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Abstract—This paper presents an identification method for
the transient dynamics of microgrids that exploits the intrinsic
geometric structure of the dynamics, i.e., the high-dimensional
states reside on a relatively low-dimensional manifold. In terms
of discrete-time dynamics, the increment in states is decomposed
into the tangent and normal components using the local geometric
information, inferred from the data set of dynamical responses.
The sparse identification of nonlinear dynamical systems (SINDy)
method and generalized moving least square (GMLS) algorithms
are used to estimate the tangent and normal components of incre-
ments, respectively, at every time step to constrain the solution
onto the manifold of dynamics; this reduces the sensitivity of
the SINDy model to candidate function selection and improve
the prediction performance. A ten-bus microgrid system with
five loads is used to test and verify the effectiveness of the
presented method in identifying the system’s nonlinear dynamics.
Numerical tests show that the developed method can give a better
estimation for the dynamic transients caused by load variation,
when compared to the traditional SINDy model. The results
imply that the proposed method is a useful tool to model the
transient dynamics in power systems, especially when the state
space lies on a low-dimensional manifold.

Index Terms—System identification, dynamic transients mod-
eling, microgrids, sparse identification of nonlinear dynamical
systems (SINDy), generalized moving least square (GMLS)

I. INTRODUCTION

In recent years, the integration of renewable energy sources

into power systems has seen significant advancement, largely

driven by the global push for sustainable and clean energy. Mi-

crogrids, as localized grids that can disconnect from the tradi-

tional grid to operate autonomously, play a pivotal role in this

transition [1], [2]. However, compared to traditional large-scale

systems that have ample inertia, plenty of power electronic

devices reduce the inertia of microgrids making them more

sensitive to power disturbances caused by load variations. On

the other hand, understanding the anti-disturbance capability

of microgrids can provide a basis for flexibly scheduling their

operation modes. As the transient dynamics identification of

microgrids is a key step to solve the challenges mentioned

above, it is a meaningful research work to conduct.

When the high-fidelity model is unavailable for the system,

it is important to model and predict the system’s transients

via data. This task is encompassed within the field of system

identification (SI). Traditional SI methods can be categorized

into two types: linear and nonlinear methods. The linear SI

methods include subspace methods [3]–[5], dynamic mode

decomposition (DMD) [6], [7], frequency domain analysis and

least squares method. These models can effectively identify the

locally linearized system with typical functions or structures

that is easy to understand and infer the system properties. Also

they usually have a lower computational cost. However, it does

not accurately identify nonlinear dynamical systems.

Nonlinear SI methods include the Koopman Operator

method and neural network-based methods. The Koopman

Operator technique transforms nonlinear systems into a linear

representation, facilitating analysis, but is limited by compu-

tational demands for real-time applications [8], [9]. Also, it

is difficult to capture the characteristics of highly nonlinear

systems as their eigenvalues are very difficult to obtain.

Neural network-based methods leverage the adaptive learning

capabilities of neural networks to model complex systems,

although they often face challenges with interpretability and

overfitting [10], [11]. Additionally, integrating a binary tree

algorithm with a nonlinear autoregressive model with exoge-

nous inputs has been explored for modeling nonlinear loads

in power systems [12]. However, model building and training

can be relatively complex and require specialized technical

knowledge.

The sparse identification of nonlinear dynamical systems

(SINDy) is a method to discover sparse representable terms

embedded the dynamical equations of a system [13]–[15].

It leverages time-evolution data of system states to derive

simplified mathematical expressions of system dynamics. Un-

like traditional, often inexplicable machine learning methods,
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SINDy focuses on identifying sparse function structures within

dynamics, aiding in uncovering fundamental principles and

mechanisms. SINDy is highly versatile and capable of ad-

dressing both linear and nonlinear problems by appropriately

selecting its candidate function library, making it a popular

tool in recent years for addressing SI issues. However, despite

its advantages, SINDy faces difficulty in identifying a global

model that captures the complete dynamics across the entire

data space, especially with limited data. This limitation stems

from the method’s sensitivity to the choice of candidate

function dictionary.

To address this challenge, we impose the local geometric

information induced by the data in the SINDy modeling

approach. In this case, the negative impact caused by improper

selection of candidate functions will be compensated and

improved. The key idea is to apply the SINDy method for

transient dynamics on a local tangent space induced by the

manifold structure encoded in the data, followed by a cor-

rection in the normal component via the Generalized Moving

Least Square (GMLS) approximation [16] of the exponential

map that takes the approximate vector field to the manifold.

We will demonstrate the effectiveness of this approach in the

identification of microgrid systems.

The content of the paper is listed as follows. The dynamic

models of microgrids used to prepare data are introduced in

Section II, as well as the problem formulation. Section III

gives a detailed introduction to the proposed identification

method with geometric constraints. Numerical tests and analy-

sis are given in Section IV. The conclusion is drawn in Section

V.

II. TRANSIENT DYNAMICS OF MICROGRIDS

In this section, the power system transient model that

will be the testbed of the proposed approach is introduced.

Particularly, the training and verification data sets will be

generated using solutions of this model.

Mathematically, a microgrid system integrated with multiple

renewable energy resources can be modeled by using a set

of nonlinear differential-algebraic equations (DAEs), as given

below.

ẋ = f(x,y) (1a)

0 = g(x,y), (1b)

where x is the state variable, e.g. state variables in the

controller of power-electronic interfaces of renewable energy

resources; y is the algebraic variable, e.g., bus voltage ampli-

tude and angle Vi = Vi∠αi, and current amplitude and angle

Ii = Ii∠βi; the differential equations f summarize the model

of transient dynamics, as explained in the Appendix; algebraic

equations g represent the power flow equations that need to

be met from the network’s perspective.

In practice, building the high-fidelity model that accurately

captures the underlying dynamics of a microgrid system is

difficult due to incomplete understanding of the physics.

Ti

Fig. 1. Illustration of the tangent and normal space-based

method.

The goal of this paper is to identify the vector fields of the

dynamical system by leveraging the geometric information in-

duced by the algebraic constraints. That is, since the trajectory

of the solutions lies on a manifold induced by the algebraic

constraints, the vector fields lie on the tangent bundle of the

manifold, which naturally motivates an identification lever-

aging this geometric structure. By leveraging the geometric

information, the identified model will become less sensitive to

the choice of candidate functions and may perform better with

simple polynomial terms.

III. TANGENT AND NORMAL SPACE-BASED SINDY

METHOD

A. Overview of the Idea

The core concept of the method is illustrated in Fig.1

for n = 3 dimensional state space where the intrinsic

manifold is d = 2. Define the notation Ti and Ni are

the tangent and normal space of point i in the state space

respectively. Here, we illustrate the increment at each time

step of a dynamic trajectory that can be decoupled into two

components: the increment in the tangent direction, denoted

as ΔxTi
= TiT

�
i (xi+1 − xi), and the increment in the

normal direction, denoted as ΔxNi
= NiN

�
i (xi+1−xi). The

increment of the state can be written as,

xi+1 − xi = ΔxTi
+ΔxNi

.

To estimate the rate of change of ΔxTi
, a SINDy model

with polynomial terms is utilized in this work. Once ΔxTi
is

estimated, the increment in the normal direction can then be

determined using the GMLS method.

B. Identification in the Tangent Space Increment

The process of model training and parameter preparation is

outlined below. In our proposed method, acquiring the tangent

and normal spaces, Ti and Ni, for step i is crucial. This can be

achieved by local SVD method [17], [18], which uses the lead-

ing eigenvectors of the U = SV D(dist(xi,l
K
l=1)) matrix to

estimate the tangent and normal space, where dist({xi,l}Kl=1)
is the local distance matrix induced by K-nearest neighbors of

xi. With the current point xi, the initial step involves training
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the SINDy model to estimate the rate of change of ΔXTi
by

solving the following optimization problem:

min
Ξ

N∑
i=1

∥∥∥h(xi; Ξ)− ΔxTi

Δt

∥∥∥
2

+ λ‖Ξ‖2, (2a)

s.t. h(xi; Ξ) = ΞΘ(xi), Ξ ∈ Rn×k, Θ ∈ Rk×1, (2b)

where Θ(xi) is the library vector of the SINDy model,

which includes all polynomials of xi with order up to p.

The parameter k denotes the number of terms in Θ(xi), Ξ
denotes the coefficient matrix to be determined for the model,

N denotes the total number of samples in the training set, and

λ is the sparse norm coefficient.

C. Identification in the Normal Space Increment

The GMLS method is a versatile computational approach

that enhances the standard least squares technique by con-

sidering weighted contributions from a moving neighborhood

of data points to construct local approximations, thereby

achieving higher accuracy in the representation of complex

functions or data sets [16]. Specifically, denoting {xi,�}K�=1 as

the set of K-nearest neighbors of xi, we approximate,

ΔxNi
≈ Niq̂(xi),

where q̂ is obtained by solving the following regression

problem,

q̂ = arg min
q∈P

l,d
xi

K∑
�=1

|N�
i (xi − xi,�)− q(x0,�)|2, (3)

over the following set of intrinsic local polynomials,

P l,d
xi

=
{
q(x) =

∑
|α|≤l

bα

d∏
j=1

(
T�

i (x− xi)
]αj

}
,

where α = (α1, . . . , αd).
After the model preparation, it can be used to estimate the

increment starting at x̂i following:

x̂i+1 = x̂i + ĥ(x̂i)Δt+ N̂iq̂(x̂i),

where the identifications of ĥ in (2) and q̂ in (3) require a

local SVD method to construct tangent and normal vectors,

{T̂i, N̂i} of the new data point x̂i.

IV. NUMERICAL EXAMPLES

A. Test System and Training Data

A typical islanded microgrid system shown in Fig. 2 is used

to test and validate the effectiveness of the presented method

in modeling and predicting the system’s transient dynamics.

The loads in the system are modeled as constant impedance

loads. More details of the test system can refer to [19].

The system has two specific control strategies corresponding

to the grid-forming battery (V-f control) and grid-following

wind turbine (P-Q control). Block diagrams explaining the

details of the double-loop controller are given in [19], with

the control parameters and initial state values given in Table

I.

1
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Fig. 2. Topology of the microgrid system used for test.

Table I Information of Model

KPLL
P1,2 KV reg

I1,2 KV reg
P1,2 KIreg

I1,2 KIreg
P1,2 Vref ωref

10 15 0.8 35 0.05 1 0

Pref0 Qref0 x01 x02 x03 x04 x05

0.04 0 0 0 0.1498 0.8342 -0.1083

x06 x07 x08 x09 x010 x011 x012

0.0245 0 0.0298 0.0408 0.7998 0 0.0067

A series of load adjustment values, ΔP , normally dis-

tributed within a range of −30% to +30% of rated value at a

normal operation state, are applied to the active power P to

simulate various operational scenarios of the system. To create

a power transient, a load variation of 150% of their normal

state is introduced into the system. For model training, 20

sample trajectories that capture these transients across different

operational scenarios are generated using the model. These

samples are recorded with a time window length of 0.6 seconds

and a sampling rate of 1× 10−3. The key information of the

simulation is summarized in Table II.

Table II Information of Simulation

time
length
(t(s))

step size
(δt(s))

SINDy
order p

GMLS
order l

state
space

dim. n

tangent
space
dim. d

0.6 1× 10−3 2 3 12 1

The intrinsic dimension of the sample data can serve as a

reference for the dimension d of the tangent space. However,

fine-tuning may be necessary to optimize the performance.

B. Test Results

Additionally, 20 initial system operation states that are not

part of the training trajectories are randomly chosen to evaluate

the model’s estimation performance. A representative result

(+18% P case) of this estimation is depicted in Fig. 3. For

display purposes, the voltage magnitude and angle at the

inverter buses, along with the active and reactive power, are

calculated from the original state variables due to their specific

physical significance.

To demonstrate the significance of the geometric constraints,

we compare the proposed approach (which we denote as the
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(b) Estimated absolute errors of Geom-SINDy and traditional SINDy
method.

Fig. 3. Estimate results with initial states in the random testing

set.

”Geom-SINDy”) with the traditional SINDy model without

geometric constraints, using a library of the same order-

p. The key difference is that the library functions for the

traditional SINDy is defined on the ambient coordinate, x, in

R
n without geometric constraints as proposed in Section III.

The analysis of the results presented in Fig. 3 reveals that,

although there are slight differences compared to the reference

curve, the proposed model is essentially capable of capturing

the dynamics associated with load variance disturbances, even

with a limited set of training data. The traditional SINDy

model has significantly worse performance compared to the

proposed geom-SINDy method under the same condition as

shown in Fig. 3b. This implies that the proposed method can

improve the performance of the SINDy model with geometric-
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Fig. 4. Average absolute error with error band for all 20 tests

of Geom-SINDy.

based candidate functions. This can help researchers to use less

and simpler candidate function dictionary to realize the same

performance.

The estimated average absolute error for all 20 tests are

presented in Fig. 4, from which we can see that the errors

across all estimated trajectories are limited and the average

absolute error are less than 0.01 p.u., which means the esti-

mated outcomes successfully capture the transients at different

initial states. Essentially, this model offers a preliminary and

rapid estimate of transients within the system.

V. CONCLUSIONS

A geometrically-constrained data-driven system identifica-

tion method is introduced in the paper whose performance is

less sensitive to the choice of candidate function dictionary,

when compared to the conventional SINDy method. This

method is used to model dynamic transients in the microgrid

system caused by variations in load. The SINDy method and

the GMLS algorithm are integrated to model the increments

in the dynamic iteration by taking advantage of the geometric

information inferred from the data manifold. The numerical

results show that the proposed geometric constraints signif-

icantly improve the performance in capturing the transient

dynamics based on limited training information and simple

candidate functions. Further research will be conducted to

improve model performance with an extension that includes

control strategies.
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APPENDIX

The differential equation sets (1a) summarize the model of

transient dynamics. Define Vq,g1(θg1) = −Vi cos∠αi sin θg1+
Vi sin∠αi cos θg1, Iq,g1(θg1) = −Ii cos∠αi sin θg1 +
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Ii sin∠αi cos θg1, and Id,g1(θg1) = Ii cos∠αi cos θg1 +
Ii sin∠αi sin θg1, similarly for generator 2, then the state

equation can be listed as below.

ẋ1 = Vq,g1(x2) (4a)

ẋ2 = x1 +KPLL
P1 Vq,g1(x2) (4b)

ẋ3 = (Vref − |Vg1|)KV reg
I1 (4c)

ẋ4 = (x3 + (Vref − |Vg1|)KV reg
P1 − Id,g1)K

Ireg
I1 (4d)

ẋ5 = (ωref − ẋ2)K
V reg
I1 (4e)

ẋ6 = (x4 + (ωref − ẋ2)K
V reg
P1 − Iq,g1)K

Ireg
I1 (4f)

ẋ7 = Vq,g2(x8) (4g)

ẋ8 = x7 +KPLL
P2 Vq,g2(x8) (4h)

ẋ9 = (Pref − Pg2)K
V reg
I2 (4i)

ẋ10 = (x9 + (Pref2 − Pg2)K
V reg
P2 − Id,g2)K

Ireg
I2 (4j)

ẋ11 = (−Qref +Qg2)K
V reg
I2 (4k)

ẋ12 = (x10 + (−Qref +Qg2)K
V reg
P2 − Iq,g2)K

Ireg
I2 (4l)

Then the inverter terminal voltage Vinv g1,g2 can be ob-

tained as follows,

Ed,g1 = KIreg
P1 (Id ref,g1 − Id,g1) + x4 (5a)

Eq,g1 = KIreg
P1 (Iq ref,g1 − Iq,g1) + x6 (5b)

Ed,g2 = KIreg
P2 (Id ref,g2 − Id,g2) + x10 (5c)

Eq,g2 = KIreg
P2 (Iq ref,g2 − Iq,g2) + x12 (5d)

Eα,β g1 = T−1(Ed,g1, Eq,g1) (5e)

Eα,β g2 = T−1(Ed,g2, Eq,g2) (5f)

Vα,β g1 = 0.5

√
3√
2
Eα,β g1VDC (5g)

Vα,β g2 = 0.5

√
3√
2
Eα,β g2VDC (5h)

Vinv g1 = Vα g1 + jVβ g1 (5i)

Vinv g2 = Vα g2 + jVβ g2 (5j)
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