
Quriral6) = Ghuale) = oa (53 Db+ 2 E ).

A representation of the possible transitions, with associated rates, and the Markov chain
graph for Dyt = 2 are given in Fig. 6(b) and (c), respectively. Each rate depends on the
state x.
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5.1.1 Stationary distribution

We now focus on the expansion as a function of £ of the stationary distribution for the
3D model. In SI - Section S.10, we show that, when £ = 0, the continuous time Markov
chain associated with the 3D model has transient states 7 = {i1,...,%,} where m =

Z?:“g (W) — 2,41 = (0,Dtor — 1,0)T, 4y = (Diot — 1,0,1)T, and absorbing states

A = {a,r}, with a = (0,Dyor,0)7 corresponding to the fully active state (npa = Diot)
and r = (Dyot,0,0)7 corresponding to the fully repressed state (nD}f‘z = Dyot), respectively.
Then, Assumption 4.1 holds (see SI - Section S.10). Furthermore, X = AU 7T and from
(5.2) we see that Q(g) can be written in the form (4.2), where Q(¢) is a linear perturbation
of Q(0). Hence, Assumption 4.5 holds. Assumption 4.2 also holds, where the recurrent class
is {r} (see SI - Section S.10). Then, we can apply SI - Theorem S.1. We first obtain that
7(0) = 70 = [a, 0] = [aq, 0. .., 0] where « is the unique stationary distribution for the
process X A with infinitesimal generator Q4 = A + S1(—Tp) ' Ro. Since the recurrent class
{r} is a singleton and « is supported on {r}, we must have o, = 0 and «, = 1.

We now derive an expression for 7(1). For the transient states 7 = {i1,--yim}, s =
) = a8 (~Tp) ™t = [0,...,0, 7], with
kA
() Hb$ D

" K (9 ) (Do — 1)
See SI - Section S.10 for the detailed mathematical derivation. Now, a(l) = [m(ll),m(nl)] is
the unique vector such that aMQ 4 = —W[Ry + T1(=Tp) ' Ro), a1 = -1,

As an illustration, suppose Dyt = 2. Then (see SI - Section S.10 for the detailed mathe-
matical derivation),

Ky + pkKs -1 1
3 pdSy + pISs + i
S [ < SN ) B ) B[ il Y SO R STUT) RN
“ Kg(Kg+ Kiop)’ ¢ m Kg(Ky + Kiop) ’

with m = 8 and K;, ¢ = 1,...,11, are non-negative constants independent of &, u and p’
(see SI - Section S.10 for their precise definitions). Hence, the stationary distribution for
Dot = 2 satisfies

/ 2K .
et + 0 0= 020
rale) = 4 O i@ € T\lin} (55)
T E%H+O(E2) 1fx:zm:(1,0,1)T
AV .
1 — o) I;{;J{Iléfi}gfgﬁrfﬁou) +0(?) ifz=r=(2,00)7.

For small € > 0, the stationary distribution is concentrated around the active and repressed
states, although more mass is concentrated around the repressed state. However, higher val-
ues of p/ increase the probability of being in the active state, while decreasing the probability
of being in the repressed state.
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5.1.2 Time to memory loss

In this section, we determine how the leakage of the system (¢) and the asymmetry between
activating histone modifications and DNA methylation (y') affect the time to memory loss
of the active state hqr(¢) and the time to memory loss of the repressed state h, 4 (€).

Firstly, by the algorithm in Section 4.2.1, we have that hq.(¢) is O(e™!) and hyq(e) is
O(e72) (see SI - Section S.6). This means that decreasing the leakage extends the mem-
ory of both the active and repressed chromatin states, but the effect is stronger for the
repressed state. This difference is influenced by the co-existence and cooperation between
DNA methylation and repressive histone marks that introduce a structural bias in the 3D
chromatin modification circuit towards a repressed chromatin state.

These results are consistent with the ones obtained by applying Theorem 4.3, which allows
us not only to find the order of hq,(¢) and h,4(c), but also to find an expression for their
leading coefficients (see SI - Section S.10 for the detailed mathematical derivation). As an
example, when Dyt = 2, Q4 and 7 are shown in (5.3) and (5.4), and we obtain from
them that

Ks+ uKy+ (' Ks + pp'Kg 1
h = - +0( d 5.6
a77'(€) Kl +,UzK2 € + ( )7 an ( )
K3+ uKy + (/K5 + pup' Ko Kg(Kg + K 1 1
hale) = Hatnfat WKy + K 8( ot 10/4) oY), (5.7)
Ky + pKo pruEKr €
where K;, i = 1,...,11, are non-negative constants independent of ¢, u and y’, defined in SI

- Section S.10.

Now, we focus on understanding how the asymmetry between chromatin modification
erasure rates affects the time to memory loss. In particular, since experimental data suggest
that the asymmetry between the erasure rates of DNA methylation and activating histone
modifications is more pronounced than the asymmetry between erasure rates of opposite
histone modifications, in this analysis we focus only on studying the effect of y’, but a
similar procedure to the one presented in the next paragraph could be applied to study the
effect of p. To this end, we exploit the comparison Theorem 4.4 to determine directly how
p' affects hgr(¢) and hy q(¢), without deriving an explicit expression for them. To this end,
we first note that the transitions of the Markov chain X¢(t) are in six possible directions,

that can be written as v; = (0,1,0) , va = (0,—1,0)T, v3 = (0,0,1)T, vy = (0,0, -1)7,
vs = (1,0,-1)7, vg = (—1,0, 1) , with the associated infinitesimal tran81t10n rates that
can be written as T1(z) = fa(2), Ta(z) = gA(x), Ys(@) = frm(@), Talx) = g (@),
Ts5(x) = fri2(x), Ye(z) = gRo(x). Define the matrix
1 0 O
A=|0 -1 0
1 0 1

and, forz € X, (Ka+2)NX ={w € X : © <4 w}. Let us also introduce infinitesimal tran-
sition rates T;(z), i = 1,2, ..., 6, defined as for T;(x), i = 1,2, ...,6, with all the parameters
having the same values except that p' is replaced by g/, with ' > /. All of the conditions
of Theorem 4.4 hold (see SI - Section S.10) and so we can apply the theorem. This allows
us to establish that, since a = (0, Diot, 0)7 <4 7 = (Diot, 0,0)7, then lvzavr(e) < hgr(e) and
hya(e) < 717,,@(5), where”indicates quantities associated with T. Thus, we can conclude that,

30



given that the only difference between the two systems was that g/ > i/, the time to memory
loss of the active state is monotonically increasing with y/, while the time to memory loss
of the repressed state is monotonically decreasing with p'.

(a) (b) np = Dtot — nDllzz — nD}‘ — }’lD; — Npa
state x = (1,2, %3,X5) = (Mpr , Apa, Mpr, py)’
gri22(X)
gr121(x) f4(x)
gri(x)
—_— 2o (X
25 (%) 4—/. - Sr2 (%)
Sri (%)
g5 (x) Sri21(X)
Sri22(X)
() (d) ~
Mo, X npa X

%
—2@= Aipy

P ﬁ
P

nDR nDR =2

1

Figure 7: 4D Model and associated Markov chain. (a) Chemical reaction system. The
numbers on the arrows correspond to the reactions associated with the arrows as described in (5.8)
in the main text. (b) Directions of the possible transitions of the Markov chain X¢ associated with the
reduced SCRN, starting from a state x = (1, 22, 23, 74)7 and whose rates are given in equation (5.9).
(c) Graph for X¢. Here, the red (blue) arrows correspond to O(1) (O(e)) transition rates. (d) Graph
for the Markov chain X. Here, the golden arrows correspond to the transitions that were O(¢) in X©
and became O(1) in X. For (c) and (d) the state of the Markov chain is 2 = (npr , npa, npr, an)T,
we consider Dyo; = 2, and we show three interconnected slices (ant2 =0,1,2) of the Markov chain
state space. In panels (c¢) and (d), we use gray dots to represent the states belonging to .4 and black
dots to represent all the other states.
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5.2 4D chromatin modification circuit model

Now, we consider a complete model in which the species involved are D, D D127 DA and
DY (nucleosome with H3K9me3 only). Compared to the 3D model, we assume that, in
order to be modified with both repressive modifications, D can be also modified first with a
repressive histone modification (H3K9me3), obtaining DY, and then with DNA methylation
(CpGme), obtaining DY,. The chemical reaction system, shown in Fig. 7(a), is the following:

@D Mo tty, pa @) pypA F,pAypA @) DA L p,
@DA+DI§—E>D+D{‘7 (5) DA + DY, —>D+D12, @DA+D§ﬁ>D+D§,
@D St pi @D Lt pf @ DY S D, @ DR S Db,

@ D + DF £, DR 4+ DX, @D+D12M>DR+DH,

@ DR + D 224, DR 4 DR (@ DR 4+ DR, £tk pR L pR (5.8)
@D+D§’“%D{‘+D§, @D+D12—>DR+D12, @ D + D} £, pR 4 DR
.DR"‘DR—)D .DR+D12k—>D1§2+D12a

@0 DR 4 DIt D{<2+DR @) pF “**E, p @ DE 4 DA Y, Dy DA,
@R, @ DR DA L DDA, @) DR AL, pr

R 6+kE

@0 DY, +DA—>DR+DA®D —=5 D}, @3 Df, + DA XE, pR oy pA,

in which the form of the reaction rate constants is due to the fact that reactions with the
same reactants and products have been combined. As we did for the 3D model, let us define

S+kg kE kR
the parameter € = kAJer)t , the parameter y = kﬁ, with a constant b such that ;Ij = bu,
M VvV E

/

and the parameter p/ = :—T;, with a constant $ such that Z:;} = By/. The Markov chain
X¢ associated with the system is a linearly perturbed finite stEate continuous time Markov
chain with the state x representing the number of each type of modified nucleosome, i.e.,
x = (nD%, npa, nD{{,nDE{)T = (1, 29,73, 24)7. If the total number of nucleosomes is Diot,
which is conserved, then the state space is X = {(x1,z2, 23, 74)" € Zi cx1twotastay <
Diot}. The transition vectors for X¢ are given by v; = (0,1,0,0)7, vs = (0,—1,0,0)7,
v3 = (0,0,1,0)T, vg = (0,0,-1,0)T, vs = (0,0,0,1)T, vg = (0,0,0,-1)T, vz = (1,0, —1,0)T,
vg = (—1,0,1,0)T, vg = (1,0,0,—1)" and vyg = (—1,0,0,1)”. The infinitesimal transition
rates are

kA
Quotor (€) = fa(z) = (Dyor — (x1 + 22 + 23 + 24)) <k§‘v0 + ki + ‘A/@) :
kA A

ks
Qm,z—Q—UQ (5) = gi(x) = T2 < Vv Dtot + = Vv (:ES + x4 + 2$1)> )

’

k
Qz0+vs(€) = fr1(2) = (Dyot — (1 + T2 + 23 + 4)) <k114/0 + ki + ‘y (1 + $4)> ,

Q ( — a5 — 4 @D @
T,x+vy 5) = gRl(x) =T33l | € Vv tot@ + 2z v )’
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k k
Qa4 (8) = fra(7) = (Dot — (21 + 22 + 23 + 24)) <k12zvo + iy + 7M(331 +2a) + %(1‘1 + 133)) ;

e A

wamﬂ=ﬁxw=muG;ﬁmw+@;j, (5.9)
k k z3 — 1

Qza+v;(€) = frR121(7) = 73 (k12/1/0 + VM(% +x4) + % <I1 + 32 )> )

ki ki
Qu,o1vs(€) = gp121(T) = 210 <€VDtotb + IQV) )

’

k x4 — 1
Qurtvo (€) = fr122(2) = 34 | Kby + 2L (2 + 2 :
Vv 2

kA kA

Qui+v10(€) = gRi2() = w14t/ (5‘]}/[Dtot6 + T2 ‘f) .

A representation of the transition vectors and the Markov chain graph for Dy, = 2 are
given in Fig. 7 (b) and (c), respectively. As before, each rate depends on the state z,
but in the rest of the section we will not show this dependency to simplify the notation.
Now, we determine the stochastic behavior of the full chromatin modification circuit model
in terms of its stationary distribution and time to memory loss. For this study, we will
consider /cfj‘V = k:‘l,[, = /-c%v = 0 (i.e., there are no external transcription factors enhancing the
establishment of chromatin modifications). This assumption will not change the qualitative
nature of the results focused on studying the effect of €, u, and p’ on the stochastic behavior
of the chromatin modification circuit model.

5.2.1 Stationary distribution

We now determine the zeroth and first order terms of the stationary distribution expansion
for the 4D model. As shown in SI - Section S.11, when ¢ = 0, the continuous time Markov
chain associated with the 4D model has transient states 7 = {i1,...,%n,} where m =

SR Do (FEE) <2, i = (0, = 1,0,0)7, i1 = (Diot = 1,0,0,1)7, iy =

(Dgot — 1,0,1,0)7, and absorbing states A = {a,7}, with a = (0, D4, 0,0)7 corresponding
to the fully active state (npa = Dio) and 7 = (Diot,0,0,0)” corresponding to the fully
repressed state (nleQ = Dyot), respectively. Then, Assumption 4.1 holds (see SI - Section
S.11), so that X = AUT, and we can rewrite the infinitesimal generator Q(¢) in the form of
(4.2) (see SI - Section S.11), where the perturbation is linear and so Assumption 4.5 holds.
We can also verify Assumption 4.2 (see SI - Section S.11). Hence, we can apply SI - Theorem
S.1, as was done for the 3D model.

In particular, we obtain 7(0) = 7(0) = [a,0] = [ag, a,,0...,0], with ag = 0, a;, = 1, and
B = [ﬂ'Z(ll), ...,ﬂ'z(yln)] =0, "'7077T/L‘(7];L)7177T'§T]7-L)]7 with
k4 k4
7_‘_(1) M//BTMD?ot (1 Mb%Dgot
Tm—1

- 1 Ky ’ Tim = 2 kn kar )

See SI - Section S.11 for the detailed mathematical derivation. Now, a(l) = [ng),ﬁp)] is
the unique vector such that a(MQ 4 = —6(1)[R1 + T1(=To) ' Ry, a1 = —pMq,

As an example, suppose Dt = 2 and assume 5 = b, k“l,vo = kafo = ké/o and k), =
ky = ky = kﬁ. These assumptions do not affect the final qualitative conclusions related
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to the effect of e, u and p' on the stationary distribution. Then (see SI - Section S.11 for
the detailed mathematical derivation)

Ki(p,p) (=1 1
Qp=—-—"2 , 5.10
KQ(:“?N,) 0 0 ( )
Ks(p, i/ Ks(p, !
0= Bol) oy oo Kl e e s
K4(u,,u) K4(M7N)
with
Ki(p, i) = Ki (1) Ko + () K3 + ' K + 1/ K5 + ks + Kr),
Ka(p, i) = p' (' + 1) Ks + (1) Ko + (1)* Ko + ' Kuy + i/ Kig + pKis + K, (5.12)
s (i, 1) = (i) Kus (4 1) K6 + Ki7),
)

in which m = 13 and K;, ¢ = 1, ..., 20, are non-negative functions independent of y and p’
(see SI - Section S.11 for their precise definitions). We then have

e i) 1 O(e?) if o =a=(0,200)7"
0(e?) if € T\{im-1,im}
me(e) = { ep Kig + O(£?) if 2 =ip,-1 = (1,0,0,1)7
epKig + O(e2) if x = ip, = (1,0,1,0)T
1o (20 4 WK + pKag ) + O() i e =1 = (2,0,0,0)7.

For small € > 0, the stationary distribution is concentrated around the active and repressed
states, and higher values of y/ or u shift the distribution towards the active state.

5.2.2 Time to memory loss

As was done for the 3D model, we determine for the 4D model how the parameters € and
' affect the time to memory loss of the active state, hq,(¢), and the time to memory loss
of the repressed state, h, 4(g). Firstly, by the algorithm in Section 4.2.1, h,,(g) is O(e™!)
and hy.4(¢) is O(e72) (see SI - Section S.6). Then, by applying Theorem 4.3 we can obtain
expressions for the leading coefficients of hq,(¢) and hy4(g) (See SI - Section S.11 for the
detailed mathematical derivation). As an example, when Doy = 2, Q4 and 7T((11) are shown
in (5.10) and (5.11), and we obtain that

Ko (p, p') 1 Ko (p, p') Ka(p, p') 1 1
har - -+ 0(1 ) d hya = 5 = —+0| - s
7(e) Ei(up)e (1), and Arafe) Bl i) K i) 2 0 \e

where K;(p, 1), i = 1,...,4, are defined in (5.12).

Now, we determine how p’, the parameter encapsulating the asymmetry between the
DNA methylation erasure rate and the activating histone modification erasure rate, affects
the time to memory loss. To this end, we seek to determine directly how p' affects hq ,(¢)
and hy (), without deriving an explicit expression for them. To this end, we would like to
exploit two theorems from [13], namely, Theorem S.2 and Theorem 3.4 there. The transitions
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of the Markov chain X¢ are in ten possible directions, v; = —vy = (1,0,—1,0)7, v3 =
—vg = (1,0,0,-1)7, v5 = —vg = (0,1,0,0)T, v; = —vg = (0,0,1,0)7, and vg = —vy1p =
(0,0,0,1)7, with the associated infinitesimal transition rates Y1(z) = frioi(z), To(z) =
Irin (@), Ts(x) = frize(z), Ta(z) = ghixn(2), Ts(x) = fa(z), Te(z) = g5(x), T7(z) =
fri(x), Ts(x) = gy (x), To(x) = fra(x), Tio(x) = g5e(x). Consider infinitesimal transition
rates T,(a:), i = 1,2,...,10, defined as for T;(z), i = 1,2,...,10, with all the parameters
having the same values except that y’ is replaced by ji/, with x/ > j’. While we have not
been able to see how to exploit Theorems S.2 and 3.4 from [13] for these exact rates, we
have been able to do this for closely related rates. If we introduce a small approximation
in the transition rates of X¢, namely, 13;1 ~ x3 and “Tfl ~ x4 in frioi(x) and frioa(z),
respectively, then Theorems S.2 and 3.4 in [13] apply with

_— O = O
—_— -0 O

and (Ka+2)NX ={we X : x <4 w} (see SI - Section S.11). This approximation can be
justified by introducing the reasonable assumption that each nucleosome characterized by
a repressive modification (D} and DY) has the ability to catalyze the establishment of the
opposite repressive mark on itself. With this approximation, since a = (0, Do, 0,0)7 <4
7 = (Diot, 0,0,0)7, then Ao (€) < hay(€) and hyq(€) < hya(e). Thus, the time to memory
loss of the active state increases with higher values of i/, while the time to memory loss of
the repressed state decreases with higher values of .

6 Conclusion

In this paper, we provided a mathematical formulation and rigorous proofs to validate the
computational findings in [10], showing how the time scale separation between establishment
and erasure processes of chromatin modifications affects epigenetic cell memory. To this end,
we developed and adapted theory for singularly perturbed continuous time Markov chains
and we analyzed the behavior of stationary distributions and mean first passage times as
functions of the singular perturbation parameter e.

We first showed that 7() can be expressed as a series expansion (Section 3.1) for suf-
ficiently small e. We then proved that the limit 7(0) = lim._,o7(¢) is unique and we
determined an expression for it (Section 4.1.1). We also provided an iterative procedure
for computing all of the higher order terms in the expansion of 7(e) (SI -Section S.2.1).
Similarly, for the mean first passage time (MFPT) between states, we first showed there is a
Laurent series expansion for sufficiently small £ (Section 3.1, Eq. (3.4)). We then developed
a graph based algorithm to identify the order of the leading term in the series expansion
(Section 4.2.1), and we also determined the leading coefficient there (Section 4.2.2).

We then applied these tools to the chromatin modification circuit models proposed in [10],
to provide a rigorous basis for the computational findings given there (Sections 2, 4, and 5).

Our rigorous derivations of the analytical expressions for the stationary distributions and
time to memory loss, and our results on monotonic dependence on parameters, lead to a
mechanistic understanding of how ¢, p and p’ affect the stochastic behavior of chromatin
modification systems. As an example, our results suggest that higher values of  and p’ shift
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mass of the stationary distribution more towards the active state (Sections 5.1.1 and 5.2.1).
This finding is consistent with recent experimental results demonstrating that transfection
of the DNA methylation eraser enzyme TET1 (represented in our model by higher p' [10])
into Chinese hamster ovary (CHO-K1) repressed cells causes them to shift towards the ac-
tive state [27]. More generally, the mechanistic understanding of how &, u, and p’ affect the
stochastic behavior of chromatin modification systems, as derived in our study, is crucial
for determining experimental interventions on molecular players, such as chromatin modifier
enzymes, to modulate cell memory. This mechanistic insight is expected to be extremely
valuable for applications such as cell fate reprogramming and engineering approaches to
cell therapy. Furthermore, the mathematical results and theoretical tools developed in this
paper can be applied beyond the scope of the epigenetic cell memory models analyzed in
this research work. In fact, they can be applied to all stochastic models that respect the
assumptions considered. Future work will investigate how to generalize these results by re-
moving some of these assumptions, including allowing the Markov chain to have countably
many states and Q(0) to have ergodic classes as well as absorbing states. While there is
some theory for countably many states, such as in [3|, the continuous time Markov chains
for further applications that we have in mind are not uniformizable and have many transient
states for (0), and the theory in |3] needs to be generalized for them.

Supplementary information (SI) file: file containing the proofs of the theoretical tools
developed in this paper, and detailed mathematical derivations for some of the chromatin
modification circuit models analyzed.
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Supplementary Information (SI)

S.1 Some results in probability

Let X be a finite set. Recall the notation for matrices introduced in Section 1.5.

Lemma S.1. Let X = {X(t): t > 0} be a continuous time Markov chain with state space
X and infinitesimal generator Q = (Quy)zyecx. Then, the number of recurrent classes for
X is equal to nullity(QT) = nullity(Q).

Proof. Since @Q is a square matrix, the Rank plus Nullity Theorem yields that nullity(Q7)
= nullity(Q). Now, consider A > maxgex |@Qz .| and define P := I + Q/\, where [ is the
identity matrix of size |X'| x |X|. The matrix P is stochastic and such that for every = # y
in X, P, > 0 if and only if Q. , > 0. As a consequence, the recurrent classes of X are the
same as the recurrent classes of P. By Theorem IV.2.4 in Isaacson and Madsen [11], the
number of recurrent classes of P is equal to the maximum number of linearly independent
left eigenvectors satisfying mP = w. By observing that 7P = x if and only if 7Q) = 0, we
see that this latter quantity is equal to nullity(Q7). O

The following is Proposition 6.3 in Asmussen [1].

Proposition S.1. Let (Pyy)zycx be a nonnegative substochastic matriz (P1 < 1) such
that for each x € X there are z1,...,2m,y € X such that Py, P, .,... P, , > 0 and
> sex Py < 1. Then, spr(P) < 1.

We use Proposition S.1 in order to obtain invertibility for some matrices, as in the next
result.

Lemma S.2. Let X = {X(t) : t > 0} be an irreducible continuous time Markov chain
with state space X and with an embedded discrete time Markov chain with transition matriz
P. Consider a nonempty set B C X such that B # X and consider PB° to be the matriz
obtained by removing the columns and rows of P corresponding to states in B. Then, I — PB°

1s invertible and its inverse is given by the absolutely convergent series Z,?;O(PBC)’“, where
(PBYY =1.



Proof. Observe that PB° = (Pry)zyeBe is a nonnegative substochastic matrix. Since X is
an irreducible continuous time Markov chain, its embedded discrete time Markov chain is
also irreducible. Thus, for each = € B¢, there exist z1,...,2zm,y € B¢ and § € B such that

C

Py Peyzy o PaypyPyy > 0. Then, PS. PE° . PB" >0and Y g PP, = cpe Py <
1 since Pyy > 0 and >, 4 P,. = 1. By Proposition S.1, spr(P5°) < 1. This fact,
together with Theorem 5.6.15 in Horn & Johnson [10] yields the convergence of Y 3> ,(P5°)*.
Moreover, (I — PBE%) Y22 ((PB)* = S°0¢ (PP )F(I — PB") = I, which yields the desired
result. O

We will use the following continuous time analogue of Proposition S.1.

Lemma S.3. Let (Quy)zycx be a matriz such that Q1 < 0 and such that Qp . < 0 for
each x € X and Qz, > 0 for each x # y € X. In addition, suppose that for each v € X
there are distinct z1,...,2m,y € X different from x such that Qz 2, Q2 2 .- Qz,,y > 0 and
Y sex Quz < 0. Then, for every v € sp(Q), the real part of v is negative. In particular, Q
1s invertible.

Proof. Consider A > maxzex |@z.2| and define P := I+ Q/\, where I is the identity matrix
of size | X| x |X|. The matrix P is nonnegative, substochastic and such that P,y = $+Qu.y
for every x # y € X. With these elements, we obtain that for each x € X there are
distinct 21,...,2m,y € X such that P, . P, ., ... P, , > 0 and where ZzeX P,.=1+
%ZZEX Qy,- < 1. Proposition S.1 yields that spr(P) < 1. By observing that v € sp(Q)

implies that 1 + § € sp(P), we obtain that 1 > [1 + 5[ > |1 + WI where R(v) is the real
part of v. The latter inequality implies that R(v) < 0. O

Consider a nonempty set B C X such that B # X and a Q-matrix written as
B B

_ B (QF] S
Q= BC%‘—QW}' (S.1)

Consider a process X = {X(¢) : ¢t > 0} defined on a measurable space (£, F) and a
collection of probability measures {P, : x € X'} on (2, F) such that for every x € X, X is
a continuous time Markov chain under P, with infinitesimal generator given by ¢ and such
that IP,[X (0) = 2] = 1. Consider the stopping time 75 := inf{t > 0: X (¢) € B}.

Lemma S.4. The following are equivalent:

(i) For every x € B¢, there exists a z € B such that x leads to z under @, i.e., there are
distinct x1, ..., Ty, € B, different from x, such that Qg , Qz1 zes s Qum,z > 0.

(i) QB° is invertible.
(111) Eg[mp] < oo for every x € BE.
If any of (i) — (i) hold, then
P, [X(18) = y] = (—=(Q%) " R)s,y (S2)

for every x € B¢ and y € B. Moreover, if B¢ is a set of transient states for X, then (i) — (ii1)
hold.



Part of the results in Lemma S.4 appear as Lemma 1 in Gaver et al. [8] for the case where
QB and S are the zero matrix. For completeness, we provide a self-contained proof here.

Proof. The implication (i) = (ii) is a consequence of Lemma S.3 with B¢, Q5 in place of
X, Q there.
In the following, recall that for every z € X and function f : X — R, the process

MB(t) = f(X(t A 7s)) — F(X(0)) — /0 T LiX()ds, 20, (93)

is a martingale under P, (see Theorem 3.32 in [15]), where Lf(y) := > .. Qy-f(2) for
yeX.

For (ii) = (i), consider the function f(y) := —[(QP")~'1],1z:(y) for y € X. The
reader may verify that Lf(y) = —1 for every y € B¢. Therefore, for an x € B€, taking
expectations in (S.3) yields f(z) — Ez[f(X(t A 78))] = Ex[t A 78] for every ¢ > 0. Hence,
Eg[t A 8] < 2sup,ecy |f(z)| for every ¢t > 0 and we conclude the desired result by letting
t — 0.

For (éii) = (i), we prove that not (¢) implies not (i7i). Suppose there exists x € B¢ such
that no point of B is accessible from x. Then, 73 = 0o Py-a.s., so (iii) does not hold.

For (S.2), consider z € B¢, y € B and the martingale MJ? with f(2) = (—(Q®)7'R), ,15:(2)
+1y(2) for z € X. The reader may verify that Lf(z) = 0 for x € B¢, which yields that
E.[f(X(tA1))] = f(z) for every t > 0. If any of (i) — (i) hold, then 75 < oo, P -a.s., and
on letting t — oo and using bounded convergence, we obtain IE,[f(X (73))] = f(x), which
implics P [X (75) = 4] = (~(Q5) R,

Now, suppose that every x € B¢ is transient. Then, P,(73 < o0) = 1 for each z € B°.
For a proof by contradiction, suppose that QB° is not invertible, which implies the existence
of a nonzero vector v = (v(z))zepe # 0 such that Q5 v = 0. Then, consider the function
f(y) = v(y)1pe(y), for which Lf(y) = 0 for y € B¢. Consider an = € B° such that v(z) # 0,
then M]?(t) = f(X(tA1B))—v(z) is a bounded martingale. On taking expectations we have
E,[f(X(t A7B))] = v(x). Since the states in B¢ are transient, X (-) will P -a.s. leave B°.
Then letting ¢ — oo and using bounded convergence yields 0 = v(z) which is the desired
contradiction. Hence (i7) (as well as (), (¢i7)) must hold. O

Lemma S.4 has a useful consequence in terms of occupations times. In the above context,
consider the occupation time of B by the Markov chain X up to time ¢ > 0: xp(t) =

fg 15(X(s))ds. Denote by xz(00) = limy00 x5(t) = [5° 15(X(s))ds.
Lemma S.5. Suppose that
Py[ms < oo] =1 for ally € B (S.4)
Then P,[xg(c0) = 00| =1 for every x € X.
Remark S.1. If any of the conditions (i)-(iii) in Lemma S.4 holds, then (S.4) holds.

Proof. Fix x € X. Let 0_1 = 0 and 09 = inf{t > 0_1 : X(¢t) € B}. Then, inductively define
for k=0,1,2,..., ogky1 = inf{t > ogi, : X(t) € B°} and o912 = inf{t > 09511 : X(t) € B}.
Using (S.4) and the strong Markov property of X, we have

o9 < 00 Py-a.s. on {091 < o0} (S.5)



for k=0,1,2,..., and
N

oo
xB(00) = kz_on{a%<oo}(02k+1 — o) = Nli_r)nookz_:o]l{m@o}((fzkﬂ — o2),

where terms in the sum indexed by k : o9 = oo are taken to be zero. Now, PP, -a.s.,

N

N
I exp(—1osrco (Gors1 = 021)) = [ [ Lioarcoo) exD(— (02041 — 21)),
k=0 k=0

where we used (S.5) and the fact that 0_; = 0, to conclude that the product is zero P, -a.s.,
if {o9r = 0o} for any k € {0,1,..., N}. Hence,

IE, [exp(—x5(0))]

N

= Jlim T, ]}:[()ﬂ{azk<m} exp(—(02k+1 — 021))
N-1

= lim E; H Lion,<co} €XP(—(02k+1 — 02k)) Loy <0} Bz [exp(—(02n41 — 02n)) | X (02n)]
k=0

On {09y < oo}, we have X(oan) € B and X(t) € B for ooy < t < oan4+1. Hence,
for a > maxyep|Qyyl|, using the strong Markov property, on {oan < oo}, conditioned
on X(o9n), oant+1 — 0an stochastically dominates an exponential random variable with
parameter a and so

o
— _ a
E; [exp(—(oan+1 — 02n))| X (02n)] < / e tae"dt = Tra
0 +a
Similarly, for k = N —1,...,0, on {09 < oo},
a
I, [exp(—(o2k+1 — o21)) | X (02k)] < 1 . (S.6)
+a
Then,
N-1
. a
Eqfexp(—x5(0))] < limsupE, | [ Lisp<o0p exp(—(02641 — 020)) L ooy <oo} 7o
N—o0 k=0 +a
N-1 "
< hfvnjfop E, kHO 1o, <o0} €XP(— (0241 — O2)) T a

Repeatedly conditioning on {09 < oo}, for k= N —1,...,0 and using (S.6), we obtain

a N+1
E, - <l =0.
exp(-xs(o0)] < timsup (2

Hence, P,[x5(c0) = oo] = 1. O

Lemma S.6. Let X = {X(t) : t > 0} be a continuous time Markov chain with state
space X and infinitesimal generator Q = (Quzy)zyecx. Suppose there is an absorbing state
y € X. If there are distinct states zi1,...,z;m € X different from x and y such that
Qe Q2 20 - Qzpy > 0, then x is a transient state for X.

4



Proof. Since Qu.2 Qz, 2 - - - Qz,,,y > 0, we have P,[X (¢y) = y] > 0 for some tg > 0 (see The-
orem 3.2.1 in [16]). Thus P,[X () # x for all t > to] > P,[X (t9) = y|P[X(t) =y for all ¢ >
to| X (to) = y] = P,[X (o) = y] > 0, which means that z is a transient state. O

S.2 Additional results for stationary distributions

S.2.1 Higher order terms for linear perturbations

Under the assumption of the perturbation being linear (which is the case for our chromatin
modification circuit models), we now provide an iterative procedure for computing all of the
terms in the series expansion of 7(-). Additional results for characterizing some of these
terms are given in SI - Sections S.2.3, S.2.4.

Theorem S.1. Suppose Assumptions 4.1, 4.2 and 4.5 hold. Then, the following hold for
the sequence {r*) : k> 0} in (3.7):

(i) 70 = [al0 O] = [a,0] where a is the unique probability vector on A such that
aQa =0,

(i) for every k > 1, 70) = [a®) 3] where
BE) = (@*=1g) 4 g1y ) (1) ! (S.7)
and o'¥) is the unique vector such that

Q= —B® Ry + T1(~Tp) ' Ro), (S.8)
a1 =gk, (S.9)

Moreover, if |A| > 2, for every k > 1 we obtain
o®) = a4 (—p®1 — agF1)a, (S.10)

where a\F) .= —p*) (R, —i—Tl(—To)*lRo)QTA fork >1 and QTA is a generalized inverse
of Qu*

The proof of Theorem S.1 is given in SI - Section S.2.2.

4A generalized inverse Qi‘ of @ 4 is such that Q) AQLQ A = Q4. The Moore-Penrose inverse is a generalized
inverse. The deviation matrix for X4 is D = (—Qa +1a)™" — 1a, and —D is also a generalized inverse
of Q4. Meyer [4] suggested that —D is a better generalized inverse to use than the Moore-Penrose inverse
since it can be computed efficiently and embeds answers concerning the transitory behavior of the Markov
chain. Avrachenkov et al. [2], in the context of discrete time Markov chains, use a suitable deviation matrix
when they need a generalized inverse. Here, if we take QL‘ = —D, then the term a®1 in (S.10) is equal to
zero since D1 = 0 and then o™ = ¥ ((Ry + T1(=To) "' Ro)D — 1a).



S.2.2 Proofs of Lemmas 4.1, 4.2, and 4.3 and Theorem S.1

Proof of Lemma 4.1

Proof. Tt has already been established before Lemma 4.1 that 7(0) = [a, 0]. By equating to
zero the coefficients of the terms e for m = 0, 1, .. . in the series (37>, e¥7(#)) (372, £FQW)),
we obtain that Y ;" 7B Qm=k) — 0 for every m > 0. In particular, (0 QO 4+ 7O Q1) = o,

which yields,
010 A | S
1 g L9 )
a5 (ot ) + a0 (R 5) <o

From this, we obtain two equations:
BYRy + ad; =0 (S.11)

and
BV 4+ a8 = 0. (S.12)

Since Tj is invertible, from (S.12) we obtain (4.5). We conclude by substituting this formula
for M) in (S.11). O

Proof of Lemma 4.2

Proof. By following the proof of Lemma 2 in Gaver, Jacobs & Latouche [8] and using formula
(S.2), we can prove that the transition rates between x # y € A for X 4 are given by (QA)zy-
In essence, the argument is as follows. From the state z € A, the Markov chain X may
move to y € A in two ways that lead to a one-step transition for X A. First, it could happen
that X jumps directly to y at a rate of (A1)s,y. Second, the chain X may go to some state
z € T at arate (51)s,. and from there, jump between states in 7 until getting back to A at
the state y € A. By (S.2), this happens with probability ((—Tp) 'Rp).,,. Putting this all
together, the rate of transition for X 4 from z to y will be

(ADay + Y (S1)az((=To) " Ro)zy = (Qa)y- (S.13)
z€T
OJ

Proof of Lemma 4.3

Proof. Consider x # y € A. Then, there exists a sequence of states o = z,Z1,...,Zm =y
in C such that Qx QO,mz . me_hy > 0. Roughly speaking, the proof follows by erasing
the times that X is outside of A. We now give the details. Consider i € {0,1,...,m — 1}
with T € A If Tiy1 € A, then, by (S'13)7 (QA):Ei,ﬂ?i+l > (Al)mi,ru_l = Qri,mi-u > 0.

If ;41 € T, consider the path of states z;,x;11,...,z for 0 < i < k < m such that
T, x € Aand 2441, ..., 251 € T. Since ;11 leads to zy for X, then IPanH [5(( 4) =x] >0
where 74 = inf{t > 0 : X(¢) € A}. By (S.2), this means that ((=Tp) ' Ro)s;\ 1,00 >
0 which yields (QA)xz',xk > (Sl)$i7$i+1(( TO) 1R0)Iz+1,xk sz,xlﬂ(( ) 1R0)Ii+1,xk >
0. These observations yield a sequence of states o = z,z;,...,7;; = y in A such that
(Qu)zai, (R iy -+ (Qa)as, .y > 0 O

Proof of Theorem S.1



Proof. Point (i) was established in Theorem 4.1. For (ii), we equate to zero the coefficients
of the terms e™ for m = 0,1,2, ... in the terms of the series, (332, f7*))(Q® + QM) to
obtain that 7(DQ©® = 0 and 7®M QO 4+ z(:=DQWM) = for every k > 1. The latter requires
that for all £ > 1,

k) gk (0 |0 (h=1) ate—1)y (A1 S1 ) _
a®,509) () +fals, ) (L) o

Now, this yields two equations:
B® Ry 4+ a*=D A 4 gE-VR, =0, (S.14)

BRIy + 15 + gDy = 0, (S.15)

For 3(%), we obtain the relation (S.7) directly from (S.15) for all k > 1. For a®, let’s see
first that it satisfies (S.8). From (S.7), for all k > 1, g*+1) = (a®§; + 3MT))(~T5)~" and
using this in (S.14) (with k replaced by k + 1) we obtain for all k£ > 1

(a® 8 + BOT)(=Tp) " Ry + P A; + PR, = 0. (S.16)

By rearranging (S.16) and using (4.6), we obtain (S.8) for all £ > 1. On the other hand,
since (1(F) 1) = 0 for every k > 1, we obtain (S.9).

For the uniqueness of a®), for all k > 1, if |A| = 1, then a® has only one entry and
it is determined uniquely by (S.9). If |A| > 2, consider another solution y*) of (S.8) and
(S.9), where ()T € RMI. By Assumption 4.2 and Lemma S.1, dim(ker((Q4)")) = 1 and
therefore, by (S.8), a®) — () = ca for some ¢ € R. Using (S.9), then 0 = a®1 — y#)1 =
cal = ¢, and therefore ¢ = 0, and o¥) = ”y(k‘).

For existence of a solution a¥) of (S.8)-(S.9), using the properties

Ryl +1Tp1 =0 and R;1+7T71 =0,
we have that

(R1 + Tl(—To)_lRo)]l = Ri1+ Tl(—TU)_lR[)]l
= T+ T (-Tp) 'Rol
= T1(=Tp) H(Tol + Rol)
= 0.

Then, since dim(ker(Q4)) = dim(ker((Q4)7)) =1 and 1 € ker(Q_4), we have
(—=B®(Ry + T1(~To) " Ro))" € ker(Q)™ = range((Qa)"),

and so (S.8) has a solution and (S.9) will determine the multiple of « to add to any particular
solution to obtain the unique solution o) of both equations.
Furthermore, if Qi‘ is a generalized inverse of () 4, then

a® = — W (Ry + T1(~Tp) ' Ro)Q', (S.17)

is a solution to (S.8) (see [12] for an exposition). Similar to the uniqueness argument,
a®) — k) = cq for some ¢ € R. By (S.9), ¢ = —*1 — @®1 and we obtain (S.10). O



S.2.3 Additional characterization of zeroth and first order terms for linear per-
turbations via restricted processes

In this section, assume that Assumptions 4.1 and 4.5 hold. We will also sometimes assume
Assumptions 4.3 or 4.4 hold. We will explore additional characterizations of o and (V).
Under Assumptions 4.1 and 4.5, A(e) (defined in (4.2)) corresponds to €A; for every 0 <
e < g9. Since Q(e) is irreducible for every 0 < € < gg, from Lemma S.4 (with A€ in place
of B and Q(g) in place of @ there), we obtain that 4, is invertible for 0 < £ < &g, and
therefore A; is invertible. This will be an important fact for the coming results.

Consider the matrix Q introduced in (4.7). For a continuous time Markov chain X with
infinitesimal generator @, denote by y7(t) the occupation time of 7 by the Markov chain
X up to time ¢t > 0, with its associated limit x7(00) = limy_e0 x7(t) = JoS Lr(X(t))de.
Since A;j is invertible, by Lemma S.4 (with B = T and Q = Q) and Lemma S.5 we have
that P[x7(0c0) = oo] = 1.

Consider the process X7 as in (4.8), but with A replaced by 7, which corresponds to
observing X only on the time intervals where X is in 7. The process X'T is a continuous
time Markov chain on 7. Consider the matrix

Q7 =Ty + Ro(—A1) 7' 54, (5.18)

which by Lemma S.9 is a Q-matrix. Similarly to Lemma 4.2, we can show that Q7 is the
infinitesimal generator of X7. Our previous assumptions relate to X in the following way.

Lemma S.7. Suppose Assumptions 4.1, 4.3 and 4.5 hold. Then XT has a single recurrent
class. Moreover, if Assumption 4.4 holds, the process X+ is irreducible.

Proof. Let D C T be a non-empty recurrent class for X (there must be at least one), and
let C C X be the communicating class under X described in Assumption 4.3. We will prove
that D = C \ A, which yields the uniqueness of recurrent classes for XT. If Assumption 4.4
holds, then C = X', which combined with the relation D = C\ A, implies that D = X\ A =T
and the conclusion follows.

In order to prove D = C \ A, we start by making some observations. First, we prove that
there exist states € D and g € A such that Qig > 0. In fact, if this was not the case, then
for every x € D and z € A we would have Q%Z = (Rp)z,> = 0. This yields that for € D,

(@D)ay = T0)ay + Y _(Ro)e (A1) 7S]y = (Th)ay, (S.19)
zeA

for all y € 7. Since D is a closed class under Q7, (Q7)zy = 0 for y € T \ D and so
ZyeD(QT)x,y = ZyeT(QT):r,y = 0, since Q7 is a @-matrix. Combining this with the
previous equation, we obtain that > 5 (70)sz,y = 0 for all € D, which implies that D is
closed under Q. This contradicts the fact that Tj is invertible by point (i) in Lemma S.4
(with B¢ =T and Q = Q).

Second, we observe that there exist a § € A and & € D such that ny > (. In fact, since
Aj is invertible, by Lemma S.4 (with B¢ = A and Q = Q) there has to be a § € A and
Z € T such that ny > 0. To show that & € D, consider that § € A communicates with
j € A under Q, by Assumption 4.3, and therefore # leads to # under Q and therefore under
Q7. Since D is closed under Qr, £ € D.



We now prove that D C C\ A. For z € D, since Tj is invertible there exists a state y € A
such that z leads to y under Q. By Assumption 4.3, y and § are in A C C and so they
communicate under Q It follows that x leads to ¢ under Q On the other hand, ny >0
and since D is a communicating class under ()7, & leads to x under Q. Thus, = leads to 0
and §j leads to « under Q and so 2 € C. Thus, D CC and D C T = A°, and so D CC \ A.

To prove that C\ A C D, let z € C\ A. Since D C C, then x communicates with the
element 7 in D under Q. This implies that they communicate under Q7 and since D is a
communicating class under @7, then € D. Combining the above we see that D = C\ A. [

When the continuous time Markov chain XT has a single recurrent class D, there is
a unique probability vector v in RI7! such that vQ7 = 0 and v will be the stationary
distribution for XT with non-zero entries only for entries corresponding to states in D. We
use the vector v to characterize o and SV,

In the following theorem, we use the fact that A; is invertible. This follows from Lemma
S.4 because A; = Q*(1), where Q(1) is positive recurrent and so the condition (i) of Lemma
S.4 holds with B, = A.

Theorem S.2. Suppose Assumptions 4.1, 4.3 and 4.5 hold. Denote by v the unique proba-
bility vector in R\T! such that vQr = 0. Then, 7(0) = [a,0] where « is given by

o= cwRo(—A))7}, (S.20)

and where ¢ is given by ¢ = (VRy(—Ay)~'1)~L. Moreover, V) = [V, BV] where
BY = . (S.21)

Proof. Following the proof of Theorem S.1, equations (S.14) and (S.15) yield that
BYRy +ad; =0, (S.22)

and

BT, + sy = 0. (3.23)

From (S.22) we obtain that o = BV Ry(—A;)~!. We substitute this expression in (S.23)
to obtain that S (Ty + Ro(—A;)~'S;) = 0, which is exactly 3VQ7 = 0. By Lemma
S.7 combined with Lemma S.1, we obtain that 3(0) = & for some constant ¢ € R and
therefore a = évRo(—A1)~!. To show that é = ¢, we observe that since al = 1, then
é(wRo(—A1)~!1) =1 and the desired result follows. O

Under the assumptions of Theorem S.2, 699) > 0 for every x € D, the single recurrent class
of X'T, while 69(31) =0 for z € 7\ In fact, using first step analysis, one can show that the
entry (—A1);. ]-1 is the expected time that the process X spends at j when started at 7, before
exiting A. Hence, these entries are non-negative and so does vRo(—A;)~!. This implies
that the constant c is positive and the conclusion follows from (S.21) and the properties of
v.



S.2.4 Additional characterization of zeroth and first order terms via partial
balance

For the last part of this section, we consider an additional characterization for S(!) based
on the idea of truncated processes and partial balance relations (see Section 9.4 in [13]).

Consider a continuous time Markov chain X = {X(¢) : ¢ > 0} with infinitesimal generator
Q on a finite state space X. Let ) a non-empty set in X. Define the matrix Q = (QLy)x,yey
b_y Q%y—: Qz,y for x # y and sz =Quax+ Zy@; Qz,y- A continuous ti_me Markov chain
X ={X(t) : t > 0} with state space ) and infinitesimal generator ) will be called a
truncation of X to ).

Assumption S.1. For every 0 < € < &, the truncation of X to T, denoted by X¢,
is irreducible. In addition, the following partial balance condition holds on T for every
0<e<ep:

7z (€) Z Quyle) = Z 7y (€)Qy.z(€), for every x € T. (S.24)

yeA yeA

Under Assumption S.1, the process X¢ has a stationary distribution n(e) for every 0 <
€ < g9, given by
T (€)
Ne(€) = ==
’ 2 yer Ty(€)

(see Theorem 9.5 in Kelly [13]). The following is our main theorem.

xeT (S5.25)

Theorem S.3. Suppose Assumptions 4.1, 4.5 and S.1 hold. Then, the following hold:

(i) the limit n := lim._on(e) exists and it is a probability vector on T such that
nQ(0) =0, (S.26)
(ii) the vectors o and B can be characterized by
Y = en, a = cnRo(—A;) !, (5.27)
where ¢ = (nRo(—A1) 1)L, and

(i11) nQ1 = 0.
If, in addition, Assumption 4.8 or Assumption 4.4 holds, then n = v is the unique
stationary distribution for X .

Remark S.2. Although we know that X© is well defined, we do not know a priori whether
the process is irreducible or it has a single recurrent class. If the truncation process X°
has a single recurrent class (or is irreducible), it will have a unique stationary distribution,
which we would call n(0). But we do not know if such a vector exists. This non existence
is what led us to express Theorem S.3 in terms of the limit 7 which solves nQ(0) = 0. If
the truncation process X° has a single recurrent class, as in the 1D and 2D models, the
probability vector 7 is characterized uniquely by solving nQ(0) = 0 and 1 = 1(0).
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Proof. We will first show that 301 > 0. From (4.5) we know that (1) = Sy (—Tp) ™",
which yields SM1 = aS;(~Tp)~'1. Since all of the entries in a, Si, and (=Tp)~" are
nonnegative, it suffices to show M1 % 0. For a proof by contradiction, suppose that
BM1 = 0. This means that

Z Z ax(Sl)x,y((*TO)_l]l)y = 0. (S.28)

yeT z€A

All of the entries in the sum are nonnegative, so this means that a(S1)z,,((=70) 1), = 0

for every z € A and y € T. Now, ((—Tp)"'1), is the mean first passage time to A, for

the Markov chain that starts at y with infinitesimal generator Q(0), and so ((—7p)~11), >

\QTI)yM > 0. Hence, o;(51)e,y = 0 for every x € Aand y € T. This yields that S = 0 and

substituting this in (4.4) yields that aA; = 0. Since A; is invertible, this is a contradiction.
Since we know that 3(0) = 8(0) = 0, we obtain that

YRS C D /- 1y: AN o1 SN v o
Derm(€) S R kB TR e Y B S e Y e Y

O
DO R
S

—

We then obtain that n exists and 7, = % for every x € T, which is a probability vector
on 7. Or letting ¢ — 0 in n(¢)Q(e) = 0, we obtain that nQ = 0. We already know
that () = ¢n. To obtain a value for ¢ that depends only on 7, note that from (4.4) and
(4.5), we have @ = B Ry(—A;)~! = enRo(—A;)~!, where enRo(—A;) 1 = 1 and so
c= (T]R()(—Al)_l]l)_l.

By following the proof of Theorem S.2, we obtain S(0Q+ = 0 and therefore nQ7 = 0.
The other conclusions follow readily. O

The following criterion offers a practical way to establish (S.24).

Lemma S.8. Let A= {ay,...,a,}. Suppose there exist distinct states x1,...,xy in T such
that for every 0 < e < gy and for every k € {1,...,n}.

1' Qakflk (8)7 Q:Ekak (8) > 07

2. Quuy(€) = Quuy () = 0 for every y ¢ {wx, ar}.
Then (S.24) holds.

Proof. Denote by N' = {z1,...,2,}. Let 0 < & < g9. For x € T \ N, we have that
T2(€) D oyen Quy(e) = 0 and - 4 my(e)Qyu(e) = 0. Then, equation (S.24) holds for
reT\N.

For z, € N, 7z, (€) ZyeA Quyy(€) = T (€) Quyay (€)-

On the other hand, >_ 4 my(€)Qyay (€) = Tay (€)Qayay (€). Since m(e)Q(e) = 0, we have

0= (71'(8)@(5))% = Z ﬂ—w(g)Qm,ak (5)

reX
= T, (€)Quyar, (€) + Tay, (6)Qayar (€) = Tay (€)Quy sy, (€) — Tay (€) Qayay, (€)-
Hence, 74, (8)Quy.ar (€) = Tay, (€)Qay 2 (€) and (S.24) holds for z € N as well. O

11



S.2.5 Lemma S.9

Lemma S.9. Under Assumption 4.1, the matrices Q 4 and Q are Q-matrices of sizes |A| x
|A| and |X| x |X| respectively. If in addition, Assumption 4.5 holds, then Q1 is a Q-matrix
of size |T| x |T].

Proof. First, observe that lim.0 1Q.4(e) = (A1)sy if 2,y € A, while lim._,02Qq,(g) =
(S1)ey if x € Aand y € T. Then, since Q(¢) is a @Q-matrix, S; has nonnegative entries,
(A1)zy >0 for x #y € A, and

Z(Al)z,y + Z(Sl)z,y =0 for every x € A. (S.29)

yeA yeT

For . # y € A (Qa)ey = (A)ay + Doc7(S1)a,2((=To) "' Ro):,y is nonnegative since
(A1)zy > 0 and by (S.2), ((—=Tp) ' Ro).y =0 for 2 € T. For z € A, > yea(@a)zy is equal
to

Z(Al)m,y + Z Z(Sl)m,z((—TO)_lRO)z,y = Z(Al)m,y + Z(Sl)a:,z Z((—TO)_lRO)z,y

yeA yeA zeT yeA z€T yeA
= (Aay + D (S1)a: =0,
yeA z€T

where we used (S.2) and (S.29). Hence @ 4 is a Q-matrix.

For Q, for z #+y e X, if z € A, then Q%y corresponds to an off diagonal term in
Ajq or a term in Sy, both of which are nonnegative. If x € T, then vay corresponds to
an off diagonal term in Ty or a term in Ry, which are both nonegative since Q(0) is a
Q-matrix. To check that the row-sums of @ are zero, first consider when z € A. Then,

Syex @uy = DyealA)ay + X er(S1)ay = 0 by (S.29). If 2 € T, then 3y Quy =
> yea(Bo)zy + 2 2,er(10)a,y = 0, since this corresponds to summing across a row of Q(0).
The case of ()7 follows similarly to that for @ 4. O

S.3 Algorithm to find the order of the pole of the MFPT

Input: B C X, and kg, the order of Q. ,(¢) for each (z,y) € Ep.
Output: p(x), the order of the pole of the mean first passage from x € B¢ to B.

(p will also be defined for condensed nodes in the course of the algorithm)
Step 1 (Set up the initial graph (V, E))
Construct a directed graph G = (V, E) where V = X and E = Ej.
Set, for each u € V, p(u) < min{k,, : (u,v) € E}.
Set, for each (u,v) € E, Kyp < kup — p(u).
Step 2 (Condense B into a single node a)
Introduce a new node a.
Set, for each w € B¢ such that (w,v) € E for some v € B, Kyyq ¢ min{Ky, : v € B and (w,v) € E}.
Update V « B¢ U {a} and

E+{(u,v) € E: ueBand v € B}U{(w,a): (w,v) € E for some w € B° and v € B}.

Set, for each u € V'\ {a}, S(u) + {u}, and S(a) «+ B.
Step 3 (Condense r-connected sets)
Repeat the following until G contains no r-connected sets:

Let C' C V be an r-connected set and ¢ be a new node representing the r-connected set C'.

12



Set p(c) + maxyecco p(u) + min{,, : v € C,v ¢ C and (u,v) € E}.
Set, for each w € V'\ C such that (u,w) € E for some u € C,
Kew < min{yy : v € C and (u,w) € E} —min{y, : v € C,v ¢ C and (u,v) € E}
Set, for each w € V'\ C such that (w,v) € E for some v € C,
Kuwe ¢ min{y, : v € C and (w,v) € E}.
Update V « (V' \ C) U {c} and
E+{(u,v)eE:u¢Candv ¢ CtU{(c,w): (u,w) € E for some u € C and w ¢ C}
U{(w,¢) : (w,v) € E for some w ¢ C and v € C'}.
Set S(c) < UyecS(u).
Step 4 (Compute p(z) where z € B¢)
Repeat the following until V' = {a}:
Let v* € V'\ {a} be such that p(v*) = max,ev\ (4} P(u) and break the tie arbitrarily.
For each x € S(v*) C B¢, the order of the pole of the mean first passage time from z to B is
pl)  p(v").
Update, for each u € V such that (u,v*) € E, p(u) + max{p(u), p(v*) — Kyp~ }.
Update V «+ V \ {v*} and E + {(u,v) € E:u # v* and v # v*}.

S.4 Graphs for the algorithm to find the order of the MFPT

Here we elaborate on the graphs that we use in the algorithm and the definitions that we
gave in Section 4.2.1 and Section S.3. While, in the algorithm statement, we used the
same notation for the updated graphs as in the original graph, it will be clearer for the
justification given in Section S.5 if we specify which copy of the graph we are looking at for
each step. Accordingly, we provide a more detailed version of the definitions of these graphs
and associated notation in this section.

Step 1: Graph G

For each € € (0,emax) and x € X, the exponential parameter satisfies

qx({-:) = _Qx,x(f‘:) = Z Qx,y(g) = Z Qx,y(ﬁ) > 0.

yF#xeX (z,y)EEy

Since the order of Qg () is kuy for each y € X such that (x,y) € Ey, the order of ¢,(¢) is
po(z) = min{kyy : (z,y) € Ep}. For each (x,y) € Ey, the transition probability P, ,(e) for
the embedded discrete time Markov chain is

Qa y(f)
P, y(e) = —=—=,
#(€) Gz (€)
the order of which is
Koy = kyy —min{kyy, : (x,y) € Eo} = kzy — po(z). (S.30)

We start with a weighed graph G = (V, E) where V = X and E = Ey. For each u € V, the
node weight of u is po(u), which is the order of the pole of the expected sojourn time
at state z until escape from x for X¢. For each (u,v) € E, the edge weight of (u,v) is ICyy,
which is the order of the transition probability from u to v.
Step 2: Graph G(©

If z € B¢ is such that (z,y) € E for some y € B, then the transition probability from z to
B is positive and is given by

Px,B(g) = Z P$,y(5)-

yeB:
(z,y)EE
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For such x, the order of P, g(¢) is
Ko = min{lCyy 1 y € B, (z,y) € E}, (S.31)

where KCyy is the order of P, () for each (z,y) € E.
Now, we are ready to specify the graph G() = (V(O), E(O)) which serves as the base case
for Step 3. We group the nodes in B into a single node, denoted by a, so the set of nodes
becomes V(O = (V' \ B) U {a} = B°U {a}. All of the edges starting from or going to a
node in B are then removed. If there was an edge from = € B¢ to a node in B, then we
add back an edge (z,a). We leave out all edges from a node in B to a node in B¢, since
we are interested in the mean first passage time to the set B. The resulting edge set is
EO® = {(u,v) € E:u e B and v € B} U {(w,a): (w,v) € E for some w € B¢ and v € B}.
Let S(u) = {u} for all w € VO \ {a} and S(a) = B. Note that {S(u) : u € VO}
is a partition of the state space X', denoting the grouping of nodes in V(© . For each
u € VO {a} and 2 € S(u) = {u}, we define pf(u) to be the order of the pole of the
expected sojourn time in S(u) before exiting S(u) when starting the process at the state
x. For each (u,v) € E© and z € S(u) = {u}, we define KZ, to be the order of the
probability of a transition to S(v) upon exiting from S(u) when the process is started
at the state z. For these terms, p§(u) = po(u) and K, = Ky, which is the base case for
Lemma S.11.
Step 3: Graphs {G(N)}]\NQO

In Step 3, we define a sequence of graphs {GN) = (VM) p(N ))}AN/I:o recursively, where the
exact value of M > 0 is not pre-determined and is only revealed when an exit condition for
the recursion is satisfied. We know this recursion will end after a finite number of iterations
because the number of nodes in V() is strictly decreasing with N. The weight py of each
node and the weight I of each edge are also defined iteratively, and each is defined only
once.

We have already defined G in Step 2. Fix N € {1,2,..., M + 1}, where the value of
M < o0 is defined below. At the N** iteration, an edge (u,v) € EN=1 is called an r-edge
if its edge weight K, is 0; a directed path in GV=1 is called an r-path if it consists of
r-edges only. A set C C V(¥N=1) is called an r-connected set in GN=1 if |C| > 1 and there
exists an r-path from u to v for any u # v € C. Here we use the qualifier “r” to indicate
that these edges, paths and cycles are “regular”. If there is no r-connected set in GW-1),
the iteration stops. We set the value of M to the first value of N — 1 such that GIV-1)
does not have any r-connected set. At that time point, the iteration stops and we move to
Step 4 where GM) will be the initial graph for Step 4. Otherwise, N € {1,..., M}, and
we let C be an r-connected set in G(N_l), which is condensed to a new node ¢y in GOV,
Then, we define the graph GV) = (VN EMV)) wwhere VIN) = (VIN=D\ Oy) U {en}, and
EWN) = {(u,v) € EN-D .y ¢ Cy and v ¢ Oy} U {(cy,w) : (u,w) € EN=D for some u €
Cy and w ¢ Cn}U{(w,en) @ (w,v) € EXN=Y for some w ¢ Cy and v € Cy}. Let S(cy) =
Uueoy S(u). Note that {S(u) : u € VIN)} is again a partition of the state space X', denoting
the grouping of nodes in V).

We define p§j(cn) to be the order of the pole of the expected sojourn time in S(cy)
until the first exit from S(cy) when the process is started at the state z € S(cy). In Lemma
S.11, we will show that the value of p{(cx) is independent of the state x € S(cy), and we
define po(cn) = pE(en). For each w € VIN=U\ Cy such that (w,cy) € B, define KZ

wen

to be the order of the probability of a transition to S(cy) upon exiting from S(w)
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when the process is started at the state x € S(w). In Lemma S.11, we will show that the

value of K., is independent of the state z € S(w), and K. = Ky, where

chN = min{’va 1V E C’N and (wvv) € E(N_l)}‘ (8'32>

For each w € VIN=1\ Cy such that (cy,w) € E®) | define K¢, to be the order of the
probability of a transition to S(w) upon exiting from S(cy) when the process is started
at the state z € S(cy). In Lemma S.11, we will show that the value of K7, ,, is independent
of the state x € S(cy), and K7, = Kcpw where

cCNW

Keyw = min{yy : u € Cy and (u,w) € E(N_l)}
—min{Ky, : u € Cx,v ¢ Cy and (u,v) € BNV}, (S.33)

We note that for each N € {1,..., M}, since there is no edge in EW=1) that leads from
a, the node a is never part of any r-connected set, and so a € V) and there is at least
one other node in VN besides a. Also, the irreducibility of X¢ when 0 < & < ¢ implies
that there is a path from x to y in G for each z € X \ B and y € X. This implies that if
uy # vy € VW) for some N € {0,1,..., M} such that z € S(uy) and y € S(vy), then
there is a path from uy to vy in GIV). Therefore, for each N € {0,1,.. M} there is
always an outgoing edge from some u/ € Cy (v’ cannot be a) to some v € VIN=1\ Cy
in G™V=1 . In addition, as can be seen from the deﬁnltlon of the K’s in (S.30), (S.31),
(S.32) and (S.33), for each N = 0,1,..., M and u” e VN \ {a}, there exists an r-edge
(u",v") € EWN) for some v" € VM), For G ), [VIM)| > 2. Furthermorer, if we only look at
r-edges (and ignore the other edges), GM) is an acyclic graph (as it contains no r-connected
set). It follows that the node a is the only sink because for each u € V(M) \ {a}, there is an
outgoing r-edge, and thus there is an r-path from u to a for each u € VM) \ {a}.

Step 4: Graphs {GMN) }lV(M)| !

In Step 4, we define a sequence of graphs {G(M N) recursively,
where G(M: 0) = GM)_ In each iteration, the weight of one of the nodes in VIMN-1 < y(M)
is finalized and determines the value of p there, and the weights py_1 of other nodes in
VMN) are updated to py.

Fix N € {1,...,|[V(M| —1}. At the N*" iteration, let vy € VM:N=D\ {4} be such that

V(M) _
(V(MN) E(MN))}\N 0\ 1

pn-ilon) = max, o Pv-a(w) = pow), (5.34)

where we break the tie arbitrarily.
Now, we define the graph GMAN) = (VIMN) pOMN)Y where VIMN) — (7 (IMN=1) \ £4)1
and EMN) = {(u,v) € EMN=1 .4y = vy and v # vy }. For each u € VN et

o (M,N-1)
pN(U) _ {max{le(u),le(vN) IC’U,U]\]}? for (U,’UN) S E 5 (835)

pn—1(u), for (u,vn) ¢ EMN-1)

In Theorem S.4, we will show that for each x € S(vy), the order of the pole of the mean
first passage time from z to the set B is p(z) = p(vn).
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S.5 Justification for the algorithm to find the order of the MFPT

Recall that we defined {GUMVIM_ = {(VIV) BN and GMO) = GIM) in Section S.4.
Each GN) defines a partition {S(u) : u € VIM} of X, which will be used in our proofs.
Since X¢ is an irreducible continuous time Markov chain for all € € (0,&¢), each GIN) is
weakly connected and has the property that any node in V() \ {a} has an out-going edge
starting from the node.

In this section, we will provide the justification for the algorithm. Step 1 of the algorithm
sets up the original continuous time Markov chain using a skeleton chain. Step 2 of the
algorithm serves as the base case for Step 3, and Lemma S.11 justifies Steps 2 and 3.
Theorem S.4 shows that Step 4 works, which gives our main result for the order of the pole
of the mean first passage time from each state x € B® to B.

We will start with Sections S.5.1 and S.5.2, in which we describe in more detail the Big
Theta notation used in this section and define some useful stopping times that will be used
in our proof.

S.5.1 More on Big Theta notation

In Section 4.2.1, we have defined orders for analytic functions using Big Theta notation.
Here we give a few more definitions and remarks for inequalities involving the Big Theta
notation, on how to compare the orders of analytic functions and on arithmetic for orders.
These conventions streamline the proofs in the following subsections.

Definition S.1. Given g9 > 0 and a function f : (0,g0) — Rsq, we say f < ©(e*) if there
exist k € Z and a strictly positive My € R~¢ such that, for all 0 < e < €,

f(é‘) < MfEk.

We say f > O(c*) if there exist k& € Z and a strictly positive mys € R-o such that, for all
0 < e < ey,
f(e) > mye”.

Remark S.3. Let k,ki,ky € Z and k; < k < ky. If f = O(c¥), then f < O(") and
f>0(").

Remark S.4. For functions f and g mapping (0,&q) into Rsq, we write f = g - ©(c¥) if
L=0@"), f<g-0@Eh)ifL<o(Eh), f>g 06" if L >0(h).

Lemma S.10. Let ki,ky € Z, g > 0 and f,g : (0,e0) — Rsg. If f = O(c") and
g =0(e"), then

1 .
? = G(E_kl)’ f+g= @(Emln{kLkQ})’ f-g= @(€k1+k2)7

max{f, g} = O™ {Fkt), min{f, g} = ©(mx{kk}),

We leave the proof of Lemma S.10 to the reader.
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S.5.2 Stopping times 75"

For each graph GN) = (VIN) E(N)) "N € {0,1,..., M}, recall that {S(u) : u € VIV} is
a partition of the state space X. We define the series of stopping times {TE’N 9, Which
captures times of transitions of X¢ between sets in the partition {S(u) : u € VIM} of X
Formally, we let 75 N — 0, and for n = 1,2,..., we successively define

e N — inf {t >N XE() ¢ 5(%_1)} ,
where v,,_; is the element in V(™) such that Xg(TfL;Nl) € S(vp-1).
S.5.3 Justification for Step 3 of the algorithm
Lemma S.11. (i) For N =0 in Step 3,

(a) for each u € VO {a} and z € S(u), E [r{"] = O(e7Po®).
(b) for each (u,v) € E®) and xz € S(u), x[XE(Tf’O) € S(v)] = O(ekw).

(ii) For N € {1,2,..., M} in Step 3, let
k=min{Ky :ue Cy,v ¢ Cx and (u,v) € EN D},
(We note that k depends on N although we will not indicate that in the notation.)
(a) For each x € S(cn), Ex[Tf’N] = O(e () where pE(cy) = po(en) and
po(en) = max{po(u) : u € Cn} + k,

(b) For each x € S( CN and w € VIN=D\ Cy such that (u,w) € EN=Y for some
ueCy, Py[Xe(r) € S(w)] = @(EICCN”J) where K7, = Keyw and

Kepw = min{yy : u € Cn and (u,w) € E(N_l)} —k,

(¢) For each z € S(w) where w € VIN=D\ Cy is such that (w,v) € EN=Y for some
v € Ch, IPx[XE(TfN) € S(en)] = O(Mven) where Kien = Kwey and

Kuwey = min{Kyy : v € Cy and (w,v) € BNV},

Proof. Our proof proceeds by induction. The base case (N = 0) is established in Section
S4.

For fixed 1 < N < M, assume that (i) (a)-(b) and (ii) (a)-(c) hold with N replaced by
0,1,...,N — 1. We abbreviate 75" as 7¢ for n = 0,1,2, .... Let

dout (Cn) = {(u,v) € EWN-D .4 e Cy and v ¢ Cn}
denote all out-going boundary edges of Cny so that

kE=min{yy : (u,v) € dout(Cn)}-
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First, consider the discrete time process {X¢(75)}°,, which is not necessarily a Markov

process. We will derive a lower bound and an upper bound for

E, Z ]l{XE(TE,L)GS(CN) for 0<m<n}| » (836)

n=0

which is the expected amount of time that {Y,7 = X°(75)}22, spends in S(cn) before exiting
from there, when started from a fixed state x € S(cy).
For the lower bound, let

— P, [X(r5) ¢ S
pr= max y[XE(11) ¢ S(en)],

the maximum over y € S(cy) of the probability that for X¢ started at y, when X¢ exits
S(uy), where u, € Cy such that y € S(uy), X® exits outside of S(cy). By the induction
hypothesis, P,[X5(5) € S(v)] = ©(erw) for each u,v such that (u,v) € Gpu(Cn) and
y € S(u). Thus, using Lemma S.10, we have

p1 = max Z IPy[XE(TIE) e S(U)] _ @(Smin{Kw:(u,v)€6out(CN)}) _ @(5k),
VESEN) (4 ) Edomr (C):
yES(u)
For x € S(cn), let ¢n(z) = Py [X5(75,) € S(en) for 0 < m < n] for n =0,1,2,.... Then,
do(x) =1, ¢1(x) = Pr[XE(7) € S(en)] > 1 — p1, and by the strong Markov property, for
n > 2,
On(x) = Z P.[X*(1,,) € S(en) for 0 <m <n —2; X°(75,_1) = y] Py[X(7]) € S(cn)]

yes(en)
> Gn1(z)(1 = p1).

Hence, ¢p(z) > (1 — p1)" for n =0,1,2,.... Then, for z € S(cn),

0o 00 00 1 -
E; Z ]l{XE(Tfn)ES(cN) for 0<Sm<n} | — Z qbn('f) > Z(l - pl)n = E = 6(8 k) (837)
n=0 n=0 n=0

and so (S.36) is bounded below by ©(s7%).
For the upper bound, let wg € C be such that

min{/Cpyy : (Wo,v) € Sout(Cn)} = min{yy : (1, v) € dout(Cn)} = k.

Since the order of the probability P,[X®(7f) ¢ S(cn)] might equal k¥’ > k for some w #
wp € Cy and = € S(w), such a smaller order probability of directly exiting S(cy) from S(w)
makes it seem possible that (S.36) could be ©(e~*") for some k’ > k. Indeed, using a similar
approach to the one we used for the lower bound, we can show that (S.36) is bounded above
by ©(emax{huv:(w0)€0ut(Cn)}) > ©(e#). However, we would like a more stringent upper
bound. To achieve this, we will show below that from S(w), X¢ can exit S(cy) at least as
quickly by means of a transition from S(w) to S(wp) via the r-connected set and then from

S(wo) to V-1 \ S(CN).
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Let (5 =0, and for n = 1,2, ..., we successively define
ny,_q = inf {t > (¢S, X5(t) ¢ S(v) where v e VIV and X5(¢_|) e S(v)} ,

G =inf {t >nf_; : X°(t) € S(wo) or X°(t) & S(cn)}-
Note that {(}>2, and {7} }°>, depend on N. Let

n=0

p2= min P,[X°(¢F) ¢ S(wo)] = mi

y€S (wo) yes(g Py[X°(¢T) ¢ S(en)],

0)
By the induction hypothesis, P,[X¢(7{) € S(v)] = ©(eXw0v) for each v such that (wp,v) €
Oout(Cn) and y € S(wp), and so
pr 2 min Py[X*(r]) ¢ S(ew)] = O roruonSnO0]) = ©(eF), (S.38)
yes(wo
where the inequality holds since starting from any y € S(wy), if X°(75) ¢ S(cn), X© exits

outside of S(cy) after leaving S(wp) and so X°((f) ¢ S(wo).
For x € S(cn), Pz-a.s., the sum

oo
Z ]l{XE(T,E,L)ES(cN) for 0<m<n;Xe(r5)€S(wo)} (839)
n=0

counts the number of distinct visits to S(wy), including the initial start there if z € S(wo),
before X escapes from S(cy). By the definition of the {(5}°°, P, -a.s., the sum

]I{XE(O)GS(WO)} + Z ]l{XE(Cfn)GS(’wo) for 1<m<n}

n=1

counts the same quantity. Thus, for z € S(wp), using the strong Markov property and
(S.38),

¢(l‘) = E; ZH{XE(T,E,L)ES(CN)for0§m<n;X5(75)ES(wo)}]

n=0

= 1+, Z ]l{XS(Cfn)GS(wO) for lgmgn}]

n=1

= 4B | Lixe(en)esiwo)y Bxe(e) [Z Lixe=(¢s,)es(wo) for o<m<n}”
n=0

< 14(1-p) max $(). (5.40)
ye€S(wo)
Note that max,ec g(u,) ¥ (y) < oo because the state space is finite and X* is positive recurrent.
Hence, by (5.40), maxycg(wy) ¥(y) < p%. Then, for x € S(cy)\ S(wp), by the strong Markov
property,

v(a) < Po[XO(C) € S(wo)}] max w(y) < pl

19



Thus, for any = € S(cn),

o0

Z ]l{XE(Tfn)ES(cN) for 0<m<n;Xc(75)€S(wo)}
n=0

< —=0(Eh). (S.41)

1
P2

Let wi,wy € Cn be such that (wy,ws) € EWN-1 and Kuww, = 0. By the induction
hypothesis, P, [X¢(7{) € S(w2)] = O(1) for all y € S(wy). Then, for z € S(cn),

o0
E, Z Lixe(re)es(en) for o<m<n;xe(rg)eswz)}]
n=0

> ZIP [X¢(7E,) € S(en) for 0 <m < n; X8(75) € S(wy), X (Tny1) € S(w2)]
n=0

= Z > PL[X(5,) € Sen) for 0 < m < n; X°(75) = y] - Py[X(rf) € S(ws)]
n=0yeS(w1)

> ZIP [X€(7y,) € S(en) for 0 <m < n; X°(7y) € S(w1)] - min P, [X(7]) € S(w2)]

yeS(w1)
= Z H{XE(T;’)ES(CN) for 0§m<n;XE(Tg)€S(1111)}] . @(1) (842)
n=0

where the first equality holds from the strong Markov property of X¢. Since Cp is an r-
connected set, we can start from the node w; and the order inequality (S.42) can be passed
from node to node in C and back to the node w; (wy is included in the path) so that we
will actually have equality in (S.42) and for all v € Cl,

Z ]l{Xg(Tfn)ES(CN) for 0<m<n;X5(Tﬁ)€S(v)}]
n=0

Z ]l{XE(Tfn)ES(cN) for 0<m<n;X¢(75)€S(wo)}
n=0

-0(1). (S.43)

Therefore, combining (S.41) and (S.43), and since there are only finitely many nodes in Cy,
we can obtain by summing over v € Cy that (S.36) is bounded above by ©(¢~*). Combining
with (S.37), we have that, for z € S(cy), (S.36) is ©(c~*). Moreover, by (S.43), for each
x € S(cn) and each v € Cy,

Z ]l{XE(Tﬁ,L)GS(CN) for O<m<n;X5(Tfl)€S(v)}] = @(gik)' (8'44)
n=0

To prove (i) (a), fix x € S(cy). By the induction hypothesis, IE,| 1] = O(e7PoW) for
each y € S(u) where u € Cyy. Thus, the expected sojourn time in S(CN)

E.[r"] =

Z Lixe(re)es(en) for 0<m<n} * (Tt — 1
n=0

Z Z Z E ]l{XE(T5 )€S(en) for 0<m<n;X=(75)= y}] _7—0]

n=0ueCN yeS(u)
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o
Z E, Z ]I{XE(Tfn)ES(cN) for 0<m<n;Xe(rg)eS(w)} | * @(E_pO(u))

ueCn n=0
— Z @(E—k—po(u)) — @(E—k—max{po(u):uecN}) _ @(E_pU(CN)).
ueCn

where the first equality holds from the strong Markov property of X¢, we used (S.44) for
the third equality, and we used Lemma S.10 for the fourth equality.
To prove (ii) (b), fix 2 € S(cy) and w € VIN=D\ Cy. By the induction hypothesis,

P,[X¢(m5) € S(w)] = ©(ehww) for each y € S(u) where u € Cy. Thus, starting from z, the
probablhty of exiting S(cn) by means of a transition from a state in S(cy) to a state in
S(w) is given by

Po [ X (i) € S(w)] = > Po[X°(75,) € Slew) for 0 <m < n; X°(754,) € S(w)]

n=0

Z SN Ballixers)esien) tor o<menix(re)—y}) - Py[X°(5) € S(w)]

n=0ueCn yeS(u)

Z E, Z Lixe(rs)eS(en) for 0<m<n;Xe(re)eS(u)} | @(€K“w)

ueCn:
(u,w)e EN -1

= Z @(Efk%»lcu,u,) — @(gkarmin{lCuw:uGCN and (u,w)eE(Nfl)}) _ @(E)CCN“,)’
ueCN:
(u,w)EE(N’l)
where we used (S.44) for the third equality, and for the second equality, we used the fact
that there must be an edge in EV~1 between u and w if P,[X*(r§) € S(w)] > 0 for some
and hence all y € S(u).
To prove (ii) (c), fix © € S(w) where w € VN1 \ Cy. By the induction hypothesis,
P,[X5(7{) € S(v)] = ©(eXw?) for each v € Cy. Thus, starting from x, the probability of
entering S(cy) by means of a transition from a state in S(w) to a state in S(cy) is

Po[X5(r7Y) € S(en)] = D P[X(7f) € S(v)]

veCn
= Z @(ngv) _ @(5min{/va:v€CN and (w,v)EE(N—l)}) _ @(€KMCN).

veCn:
(ww)e EN-1)

S.5.4 Justification for Step 4 of the algorithm

Lemma S.12. Fiz w € VMO (a4}, Let 75 = oM form = 0,1,2,..., as defined in
Section S.5.2. Then, starting from x € S(w), the expected number of distinct visits to S(w),
including the initial start there, before X¢ enters S(a) is

Z L x<(re,)¢S(a) for 0<m<niXe(rs)eS@w)} | = O(1).
n=0
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Proof. Let (5§ =0, and for n = 1,2,..., successively define
ny,_; = inf {t > (5, X5(t) ¢ S(v) where v € VM0 and X5(¢5_,) € S(v)} )

Go=inf{t>n;_,: X°(t) € S(w)US(a)}.
Note that for z € S(w), Pg-a.s.,

D ixe(rz)gS(a) for 0<mensXe(ra)es)} = P L{xe(cz,)es(w) for 0<m<n}s (S.45)
n=0 n=0

since they both count the number of distinct visits to S(w), including the initial start there,
before X¢ enters S(a).

Recall from Section S.4 that for each u € VM0 \ {a}, there is an r-path from u to a. Let
such an r-path from w to a be w — wy... —» wy — a where w,w,...,wy,a are distinct.
By definition, an edge (u,v) € VMO is an r-edge implies that P,[X*(7) € S(v)] = ©(1)
for all z € S(u). Thus, for any y € S(w), using the strong Markov property of X<, we have

o) =1 Py[X5(¢T) ¢ S(w)] = Py [X°((7) € S(a)]

P, [X*(r7) € S(w1), ..., X5 () € S(wa), X*(7411) € S(a)]

= Z P,[X®(rf) € S(w1),...,X°(13) € S(wq), X°(15) = 2| - P.[X*(77) € S(a)]
2€S(wq)

= P, [X°(r7) € S(w1),..., X(77) € S(wq)] - ©(1) = ... =06(1)-...-O(1) = O(1).

v v

Using a similar approach to that used in Section S.5.3, we can show that for z € S(w),

- 1
E, gﬂ{xs(@)esm) for O§m§n}] > ey s Py X°(C5) € S(w) =0(1),
and
E; iﬂ{X5<<mes<w> for o<m<n}] < — . e =0().
vt minges(w) Py[X*(C7) & S(w))]
Combining these inequalities with (S.45) yields the desired result. O

Theorem S.4. Let 75 = inf{t > 0 : X°(t) € B} be the first passage time to B for X¢. For
each N=1,...,[VM| —1 and x € S(vy), we have

Proof. Tt suffices by iteration to prove that for each fixed 1 < N < [VM)| — 1, if
Ey[r5] = ©(c (")) for all y € S(vg) and 1 <k < N —1, (S.47)

then (S.46) holds for all x € S(vy). By convention, (S.47) holds automatically for N = 1.

For the iteration step, fix 1 < N < |[V(M)| — 1, and assume that (S.47) holds. If N =1,
let A=V®™MON\Lg} andif N > 1,let A=VMO\{y; ... vy_1,a}. Recall that for w € A
and 1 <k < N — 1, we have w € VIMF) and so by (S.35),

- - _va f E(M’k_l)
() = {max{pk (). Proa(v6) = K} for (w, ) € , (5.48)

pr—1(w), for (w,vy) ¢ E(Mk=1),
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Note that (w,vg) € EME=1) if and only if (w,v,) € EMO_ Since pr—1(vk) =: p(vg) for
1 <k < N —1, by iterating (S.48), we can obtain

pPN—1(w) = max{po(w), max{p(vy) — Kyy, : 1 <k <N —1and (w,vx) € EMONY (S 49)

where we make the convention that a maximum over an empty set is —oo. In particular,
since vy € A, we have

pon) i= py_1(vy) = max{po(vx), max{p(vy) — Koyo, : 1 <k < N —1and (vy,v;,) € EMO}L
(S.50)
Fix x € S(vn). We will derive a lower bound and an upper bound for E;[rz]. For the
lower bound, let 7¢ = inf{t > 0: X°(¢) ¢ S(vn)}. Recall that P -a.s., 7¢ = Tf’M as defined
in Section S.5.2. By Lemma S.11, for each y € S(w) where w € V(M0 = V(M) ig such that
(vy,w) € EMO) = EM) P [X2(7%) = y] = O(e"vwvw) and B, [75] = ©(¢~Po(*~)), By first
step analysis,

E gl = B+ Y3 PX() =y Byl
(vn,w)eEMM0) yeS(w)
Yoo D PX(Y) =y Byl

1<E<SN-—-1:  yeS(vg)
(vn,0p) € EATO)

= Oy + Y o) o(eP) = o) (S51)
1<k<N-—1:
(vn,vx) B0

v
=
8
3,
_l’_

where we used (S.47) in the second last equality, and used Lemma S.10 and (S.50) for the
last equality.

For the upper bound, let ° = inf{t > 0 : X°(¢) ¢ U,caS(u)}. Let 7, = oM for
n=20,1,2,..., as defined in Section S.5.2. Then, using Lemma S.12 and the strong Markov
property, for w € A ¢ VMO \ {q},

E, Z Tyxe(re)eU, e S(u) for 0§m<n;X€(Tfl)€S(w)}]

n=0

< PLX(C7) € S(w)] max E,

> Lixe(rz)¢s(a) for O<m<n;XE(T;§)ES(w)}] < 0(19.52)
n=0
where (¢ = inf{t > 0: X°(t) € S(w)}.

For 1 <k < N — 1 such that there exists w € A where (w,vg) € EMM0)

P.[X%(n°) € S(v)] = ZIPJ;[XE(Tfn) € U S(u) for 0 <m < n; X(75 1) € S(vi)]
n=0 u€A

SN0 Y Paxe(rg) € | S(u) for 0 <m < n; X°(75) = y] - Py[X(rf) € S(vg)]

n=0weAyeS(w) uceA
= Z E, Z Lyxe(re)eUyea S(u) for 0<m<niX=(rs)eS(w)} | - O ()
wEA: n=0

(w,vg)eEALO)
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IN

Y e)- ek, (5.53)
wEA:
(w,vk)EE(M’O)

where the second equality holds from strong Markov property of X¢, the third equality uses
Lemma S.11, and we used (S.52) for the last inequality. Using Lemma S.11 and (S.52),

Eo[n] = Eo | Y Lixe(re)eUye S for 0<men) - (Tag1 — Tfi)]
n=0
= ZZ Z P, [X* (7, US ) for 0 <m < n; X°(75) = y] - By [rf — 73]
n= OwEAyES(w) ucA
> E. Z X (r5) €U, e S(u) for 0<m<niXe(r5)es(w)) | - O(7™)
weA
< Y 6() 6™ < @), (S.54)
weEA

where we have used (S.49) and (S.34) to conclude that po(w) < py—_1(w) < py_1(vy) for
all w € A. Therefore, using first step analysis, we have

Eolrg] = Eunfl+ D D Pu[X°(n) =y] Eylrj]
1<k<N—1yeS(vy)

= Bl > PuX°(r) € S(u)] - 6=

1<k<N-1
< @(S—PN—l(UN)) + Z @(gcka) . @(6—p(vk))
wEA,
1<k<N-—1:
(w,vy )€ EA0)
< @(gprfl(UN)) +0O(c” maX{PNfl(w):weA}) — @(5*171\771(1}1\7))7 (S.55)

where we used (S.47) for the second equality, (S.53) and (S.54) for the first inequality, and
(S.49) and Lemma S.10 for the second inequality.
By (S.51) and (S.55), we conclude that I, [7g] = ©(eP¥-1("N)) = @(e7P(vW)), O

S.6 Application of the algorithm to the 2D, 3D and 4D models

The algorithm is described in Section 4.2.1, and it finds the order of the pole of the mean
first passage time to () ## B C X from each state in B¢. In this section, we will apply the
algorithm to the 2D, 3D and 4D models and find the order of the poles of the mean first
passage times of interest to the fully repressed state and the fully active state (Figure S.1 —
S.5). For each figure, the “Input” panel shows the order of each of the non-zero off-diagonal
entries in () and the set B which contains a single state, which is either the fully repressed
state or the fully active state. The orders of these non-zero entries in @)(¢) are represented
by colored arrows in the graph (red for order 0 and blue for order 1). Step 1 transforms
the orders in the infinitesimal generator Q(¢) into orders for the transition matrix P(e) and
the exponential parameters ¢(¢) to give an equivalent construction for the continuous time
Markov chain. The orders of the non-zero entries in P(g) are given by K and represented by
colored arrows in the graph, and the number in the circle at a state x € B is the order of the
pole p(z) of ( 3 (the mean sojourn time at the state x). In Step 2, the set B contains only
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one state and is just relabeled as the node a. All transitions from a to B¢ are then removed.
While the Input, Step 1 and Step 2 are universal across all the figures in this section, we
explain the Step 3, Step 4 and Output panels separately for each application below since
they are more distinct.

2D model (from the fully active state to the fully repressed state): see Figure
S.1. The explanation of the panels for Input, Step 1 and Step 2 is given above with B =
{(Dyot,0)T}. Step 3 for the 2D model involves only one iteration, where the collection of all
nodes except the node a and the origin 0 (called an r-connected set C') is condensed to a
single node ¢, and the order of the pole at ¢ is p(c) = max,ec p(u) + min{Ky, : v € C,v ¢
C and (u,v) € E} =140 =1, where E denotes the edge set of the graph in Step 3 before
the first iteration. Moreover, K, = min{Kyo : u € C and (u,0) € E} —min{Ky, : u €
C,v¢ Cand (u,v) e E}=1-0=1, Koy = min{y, : v € C and (u,a) € E} —min{y, :
ue C,v¢Cand (u,v) € E} =0—-0=0, and Koo = min{Kq, : v € C and (0,v) € E} = 0.
Step 4 involves two iterations. In the first iteration, we fix the node with the largest value
of p, which is ¢ in our case. At any node other than a that is connected to ¢ (i.e., the origin
0), the value of p is updated to p(0) = max{p(0), p(c) — Ko} = max{0,1—0} = 1, and then
any edges leading to or from c are removed. In the second iteration, of the remaining nodes,
we fix the node with the largest value of p, which is the origin. When all of the nodes other
than a have been fixed, the order of the pole of the mean first passage time from each state
in B¢ to B is given by the fixed value of the node to which the state belongs.

2D model (from the fully repressed state to the fully active state) Because of the
symmetry in the input graph in Figure S.1, the orders of the poles of the mean first passage
times to the fully repressed state can be obtained in the same way as above.

3D model (from the fully active state to the fully repressed state): see Fig-
ure S.2. The explanation of the panels for Input, Step 1 and Step 2 is given above with
B = {(Dtot,0,0)T}. A state represents (T'LD§{2,TLDA,T7/D§{)T. Step 3 involves only one iter-
ation, where the collection of all nodes except for (0,0,0)7, (0,0, Dsot)”, (1,0, Dot — 1)7,
(2,0, Dot — 2)7,. .., (Dior — 2,0,2)7, and (Dgot — 1,0,1)T (called an r-connected set C) is
condensed to a single node ¢. The order of the pole of the sojourn time at C is p(c) =
maxyec p(u) + min{ly, : v € C,v ¢ Cand (u,v) € E} = 140 = 1, where E de-
notes the edge set of the graph in Step 3 before the first iteration. Moreover, K. 01 =
min{/C,, (90,07 : v € C and (u, (0,0, 0)) € E} —min{Ky, : v € C,v ¢ C and (u,v) € E}
1-0= 1, IC(070,0)T7C = min{/C(070,0)T7v v € C and ((O,O,O)T,U) c E} = 0, ’Cc,(O,O,Dmt)T =
min{,, (0,0,0,,)7 : ¢ € C and (u, (0,0, Diot)?) € B} —min{Kyy : u € C,v ¢ C and (u,v) €
E}=0-0=0,K(,0,D00)7,c = min{K o p,)r: v € C and ((0,0, Diot)T,v) € E}Y =1, ...,
and K, (p,,—1,01)7 = min{y 1,007 : © € C and (u, (Dyor — 1,0, D7) € By —min{Ky, :
u€ Cov ¢ Cand (u,0) € B} =0-0=0, Kp,,—1,01)7,c = min{Kp, 10170 : v €
C and ((Dyoy — 1,0,1)T,v) € E} = 1. Step 4 involves (Do + 2) iterations. In the first
iteration, we fix the node with the largest value of p, which is ¢ in our case. At any node
u other than a that is connected to ¢, the value of p is updated according to the formula
p(u) = max{p(u),p(c) — Kuc}, and then any edges leading to or from ¢ are removed. In
the second iteration, the node (0,0,0)” has the largest value of p among the remaining
nodes, and thus is fixed. There is no other nodes connected to (0,0,0)7 at this point, so
we move to the next iteration. In the third iteration, the node (0,0, Dit)? is fixed. The
node (1,0, Dyor — 1)7 is connected to it, and thus the p((1,0, Dyt — 1)7) is updated to be
max{p((1,0, Dot — 1)T),p((0,0, Dior)?) — K (1,0,Dt0:—1)7,(0,0,D00)7 } = 0. Then, any edges
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leading to or from (0,0, Diot)? are removed. The remaining iterations will be similar to the
third one. When all of the nodes other than a have been fixed, the order of the pole of the
mean first passage time from each state in B¢ to B is given by the fixed value of the node
to which the state belongs.

3D model (from the fully repressed state to the fully active state): see Figure
S.3. The explanation of the panels for Input, Step 1 and Step 2 is given above with B =
{(0,Dyot,0)T}. Step 3 involves two iterations. In the first iteration, the collection of nodes
consisting of (Dgot —1,0,1)” and (Dyet, 0,0)” (called an r-connected set C) is condensed into
a single node ¢;. The order of the pole of the sojourn time in C} is p(c1) = maxyec, p(u) +
min{/Cy, : u € C1,v ¢ Cy and (u,v) € E} =1+ 1= 2, where E denotes the edge set of the
graph in Step 3 before the first iteration. Moreover, Ko, (p,,—2.0.2)7 = min{k, p,,—2,02)7 :
u € C1 and (u, (Diot —2,0,2)7) € B} —min{Ky, : u € C1,v ¢ C; and (u,v) € E} =1—-1=
0, KDyor—2,02)T,e; = Min{Kp,, 2027, : v € C1 and ((Dgor — 2,0, 2)T v) € E} =0,
Key (Dw—1,00)7 = min{K,, i, —1007 : & € C1 and (u, (Dior —1,0,0)") € E} — min{Ky, :
u € Cpv ¢ Crand (u,v) € B} =1-1=0and K, 1,007, = min{p,,-1007 :
v € Cp and ((Dgor — 1,0,0)7,v) € E} = 0. In the second iteration of Step 3, the collection
of all nodes except for (0,0,0)T and a (called an r-connected set C3) is condensed to a
single node c¢y. The order of the pole of the sojourn time in Cs is p(c2) = max,ec, p(u) +
min{Ky, : u € Ca,v ¢ Cy and (u,v) € E} =2+ 0 = 2, where E denotes the edge set of the
graph in Step 3 before the second iteration. Moreover, K, 00y = min{k, goor : u €
Cy and (u, (0,0,0)7) € E} —min{Ky, : u € Co,v ¢ Cy and (u,v) EE} =1-0=1,Kep 0 =
min{,, : u € Cy and (u,a) € E} —min{Cy, : u € Cy,v ¢ Co and (u,v) € E} =0—-0=0,
and K 0.0)7 ¢, = min{K g yr, : v € Ca and ((0,0, 0)7,v) € E} = 0. Step 4 involves two
iterations. In the first iteration, we fix the node with the largest value of p, which is ¢y in our
case. At any node other than a that is connected to cz (i.e., the origin (0,0,0)7), the value
of p is updated to p((0,0,0)T) = max{p((0,0,0)1), p(ca) — K0,00)7 ¢, = max{0,2—-0} =2,
and then any edges leading to or from co are removed. In the second iteration, among the
remaining nodes, we fix the node with the largest value of p, which is the origin. When all
of the nodes other than a have been fixed, the order of the pole of the mean first passage
time from each state in B¢ to B is given by the fixed value of the node to which the state
belongs.

4D model (from the fully active state to the fully repressed state): see Figure
S.4. We illustrate how to use the algorithm for the 4D model when Dy = 2; for larger
Ditot, the methodology will be the same. A state represents (nD%,nDA,nD?,an)T. The

explanation of the panels for Input, Step 1 and Step 2 is given above with B = {(2,0,0,0)7}.
Step 3 involves only one iteration, where the collection of all nodes except for (0, 0,0, O)T,
(0,0,2,0)7, (0,0,1,1)T, (0,0,0,2)", (1,0,1,0)" and (1,0,0,1)” (called an r-connected set
C) is condensed to a single node c¢. The order of the pole of the sojourn time in C' is
p(c) = maxyec p(u) +min{Cyy : v € C,v ¢ C and (u,v) € E} =140 = 1, where E denotes
the edge set of the graph in Step 3 before the first iteration. Moreover, the value of I for
edges between ¢ and an original node w that is not in C' are defined according to the formula
Kew = min{yy : v € C and (v,w) € E} — min{y, : v € C,v ¢ C and (u,v) € E},
Kw,e = min{ly, : v € C and (w,v) € E}. Step 4 involves seven iterations. In the first
iteration, we fix the node with the largest value of p, which is ¢ in our case. At any node
u other than a that is connected to ¢, the value of p is updated according to the formula
p(u) = max{p(u),p(c) — Ky}, and then any edges leading to or from ¢ are removed. In
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the second iteration of Step 4, the node (0,0,0,0)7 has the largest value of p among the
remaining nodes, and then is fixed. There are no other nodes connected to (0,0,0,0)7 at
this point, so we move to the next iteration. In the third iteration, the node (0,0,2,0)”
is fixed. The node (1,0,1,0)7 is connected to it, and thus p((1,0,1,0)7) is updated to be
max{p((1,0,1,0)7),p((0,0,2,0)7) — K1,01,07,0,0207} = 0. Then, any edges leading to
or from (0,0,2,0)” are removed. The remaining iterations will be similar to the third one.
When all of the nodes other than a have been fixed, the order of the pole of the mean first
passage time from each state in B¢ to B is given by the fixed value of the node to which the
state belongs.

4D model (from the fully repressed state to the fully active state): see Figure
S.5. We again illustrate how to use the algorithm for the 4D model when Dy = 2; for
larger Diot, the methodology will be the same. The explanation of the panels for Input,
Step 1 and Step 2 is given above with B = {(0,2,0,0)T}. Step 3 involves two iterations.
In the first iteration, the collection of the nodes (1,0,1,0)”, (1,0,0,1)” and (2,0,0,0)”
(called an r-connected set C7) is condensed into a single node ¢;. The order of the pole of
the sojourn time in C; is p(c1) = maxyec, p(u) + min{Ky, : uv € Cy,v ¢ Cy and (u,v) €
E} = 1+ 1 = 2, where E denotes the edge set of the graph in Step 3 before the first
iteration. Moreover, the value of I of edges between ¢; and an original node w that is
not in C; are defined if there is an edge between some node u € C; and w and according
to the formula K¢, ,, = min{Ky, : v € C; and (v,w) € E} — min{y, : v € Cy,v ¢
C1 and (u,v) € E}, Ky, = min{lCy, : v € Cy and (w,v) € E}. In the second iteration
of Step 3, the collection of all nodes except for (0,0,0,0)7 and a (called an r-connected
set C9) is condensed to a single node co. The order of the pole of the sojourn time in
Cy is p(e2) = maxyec, p(u) + min{lCyy : u € Co,v ¢ Cy and (u,v) € E} =2+0 = 2,
where E denotes the edge set of the graph in Step 3 before the second iteration. Moreover,
Kes, 00007 = min{k, ¢ 0007 : v € C and (u, (0,0,0,0)7) € E} —min{Ky, : u € Cy,v ¢
Cyand (u,v) € E} =1—-0=1, K¢y o = min{yq : v € Cy and (u,a) € E} — min{lCy, :
u € Cy,v ¢ Crand (u,v) € B} =00 =0, and Kg,0,0)7,c, = min{K 007, : v €
Cy and ((0,0,0,0)7,v) € E} = 0. Step 4 involves two iterations. In the first iteration,
we fix the node with the largest value of p, which is ¢s in our case. At any node other
than @ that is connected to cz (i.e., the origin (0,0,0,0)7), the value of p is updated to
p((0,0,0,0)T) = max{p((0,0,0,0)"), p(ca) — K0,000)T,c,} = max{0,2 — 0} = 2, and then
any edges leading to or from co are removed. In the second iteration, of the remaining nodes,
we fix the node with the largest value of p, which is the origin. When all of the nodes other
than a have been fixed, the order of the pole of the mean first passage time from each state
in B¢ to B is given by the fixed value of the node to which the state belongs.
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Input for the 2D model

npa

Step 1

— Py(e) =0(e™) = 0(1)

— Kyy =0
- Qxy(‘g) = @(skxy) =0(1)
©@ wn@=eE"™) =01 ©® pr@=0
@ (&) =0(eP®) = a(e) @® rw=1
<_lT l B node a
Q=0 Q=20 —, | -
Step 3 — X, =0 |Step 4 — %, =0 |Output

(before 1% iteration)

© px=0
® rx=1

-connected set C

®

(1%t iteration)

@*G)*O

max(0,1-0)=1

(2" iteration)

®

O

@ Edripgo] =0E™,
for each x # (Dyot, 0)

B = {(Dtor, 0)}

Figure S.1: Key steps of the algorithm for the 2D model.
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Input for the 3D model

— Qy(e) = 0(e") =0(1)

Stepl — » () =0(=") =0(1)

© ax(e) =0(P®) =0(1)
@ qx(e) = 0(eP™) = 0(e)

Step 3 —— Ky =0
(before 1% iteration)

© px)=0

@® =1

r-connected
set C

(after 1% iteration)

node ¢

D2,

©

Step 4

(1%t iteration)

max(0,1-0)=1

pICN

max(0,1-1)=0

O

\®\/v

max(0,1-1)=0
max(0,1-1)=0

— Ky =0

© px)=0
@® r=1

@ O
O ° o

((Dgor+2)th iteration)

(2" iteration)

@ Edrfogoml =0CE™)
Ex[t{{Dor00] = @D

B = {(Dtot' 0,0)}

Figure S.2: Key steps of the algorithm for the 3D model (from the fully active
state to the fully repressed state).
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Input for the 3D model

— Q) = 0(e") =0(1)

n
DYt

Stepl — p (o) = 0(") = 0(1)

© ax(e) =0(ePM) = 0(1)
@ qx(e) = 0(eP™) = 0(e)

Step 2 — Ky =0
© px)=0
@® r=1

Step 3

(before 1%t iteration)

r-connected
set Cq

(after 1%t iteration / before 2" iteration)

(1% iteration)

O

max(0,2-0)=2

(2" iteration)

O

© (2

Output

@ Ex[r{iopipuon] =0

Figure S.3: Key steps of the algorithm for the 3D model (from the fully repressed
state to the fully active state).
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Input for the 4D model

— Q&) =0(") =0
Quy(e) = 0(eF) = 0(e)

TpA
N

npr, =0

npp

npa  npp, =2

Step 1

— Py (e) = 0(e") = 0(1)

Py (€) = 0(e™) = 0(¢)
© ax(e) =0(eP™) = 0(1)
@ () = 0(P®) = 0(e)

@ o
npr B
Step 3 — Ky =0
X 1
. .
(before 1%t iteration) ® rw=0
ot @ »w=1

r-connected

(after 1%t iteration)

node ¢

—

Step 4

(1%t iteration)

x(u,lhm

E}
) ax(D,lz:\
maX(U.lz;ZU\‘ ®\G\

max(0,1-1)=0 O

(2" jteration)

(3" iteration)

@

©&®©\

maxm O

. — Ky =0

. Ky 1

(7t iteration) © r=0

® r=1

@)
©
©
©
® ©X‘
O

Output @ Eutfpre000m] = 0™

npa @ Eultfpieuo0om] = 0D

npr, =0

B = {(Dtor, 0,0,0)} ol

Figure S.4: Key steps of the algorithm for the 4D model (from the fully active
state to the fully repressed state).



Input for the 4D model Step 1 e (0 = 0(e%) = (1)
s —— Q&) = 0(ek) = 0(1) npa Py (&) = 0( 0(e)

B N 0.,(8) = 0(k) = 0(e) B 4 © 4x(e) = 0(eP™) = 0(1

) o) @ 4 = 0("D) = 8(e)

npr, =0 npr, =0

npr, = ’ npy, =1

npp

npr

Step 3

(after 1% iteration / before 2™ iteration) ® r@=0

® r=1
@ pr)=2

(before 1%t iteration)

set Cp

node ¢

node ¢,

Step 4
(1% iteration)

@)

L%
@*@ ®

max(0,2-0)=2

(2" iteration)

O ® r@=0

@ Ex[f{s(u,nm,u,o))] =0(c7%)

B ={(0, Dor, 0,00}

Output

Figure S.5: Key steps of the algorithm for the 4D model (from the fully repressed

state to the fully active state).
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S.7 Leading coefficient for the MFPT
S.7.1 Proof of Theorem 4.3

Proof. Fix A = max{q,(¢) : * € X,0 < € < gp}. The A here should not be confused
with other rates A\ with subscripts and/or superscripts used elsewhere of this paper. In the
following, we use the breve symbol to denote notation associated with discrete time Markov
chains defined below.

Let Y = {Y¢(n) : n € Z+} be a discrete time Markov chain with transition matrix
P(e) =T+ 1Q(e) for each 0 < e < £¢°. Note that Y* is a singularly perturbed discrete
time Markov chain under the definition of Avrachenkov et al. [2]. Let II(¢) be the ergodic
projection of Y and H(e) be the deviation matrix of Y¢ (see definitions in SI - Section
S.7.2). The ergodic projection of Y° is 11(0) = WM, where I is the |A| x |.A| identity matrix
and

o I o

Then,

"l o1 Al S I 1 _ 1
oW I 1191 _ = _ 1 _ =
M()\Q )W_)\(IO)<R1T1><—T0_1Ro>_)\(A1+Sl( To)™' Ro) = 3Qu.

Assumptions 4.1, 4.2 and Lemma S.1 imply that the null space of this matrix is one dimen-
sional.
Using the computational algorithm in Section 6.3.1 of [2], the generator® for an aggregated

discrete time Markov chain is M (%Q(l))ﬁ/ = %Q A, whose null space is one dimensional.
Then, by the computational algorithm on page 176-177 of [2| the deviation matrix H (¢) has
a Laurent series expansion with order of the pole equal to one:

9]

H(e) = 20D 4 7O 4 eg® 4
(3

Since the aggregated Markov chain has a single recurrent class by Assumption 4.2, the
ergodic projection of the aggregated Markov chain is T«, where « is a row vector denoting the
unique stationary distribution of the aggregated discrete time Markov chain. The deviation
matrix of this aggregated Markov chain is D = (—%QA + 1a)~! — 1a. By Theorem 6.7

in [2],
y N I y D 0
—1

For each 0 < € < ¢, let Bxyy(s) be the mean first passage time from x to y in Y*. Then,
the mean first passage time from z to y in X° is

hay(e) = lfulggy(e) - }\Hy,y(iy—(s?x,y(e)

A

5In general, when 0 < e < €o, the discrete time Markov chain Y is different from the embedded discrete
time Markov chain described in Section 3.1. In particular, the discrete time Markov chain used here can
have self loops, whereas the embedded discrete time Markov chain has no self loops.

5The transition matrix for a discrete time Markov chain with generator G is P =1+G.
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1(1Dyy +0(1) = (1Dsy +O(1))
A ﬂggky)gl;‘y +O(€ky+1)
D

-D 1 1

_ Y,y z,Y

o 7_[_(k:y) Ek‘y-i-l +0 <€k‘y> ’
Y

where we used (S.56) to show that D = AD. The above equations use the properties of the
deviation matrix given in SI - Section S.7.2.
When X 4 is irreducible, then 7(®) = « has all strictlyApositive entries. Again, by SI -

Section S.7.2, the mean first passage time from x to y in X 4 is finite and positive, and it is
1Dyy=Dzy _ Dyy—Day
A Oy WZ(IO)

. In this case, the order of the pole of hy 4 () is one and the leading

coefficient is the mean first passage time from z to y in X 4. O

S.7.2 Properties of the deviation matrix for a discrete time Markov chain

In this section, we will start with a few results stated in Section 6.1 of Avrachenkov et al. [2]
about discrete time Markov chains with finite state space. These include the definitions
and properties of the ergodic projection, the fundamental matrix and the deviation matrix.
Then, we show one more fact about the deviation matrix. Lastly, Theorem 4.4.7 of Kemeny
and Snell [14] gave a formula for mean first passage times for irreducible discrete time
Markov chains in terms of the fundamental matrix and the stationary distribution, which
is also briefly mentioned in [2]. We will write this in terms of the deviation matrix and the
stationary distribution with a simple modification.

Suppose Y = {Y(n) : n € Z, } is a discrete time Markov chain with a finite state space ).
Suppose the state space ) is partitioned into m ergodic classes (possibly including absorbing
states) and a set of transient states, and accordingly, the transition matrix Pis

A 010
pP= .

0 A |0

R R | T

It follows that f[([ — 15) =0 and III = II. The ergodic projection I1 is the eigenprojection
of the transition matrix P corresponding to its maximal eigenvalue 1. That is, if 7; is the

unique stationary distribution for the discrete time Markov chain with transition matrix A;
for 1 <i < m, then II = WM with

1 0
. 1 0|0
W = : and M = : ;
0 1 ; S
(I-T)R1 (I—T) Rnl rm



where W and M form bases for the right and left eigenspaces, respectively, which implies
that PW = W and MP = M. One can see that v(I — P 4 II) = 0 implies that v = 0 and
so (I — P+ ﬁ) is invertible. The fundamental matrix Z and the deviation matrix H of ¥’
are well-defined:

H=Z7-T=(I-P+1)'-1L
We also have that HII = (Z — II)II = 0 since PIl = PWM = WM =11, 1 = Z(I — P +
INIT = Z(II — 11 + II) = Z1I, and II? = IL.
Now, we show a property of the deviation matrix that is not in [2] and is useful in Section

4.2.2. Suppose @ is an infinitesimal generator for a continuous time Markov chain on Y
and |Qyy| < X forally € Y. Then, P =1+ %Q defines a transition matrix for a discrete

time Markov chain. The associated ergodic projection and deviation matrix 1T and H for P
satisfy 11Q = A\(IIP —II) = 0 and

. 1 AL 1 AN
i (1 (1 L) et) " on- (o) o

and so

A
1. y 1. 1. y . 1o o y
= —yHQ+ T =-THQ+ L HIT - TQ + 1T = <)\H+H> (—Q +1I)
Thus,
1. o o
T = ((-Q+1I)~" 1), (S.56)

where we have used the fact that —Q + I1 is invertible because II is the eigenprojection of
Q corresponding to the eigenvalue 0.

Lastly, assume that Y is irreducible. Then, Y has a unique stationary distribution 7,
which is a row vector, and the ergodic projection of Y is 17. By Theorem 4.4.7 in [14], the

mean first passage time from x € Y toy € Y is Z“’%yz” Since Z = H + 17, the mean first
passage time from x € Y toy € )V is
(Hyy + (]ITVF)y,y) — (H:my + (ﬂ%)m,y) _ (Hyy + 7Vry) — (Hay +7) _ Hyy — Hepy

o o v

Ty Ty Ty

S.8 1D Model: additional mathematical details

Verification of Assumption 4.1. In order to show that Assumption 4.1 holds, consider
the states a = 0 and r = Dyoy and the set T = {1,...,Dtot — 1} defined in Section 2.1.
Since Dioy > 2, T # 0. From (2.2), we can see that Qqq+1(0) = Qq,a-1(0) = Qrr41(0) =
Qrr—1(0) = 0. As a consequence, both a and r are absorbing states under Q(0). To see
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that the states in 7 are transient under (0), consider a state x € 7. Since Q. .+1(0) =

A
M (Diot — 2)2 > 0 for all 2 € {1,...,Dyor — 1}, we have Quu41(0) ... Qpyy 1.0 (0) > 0.
By Lemma S.6 and the fact that r is an absorbing state, we have that x is a transient state
for XP°.
Verification of Assumptions 4.4 and 4.2. By Lemma 4.3, it suffices to show Assumption
4.4 holds. From (2.2), we can see that Qa,a+1 > 0. From the analysis made to prove
Assumption 4.1, we know that there is a positive probability for X to transition from z €
X\ {a,r} to r. It follows that any state = € X'\ {r} leads to  under X. Now, we would like
to show that there is a positive probability for transition from r to  # r € X for the process
X. This is because Qm,l = b@Dfot > (0 and Qw,l =Q:.-1(0) = p@(Dtot —2)z >0 for
all z € {1,...,Diot — 1}. Thus, r leads to any state in X \ {r} under X. Combining the
above, we see that X is irreducible and Assumption 4.4 holds.
Stationary distribution. Let us consider a one-dimensional finite state continuous time
Markov chain in which the state space X = {0,1,..., K} and the off-diagonal entries of the
infinitesimal generator () are all zero except for the following positive rates:

Q.Z‘,:I?-FIZAJ; ifIL'E{O,...,K—l},
Q;L’,:v—lz'}’x lfH?E{l,,K}

Thus, the continuous time Markov chain is a birth-and-death process, it satisfies detailed
balance (see [7]) and so the stationary distribution m = (74 )zeq0,1,.... ) satisfies

(S.57)

Ao
Ty = — lwm,l, forx € {1,...,K}.
Yx
Applying this equality recursively, we can express m,, € {1,..., K}, as a function of my,
obtaining
= et
Ty =T —. S.58
=1
Using the fact thatzjlio 7 = 1, we obtain
! (S.59)
Ty = . . .
K i
]‘+Zj:1 ( .7?:1 ’yil)
Substituting (S.59) in (S.58), we obtain
T Ai-1
T T forx € {1,...,K}. (S.60)

- K DY
L+ 050 < -1 Tl)

Now, consider the one-dimensional continuous time Markov chain introduced in Section
2.1 with state space X = {0,1,..., Dot} and infinitesimal generator as defined in (2.2),
which has nonzero off-diagonal entries given, for € > 0, by

k4 k4
)\i = Qz,:erl(g) = <‘5‘$ + E;Dt0t> (Dtot — LL‘) lf T € {0, e 7Dtot — 1},
A " (S.61)
’)/g = Qm,x—l(g) =l (;(Dtot — .ZL’) + b€‘/_EDt0t> T if v € {1, ceey Dtot}-
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By substituting the expressions for the rates in (S.61) into (S.59)-(S.60), and suitably rear-
ranging the terms, we obtain that

buPtot .
1+I;JMDt0t ifz=0
ﬂ—x(o) :;1_2%77—:[(5) = 0 X lfl'e {17--~7Dt0t_1}
TrbuDror if x = Dot

Mean first passage time. Consider the one-dimensional, finite state, continuous time
Markov chain introduced in (S.57). We will determine an analytical expression for the
MFPT from x = K to x = 0 and from z = 0 to x = K for this chain. We first focus on
the former. For this, we exploit first step analysis (see Equation 3.1 of [16]), proceeding in
a similar manner to that for (3.2), to obtain

ho,o =0,
heo = s + acisherio + s hero fee {1, K -1}, (S.62)
hio = 5= + hie-10,

where for z,y € X, hyy = Ey[ry], 7y = inf{t > 0 : X(¢) = y}, X is the continuous

time Markov chain with infinitesimal generator given by (S.57). Now, defining Ahy ;1 =
hzo — hg—1,0 for x € {1,..., K'}, we can rewrite (S.62) in the following way:

ho,o =0,

Ahg g1 = o + 35 Ahgyr, iz e{l,... K -1}, (S.63)

_ 1
Ahgg-1= 7.

From (S.63), we have an explicit formula for Ahg g1 and any Ah, ;1 can be expressed

as a function of Ahy1 4. Furthermore, if we sum the Ah, .1 for x =1,..., K, we obtain
K
hico =hio—hoo =Y _ (Dhga 1) =Ahyg+ Ahgy + ... + Ahg_1 -2+ Ahg 1.
=1
(S.64)

Thus, to evaluate the MFPT from x = K to x = 0, we can calculate Ahy ;1 for z =

K,K —1,...,1 and then sum all of the terms. Defining r; = %;;;‘;, for j =1,...,K, we
obtain \ \ \
hK,O = — (1 + K-l + K-17K—2 + ...+ TK1>
YK YK-1  YK-17K-2
1 Ak — AK—9A\K— 1
+ <1+ K2y K2K3+...+rK_2)+...+
VK -1 YK-2 = VK-2YK-3 7 (S.65)
. K1 K1l i1y 1
K—1 i1
= 1+> — |+ 1+Y — || +—.
VYK ( ; Ti) ; Yi J; Tj 71

With a similar procedure, we can obtain the MFPT from z = 0 to x = K. More precisely,

defining 7, = IEK=1VK=2TK=j (0 have
87 AK—1AK 2. AK—j’

1 7T M2
how = — (141
KT N < * A1 * A1 A2

+ ...+ ’FK—1>
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7273

1 Y2 _
— 1+ =+ —+ .. _ S.66
+>\1< +)\2+)\2)\3+ + K 2>+ +>\K—1 ( )
. K-1 Ko i1 1
K—-1 i—1
= 1+> = |+ 1+> — ||+
Ao ; T ; AK—i ]; T AK—1

A more detailed derivation of the ho g and hg g is given in [3].

Let us consider the one-dimensional continuous time Markov chain introduced in Section
2.1, with state space X = {0,1,...,Diot} and infinitesimal transition rates that can be
written as in (S.61). Since all of the transition rates are O(1), except for A\j and ~f,
which are O(e), then both hp,, o(¢) and hop,.,(¢) are O(1/e). This means that in the limit
as € = 0, hp,..0(¢e) and hop,,, (), which correspond to the time to memory loss of the
repressed and active states, respectively, tend to infinity. Substituting parameters in (S.65)
and (S.66) yields (2.7) and (2.8), respectively.

S.9 2D Model: additional mathematical details

Verification of Assumption 4.1. In order to show that Assumption 4.1 holds, consider
the states a = (0, Diot)” and r = (Diot, 0)7 and the set 7 = {i1,...,4,,} defined in Section
4.1.2. From (2.10), we can see that Qu,a+v;(0) = Qryi0,(0) = 0 for every 1 < j < 4. Asa
consequence, both a and r are absorbing states under Q(0). To see that the states in T are
transient under @Q(0), consider a state x = (x1,22)7 € T. First, suppose 21 # 0. By having

A
the one-step transition along vy = (0, —1) occurring x5 times where Q; .1, (0) = k7E22x1 >
0 for all z = (z1,20)7 and 1 < 23 < w9, and having one-step transition along vz = (1,0)”

R
occurring Dyoy — 21 times where @ 2445(0) = (Dot — 21) (kg/o + k% + k%m) > 0 for all

z = (21, O)T and z1 < z1 < Diot — 1, we have a positive probability of transition from z to
r under Q(0). By Lemma S.6 and the fact that r is an absorbing state, we have that x is
a transient state for X°. On the other hand, suppose z; = 0. Since z = (0,22) € T, we
have 0 < 29 < Doy — 1. We can first have a one-step transition along vz = (1,0)”, where
Qza+v3(0) = (Diot — x2) (k%o + kﬁ,) > 0, to reach the state (1,22)” and then take the
steps for the x1 # 0 case to reach r. In this way, there is a positive probability of transition
from x to the absorbing state r under @(0), and thus z is transient by Lemma S.6.

Verification of Assumptions 4.3 and 4.2. By Lemma 4.3, it suffices to show Assumption
4.3 holds. From (2.10), we can see that Qa7a+v2 > 0. From the analysis made to prove
Assumption 4.1, we know that there is a positive probability to transition from all z € X'\
{a,r} to r. Now, we would like to show that there is a positive probability to transition from
rtox = (z1,22)" € &\ {(0,0)T} for the process X. We first can have a one-step transition

A
along vy = (—1,0)7 where QSBJFM = ,ukaﬂDfot > 0, then have a one-step transition along
v = (0,1)T where Qﬁ?ﬁmﬁwvl = kit,, + ki}; > 0, then have one-step transitions along
A
vy = (—1,0)T occurring Dot — 21 — 1 times where Qi?;rm = ,ukszl > 0 for all z = (z1,1)7
and 21+ 1 < 21 < Doy — 1. If 29 # 0, we finally have one-step transitions along vq = (0, 1)T

A
occurring xo — 1 times where QS?;HI = (Dtot — (1 + 22)) (klévo + k:f/“v + %22) > 0 for
all z = (71,22)7 and 1 < 29 < 29 — 1; if 13 = 0 and 27 # 0, we will make a one-step
(0)

A
=20 > 0 with z = (x1,1)T and
2,24V v L1 1,

transition along va = (0, —1)7 to (z1,0)” where Q
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x1 > 1. Therefore, we have that there is a positive probability of transition from r to each
€ X\ {(0,0)7}. Since ngxaow =0 for j € {1,2,3,4} such tNhat —vj € X, we conclude
that C = X \ {(0,0)7} is a closed communicating class under () and since it contains A,
Assumption 4.3 holds. Note that Assumption 4.4 does not hold.

Stationary distribution. Here, we derive the expression for ﬂg(cl), x €T ={i1,...,im},
for the case Dot = 2. In this case T'(¢) = Ty + €17, with

—q3 ko + k0 0
ki k2 0 A
T, = e v v ,
k2 k2
—2-M 0 21 0
B ok N
7= | 2Veb 2 4ub) 0 230 |
0 0 0 0
kA
0 0 LA L1
in which g3 = (kwo+k§‘V+ +kWO+k:W) = 2(kit+ kiy + koo + k) and g6 = (ki3 +
k{f‘v + kLo + kI + 7) Then, by (4.5), 31 = ﬂél), x € T, is given by (V) = a8y (=Ty) ",

where a = (ngé),w((g)o)) was derived in Section 4.1.2 (Eq. (4.14)). After some calculations,

(1)

7y’ can be written for Dy = 2 as

kIA 2 _ — — kR — kA — kR kIA
o A6 () R (R GRR + 50 + Ry + 580 (@ + w0 + 580 + 1))
T = dids ’
A — — _ _
o b2 ( y) iyl o (R + S0) F + Ry + k) + gl + 500 (R + R+ 1)
e R dydy

0 —

Z3 ’

o 4be? (%A) 2 ((1%5}, + Ry ((1 + ) (e, + 50y 4 ukR) + k(R + ))

Tia dids ’
in which kg, = kg‘vo+k/‘ kR _kR okl dy = eS8 (R (6 + 50 + bR (léfv‘lﬁ’if)) and
dy = ((kA )((1+,u)(kR )+ukA)+kR (kﬁ,—i—%R)) and in which i; = (0,1)7 iy =

(1,17, ig = (0 0)7, and i4 = (0, 2)

S.10 3D Model: additional mathematical details

Verification of Assumption 4.1. In order to show that Assumption 4.1 holds, consider
the states a = (0, Diot,0)7 and 7 = (Diot,0,0)7 and the set T = {iy,..., %} defined in
Section 5.1.1. From (5.2), we can see that Qu,a4v,(0) = Qrr10,(0) = 0 for every 1 < j <6.
As a consequence, both a and r are absorbing states under Q(O). To see that the states
in 7 are transient under Q(0), consider a state x = (x1,22,23)7 € T. First, suppose
r1 + 23 # 0. By having the one-step transitions along vy = (0, —1,0)7 occurring x5 times
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A
where Q) »4v,(0) = kVE($3+2x1)22 > 0 forall z = (21, 20,23)7 and 1 < 23 < x9, then having
one-step transitions along vz = (0 0,1)” occurring Dyot — 21 — 3 times where Q2 2405 (0) =

(Diot — (x1+23)) (kwo + k:W kV > > 0 forall z = (21,0, 23)7 and 23 < 23 < Dyot—21—1

and finally having one-step transitions along vs = (1,0, —1)” occurring Dyo; — 21 times where
Qz,z+y5 (0) = (Dtot —Zl) (k;%/VO + k‘ly z1 + %W) > 0 for all z = (Zl, 0, Dtot —Zl)T and
x1 < 21 < Dyot — 1, we have a positive probability of transition from z to r under Q(0). By
Lemma S.6 and the fact that r is an absorbing state, we have that x is a transient state
for X°. On the other hand, suppose z; + 23 = 0. Since z = (0,22,0)7 € T, we have
0 < 9 < Doy — 1. We can first have a one-step transition along v = (0,0,1)7, where
Qz,24v3(0) = (Dot — x2) (kll/vo + k%v) > 0, to reach the state (0,z2,1)” and then take the
steps in the 1 + x3 # 0 case. In this way, there is a positive probability of transition from
x to the absorbing state r, and thus z is transient by Lemma S.6.

Verification of Assumption 4.2. To show that Assumption 4.2 holds, consider the con-
tinuous time Markov chain X with infinitesimal generator Q as described in (4.7) and shown
in Fig. 6(d). We will first see that {i,,,r} forms a closed class under Q. For this, we see

A
that Q4 (¢) vanishes for every 1 < j < 5 and € > 0, while Q, T+U6( ) = 5ubkﬂDfot.

Therefore, the only transition from r under Q is given by QT rvg = HOPE B D2, > 0, where
7+ vg = iy From (5.2), we can see that Q;,, i,,+0,(0) = 0 for every j € {1,2,3,4,6} and
sz,zm+v5( ) = k¥ + Eu M (Dyoy — 1) + kv (Dot — 1) > 0. Since iy, + v5 = r we see that
sz,r > 0. Therefore {zm, r} forms a closed class under Q. The fact that X 4, shown in Fig.
6(e) consists of erasing the times from X in which the process is in T, together with Lemma
4.2, yields that r is an absorbing state under Q4. From (5.2), we can see that Qa“ > 0.
From the analysis made to prove Assumptlon 4.1 we obtain that i leads to r under Q which
is part of a closed class. By interpreting X A4 again as a time-change of X, by Lemma 4.2
we obtain that a is transient under @) 4. As a consequence, () 4 has a single recurrent class
consisting of the state r, and so Assumption 4.2 holds, and furthermore, a = [, o] with
aq = 0 and a, = 1. In addition, the previous arguments show that neither Assumption 4.3

nor 4.4 holds for this model. "

Stationary distribution. Here, we derive an expression for mp ', € T = {i1,...,im}.
Matrices Ay, S1, and Ry can be written as
™ 0
0 0 0 00
- _81 . 81 - - o . .
A1_< 0 —32>’Sl_<0 e e 0 32>’R0_ o
0 0
0 9

A A
with s1 = kVMDfot, 59 = pbk—‘lnyot, T = (k:WO —|—k‘A ky A (Diot — 1)), and 72 = (kIQ/V0+ (k—‘]}f +
kM)(DtO —1)). From (4.5), BN = [771(11), ...,ﬁ(m)] = aSl(— 0)~1, and so, given that the last

(2
row of Tp is made of all zeros except for the last element, that is (7p); and given that

(ToYimine = ko + (5L + B (Dyoy, — 1), O = [0, ...,0, 7], with

kA
) _ b Doy
im k :
Kiyo + (4 + 54) (Dot — 1)
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Now, a) = [m(ll), 717(~1)] is the unique vector such that
QA =-p 1)[31 + T (— )71R0], a1 = —ﬁ(l)]l. (S.67)

For an illustration, suppose Dio; = 2. Then Ag = 0, Sgp = 0 and matrices A; € R?*? and
S1 € R?*® are given by

SUL I PE I 0
A1:< o >751:< i S )
0 =4 ub 0 ... ... 0 4 ub

Furthermore, Ry = 0 and Ry € R®*? can be written as

I‘c{,‘VJr@ 0
0 0
Ry = : :
0 0
0 K B

Finally, matrices Ty and 77 can be written as

_ P _
—kfy — " — Ky 0 0 o k‘ly\ 0 0 0
0 Mty 0 2% uhE 0 0 0
2k{ 0 —2(kily + ki) 0 ) 0 2k, 0 o
T = 0 Ky 0 —(kfy+ Ry + 50 0 0 0 R+
WE Kfivo 0 0 *(TE(1+#)+1¢\2¢ o) ' B 0 0
0 0 0 Ko ks — (k3o + Ky + kiy) Ky 0
0 0 0 0 0 0 —2(k3y + B1) 2(kZyo + St
0 0 0 0 0 0 0 —2(kZy + Rar 4 Ry
kA KA
2k 0 28 0 0 0 0 0
0 o Ky P
—2" M (1+bp) 0 Pl 23 0 0 0
0 0 0 0 0 0 0 0
oy Ky
0 0 0 —2bp 0 2bp~p- 0 0
L= L ki ' ki
20/ B8 0 0 0 2R ) 25 0 0
0 0 24/ B 0 0 72;/;3’}/# 0 0
g 9
0 0 0 0 0 apsse st 0
7Ly L) 15k kg
0 0 0 24 B 0 0 2ubE =2 B + pbEL)

in which l;:{f‘V = k{}vo + k:{,“v, l%{,?, = kﬁ,o + k{,?,. Now, by applying Theorem S.1, we first obtain
that 7(0) = 7% = [a,0] = [aq, @, 0...,0] where « is the unique probability vector such
that a@Q 4 = 0. In this case,

Ky + pKo < -1 1 >
— , S.68
Qa K3+ pKa+ W/ Ks + yp'Kg \ 0 0 (5.68)

with
| iy Kar kg | 2 TA 2
Ky = 8ky —* % O (kg + 7)(("51/[/ + kwo)(v + kivo) + kwkivo),
kg R kg
Ky = dkyy Vv (R + 7)(kw + ki) + kv kiy),
K& ozl | 74 Far KRy 1 2
K = 57 @kw + kiy +kwo+7+ 7))(74314/)
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_ B B k/ ]{;/
+ 2k (ky (ki + Kiyo(Kivo + 57)) + 37 (Kivo)”)

’

+2‘]}4kwo(v(k o+ Eiy) + ki + 2kiy + ki + Kivo))

k;A k;M 7.1 7.A 7.1 1.2 k;A kM A k]A\/[ T.A k;\/f

kA kM kA 7.1 2 7.1 k;\/[
Ka= (ki + % 20) (ky + 7)(kw + Kfio) + (kyy + kwo)kw )

ij k‘A

+ %kw(kw(kw + ko + 1) + ki (ki + 7M)) (S.69)
K —2@(1%1 + k2 + ki) (kA Jr@)(lé1 +@)
5 = Vv w wo w w vV w vV ’

ki ki Ky

Ko =, (kw+kwo+kw)(kw+7)(k +hw +57))

and then oy = 0 and o, = 1. Let us now derive an expression for (1), Starting from the

transient states 7 = {iy,...,ig}, we obtain that g(1) = [7TZ-(11), ...,TI'Z-(sl)

BY) = a8 (~Ty)~', obtaining S = [0, ...,0,7['1(81)], with

| can be determine by

OO Uh s &

zs kIQ/[/O (kM + k:M)

Finally, ot = [71'((11), 71'1(})] is the unique vector such that a(VQ 4 = —BW[Ry +T1(—Ty) ' Ry)

and oMW1 = —pW 1. After some calculations, we obtain
O v Wy () PEPEr A+ pKn (Ko + Kiop)
Ty = , T = —my) —m == , (S.70)
Kg(Kg + Kiop) Kg(Ko + Kiop)
with

kA _ _ ]{,‘A _ _
Ky = 2563 kil (ki + 50 (Ril + Ry + Kiyo).

. kv |k ki [ = Ky -
Ks =k (kiyo + 57+ 57), Ko=37 ((kév + Kivo) (ki + 371) + kﬁ‘vk%v)
A A

k, kg - k
Ko = 2(kyy + ‘]}4)( % (kv + kivo) + Kivo(kfvo + ki + kir),  Kn :4bk11/V7M-

Time to memory loss. As a reminder, we define the time to memory loss of the active
state as hq, () and the time to memory loss of repressed state as hyq(¢). Let us start by
deriving the order and the leading coefficient of hg,(¢) and h,q(e). By (4.16), we know
the order of the stationary distribution at a and r are k, = —min{l — 2,0} = 1 and
k, = —min{1 — 1,0} = 0, respectively. This is consistent with the results in Section 5.1.1.
Moreover, the leading coefficient in the stationary distribution for the fully repressed and

fully active states are 777(10) =1 and m(zl) > 0, respectively. Now, X A has the infinitesimal
generator in the form of
O ( ~(@Qa)ar Qe ) |
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and X 4 has a unique stationary distribution a = [0,1]. By Theorem 4.3,

D,,—D 1 1 Dy, —Dg,1 1 1
h _ Y a,r ol —— -rr —ar - @)
rlE) = =t i + 0 a2 0= G, oW

and

Dyo—D,o 1 1 Dyo—Drg 1 1 1 1 1
hra(€) = ——G5— k+1+0<k>:’1’2+0(>:12+0<)-
nika cka gka e € € (QA)Q’T.W()E €

a

(1)

As an example, when Dyt = 2, Q4 and 7, are shown in (5.3) and (5.4), and we obtain

that

K3+ pKy + W K5 + pp' Ko 1
Ky + uky

har(e) = +0(1),

and

hya(e) =

K + pKy + W' K5 + pp' Ko Ks(Kg + Kiop) 1 40 <1>
g2 ’

K1 + pks P22 Ky €

where K;, i = 1,...,11, are non-negative functions independent of p and p’ as defined in
(S.69).

Now, let us verify that both conditions (i) and (i¢) of Theorem 4.4 hold. To this end, let
us first write the directions of the six possible transitions of the continuous time Markov
chain X¢(t), which are v; = (0,1,0)7, vy = (0,—1,0)7, v3 = (0,0,1)7, vy = (0,0, -1)7T,
vs = (1,0,-1)7T, vg = (—1,0, 1)T, with the associated infinitesimal transition rates that
can be written as Yi(z) = fa(z), Tao(z) = g2(x), Ts3(z) = fri(x), Ya(z) = g5 (2),
Ts5(x) = fri2(x), Ye(z) = gHyo(x). Define the matrix

1 0 O
A=|0 -1 0
1 0 1

and, forz € X, (Kga+2)NX ={w € X : © <4 w}. Let us also introduce infinitesimal
transition rates 'h(ac), i = 1,2,...,6, defined as for T;(z), i = 1,2,...,6, with all the pa-
rameters having the same values except that p’ is replaced by ji/, with p/ > . Given that
Avy = (0,-1,0)7, Avy = (0,1,0)T, Avs = (0,0,1)T, Avy = (0,0,—1)T, Avs = (1,0,0)7,
Avg = (—1,0,0)T, condition (i) of Theorem 4.4 holds.

To verify condition (ii) of Theorem 4.4, consider x € X and y € 1 (Ka+z)NX ={w €
X xp=wy, w2 > wo, w1 +a3 <wy +wsl={weR3: 11 =wy, w2 > wo, w3 < ws}. Given
that (Aje,vs5) = 1 and (Aj., v6) = —1, we need to verify that Ys(z) < T5(y) and Yg(x) >

Te(y). Since 1 = y1, T2 > y2, T3 < y3, then T5(z) = 3 (k%w + k%ﬂﬁl + k%(xl + xsg_l)) <
_ o kA ]CA
Y3 (kt%vo ka + Ry M (y1 + L= 1)) = T5(y) and Yg(z) = 21 <€%Dtotb + x27E>

A o
>y (ETMDtOtb + y27E> = T4(y). Let us now consider x € X and y € 92(K4 +2) N X =

{w e X : z1 < wy,re = wa,x1 + 23 < wy + ws}. Given that (Age,v1) = —1 and
(Age,v2) = 1, we need to verify that YTq(z) > T1(y) and YTo(z) < Ta(y). Since 1 < y1,z2 =
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A
Y2, 1 + o3 < y1 +y3, then Tl( ) = (Diot — (1 + 22 + 23)) (kwo + ki + (/” 952) > (Dyoty —
(y1 +y2 +y3)) (kzg‘vo + R+ y2> = Y1 (y) and To(z) = 2 (67MDtot +AE (2g + 29;1)) <

Y2 <£ P Diot + 5 (y3 + 2y1)) = Tg(y). Finally, consider x € X and y € 93(K4 +2)NX =
{fwe Xz Swiee > wo,xr +a3 = w +wst ={w e X |z < wi,ae > w3 >
wz}. Given that (Ase,v3) = 1 and (Ase,v4) = —1, we need to check that Ys(x) < T3(y)
and Ty(x) > T4(y ) Since 1 < y1,T2 > y2,x3 > Y3, then Y3(z) = (Dtot — (1 + 22 +

)) <kWO + kW v 331) < (Dtot - (yl + y2 + y3)) (kW(] + kW + V yl = ’T3(y) and

A o
Ta(w) = o (5D + 225 ) >yt (28D + 105 ) = Ta().
We can then conclude that all of the conditions of Theorem 4.4 hold.

S.11 4D Model: additional mathematical details

Verification of Assumption 4.1. In order to show that Assumption 4.1 holds, consider
the states a = (0, Dot, 0,0)7 and 7 = (Dyos,0,0,0)7 and the set T = {i1,..., 4, } defined in
Section 5.2.1. From (5.9), we can see that Qa a+v,(0) = Qrrt0,(0) = 0 for every 1 < j < 10.
As a consequence, both a and r are absorbing states under Q(0). To see that the states
in 7 are transient under Q(0), consider a state & = (1,29, 3, 24)7 € T. First, suppose
r1 + 23 + x4 # 0. By having the one-step transitions along v = (0, —1,0,0)” occurring o

)
A
times where @ .4,(0) = kVE(xg + x4+ 221)20 > 0 for all 2 = (21,22, 23,74)7 and 1 < 29 <
72, then having one-step transitions along v3 = (0,0,1,0)” occurring Diot — 21 — 23 — 74

/

times where Q. »44,(0) = (Dot — (21 +23+24)) (k:WO + ki + by (1 + w4)> >0 forall z =

(21,0, z3,24)" and 23 < 23 < Dot — o1 — 24 — 1, then having one-step transitions along vg =

(1,0,0,—1)7 occurring x4 times where Q. 44, (0) = (z1+24—21) | kiyrg + ]?,me“;“l) >

0 for all z = (21,0,Diot — 21 — 4,21 + 24 — 21)7 and 21 < 21 < 21 + x4 — 1, and finally

having one-step transitions along v; = (1,0, —1,O)T occurring Dyoy — 1 — x4 times where
Q22407 (0) = (Dgot — 21) (k%vo + L{}/le + %%) > 0 for all z = (21,0, Dgot — 21,0)7
and z1 + 14 < 21 < Diot — 1, we have a positive probability of transition from z to r» under
@(0). By Lemma S.6 and the fact that r is an absorbing state, we have that z is a transient
state for X°. On the other hand, suppose z; + x3 + 24 = 0. Since x = (0,22,0,0)" € T,
we have 0 < 29 < Diot — 1. We can first have a one-step transition along vs = (0,0,1,0)7,
where Quutv5(0) = (Diot — z2) (ki + ki) > 0, to reach the state (0,22,1,0)” and then
take the steps in the x1 4+ x3 + x4 # 0 case. In this way, there is a positive probability of
transition from z to the absorbing state r, and thus x is transient by Lemma S.6.

Verification of Assumption 4.2. To show that Assumption 4.2 holds, consider the con-
tinuous time Markov chain X with infinitesimal generator @ as described in (4.7) and shown
in Fig. 7(d). We will first see that {iy,—1,9m,7}, with ip—1 = 7+ vi0 and 4, = 7 + vg,
forms a closed class under Q. For this, we see that Qrr+v,(€) vanishes for every j =

{1,2,3,4,5,6,7,9} and € > 0, while Q;.  15(¢) = b~ MD ot ad Qr rqa,(€) —5u6 MD%ot
Therefore, the only transitions from r under Q are to i,,_ with rate Qr i1 = M B iy D2, >

0 and to i,, with rate Q,.;,, = = pb=t Y D2, > 0. From (5.9), we can see that Qipy—1yim—1+v;(0) =
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0forj € {1,2,3,4,5,6,7,8,10}, Qi i 0, (0) = Ofor j € {1,2,3,4,5,6,8,9,10}, Qi,,_, r(0) =

Qi im0 (0) = Ko+ 4 (Dior —1) > 0 and Qi 1(0) = Qi iy (0) = Kfyg + 54 (Do —
1) +Ey 24 (Dot — 1) > 0. Therefore, {i,—1,im,r} forms a closed class under Q. The fact that
X4 con51sts of erasing the times from X in which the process is in T, together with Lemma
4.2, yields that r is an absorbing state under @ 4. From (5.9), we can see that Qa,ll >0
where i1 = (0, Dot — 1,0, O) From the analysis made to prove Assumption 4.1, we obtain
that i1 leads to r under Q, which is part of the closed class {ip_1,%m,r}. By interpreting
X A again as a time-change of X, by Lemma 4.2 we obtain that a is transient under Q 4. As
a consequence, () 4 has a single recurrent class consisting of the state . Thus, Assumption
4.2 holds, and furthermore, o = [ag, ;] with o = 0 and a,, = 1. In addition, the previous
arguments show that neither Assumption 4.3 nor 4.4 holds for this model.

Stationary distribution. Here, we derive an expression for Wg(gl), x €T = {i1, .-, im}
Matrices Ay, S1, and Ry can be written as

T1 0
0 0
—51 0 s1T 0 ... ... 0 O
Al:( 0 —(82—1—83))’51:(0 0 S92 83)7R0: 0 0 ’
0 (]
0 rs
. ]CA
with 51 = Dfot, sg = Y Be MDtot, 53 = pbe L ki D2y, 1 = (kiyo + ki + L (Deor — 1)),

re = (kiyo + V M (Dyor — 1)) and 73 = (k¥ + (kM + kM)(Dtot —1)). Now, we determine
B = [7r(1), iy )] = aS1(—Tp)~!. Given that the only two elements different from zero

11 T im
in the last two rows of Tg are (10)i,,_y.im_1 = (kfyo + %(Dtot —1) and (T0)iy. i = (Ko +
(kM + k:M (Dtot — 1)), we obtain B(l) = [03 ceey 0 77(1) W(;)]v with

Y T m—1 "0

k’A
0 W B by Dyt (0 _ /‘LbTMiD%ot
ko + 4 (Dyot — 1) k2o + (B + BM) (Deor — 1)

tm—1
Now, aM) = [77511),71'&1)] is the unique vector such that a(MQ 4 = —BW[Ry + T1(=Tp) Ry,
a1 = -1,
As an example, suppose Dot = 2, § =, ktl/v = k:%v = k{j‘v =0, k‘l,vo = kl2/[/0 = kf;lvo = kwo
and k§\4 =ky = kﬁ = kas. Then, we have that Ag = 0, Sy = 0 and matrices 4; € R?*?
and S; € R?*13 are equal to

im

—4ku 0 L N | 0
A = v , S1 = v
! < 0 —4’<fVM(ub+u’6)> ! < O | I L7 4’“Mub>
Furthermore, Ry = 0 and Ry € R!3*? can be written as
kwo+k7M 0
0 0
Ro= 5
’ 0 0
0 kewo + EM
0 kWQ+2kM
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Finally, matrices Ty and 77 can be written as

1 2 1 2
n-( 5 )m=(z 1)
- ) - )
with T = 07%¢ and
—3kwo — B kwo 0 0 0 kwo
K K K
2 ava 7(1+M)77kw(] 0 ha 0 0 0
2kwo 0 —6kwo 2kwo 0 0 2kwo
Ty = 0 kwo 0 —(4kwo+282)  Fyo + Bu 0 0
0 0 0 0 —(kwo + 1) 0 0
/ké ! k/E\ kg
W7 0 0 0 0 —(1+,LL)77]€WQ A
0 0 0 0 0 kwo —(4kwo + &2
0 o0 0 0 0 0 0 0 2u/bku 0 0 2ubar
0 0 kwo O 0 0 e
0 o o o 0 0 0 0 0 0 0 0 2ubhy
. 1 kar bk
0 0 0 0 kwo + % 0 HoV Iy 0 i
P T R A B G A A
kwo + k% kwo 0 kwo 0 0
—oky 0 2k 0 0 0 0 00 000 0 O
2ubB —2(ub+ 1)k 0 28 0 0 0 %A 000 2‘ 0
Tl = 0 0 0 0 o0 0 0 Cpa |0 W 000 40|
0 0 2ubky —ouptu 0 0 ’ 00 000 0 0
2/bkar 0 0 0 0 —2(u'b+1)ke 2k 0 0 000 0O O
0 0 20/ bR 0 0 0 —2u/bku 0 0 000 0 0
—(2kwo + 541) 0 0 0 kwo + B kwo
0 —(kwo + Far) 0 0 0 Ewo + B
A . A
e 0 0 —(p+ o +2)5E L 0 0
0 0 0 kwo —3(kwo + %) kwo + 25 kwo + 8¢ /
0 0 0 0 —(kwo + 51) 0
0 0 0 0 0 —(kwo + 254)
—2(p + ) bEu 0 0 0 0 0
0 —2/bkx 0 0 0 0
T 0 0 —2(ub + p/'b+ 1)5 pL3 0 0
e 0 0 0 =2+ )k 0 0
2ubEa 0 0 2ubkar —2(2p+ 1 )bk 0
2/b5u 2ub*ar 0 20/ bR 0 —2(p 4 2u/)bEu

Now, by applying Theorem S.1, we first obtain that 7(0) = 7(9 = [, 0] = [0, o, 0 . ...
where a can be obtained by solving a@ 4 = 0. In this case, we obtain that

;0]

Qu = K1 (1) Kz + (1)*Ks + pp' Ky + 1/ K + nKe + Kr) ( -1 1 )
W + p)Ks + (W)?Ko + ()2 Ko + pp' Ky + W/ Ko + plaz + Kig \ 0 0 )7
with

K :4]€W0k%,
A\ 2 3 2

e = <kVE> <6 (k7M) +3%wo (k7M> +68k7M(kW0)2 +32(/<?W0)3> ,
A\ 2 3 2

Ko = <kVE> (6 (kvM) +36kwo (k%) +64%<kwo)2 +32(kzwo>3> :
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kd ? kar \ 4 Ear)® 5 (kar\? ky 3 4
Ky, = <V> 24( ) +191kwo ) +509(kwo) (7) +5477(kwo) +200(kwo) >
4 @kwo (12 (kM ! + 96kwo (kM)B + 252(kywo)? (%)2 + 264k7M(kWO)3 + 96(kwo)4> ,
Ko = (?)2 (19 (kM ! 4 149k (P )3 + 416(kwo)? (kM)2 + 463k7M(kWO) + 168( kwo)4>
+ @kwo <18 (kM>4 4 161k | FM )3 + 489(kwo)2 (kM)Q + 588k7M(kwo) + 224(kwo) )

KA\ ? Fear \ 2 ks \ ks \ 2 ks
K13:<E> <1s (7) + 143kwo 7) +399(kwo)? (7) +4527(kwo) +168( kWO)4>

kg k]\/[ 4 k?M 3 2 k]% 2 k 3 4
+ kwo [ 18 + 158kwo +476(kwo) + 5767(kwo) + 224(kwo)
2
k‘A 4 3 2
Kis = <E> (12 (k—‘f + 98kywo (k—) + 276(kwo)> (ki) + 306%@%)3 + 108(kwo)*
ki ko \* a\? kear \° ke
+ 7Ek'WO 24 ( + 214kwo (7) + 654(k'W0)2 (7) + 780 — v (I{ZW()) + 288 kWO
2 kar\ 2 Ear\? 2 (kM kar
+ (kwo)? [ 12 (7) + 116kwo ( ) + 384 (ko) (7) +4967(kwo) +192(kwo)*

Let us now derive an expression for 7(1). Starting with the transient states 7 = {41, ...,
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we obtain that (1) = [77(1) 77(1)] = aS1(=Tp)~ ", and so M) =0, ...,0 ) 7'['(1)], with

i1 0 Mg 0 Mg T
k4 k4
/
W _ BT (m_ Ayt
i12 o, kL i13 L ks
1 M 2 M M
kyo + 3+ ko + (%4 + 54)

Finally, o!) = [m(ll), 71'7(«1)] is the unique vector such that a(MQ 4 = — MRy +T1(=T0p) ' Ro)
and oW1 = — M1, After some calculations, we obtain

() Ks((p 4 1) K6 + Kir)

(1) —
T - )
“ Koo((0)?Ko + ()2 K3 + (1 + p) Ky + i/ K5 + pKe + Kv)
1 1
Al
_ (') Kais((p + ') K16 + K17) ,
== N2 2 / / — p Kyg — pkag,
Koo((1)? Ko + (1)* Kz + (1 + p) Ky + W/ K5 + pKe + Kr)
with

s =B R (o o N g = KB (o (B 2+16(k 1241280
15 vV Vv % wo ) 16 % % wo v wo | »

2

\%4 v

Abkar 4bka k
— Vv — v - M
K18—kW+k&I7 Klg_kw+2k§I)K20_<2V +kw0).

(B0 s by (B z
Ki; == |21—kwo +4 5a + 24(kwo) + kwo 247]11{/[/0 +4 5a + 32(kwo)” |,

Time to memory loss. As a reminder, we define the time to memory loss of the active
state as hg,(¢) and the time to memory loss of the repressed state as hy,,(¢). Let us
start by deriving the order and the leading coefficients of h,.(¢) and h,4(¢). By (4.16),
the order of the stationary distribution at a and r are k, = —min{l — 2,0} = 1 and
k, = —min{l — 1,0} = 0, respectively. This is consistent with the results obtained in

Section 5.2.1. As obtained for the 3D model, here we obtain 777(10) =1 and 7TC(L1) > 0, and thus

1 1 1 1 1
hor €)= Gz + O a0 hal9) = 540 () |

Now, in order to exploit Theorems S.2 and 3.4 from [13] and determine how p’ affects
ha,r(€) and hy o(€), we introduce a small approximation in the transition rates of X<, namely,
B ~ x3 and 334771 ~ x4 in frio1(z) and frige(x), respectively. This approximation can
be justified by introducing the reasonable assumption that each nucleosome characterized
by a repressive modification (DY and DY) has the ability to catalyze the establishment of
the opposite repressive mark on itself. Now, let us verify that both conditions (i) and (i)

of Theorem S.2 in [5] hold. These conditions can be written as follows:
(i) For each 1 < j < n, the vector Av; has entries in {—1,0,1} only.

(ii) Foreach x € X, 1 <i<m and y € 0;(K4 + x) N X we have that for each 1 < k < s,

Yo T < Y. Tix),  where GPT = {j € G* [ (A, v;) = 1},

jEGH™ JEGH™
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and

Z ’fj(y)Z Z T;(xz), where ijL {j € GF| (Aje,v)) = 1}.

-~k P
JEG; JEG;

To verify that these conditions hold, let us first note the ten possible transitions vectors
for the continuous time Markov chain X°(t): v; = —vy = (1,0,—1,0)7, v3 = —vy =
(1,0,0,-1)T, vy = —vg = (0,1,0,0)7, v; = —vg = (0,0,1,0)T, vg = —v19 = (0,0,01)7, with
the associated infinitesimal transition rates T1(x) = fri2i1(x), To(z) = gH1(x), Ts(x) =
Friza(@), Tale) = Goupp(@), Ts(x) = fa(2), To(x) = (@), Tr(x) = fri(z), To(z) =
951 (), To(z) = fra(z), T10(x) = gho(z). Let

-1

e )
o O O

— O = O
=)

Then, (Kg4 +2)NX ={w € X : z <4 w}. Consider infinitesimal transition rates Tl(ac),
i=1,2,...,10, defined as for T;(z), i = 1,2, ..., 10, with all the parameters having the same
values except that p' is replaced by f’, with p’ > ji’. Now, condition (i) of Theorem S.2
in [5] holds since Av; = —Avy = (0,0,1,0)7, Avg = —Avy = (0,1,0,0)T, Avs = —Avg =
(=1,0,0,0)7, Av; = —Avg = (0,1,0,1)” and Avg = —Avig = (0,0,1,1)”. Assumption S.1
in [5] holds with G! = {9,1}, G? = {10,2}, G® = {7,3}, G* = {8,4}, G° = {5}, G® = {6}
and 0(1) =9, 0(2) =1, 0(3) =10, 0(4) =2, 0(5) =7, 0(6) = 3, o(7) = 8, 0(8) = 4,
0(9) =5, 0(10) = 6. To verify that also condition (i) of Theorem S.2 in [5]| holds, let us
start with considering z € X and y € 01(Kga+2)NX ={w € X : z3 = wy,x1 + 23 <
wy + w3, x1 + 24 < Wi + wa,r1 + 23 + 4 < w1 + w3 + wa}. Given that (Aje,vs) = —1
and (Aje,v6) = 1, we must verify that Ys(z) > Ts(y) and Te(z) < Te(y). Since zo =
Y2, T1+x3 < Yy1+ys, T1+24 < y1+ys, T1+23+2s < y1+y3+ya, then Ts(z) = (Diot— (z1+22+

kA kA o
zaa1)) (kibo + Ky + ﬂxz) > (Dioy— (y1-+y2-+1-+1)) (kza“vo kil + ) = Ts(y) and

Yo(z) = 22 ( M Doy + 2 (963 + x4 + 2371)) <y (8 P Dot + e (y3 +ys+ 2y1)) = To(y).
Let us now con81der T € X and y € R(Ka+2)NX ={w e X : 29 > wy,x1 + 23 =
w1t ws, r1+x4 < witwy, r1+a3+x4 < witws+wyg}. Given that (Age, v3) = <A2.,v7> =1
and (Age,v4) = (Age,v8) = —1, we need to verify that YT3(x) + Yr(z) < T3(y) + T7(y)
and Yy(z) + Tg(x) > T4( ) + Tg( ) hold. Since z3 > yo, 21 + 3 = y1 + Y3, 21 +
T4 < 1 +y4,3:1 + 23+ 24 < y1 + y3 + ya, then T3(z )+T7( ) = (Dot — (1 + 22 +

(
z3)) (kwo + &’ (w1 + 1’4)> < (Dtot — (Y1 +y2 +43)) <kW0 + ky (v + y4)> = Yg(y) +Y7(y)

and V() + V(@) = (w5 + a0 (=D + 2258 ) = (s + )it (54DiaB + 92 ) =
T4(y) + Ts(y). Let us now consider z € X and y € &B(Kx+2)NX = {w € X :
To > wo,r1 +x3 < wy +ws,x1 +x4 = wy +wy,x1 + 23+ 24 < wyp + w3 + w4}. Given
that (Ase,v1) = (Ase,v9) = 1 and (Ase,v2) = (A3e,v10) = 1, we need to verify that
Ti(z) + YTo(z) < Ti(y) + To(y) and Yo(z) + YTio(z) > Ta(y) + Tio(y) hold. Since
Ty 2 Y2, + 23 < Y1+ Y3, X1 + Ta = Y1 + Ya, %1 + T3 + zge < Y1 + Y3 + Ya, then
T3 (@) + To(w) = (Dior — (@1+22-+24)) (Ko + 5 (01 + 20) + B4 (21 + 23)) < Duor— (1 +
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v +ua)) (Ko + 551 + ) + 551 +18) ) = Taw) + To(y) and To(@) + Tio(@) = (@1 +

24yt (5D + 225 ) > (1 +yn)i (55 Diend + 3258 ) = Ta(y) + Tro(y). Fimally, let us
consider x € X and y € B(Ka+2)NX ={w € X : g > wa,x1 +2x3 < wy +ws,x1 + x4 <
w1 +wyg, X1 + T3+ x4 = w1 + w3 +ws}. Given that (Age,v7) = (Age,v9) = 1 and (Aye, vg) =
(Age,v10) = —1, we need to verify that Y7(z) < T7(y), Yo(z) < To(y), Ts(z) > Ts(y) and
Tio(x) > T1o(y) hold. Since z3 > yo,x1 + 3 < y1 + Y3, 21 + 24 < Y1 + ys, 21 + 3 + 74 =
Y1+ y3 + ya, that also imply z1 < y1, 23 > y3, 24 > ya, then T7(z) = (Dioy — (x1 + 22 + 23+

/

o) (Ko + 52 on-+-1) ) < (Du = 2+ -+ 90) (o + 8-+ 00)) = T2(0)
To(2) = (Dot — (21 +22+23+74)) (k%v() + B () 4 g) + B (g + :U3)> < (Dot — (y1+y2+
Y3+ya4)) (k‘%vo + BM (1 4 oya) + ETM(Z/I + ys)) = To(y), Ts(z) = 23/ (EL‘?[DMB + xz@) >
ysi' (5kviDtotﬁ + yz@) = Ts(y) and Y1o(z) = 24pe (81%1?!Dtotb + 932%)

> yapt (Ek‘/ﬁDtotb + yg%) = Tlo(y). Then, condition (ii) of Theorem S.2 in [5] also holds.

We can then conclude that all of the conditions of Theorem S.2 in [5] hold and so do the
conclusions of Theorem 3.4 in [5], as per the remarks in SI - Section S.3 in [5].

References

[1] ASMUSSEN, S. (2003). Applied Probability and Queues, 2nd edition. Stochastic Modelling
and Applied Probability, Springer, New York, NY.

[2] AvrRacHENKOV K.E., FILAR, J.A. AND HOWLETT, P.G. (2013). Analytic Perturbation
Theory and Its Applications. STAM, Philadelphia.

[3] BrRunoO, S., WiLLiAMS, R.J. AND DEL VECCHIO, D. (2022). Epigenetic cell memory:
The gene’s inner chromatin modification circuit. PLOS Computational Biology, Public
Library of Science, vol. 18(4): 1 - 27.

[4] MEYER, JR. AND CARL, D. (1975). The role of the group generalized inverse in the
theory of finite Markov chains. SIAM Review, vol. 17, no. 3, pp. 443—464.

[5] Campos, F.A., BruNoO, S., Fu, Y., DEL VEccHIO, D. AND WiLLIAMS, R.J. (2023).
Comparison theorems for stochastic chemical reaction networks. Bull Math Biol, vol.
85(39).

[6] FRIEDBERG, S. H., INSEL, A. J. AND SPENCE, L. E. (2014). Linear Algebra, 4th
edition. Pearson Education.

[7] GARDINER, C.W. (1994). Handbook of stochastic methods for physics, chemistry and
the natural sciences. Springer-Verlag.

[8] GAVER, D. P., JacoBs, P. A. AND LATOUCHE, G. (1984). Finite birth-and death
models in randomly changing environments. Advances in Applied Probability, Vol. 16,
715-731.

[9] GRASSMANN, W.K. (1977). Transient solutions in Markovian queueing systems. Com-
puters & Operations Research, vol. 4, no. 1, pp. 47-53.

50



[10] HOrRN, R.A AND JoHNsON, C.R. (2013). Matriz Analysis, 2nd Edition Cambridge
University Press.

[11] Issacson, D.L. AND MADSEN R.W. (1985). Markov Chains: Theory and Applications
R.E. Krieger Pub. Co.

[12] JAMES, M. (1978). The generalised inverse. The Mathematical Gazette, 62 (420), 109-
114.

[13] KELLy, F.P. (1979). Reversibility and Stochastic Networks. Cambridge University
Press.

[14] KEMENY, J.G. AND SNELL, J.L. (1960). Finite Markov Chains. Van Nostrand Comp.
Int., New York

[15] LicGETT, T.M. (2010). Continuous Time Markov Processes: An Introduction. Gradu-
ate Studies in Mathematics, Volume 113 . American Mathematical Society.

[16] Norris, J.R. (1997). Markov Chains. Cambridge University Press.

[17] PENROSE, R. (1955). A generalized inverse for matrices. Mathematical Proceedings of
the Cambridge Philosophical Society, 51(3), 406-413.

o1



	Introduction
	Background
	Focus of our work
	Related work
	Outline of the paper
	Preliminaries and notation

	Motivating Example: Chromatin Modification Circuit
	1D model
	2D model

	Basic Setup and Definitions
	Singularly perturbed, finite state, continuous time Markov chains
	Stochastic Chemical Reaction Networks (SCRNs)

	Main Results
	Stationary distributions
	The zeroth order term
	Illustrative examples: 1D and 2D model

	Mean first passage times (MFPTs)
	Algorithm to find the order of the poles for MFPTs
	Leading coefficient in MFPT series expansion
	Illustrative examples: 1D and 2D models

	Monotonic dependence on parameters
	Comparison theorems for continuous time Markov chains
	Illustrative example: 2D model


	Further Examples
	3D chromatin modification circuit model
	Stationary distribution
	Time to memory loss

	4D chromatin modification circuit model
	Stationary distribution
	Time to memory loss


	Conclusion
	Supplementary Information
	Some results in probability
	Additional results for stationary distributions
	Higher order terms for linear perturbations
	Proofs of Lemmas 4.1, 4.2, and 4.3 and Theorem S.1
	Additional characterization of zeroth and first order terms for linear perturbations via restricted processes
	Additional characterization of zeroth and first order terms via partial balance
	Lemma S.9

	Algorithm to find the order of the pole of the MFPT
	Graphs for the algorithm to find the order of the MFPT
	Justification for the algorithm to find the order of the MFPT
	More on Big Theta notation
	Stopping times n,N
	Justification for Step 3 of the algorithm
	Justification for Step 4 of the algorithm

	Application of the algorithm to the 2D, 3D and 4D models
	Leading coefficient for the MFPT
	Proof of Theorem 4.3
	Properties of the deviation matrix for a discrete time Markov chain

	1D Model: additional mathematical details
	2D Model: additional mathematical details
	3D Model: additional mathematical details
	4D Model: additional mathematical details


