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Abstract—Underwater image restoration algorithms seek to restore the color, contrast, and appearance of a scene that is imaged

underwater. They are a critical tool in applications ranging from marine ecology and aquaculture to underwater construction and

archaeology. While existing pixel-domain diffusion-based image restoration approaches are effective at restoring simple scenes with

limited depth variation, they are computationally intensive and often generate unrealistic artifacts when applied to scenes with complex

geometry and significant depth variation. In this work we overcome these limitations by combining a novel network architecture

(SLURPP) with an accurate synthetic data generation pipeline. SLURPP combines pretrained latent diffusion models—which encode

strong priors on the geometry and depth of scenes—with an explicit scene decomposition—which allows one to model and account for

the effects of light attenuation and backscattering. To train SLURPP we design a physics-based underwater image synthesis pipeline

that applies varied and realistic underwater degradation effects to existing terrestrial image datasets. This approach enables the

generation of diverse training data with dense medium/degradation annotations. We evaluate our method extensively on both synthetic

and real-world benchmarks and demonstrate state-of-the-art performance. Notably, SLURPP is over 200× faster than existing

diffusion-based methods while offering ∼ 3dB improvement in PSNR on synthetic benchmarks. It also offers compelling qualitative

improvements on real-world data. Project website https://tianfwang.github.io/slurpp/.

Index Terms—Computational Imaging, Underwater Restoration, Denoising Diffusion, Foundational Models
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1 INTRODUCTION

UNDERWATER Image Restoration is a critical task due
to the widespread degradation of visual quality in

submerged environments caused by light absorption, scat-
tering, and color distortion. These degradations significantly
hinder visual perception, making it difficult for computer
vision systems to interpret underwater scenes accurately.
Restoring underwater images is essential for a variety of
applications, including marine biology research, underwa-
ter archaeology, environmental monitoring, autonomous
underwater vehicle (AUV) navigation, and underwater
robotics. However, underwater image restoration is inher-
ently difficult due to the complex optical properties of
water [1], which differ with depth, turbidity, and light-
ing conditions. Traditional model-based methods rely on
physical priors [2], but often struggle with generalization
across diverse underwater scenes. Recently, learning-based
approaches have shown promising results by leveraging
data-driven priors, yet they still face challenges such as a
lack of ground truth data, domain shift, and poor inter-
pretability. These limitations highlight the need for more
robust and generalizable methods that can adapt to complex
degradations of underwater scenes.

Modern text-to-image latent diffusion models [4], [5],
trained on massive online datasets [6], have demon-
strated remarkable generative capabilities. Crucially, the
rich knowledge encoded within extends significantly be-
yond image synthesis. Recent works have highlighted
this by successfully repurposing pretrained latent diffusion
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models for challenging computer vision tasks, including
dense prediction problems such as monocular depth esti-
mation and image intrinsic decomposition [7], [8], [9], [10].
Such successes strongly suggest that these models implicitly
capture a sophisticated understanding of scene geometry
and intrinsic properties [11], learned inherently from the
structure present in their massive training corpora [12].

To this end, underwater image restoration presents a
unique challenge, aiming to recover clear visual scene
appearances distorted by wavelength-dependent scatter-
ing and absorption effects inherent to the water medium.
Fundamentally, it requires a joint estimation of both the
clear image and the physical medium parameters governing
underwater visual degradation. Insights from underwater
imaging [1], [13] suggest that these two components—scene
content and water medium—can serve as mutual cues.
We propose that the rich generative priors encoded in
pretrained diffusion models offer a powerful framework
to address both aspects of this problem. Specifically, the
target clear images often depict natural scenes, aligning
well with the distribution of content that such models are
trained on. Moreover, backscattering and attenuation effects
exhibit strong correlations with scene depth. Notably, recent
advances in monocular depth estimation using pretrained
latent diffusion [7], [8], [14], [15] reveal that these mod-
els inherently capture robust depth priors. This suggests
a promising opportunity for modeling depth-dependent
water medium parameters, offering a unified approach to
underwater image restoration that is both data-efficient and
physically grounded.

Building on this insight, we introduce SLURPP: Single-



2

Inpu�
Underwater Image

Outpu�
Clear Scene

Outpu�
Backscattering (Left#
Transmission (Right)

Fig. 1. Real-world underwater restoration using our method. We develop a single-step underwater restoration method that leverages pretrained
latent diffusion priors. Given an underwater input image (top row), our method jointly predicts the clear image (middle row), and the per-pixel
underwater medium parameters, specifically the backscattering (bottom row left) and transmission (bottom row right) parameters. In this figure, we
present real-world results using images from the UIEB [3] underwater dataset. We show that our method can robustly restore underwater images
in a variety of different scenes and water conditions.

step Latent Underwater Restoration with Pretrained Priors.
Our method is a latent-diffusion-based restoration frame-
work that offers a simple yet effective single-step solution
for underwater image restoration. SLURPP is simple in that
it performs direct, physically informed fine-tuning of the
underlying latent diffusion model for the task of single-step
underwater image restoration, without explicit auxiliary
task training, such as dedicated depth prediction. We design
a dual-branch architecture to jointly estimate the clear scene
and the dense depth-dependent water medium. Crucially,
we inject distinct diffusion priors into each branch, tailored
to their respective tasks. Our method enables robust and
data-efficient restoration across a wide range of underwater
conditions (Fig. 1), overcoming challenges posed by the
scarcity of real-world underwater datasets and the difficulty
of obtaining paired ground truth data.

Our main contributions are summarized as follows:

1) We propose a novel underwater image restoration ap-
proach that leverages the foundational visual and ge-
ometric priors embedded in pretrained latent diffusion
models. Our method jointly estimates the clear scene and
water medium properties in a single step. By direct fine-
tuning a dual-branch architecture tailored for disentan-
gling image content from depth-dependent waterbody
effects, our SLURPP method achieves efficient and high-
quality restoration across diverse underwater scenes.

2) We develop a physically grounded and computation-
ally efficient underwater image simulation pipeline, built
upon the standard underwater image formation model
and informed by real-world optical measurements of un-
derwater environments. This pipeline enables the synthe-
sis of high-quality, realistic paired training data by simu-
lating diverse underwater conditions—including varying
water types, depths, and lighting—on top of large-scale,
easily accessible terrestrial image datasets.

3) By fine-tuning on our simulated dataset, our method
effectively adapts the strong generative priors of pre-
trained latent diffusion models to the specific task of
underwater image restoration. In contrast to prior ap-
proaches that rely on pixel-space diffusion, our frame-
work operates in a more compact and expressive latent
space, enabling fast single-step inference that is over

200× faster than previous diffusion methods, while also
supporting the restoration of higher-resolution images
with greater visual fidelity. This efficiency, coupled with
improved restoration quality, highlights the practical and
technical benefits of leveraging latent generative priors
for real-world underwater imaging applications.

2 RELATED WORK

2.1 Underwater Image Restoration and Enhancement

Underwater image restoration and enhancement, although
closely related, address different aspects of image quality
improvement. Enhancement methods improve visual qual-
ity by adjusting contrast, color, and brightness without
modeling physics [16], using techniques such as histogram
equalization, Retinex, and local contrast adjustments [17].
While computationally efficient, these enhancement meth-
ods often produce visually appealing but physically im-
plausible results. In contrast, restoration methods aim to
recover true scene radiance by modeling underwater light
propagation [18], accounting for absorption, scattering, and
wavelength-dependent attenuation [13].

Traditional restoration methods rely on handcrafted pri-
ors and physical models to estimate and mitigate degra-
dations [2], [3], [19], [20]. Deep learning has significantly
advanced underwater image restoration and enhancement
by offering adaptive solutions to learn complex mappings
from data. [3] established the first CNN-based benchmark.
[21] and [22] applied adversarial training for color and
detail enhancement. [23] leverages unlabeled data pseudo-
labeling and contrastive learning. Transformer approaches
such as [24] and [25] introduced histogram and phase-based
self-attention mechanisms. [26] uses wavelength-aware net-
works that enhance restoration using adaptive receptive
fields and attentive skip connections. Most relevant to
our work, [27] integrates RGBD diffusion priors with a
physically-based sampling scheme.

2.2 Diffusion Models for Computer Vision Tasks

Recent large latent diffusion models (LDMs) [4], trained on
massive online datasets of text-image pairs [6], can gener-
ate diverse and photorealistic images with a text prompt,
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inspiring large attention in the computer vision community.
The first extensions on LDMs focus on controllable image
generation using additional conditions such as depth, in-
painting, and segmentation maps [28], [29], [30], [31], [32],
[33]. Since then, several works have repurposed LDMs for
non-generative tasks, such as monocular depth and normal
estimation [7], [8], [15], [34] and image intrinsic decomposi-
tion [10]. LDMs have also been used in the image restoration
tasks such as deblurring [35], super-resolution [36], and
flash removal [9]. On underwater image restoration, we note
that Osmosis [27] is the first work to leverage diffusion
priors. However, they only use a pixel space RGBD diffusion
model trained from ImageNet [37], [38] with limited genera-
tion resolution and much less scale and generative capacity
compared to current pretrained latent diffusion models [4].
Additionally, [27] uses a DDPM [5] sampling scheme that
requires 1000 inference steps, while our method enables
single-step inference.

3 PROPOSED METHOD

3.1 Preliminaries

3.1.1 Underwater Image Formation

The Jaffe-McGlamery (JM) model [39] serves as a fundamen-
tal framework in underwater imaging, providing a math-
ematical representation of the complex processes of light
absorption and scattering in aquatic environments, which
significantly influence the visual appearance of submerged
objects. Subsequently, [1] introduced a revised underwa-
ter image formation model that incorporates variations in
attenuation coefficients between direct transmission and
backscatter to enhance the accuracy of underwater image
correction techniques. A widely adopted formulation of the
underwater image formation process is expressed by the
following equation:

Ic = Jc · e
−βD

c
z +B∞

c · (1− e−βB

c
z), (1)

where c ∈ {R, G, B} represents the color channel; I rep-
resents the image captured underwater by the camera of a
scene at distance z; J denotes the clear scene that would
have been captured in the absence of water along the line of
sight; and B∞ refers to the water color at infinity, commonly
referred to as the background light. The two parameters
βD and βB represent the attenuation and backscatter co-
efficients, respectively.

3.1.2 Latent Diffusion Model and Diffusion Fine-Tuning

Denoising Diffusion Probabilistic Models (DDPMs) [41],
[42] are generative models that learn data distributions by
reversing a Markovian process forward process, in which
data is gradually corrupted by Gaussian noise over several
steps. Early works on diffusion-based image generation
are directly trained on RGB pixel space [38], [41], which
imposes large computational and memory requirements for
training and inference. Latent Diffusion Models (LDMs)
such as Stable Diffusion (SD) [4] shift the diffusion process
in a low dimensional latent space defined by a variational
autoencoder (VAE) [43]. The VAE improves computational
efficiency by contracting the image’s spatial dimension,
while expanding the feature dimension helps encode high-
level features and creates a smoother sampling landscape
for effective generation. The computational and modeling
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Fig. 2. Our method captures the depth-varying change of water
medium properties. In this figure we demonstrate the depth-dependent
nature of the underwater medium effects and show that our method
can correctly capture this in our medium predictions. We can see in
the zoomed-in regions of the input underwater image (right first row),
that the water medium effects increase as we move from the foreground
to the background. This illustrates that the water medium effects are
strongly correlated with scene depth. Our model can recover both the
clear image (right second row) while capturing the depth-correlated
transmission and backscattering effects (right bottom rows). Our model
predicts as the scene depth increases, the backscattering becomes
stronger while the transmission becomes weaker. This prediction aligns
with the observed medium phenomenon in the input underwater image.

advantages of the LDMs lead to their wide adoption in
image generation. However, LDMs are still slow due to their
need for iterative denoising during inference, with work on
few-step sampling [41], [44], [45], [46] trading inference time
with generation quality.

Recent work repurpose LDMs for computer vision
tasks [7], [8], [9], achieving impressive results. However,
these works still model the estimation process as condi-
tional generation based on additional image input. As such,
they still need iterative denoising during inference. Inspired
by recent theoretical and empirical progress in single-step
diffusion [15], [34], [47], we hypothesize that the iterative
denoising formulation is less crucial for underwater image
restoration, where the distribution of the predicted restored
image is narrow and peaks at the ground truth, compared to
text-to-image generation, where there is a wide distribution
of plausible images for a text prompt. As such, we choose
a pipeline that removes stochasticity from the training and
inference process and directly predicts restored properties
in a single step. We show in our experiment that this single-
step formulation does not degrade performance and could
even outperform iterative denoising versions of our method,
due to the additional advantage of the ability to directly
supervise in the image space for single-step training.

3.2 Problem Setting

From the underwater image formation model Eq. (1), two
key insights emerge: first, underwater light attenuation and
scattering exhibit a strong dependence on both wavelength
and propagation distance; second, the occluding backscat-
ter layer, which degrades image clarity, is inherently in-
dependent of the scene content. Based on these insights,
we formulate our restoration task as the joint estimation
of both the restored clear image J , and medium-related
parameters, including transmission T and backscattering
B, of the input underwater image I . The output of our
prediction should fit the underwater image formation model
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Fig. 3. Pipeline overview of our single-step dual-branch underwater restoration method. Our pipeline takes in an underwater image and aims
to predict a clear image without water effects, along with the transmission and backscattering properties of the water medium in a single step. The
input image is first encoded into latent space using the frozen VAE from pretrained Stable Diffusion (SD) [4]. This latent image is then fed into two
UNet [40] branches: the scene branch to predict the clear scene, and the medium branch to predict the wavelength and depth-dependent medium
effects. The two branches use different pretrained diffusion priors [4], [7] that fit their respective prediction modalities while exchanging mutual cues
through a cross-attention mechanism. The UNets then predict the scene and medium latent images in a single step. To output the predictions, the
attenuation and backscattering latent images are decoded using the standard SD decoder, while the clear image is decoded with a cross-latent
decoder fine-tuned by incorporating high-frequency details passed from the input image through skip connection layers of the encoder.

specified in Eq. (1), where we now write as our dense scene-
medium decomposition formulation:

Ic = Jc · Tc +Bc (2)

Compared to the imaging model of Eq. (1), we see

that for each channel c, we have the relation Tc = e−βD

c
z

and Bc = B∞

c · (1 − e−βB

c
z), showing that both medium

predictions are highly correlated with the scene depth.
We represent medium properties using two three-channel
images, T and B, rather than separately estimating depth
z and water parameters βD, βB , and B∞ as in previous
methods, for three main reasons.

First, to incorporate diffusion priors, our pipeline needs
to preserve the architecture of pretrained latent diffusion
models, which are naturally suited for high-dimensional
dense signals such as images. Second, previous methods
often assume medium homogeneity (i.e., a spatially uniform
β) and even reduce the number of unknown parameters by
setting βD = βB . Our approach avoids these simplifying as-
sumptions, enabling more robust estimations. Finally, dense
medium parameters are depth-related but represented as
bounded image intensities, unlike raw depth values with
infinite range. This makes them more robust for recon-
structing scenes with large depth variations, as medium
images are more robust to depth estimation errors in the
distant background. We illustrate the effectiveness of our
formulation in Fig. 2.

3.3 Our Core Idea

The core idea of our method can be broken down into
three key points: foundational model prior, single-step task
specific fine-tuning, and physically-accurate training data.
Effective underwater restoration requires capturing two as-
pects: a clear image that resembles natural scenes and the
water medium properties correlated with scene depth. With
this in mind, we leverage current pretrained latent diffu-
sion models to provide foundational natural image priors
for clear image prediction and depth priors for medium
prediction. We design a dual-branch architecture (Fig. 3)

for joint scene and medium prediction, consisting of a
scene branch for content restoration and a medium branch
for estimating pixel-level medium parameters. The scene
branch is initialized from a pretrained text-to-image diffu-
sion model [4] containing strong priors on natural images,
while the medium branch is initialized from a pretrained
affine-invariant monocular depth diffusion model [7]. At
the training level, our framework and fine-tuning strategy
are designed to incorporate the prior knowledge of the un-
derwater image formation model while enabling fast, high-
quality single-step inference. We introduce inter-branch
cross-attention to exploit the complementary relationship
between the clear image and water medium, allowing them
to serve as mutual cues during prediction. Additionally,
our training objective includes a reconstruction loss that
explicitly encourages the outputs to adhere to the dense
scene–medium decomposition described in Eq. (2). At the
data level, we train our model using physically accurate
data, enabling it to learn the underwater image formation
process for robust predictions. Addressing the lack of large-
scale real paired underwater datasets, we synthesize train-
ing data by applying a physically accurate formation model
to diverse terrestrial images as clean sources. Our physi-
cally accurate underwater image synthesis pipeline uses a
carefully optimized medium-related parameter generation
strategy to synthesize high-quality training data.

3.4 Physics-based Diverse Underwater Data Synthesis

Real-world underwater datasets are scarce and typically
lack ground truth, hindering the development of general-
izable image restoration models. 3D simulators, while an
alternative, often suffer from high modeling costs, limited
scene diversity, and a large domain gap compared to reality.
Consequently, synthesizing physically plausible underwater
images by applying imaging models to large-scale terrestrial
data has become a standard approach in the field.

The underwater image formation model Eq. (1) shows
that the degradation caused by the scattering medium is
mainly governed by the depth z, the attenuation coefficient
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Fig. 4. Physically accurate underwater image synthesis pipeline for
diverse data generation. Our model is trained on realistic underwater
images synthesized from large-scale terrestrial data using precise mod-
eling of depth, attenuation, and background light for physically accurate
results. We generate accurate metric depth maps using a state-of-the-
art metric depth estimator [48]. We sample attenuation values based
on real-world water measurements [1], [49] (bottom-right, reproduced
from [1]). We source diverse, realistic background light estimated from
real-world underwater images [50] (top-right). These generation strate-
gies enhance the realism and quality of our synthetic training data.

β, and the background light B∞. Accurately and diversely
generating these parameters is crucial for realistic synthetic
data. Unlike prior methods that approximate the formation
model, we optimize each parameter to achieve fine-grained
rendering of light scattering and attenuation (Fig. 4).

Obtaining the depth z is challenging as the underwater
image formation model Eq. (1) requires the absolute depth
in meters. While RGBD datasets [51] provide metric depth,
they are often sparse, lack scene diversity, and are costly
to acquire. As a result, prior works [27], [50] often rely on
monocular depth predictions with manual normalization.
However, normalization without camera intrinsics intro-
duces scale errors, limiting the reliability of depth and
downstream water medium generation. To address this, we
leverage Depth Pro [48], a recent advancement in metric
monocular depth that directly predicts focal length from
the input image, enabling accurate metric depth estimation.
This allows us to generate dense, reliable, and diverse per-
pixel metric depth maps from large-scale image collections.

While the values of the attenuation coefficient β and
background light B∞ are theoretically arbitrary, they are
intrinsically constrained on water type. To ensure consis-
tency with real-world aquatic environments, our genera-
tion strategy is informed by global-scale underwater op-
tical measurements and extensive real-world data priors.
Specifically, we first randomly sample from the 10 Jerlov’s
water types [49], and then using the sample’s measured
coefficients at 600nm, 525nm, and 475nm to guide the RGB
intensities of β respectively. To avoid unrealistic over or
under degradation of the image, we bound the attenuation
β, and resample when excessive information loss occurs in
the generated image.

Zero-Conv

Scene UNet�
Latent Output

Cross-Attn

Scene

Medium

Stage 2: Cross-Latent Decoding

Stage 1: One-step Dual-Branch Latent Restoration  

Fig. 5. Two-stage training procedure of our method. In our first stage,
we train our dual-branch UNets with inter-branch cross-attention to
directly predict the latent images of the clear scene J , as well as medium
transmission T and backscattering B. The latent outputs are decoded
and supervised with their respective ground truths using image losses.
We also use the reconstruction loss to guide the predicted outputs to
respect the underwater image formation model. For stage 2 cross-latent
decoding, we fine-tune the decoder and additional zero convolution skip
connections to transfer high-frequency details from the input underwater
image to the restored image.

We source diverse, realistic background light B∞ values
by extracting them from real underwater images using
ULAP [50], where we swap its monocular depth component
with DepthPro [48] for more precise background light esti-
mation. The extracted background lights are then clustered
(K=10 K-means in the Lab color space ’ab’ channels) into
perceptually distinct subsets representing different water
types. During synthesis, we first randomly select a light
cluster and then randomly sample within it to obtain the
background light B∞.

Using our generation strategies for depth z, attenuation
β, and background light B∞, and applying the underwater
image formation model Eq. (1), we can efficiently generate
high-quality paired data required to train our model.

3.5 Pipeline Architecture

Our proposed pipeline (Fig. 3) addresses underwater im-
age restoration by jointly predicting the clear scene image,
free from water effects, along with the transmission and
backscattering properties characterizing the water medium.
Initially, the input underwater image undergoes encoding
into the latent space via the frozen pretrained Stable Diffu-
sion (SD) VAE encoder [4], [43]. This latent representation
serves as input to a dual-branch architecture comprising
two UNets [40] connected with inter-branch cross-attention:
a scene branch tasked with predicting the clear scene latent,
and a medium branch predicting latent images of depth-
dependent attenuation and backscattering. Both branches
predict their respective latent images in a single step. Fi-
nally, the decoding process differs based on the output
type: the attenuation and backscattering latent variables are
decoded using the standard SD decoder. In contrast, the
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Fig. 6. Qualitative comparisons of restoration results in USOD10K [52] UIEB [3]. We show extensive comparisons against previous methods [3],
[22], [23], [24], [25], [26], [27], [53], [54]. As illustrated in the comparison, previous methods often struggle to achieve physically consistent
restoration across the entire scene, and may even exhibit unnatural changes in water body color. In contrast, our method (second column to
the left) achieves physically-consistent restoration across scenes of varying depth, with notably improved performance in severely degraded distant
areas. Furthermore, our method accurately estimates per-pixel medium parameters and enables precise and faithful scene restoration across
diverse water types and color profiles.

clear scene latent is decoded using the cross-latent decoder,
which is fine-tuned to incorporate high-frequency details
passed from the original input image via skip connections
originating from the VAE encoder.

We now describe the training process illustrated in Fig. 5.
We train the single-step restoration and cross-latent decoder
in two stages. We note that during inference the frozen
encoder can be trivially modified to introduce cross-latent
decoding for unified single-step inference.

3.5.1 Stage 1: Single-step Restoration Fine-Tuning

Typical conditional diffusion fine-tuning [7], [9] first con-
verts both the input and the output ground truth images
to latent space and injects the output latent image with a
random proportion of Gaussian noise. The latent diffusion
UNet is then fine-tuned to predict the injected noise, given
the input latent and noisy output latent as inputs. This

training recipe is tailored for iterative denoising inference,
but performs poorly for few-step inference. Additionally,
the loss is applied to the noisy latent image that is unin-
terpretable and cannot leverage structural and perceptual
image supervision. In our single-step fine-tuning, the dif-
fusion UNet simply takes in the input latent concatenated
with the zero image, which is the mean of the pure Gaussian
noise distribution, and learns to directly predict the output
latent image in one pass. The output latent image can then
be decoded into RGB space where we can compare with the
ground truth output using the pixel-space image loss:

L = L1 + LSSIM + LLPIPS . (3)

We use this training strategy to jointly train the two
UNet branches (with cross-attention), with the encoder and
decoder both frozen to their pretrained weights. We apply
the image loss in Eq. (3) to all output modalities compared to



7

Inpu�
Underwater

Inpu�
Underwater

Predicte�
Clear

Predicte�
Depth

Predicte�
Backscattering

Predicte�
Depth

Predicte�
Backscattering

Predicte�
Clear

Predicte�
Clear

Predicte�
Clear

Osmosis Ours Osmosis Ours

Fig. 7. Comparison with Osmosis [27] on the UIEB dataset [3]. In this
figure we show the predicted clear image and medium-related parame-
ters for our method and Osmosis. In the medium visualization of both
methods, objects in the foreground have lower depth/backscattering,
while background objects have higher depth/backscattering. Osmosis
highly depends on accurate depth estimation, incorrect depth (such as
the diver’s face region in the right image) leads to unrealistic restoration
with spurious color artifacts. Our scene-medium separation formulation
leverages depth priors indirectly through water medium prediction, and
we obtain much better quality predictions for both clear restoration and
depth-dependent medium parameters.

their respective ground truth. Additionally, we combine the
predicted images using the dense scene-medium decompo-
sition formulation in Eq. (2), and the apply the image loss in
Eq. (3) to the input image as a self-supervised reconstruction
loss LUIFM . Our final loss can be written as

Ltotal = λJLJ + λTLT + λBLB + λLLUIFM . (4)

We use λJ = 1, λT = λB = 0.5, λL = 0.4.
We note that LUIFM plays a key role in mitigating the

domain gap introduced by synthetic training data. While
our improved data generation pipeline approximates real-
world degradation, it remains limited by the lack of dense
optical measurements in real underwater environments,
leading to simplifications in light propagation and attenu-
ation modeling. These assumptions introduce discrepancies
between synthetic and real images, such as non-uniform
media or mismatched scattering and attenuation coeffi-
cients. By guiding the model to learn from intrinsic data
consistency rather than reply solely on synthetic labels,
the reconstruction loss LUIFM improves robustness against
synthetic data biases and enhances generalization to diverse
real-world underwater environments.

3.5.2 Stage 2: High-frequency Preservation Decoding

Single-step latent restoration can already effectively restore
the clean image. However, due to limitations of the vanilla
SD decoder [4], we still observe blurriness and halluci-
nations in high-frequency details such as text. Following
previous diffusion-based restoration methods [9], we use
cross-latent decoding with additional zero convolution skip-
connections to transfer high-frequency details from the un-
derwater input to the clear image. Once the dual-branch
diffusion is trained, we use pairs of underwater image
and the latent image output of the scene branch UNet for
the second stage cross-latent deocder training, where we
fine-tune only the zero convolution and the decoder. This
training is supervised using the same image loss in Eq. (3)
between the decoded image and the ground truth image.

TABLE 1
Quantitative comparison on USOD10K [52] and UIEB [3] datasets
using UIQM [55] and MUSIQ [56] reference-free metrics. Due to the
lack of ground truth clear images for real-world underwater datasets,

we use reference-free metrics that measure the clear image quality as
an assessment to restoration effectiveness. For both datasets our

method achieves the best reference-free metric performance.

Method
USOD10K [52] UIEB [3]

UIQM↑ MUSIQ↑ UIQM↑ MUSIQ↑

WaterNet (TIP 2019) [3] 3.093 65.664 3.151 67.927

FUnIE-GAN (RA-L 2020) [22] 3.145 64.069 3.297 64.782

USUIR (AAAI 2022) [53] 3.129 64.955 3.231 67.231

MMLE (TIP 2022) [54] 2.019 67.550 2.229 69.711

Semi-UIR (CVPR 2023) [23] 2.850 66.720 2.961 68.844

DeepWaveNet (TOMM 2023) [26] 2.706 66.092 2.722 68.096

Histoformer (JOE 2024) [24] 3.024 65.278 3.026 67.918

Osmosis (ECCV 2024) [27] 2.821 63.294 2.997 64.089

Phaseformer (WACV 2025) [25] 2.200 66.810 2.319 68.824

Ours 3.152 70.110 3.340 72.457

TABLE 2
Qualitative evaluation on synthetic underwater dataset from [27].

We benchmark the clear scene restoration quality on synthetic
underwater images curated by [27], which uses ground truth RGBD
data from [57] to simulate underwater images. Our method achieves

the best performance across all metrics.

PSNR ↑ SSIM ↑ LPIPS ↓

WaterNet (TIP 2019) [3] 18.04 0.75 0.11
FUnIE-GAN (RA-L 2020) [22] 17.64 0.77 0.21
USUIR (AAAI 2022) [53] 16.76 0.80 0.18
Semi-UIR (CVPR 2023) [23] 17.82 0.83 0.12
MMLE (TIP 2022) [54] 17.00 0.74 0.17
DeepWaveNet (TOMM 2023) [26] 17.14 0.88 0.18
Histoformer (JOE 2024) [24] 16.15 0.82 0.28
Osmosis (ECCV 2024) [27] 22.74 0.89 0.06
Phaseformer (WACV 2025) [24] 16.19 0.78 0.26

Ours (latent loss following [7], [9]) 24.62 0.93 0.05
Ours (w/o cross-latent decoder) 24.99 0.92 0.06
Ours (w/o cross-attention) 25.06 0.93 0.05
Ours 25.66 0.95 0.05

4 EXPERIMENTAL RESULTS

4.1 Datasets and Experiment Setups

We use Stable Diffusion V2 (SDV2) [4] diffusion UNet to
initialize the scene branch, and Marigold [7] monocular
depth model to initialize the medium branch. We initialize
the VAE weights from SDV2 pretrained weights [4]. For
training data synthesis, we use high quality clean images
from various sources, including natural images [58], [59],
outdoor [60], indoor [61], night [62] images. We provide
more details on training data in the Supplementary. We
train the stage 1 single-step fine-tuning and stage 2 cross-
latent decoder sequentially on a single NVIDIA A6000 GPU
using the same learning rate of 10−5 and 512 × 512 image
resolution. Stage 1 training took approximately 2 days and
stage 2 took 1 day.

4.2 Real World and Synthetic Comparisons

We performed evaluations on both real-world and synthetic
datasets to compare our method with existing approaches.
A primary challenge in real-world data evaluation lies
in the absence of ground truth clean images in available
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Fig. 8. Reconstruction training objective improves restoration clar-
ity. Our single-step fine-tuning approach enables direct end-to-end
supervision on images, aligning predicted clear and medium outputs
with the dense scene-medium decomposition in Eq. (2). Real-world
evaluation on [3] shows that this reconstruction loss leads to clearer
restorations(bottom row), compared to outputs of the model that does
not use reconstruction loss (middle row).

underwater datasets. We evaluated the quality of the re-
stored image in two reference-free metrics following pre-
vious works: UIQM [55] is tailored for underwater image
restoration and measures the colorfulness, sharpness, and
contrast of the restored image; MUSIQ [56] is a multi-scale
image quality assessment metric with a transformer-based
architecture. We evaluated our method on two established
real-world datasets in the underwater restoration literature:
USOD10K [52] and UIEB [3] datasets. For a fair comparison
on reference-free image quality metrics, we filtered out
∼ 10% of images with apparent image artifacts unrelated
to underwater effect, such as visible compression and pix-
elation artifacts. Our method achieves state-of-the-art per-
formance across all metrics on both datasets, demonstrating
its effectiveness in restoring degraded underwater images
to high-quality clear images. Our extensive qualitative com-
parisons in Fig. 6 also show that our method achieves a more
distinct separation between the underlying scene content
and the water medium, whereas other methods often fail
to completely remove the effects of water medium, such
as backscattering, or estimate them incorrectly. We provide
further examples and analysis of real-world underwater
images in the Supplementary.

We additionally evaluated our method on synthetic
benchmarks with ground truth clear images. In Tab. 2 we
compared quantitative image metrics with baseline methods
using the simulated underwater dataset in [27], achieving
the best result across all evaluated metrics. We note that
none of the images in this dataset is used in our training
data. These results highlight the high color accuracy and
structural fidelity of our predicted clear images.

We conducted an in-depth comparison with Osmo-
sis [27], the previous state-of-the-art diffusion-based under-
water reconstruction method. We show qualitative compar-
isons on real images in [3] in Fig. 7. Osmosis directly predicts
depth and during iterative sampling enforces underwater
image formation in Eq. (1). However, this method is vulner-
able to incorrect depth predictions, which results in spurious
color patches and red shifts in the restored images that are
unrealistic. We observe that our water-medium predictions
correctly capture scene depth relations even more than the
direct depth predictions of [27], which also leads to more
realistic clear image predictions. In terms of runtime, we

Underwater Image Vanilla Decoding Cross-Latent Decoding Underwater Image Vanilla Decoding Cross-Latent Decoding

Zoo,
In 

Fig. 9. Cross-latent decoding enhances restoration details. Even
though our method uses image loss during training, the limitations of
the vanilla SD [4] decoder could still hallucinate high-frequency details.
The cross-latent decoding allows us to obtain restorations with better
details, such as the eyes of the diver in this figure.

ran both methods using the same A6000 GPU. Due to its
RGBD diffusion prior and sampling scheme, Osmosis can
only restore images up to 256× 256 size, while taking more
than 200 seconds to generate one image. In contrast, our
method can restore up to 2K × 2K images. Our single-
step inference restores a 512 × 512 image in 0.75 seconds,
marking a > 200× improvement over Osmosis. We provide
further comparisons with Osmosis in the Supplementary, in-
cluding an ablation on the training dataset, and quantitative
comparison on water medium prediction.

4.3 Ablation Studies

Single Step Prediction and Training. We tailor our frame-
work to train dual-branch diffusion for single-step latent
inference. For comparison, we also train an iterative dif-
fusion model following the fine-tuning protocol of [7], [9]
where the diffusion UNets are supervised with a latent noise
loss. For this model, we also include cross-latent decoder
training. Synthetic results in Tab. 2 show that our single-
step model performs better than the latent loss model with
50 inference steps. This improvement stems from our ability
to directly supervise the RGB output in single-step training,
rather than on uninterpretable latents. This includes the
use of reconstruction loss that enforces the clear scene and
medium output to respect the dense scene-medium decom-
position formulation in Eq. (2). We show real-world exam-
ples in Fig. 8 that our training objective has better scene-
medium separation and produces clearer restorations. We
believe that this shows that the reconstruction loss improves
our model’s generalization to real-world underwater effects.

Cross-Latent Decoder. Even when guided by an image
reconstruction loss during training, the standard SD de-
coder [4] can sometimes introduce hallucinations in detailed
regions due to the inherent challenges of reconstructing
detail from a compressed latent space. As shown in Fig. 9,
the enhanced detail in the diver’s eyes illustrates the effec-
tiveness of cross-latent decoder in preserving critical high-
frequency information, particularly in regions where the
vanilla SD decoder might struggle.

5 LIMITATIONS

While our method effectively restores high-quality images
and estimates water parameters from single underwater
inputs, it has a few limitations. Although faster and more
efficient than prior diffusion-based approaches, it still re-
quires a consumer-grade GPU and does not yet achieve
real-time performance. Additionally, as it operates on single
images, temporal consistency is not enforced, which we
demonstrate on the MKV underwater video dataset [63] in
the Supplementary.
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6 CONCLUSION

In conclusion, we propose a novel underwater image
restoration framework that leverages the foundational nat-
ural image and geometric priors embedded in pretrained
latent diffusion models. Our approach introduces a fast,
single-step restoration pipeline capable of producing de-
tailed and robust predictions of both the clear scene and the
intervening water medium. To train our model, we develop
a physically grounded underwater image synthesis pipeline
that generates realistic and diverse synthetic training data
at scale. Comprehensive experiments on both synthetic
and real-world benchmarks demonstrate that our method
achieves state-of-the-art restoration performance, signifi-
cantly advancing the quality and efficiency of diffusion-
based underwater image restoration.
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Supplementary Material for: “Single-Step Latent
Diffusion for Underwater Image Restoration”

Fig. 10. More restoration results of our method on real-world
datasets [3], [52]. We showcase more real-world restoration image
results of our method that we find visually appealing.

TABLE 3
Comparing our single-step method to iterative latent loss

fine-tuning methods. We present quantitative comparisons on the
synthetic dataset of [27] for our single-step diffusion restoration

method, and iterative diffusion (50 steps) diffusion method fine-tuned
following the latent loss of Marigold [7], [9]. Our results demonstrate
that our single-step restoration model outperforms latent-loss-based

models using 50 denoising steps, showing that the effectiveness of our
training pipeline goes beyond merely accelerating inference speed.

PSNR ↑ SSIM ↑ LPIPS ↓

Iterative Latent Loss (50 Steps) 23.46 0.89 0.08
Iterative Latent Loss (50 Steps) + CLD 24.62 0.93 0.05
Ours (Single-Step) 25.66 0.95 0.05

7 COMPARISON WITH LATENT LOSS TRAINING

METHODS

Our single-step pipeline not only provides faster inference
speeds, but also enables the use of image losses during
training. Previous fine tuning methods for multi-step iter-
ative inference, such as Marigold [7], [9], use a latent space
loss, which is less interpretable. To show the advantage of
our one-step architecture and training objective, we present
quantitative results for restoration models trained using the
standard diffusion latent loss objective with 50 denoising

TABLE 4
Quantitative evaluation on water medium prediction. We report

PSNR and MAE for predicted transmission (T) and backscattering (B)
against the ground truth on the simulated NYU [57] underwater dataset.
Our method achieves higher accuracy for both components compared

to Osmosis [27], which suffers from unreliable depth estimation.

PSNR T. ↑ MAE T. ↓ PSNR B. ↑ MAE B. ↓

Osmosis 13.97 0.207 23.08 0.076
Ours 24.69 0.060 32.37 0.024

TABLE 5
Quantitative results for ablation studies in the main paper. We

provide further quantitative results on the synthetic dataset of [27] for
the ablation studies in Sec. 4.3 of the main paper.

PSNR ↑ SSIM ↑ LPIPS ↓

Ours without Recon. Loss 24.80 0.93 0.05
Ours without CLD 24.99 0.92 0.06
Ours 25.66 0.95 0.05

steps used in Marigold [7], [9], with and without the cross-
latent decoder (CLD). Our results in Tab. 3 show that our
single-step model outperforms multi-step diffusion fine-
tuned with latent loss. Finally, we highlight several key
limitations regarding few-step diffusion distillation meth-
ods [44], [45], [46]. Distillation requires training an iterative
diffusion teacher model before distilling it into a single-
step model, while our method is trained for single-step
prediction from the outset. Moreover, previous work [44],
[45], [46] has consistently shown that the output quality
of single-step distilled models is upper bounded by their
iterative teacher models. In contrast, our single-step model
already outperforms the multi-step diffusion.

8 ACCURACY OF MEDIUM PREDICTION

Due to the lack of ground truth data on transmission and
backscattering, we follow Osmosis [27] and evaluate our
method on the unseen simulated NYU dataset [57]. In Tab. 4,
we measure the PSNR and the MAE of the predicted trans-
mission (T) and backscattering (B) compared to the ground
truth. We achieve superior medium prediction accuracy for
both predictions over Osmosis [27], which struggles due to
its unreliable depth prediction similar to Fig. 7 in the main
paper.

9 ADDITIONAL ABLATION QUANTITATIVE COM-

PARISONS

We report quantitative results on the simulated dataset from
Osmosis [27], [57] for our ablation studies presented in
Sec. 4.3 of the main paper in Tab. 5, specifically the use
of reconstruction loss enabled by our single-step training,
and the cross-latent decoder (CLD). Reconstruction loss
improves the PSNR by 0.86 dB and the cross-latent decoder
improves the PSNR by 0.67 dB.
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TABLE 6
Ablation study on the effect of model architecture and data. We decouple our physics-based diverse underwater data synthesis pipeline and
our single-step restoration network to further study how each component affects the performance of our method. Specifically, we train our method

using the terrestrial dataset from Osmosis [27] instead of our terrestrial data, and we use randomized water medium parameters instead of our
curated values from real-world measurements. We show quantitative results on the simulated underwater dataset using [57] from [27]. Our results
show that using real-world water medium values during training data synthesis boosts the restoration accuracy of our model. On the other hand,

even with randomized water parameters and using the same training data as Osmosis [27], our method still outperforms the baseline.

Method Terrestrial Data Water Medium Data PSNR ↑ SSIM ↑ LPIPS ↓

Osmosis Osmosis Data - 22.74 0.89 0.06
Ours Osmosis Data Random Values 24.87 0.94 0.05
Ours Osmosis Data Sample From Real-World Measurements 25.76 0.95 0.05
Ours Our Data Sample From Real-World Measurements 25.66 0.95 0.05

10 DISENTANGLING THE IMPACT OF NETWORK

DESIGN AND TRAINING DATA

Our work consists of two key components: a novel single-
step diffusion underwater restoration network, and a
physics-based diverse underwater training data synthesis
pipeline. To further investigate the effect for each compo-
nent on our method’s final performance, we conduct an ad-
ditional ablation study that disentangles data and network.
Specifically, we train new versions of our network using the
same RGBD terrestrial data that Osmosis [27] used for its
RGBD diffusion prior. We also set the water parameters βD ,
βB , and B∞ to random RGB values, instead of sampling
from real-world water measurements. Our results in Tab. 6
show that using real-world water parameters boosts the
performance of the trained restoration model, showing the
strength to integrate domain-specific water medium knowl-
edge to training. However, even after training with random
water medium parameters, our method still outperforms
Osmosis and other baselines (see Tab. 2 of the main paper),
demonstrating the effectiveness of our single-step diffusion
network and the underlying diffusion priors for underwater
image restoration.

11 ROBUSTNESS TO CHALLENGING UNDERWA-

TER SCENARIOS

Our simulation pipeline is based on the underwater image
formation model in Eq. (1), which models scattering of light
from the object surface without assuming co-location of
the illumination source and the sensor. While Eq. (1) does
not explicitly account for complex underwater phenomena
such as turbidity, our prediction framework extends this
formulation by leveraging the more flexible dense scene-
medium decomposition in Eq. (2). To evaluate robustness
of our formulation and our pipeline, we show real-world
examples in Fig. 11 spanning a range of conditions including
shallow water under solar illumination, deep water with
non co-located light sources, and scenes with noticeable
turbidity. Our method demonstrates strong performance
across these diverse scenarios, although blurriness may
appear in cases of severe turbidity. Incorporating a more
explicit modeling of turbidity into our formulation presents
a promising avenue for future research.

12 MORE REAL-WORLD RESULTS

In our qualitative comparisons on real-world underwater
datasets [3], [52], we observed a consistent trend in the

Shallow water, solar illumination

Deep water, turbidity Deep water, turbidity

Deep water, non camera co-located illumination

Fig. 11. Visualizing our model’s performance under challenging
underwater scenarios. We show method restoring real world examples
from [3], [52] with challenging lighting scenarios and strong turbidity.

color accuracy of our restored images. We show this effect
in Fig. 12 on a wide range of examples. While evaluat-
ing samples across a wide range of scenes, our method
consistently recovered more faithful color profiles for both
foreground and background objects. In contrast, other ap-
proaches frequently introduced color distortions, such as
unnatural red shifts, overcompensation for underwater ef-
fects, or incomplete removal of background light. We at-
tribute this advantage to the strong natural image priors em-
bedded in the pretrained latent diffusion backbone [4], our
scene-medium decomposition formulation, as well as our
physically informed fine-tuning objectives, which together
enable more precise modeling of underwater image degra-
dation and restoration. Finally, we show additional real-
world scenes in Fig. 10 and comparison results in Fig. 13.

13 MORE SYNTHETIC TRAINING DATA EXAMPLES

In Fig. 14 we present a diverse set of visualizations illus-
trating the synthetic underwater training data generated us-
ing our physically-accurate data synthesis pipeline detailed
in Sec. 3.4 of the main paper. To ensure diversity and real-
ism, we source clean images from a wide range of large-scale
terrestrial datasets spanning both indoor and outdoor envi-
ronments. These include ADE20K [60], an outdoor dataset
originally designed for semantic segmentation; DIV2K [58],
a high-resolution dataset containing diverse photographic
scenes; and the Flickr dataset [59], which comprises a broad
collection of crowd-sourced Internet images. We also in-
corporate Dark Zurich [62], which features urban street
scenes captured in low-light, nighttime conditions, and In-
teriorVerse [61], a dataset focused on richly detailed indoor
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environments. Using our synthesis pipeline, we simulate a
variety of underwater conditions by varying medium pa-
rameters such as depth, attenuation, and background light,
resulting in a rich and diverse training dataset that better
captures the complexity of real-world underwater imaging
scenarios. The visualizations in Fig. 14 also highlight the
diversity of underwater medium profiles, showcasing that
our data synthesis pipeline is able to capture a wide range of
water types and lighting conditions to reflect the variability
found in natural underwater environments.

14 VIDEO RESULTS

While our method is designed for single-image restoration
and does not explicitly model temporal consistency, we
evaluate it on underwater video sequences from the MVK
dataset [63] to assess its performance across frames. We
refer readers to the static HTML file provided in the supple-
mentary files (supp video.html) or directly in the ”videos”
folder to viewing of the video restoration results. The videos
demonstrate restoration results in diverse underwater envi-
ronments, from shallow reefs to deep-sea and wreck scenes.
Our method yields stable, view-consistent outputs for fore-
ground objects with minimal flickering, even for moving
objects. However, in scenes with large depth variation or
low light, flickering artifacts emerge between frames. A
notable observation is that the model adapts well to focus
changes in deep-sea footage, producing clearer predictions
once objects come into focus. The failure case in the wreck
video highlights limitations in our current approach, with
significant flickering attributed to the absence of temporal
modeling, noisy inputs, and ambiguous depth cues from
particles in the scene. We believe that the flickering artifacts
in our videos are temporal in nature and stems from the fact
that our method does not model temporal consistency. Our
foreground objects maintain strong view consistency across
frames. On a per-frame basis, the restoration quality of the
overall image is high with no apparent artifacts. Overall,
these videos demonstrate the method’s strong performance
in restoring underwater visuals from single frames, while
also motivating future work to incorporate temporal consis-
tency for video-based applications.
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WaterNet FUnIE-GAN USUIR MMLE Semi-UIR DeepWaveNet Histoformer Osmosis PhaseformerOursRaw

Fig. 12. Our method restores more accurate colors compared to other methods. When evaluating restored outputs on real-world underwater
datasets [3], [52], we observe that our method more accurately recovers the true color profiles of objects in both the foreground and background.
In contrast, other methods often introduce artifacts such as spurious red shifts, overcompensation for medium effects, or incomplete removal
of background light. We attribute our improved color fidelity to the strong natural image priors inherent in pretrained latent diffusion models [4],
combined with our physically informed fine-tuning objectives.
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WaterNet FUnIE-GAN USUIR MMLE Semi-UIR DeepWaveNet Histoformer Osmosis PhaseformerOursRaw

Fig. 13. Additional real-world comparisons on real-world underwater datasets [3], [52]. Our method (second column from the left) achieves
physically consistent results across varying depths, with improved performance in degraded distant regions. It also accurately estimates per-pixel
medium parameters across diverse water types, enabling faithful scene restoration under various underwater conditions.
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ADE20K DIV2K Flickr Dark Zürich InteriorVerse

Clear Input

Backscatter

Transmission

Underwater

Fig. 14. More visualizations of synthetic training data. We show extensive visualizations of training data samples. We use a wide range of
terrestrial image data sources as the clean image. Combined with our physically-accurate data synthesis pipeline, we generate diverse and realistic
underwater images with various underwater medium profiles. ADE20K [60] is an outdoor dataset originally used for semanitic segmentation.
DIV2K [58] is a high-resolution dataset with diverse scene content. Flickr dataset [59] is a large dataset consisting of crowd-sourced Internet
images. Dark Zurich [62] is a dataset of city scenes in night environment. InteriorVerse [61] is an indoor dataset.
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