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Abstract—This paper presents an identification method for
the transient dynamics of microgrids that exploits the intrinsic
geometric structure of the dynamics, i.e., the high-dimensional
states reside on a relatively low-dimensional manifold. In terms
of discrete-time dynamics, the increment in states is decomposed
into the tangent and normal components using the local geometric
information, inferred from the data set of dynamical responses.
The sparse identification of nonlinear dynamical systems (SINDy)
method and generalized moving least square (GMLS) algorithms
are used to estimate the tangent and normal components of incre-
ments, respectively, at every time step to constrain the solution
onto the manifold of dynamics; this reduces the sensitivity of
the SINDy model to candidate function selection and improve
the prediction performance. A ten-bus microgrid system with
five loads is used to test and verify the effectiveness of the
presented method in identifying the system’s nonlinear dynamics.
Numerical tests show that the developed method can give a better
estimation for the dynamic transients caused by load variation,
when compared to the traditional SINDy model. The results
imply that the proposed method is a useful tool to model the
transient dynamics in power systems, especially when the state
space lies on a low-dimensional manifold.

Index Terms—System identification, dynamic transients mod-
eling, microgrids, sparse identification of nonlinear dynamical
systems (SINDy), generalized moving least square (GMLS)

I. INTRODUCTION

In recent years, the integration of renewable energy sources
into power systems has seen significant advancement, largely
driven by the global push for sustainable and clean energy. Mi-
crogrids, as localized grids that can disconnect from the tradi-
tional grid to operate autonomously, play a pivotal role in this
transition [1], [2]. However, compared to traditional large-scale
systems that have ample inertia, plenty of power electronic
devices reduce the inertia of microgrids making them more
sensitive to power disturbances caused by load variations. On
the other hand, understanding the anti-disturbance capability
of microgrids can provide a basis for flexibly scheduling their
operation modes. As the transient dynamics identification of
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microgrids is a key step to solve the challenges mentioned
above, it is a meaningful research work to conduct.

When the high-fidelity model is unavailable for the system,
it is important to model and predict the system’s transients
via data. This task is encompassed within the field of system
identification (SI). Traditional ST methods can be categorized
into two types: linear and nonlinear methods. The linear SI
methods include subspace methods [3]-[5], dynamic mode
decomposition (DMD) [6], [7], frequency domain analysis and
least squares method. These models can effectively identify the
locally linearized system with typical functions or structures
that is easy to understand and infer the system properties. Also
they usually have a lower computational cost. However, it does
not accurately identify nonlinear dynamical systems.

Nonlinear SI methods include the Koopman Operator
method and neural network-based methods. The Koopman
Operator technique transforms nonlinear systems into a linear
representation, facilitating analysis, but is limited by compu-
tational demands for real-time applications [8], [9]. Also, it
is difficult to capture the characteristics of highly nonlinear
systems as their eigenvalues are very difficult to obtain.
Neural network-based methods leverage the adaptive learning
capabilities of neural networks to model complex systems,
although they often face challenges with interpretability and
overfitting [10], [11]. Additionally, integrating a binary tree
algorithm with a nonlinear autoregressive model with exoge-
nous inputs has been explored for modeling nonlinear loads
in power systems [12]. However, model building and training
can be relatively complex and require specialized technical
knowledge.

The sparse identification of nonlinear dynamical systems
(SINDy) is a method to discover sparse representable terms
embedded the dynamical equations of a system [13]-[15].
It leverages time-evolution data of system states to derive
simplified mathematical expressions of system dynamics. Un-
like traditional, often inexplicable machine learning methods,
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SINDy focuses on identifying sparse function structures within
dynamics, aiding in uncovering fundamental principles and
mechanisms. SINDy is highly versatile and capable of ad-
dressing both linear and nonlinear problems by appropriately
selecting its candidate function library, making it a popular
tool in recent years for addressing SI issues. However, despite
its advantages, SINDy faces difficulty in identifying a global
model that captures the complete dynamics across the entire
data space, especially with limited data. This limitation stems
from the method’s sensitivity to the choice of candidate
function dictionary.

To address this challenge, we impose the local geometric
information induced by the data in the SINDy modeling
approach. In this case, the negative impact caused by improper
selection of candidate functions will be compensated and
improved. The key idea is to apply the SINDy method for
transient dynamics on a local tangent space induced by the
manifold structure encoded in the data, followed by a cor-
rection in the normal component via the Generalized Moving
Least Square (GMLS) approximation [16] of the exponential
map that takes the approximate vector field to the manifold.
We will demonstrate the effectiveness of this approach in the
identification of microgrid systems.

The content of the paper is listed as follows. The dynamic
models of microgrids used to prepare data are introduced in
Section II, as well as the problem formulation. Section III
gives a detailed introduction to the proposed identification
method with geometric constraints. Numerical tests and analy-
sis are given in Section I'V. The conclusion is drawn in Section
V.

II. TRANSIENT DYNAMICS OF MICROGRIDS

In this section, the power system transient model that
will be the testbed of the proposed approach is introduced.
Particularly, the training and verification data sets will be
generated using solutions of this model.

Mathematically, a microgrid system integrated with multiple
renewable energy resources can be modeled by using a set
of nonlinear differential-algebraic equations (DAEs), as given
below.

(1a)
(Ib)

x = f(X, y)
0=g(x,y),

where x is the state variable, e.g. state variables in the
controller of power-electronic interfaces of renewable energy
resources; y is the algebraic variable, e.g., bus voltage ampli-
tude and angle V; = V,;Zq;, and current amplitude and angle
I, = I,/ ;; the differential equations f summarize the model
of transient dynamics, as explained in the Appendix; algebraic
equations g represent the power flow equations that need to
be met from the network’s perspective.

In practice, building the high-fidelity model that accurately
captures the underlying dynamics of a microgrid system is
difficult due to incomplete understanding of the physics.

X3
Axqy A AX = X4 __I_Xi
iy ,OXNi Axy; = T,T{ (X1 — X))
; — N.NT
_ox;,, e Rn DX = NN (Xi1 — %)
T; = [t, ty, .., tg] € R
X; € R"- \ N; = [ny,n5, .., 0y g] € RPD
Ax n=3d=2
_
/ \/ X2
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Fig. 1. Tllustration of the tangent and normal space-based
method.

The goal of this paper is to identify the vector fields of the
dynamical system by leveraging the geometric information in-
duced by the algebraic constraints. That is, since the trajectory
of the solutions lies on a manifold induced by the algebraic
constraints, the vector fields lie on the tangent bundle of the
manifold, which naturally motivates an identification lever-
aging this geometric structure. By leveraging the geometric
information, the identified model will become less sensitive to
the choice of candidate functions and may perform better with
simple polynomial terms.

III. TANGENT AND NORMAL SPACE-BASED SINDY
METHOD

A. Overview of the Idea

The core concept of the method is illustrated in Fig.1
for n = 3 dimensional state space where the intrinsic
manifold is d = 2. Define the notation T,; and N; are
the tangent and normal space of point ¢ in the state space
respectively. Here, we illustrate the increment at each time
step of a dynamic trajectory that can be decoupled into two
components: the increment in the tangent direction, denoted
as Axp, = T,T/(xi11 — x;), and the increment in the
normal direction, denoted as Axn, = N; N, (x;41 —x;). The
increment of the state can be written as,

Xi+1 — Xi = Ax7, + AXN;,.

To estimate the rate of change of Axr,, a SINDy model
with polynomial terms is utilized in this work. Once Ax, is
estimated, the increment in the normal direction can then be
determined using the GMLS method.

B. Identification in the Tangent Space Increment

The process of model training and parameter preparation is
outlined below. In our proposed method, acquiring the tangent
and normal spaces, T; and Nj, for step ¢ is crucial. This can be
achieved by local SVD method [17], [18], which uses the lead-
ing eigenvectors of the U = SV D(dist(x;;f*,)) matrix to
estimate the tangent and normal space, where dist({x;;},)
is the local distance matrix induced by K -nearest neighbors of
x;. With the current point x;, the initial step involves training
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the SINDy model to estimate the rate of change of AXr, by
solving the following optimization problem:

N Axr, |2
. z : LE) i = 2 2
L Hh(x“ )= A || TAIEIR (%)
st. h(x;;E) =20(x;), E€ R™* 0 e R, (2b)

where ©(x;) is the library vector of the SINDy model,
which includes all polynomials of x; with order up to p.
The parameter k& denotes the number of terms in O(x;), =
denotes the coefficient matrix to be determined for the model,
N denotes the total number of samples in the training set, and
A is the sparse norm coefficient.

C. Identification in the Normal Space Increment

The GMLS method is a versatile computational approach
that enhances the standard least squares technique by con-
sidering weighted contributions from a moving neighborhood
of data points to construct local approximations, thereby
achieving higher accuracy in the representation of complex
functions or data sets [16]. Specifically, denoting {x; ¢} /=, as
the set of K -nearest neighbors of x;, we approximate,

Axn, =~ NiG(x;),

where ¢ is obtained by solving the following regression
problem,

K
g =arg min > INJ (x; — xi.0) — q(x0,0) [, 3)
a€Px 1
over the following set of intrinsic local polynomials,
d

Pf(;d = {q(x) = Z ba H (T:(x — xi)}aj},

lal<t  j=1

where a = (..., aq).
After the model preparation, it can be used to estimate the
increment starting at x; following:

Rit1 = X + h(%) At 4+ NiG(%,),

where the identifications of h in (2) and ¢ in (3) require a
109a1 §VD method to construct tangent and normal vectors,
{T;,N;} of the new data point X;.

IV. NUMERICAL EXAMPLES

A. Test System and Training Data

A typical islanded microgrid system shown in Fig. 2 is used
to test and validate the effectiveness of the presented method
in modeling and predicting the system’s transient dynamics.
The loads in the system are modeled as constant impedance
loads. More details of the test system can refer to [19].

The system has two specific control strategies corresponding
to the grid-forming battery (V-f control) and grid-following
wind turbine (P-Q control). Block diagrams explaining the
details of the double-loop controller are given in [19], with
the control parameters and initial state values given in Table
L

L,

TT Battery
LT 3 0 2

Wind Load 2@

Generator _ _

9J7 7 4 SRL
Load 9 Load 5

8 Load 7
Load 8
Fig. 2. Topology of the microgrid system used for test.

Table I Information of Model

e T T
KPLE | K105° | King | K | Kpis | Veer | wres
10 15 0.8 35 0.05 1 0
Prero | Qrefo 01 02 03 04 o5
0.04 0 0 0 0.1498 0.8342 | -0.1083
06 xo7 Tos o9 010 Zo11 012
0.0245 0 0.0298 0.0408 0.7998 0 0.0067

A series of load adjustment values, AP, normally dis-
tributed within a range of —30% to +30% of rated value at a
normal operation state, are applied to the active power P to
simulate various operational scenarios of the system. To create
a power transient, a load variation of 150% of their normal
state is introduced into the system. For model training, 20
sample trajectories that capture these transients across different
operational scenarios are generated using the model. These
samples are recorded with a time window length of 0.6 seconds
and a sampling rate of 1 x 1073, The key information of the
simulation is summarized in Table II.

Table II Information of Simulation

time step size SINDy GMLS state tangent

length (0t(s)) order p order ! space space

(t(s)) dim. n dim. d
0.6 1x1073 2 3 12 1

The intrinsic dimension of the sample data can serve as a
reference for the dimension d of the tangent space. However,
fine-tuning may be necessary to optimize the performance.

B. Test Results

Additionally, 20 initial system operation states that are not
part of the training trajectories are randomly chosen to evaluate
the model’s estimation performance. A representative result
(+18% P case) of this estimation is depicted in Fig. 3. For
display purposes, the voltage magnitude and angle at the
inverter buses, along with the active and reactive power, are
calculated from the original state variables due to their specific
physical significance.

To demonstrate the significance of the geometric constraints,
we compare the proposed approach (which we denote as the
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Fig. 3. Estimate results with initial states in the random testing

set.

”Geom-SINDy”) with the traditional SINDy model without
geometric constraints, using a library of the same order-
p. The key difference is that the library functions for the
traditional SINDy is defined on the ambient coordinate, x, in
R™ without geometric constraints as proposed in Section III.
The analysis of the results presented in Fig. 3 reveals that,
although there are slight differences compared to the reference
curve, the proposed model is essentially capable of capturing
the dynamics associated with load variance disturbances, even
with a limited set of training data. The traditional SINDy
model has significantly worse performance compared to the
proposed geom-SINDy method under the same condition as
shown in Fig. 3b. This implies that the proposed method can
improve the performance of the SINDy model with geometric-
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Fig. 4. Average absolute error with error band for all 20 tests
of Geom-SINDy.

based candidate functions. This can help researchers to use less
and simpler candidate function dictionary to realize the same
performance.

The estimated average absolute error for all 20 tests are
presented in Fig. 4, from which we can see that the errors
across all estimated trajectories are limited and the average
absolute error are less than 0.01 p.u., which means the esti-
mated outcomes successfully capture the transients at different
initial states. Essentially, this model offers a preliminary and

rapid estimate of transients within the system.

V. CONCLUSIONS

A geometrically-constrained data-driven system identifica-
tion method is introduced in the paper whose performance is
less sensitive to the choice of candidate function dictionary,
(b) Estimated absolute errors of Geom-SINDy and traditional SINDy when compared to the conventional SINDy method. This
method is used to model dynamic transients in the microgrid
system caused by variations in load. The SINDy method and
the GMLS algorithm are integrated to model the increments
in the dynamic iteration by taking advantage of the geometric
information inferred from the data manifold. The numerical
results show that the proposed geometric constraints signif-
icantly improve the performance in capturing the transient
dynamics based on limited training information and simple
candidate functions. Further research will be conducted to
improve model performance with an extension that includes
control strategies.
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APPENDIX

The differential equation sets (1a) summarize the model of
transient dynamics. Define V, 41(041) = —V; cos Za; sin 641+
‘/i sin ZO&Z' COs Ggl, Iq,gl (091)

—1I;cos Laysinfy +



I;sin ZajcosOg1, and Igg1(0g1) = I;cos Zajcosbg +
I;sin Zoysin 041, similarly for generator 2, then the state
equation can be listed as below.

i1 = Vg g1(22) (4a)
g9 = 21 + KprEV, g1(22) (4b)
i3 = (Vyer — [Var VK[ (4c)
iq = (23 + (Vees — [V DKL = Tug) K110 (4d)
i5 = (Wrep — 22) K19 (4e)
Tg = (x4 + (wref - 33.2)K¥1T€g - [q,gl)KII{eg (4f)
&7 = Vg g2(xs) (4g)
g = x7 + KBV, go(xs) (4h)
g = (Prey — Pp) K}, (4i)
F10 = (w9 + (PrefQ - PgQ)Kggeg - Id,g2)KII2reg (4)
11 = (—Qref + Qg2) K[y (4k)
i19 = (210 + (= Qref + Qu2) K pa? — Ip.g2) K159 (41)

Then the inverter terminal voltage Vi, 41,42 can be ob-
tained as follows,

(1]

(2]

[3

[t}

(4]

(5]

Eagr = K£ " (Laref.g1 — Jd 1)+ Ts (5a)
Eqq1 = KITeg( qgref,gl — 1) + Z6 (5b)
Eago = Kpy (Laref.g2 — Id,gz) +x0  (50)
Eqq92 = KIIDT;Q(LJ ref,g2 — Lg,g2) + 12 (5d)
Eapgg = Tﬁl(Edﬂl’ Eqq1) (5e)
Ea g2 = Tﬁl(Ed7g2’ Eq792) (5f)
V3
Voz,ﬁ gl — 0~5EE0¢,B gl VDC (Sg)
V3
Vaﬁgg = 0.5EE0¢73 gQVDC (5h)
Vinvgl = Vagl +.jvﬁgl (51)
Vinv g2 — Va g2 + ]Vﬁ g2 (SJ)
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