
A Low-Complexity LSTM Network to Realize
Multibeam Beamforming

Hansaka Aluvihare1, Carina Shanahan1, Sirani M. Perera1, Sivakumar Sivasankar2,
Umesha Kumarasiri2, Arjuna Madanayake2, Xianqi Li3

1Department of Mathematics, Embry-Riddle Aeronautical University, Daytona Beach, FL, 32703 USA
Emails: {aluvihah, shanahc1}@my.erau.edu, pereras2@erau.edu

2Department of Electrical and Computer Engineering, Florida International University, Miami, FL, 33174 USA
Emails: {ssiva011, ukuma003, amadanay}@fiu.edu

3Department of Mathematics and Systems Engineering, Florida Institute of Technology, Melbourne, FL, 32901 USA
Email: xli@fit.edu

Abstract—Massive data structures can be embedded in the
form of weight matrices, enabling to design of neural networks
with low-complexity learning algorithms. These data can be
organized in rows of matrices, containing progressive phase shifts
for a specific beam, along with input and output vectors consisting
of time-domain signals. In our previous work, we have identified
that multi-beam beamformers based on true-time-delays (TTDs)
can be mathematically formulated as the elements of delay
Vandermonde matrices (DVM). Thus, by adopting a frequency
domain variable, we can express TTDs of time delay data in terms
of elements of the DVM. Learning from prior work, we propose
to present a low-complexity neural network to realize multibeam
beamforming leveraging a novel LSTM network. The goal of our
work is to reduce the complexity of the multibeam beamforming
algorithm from O(N2L) to O(NsL), where 1 < s < 2, by
imposing factorization of the DVM in an LSTM network having
L layers.

Index Terms—Sparse Matrices, delay Vandermonde matri-
ces, Complexity and Performance of Algorithms, wireless com-
munication, Multi-beam beamformers, Neural networks, Low-
complexity Networks, and LSTM.

I. INTRODUCTION

Beamforming is a signal processing technique that enables
the directional focusing of transmitted or received signals,
resulting in improved signal strength, interference mitigation,
and enhanced spatial resolution. While narrow and wideband
beamforming techniques are both available, wideband multi-
beam beamforming has gained popularity in emerging mm-
wave (mmW) communication systems, wireless networks,
ultrasound imaging, and radar. Many beamforming techniques
can be efficiently implemented using FFT-based algorithms,
which can utilize either time-domain pre-FFT schemes or
frequency-domain post-FFT schemes [1]–[3]. Unfortunately,
narrowband multi-beam beamformers based on FFT suffer
from the long-standing problem of beam squint. Fortunately,
the TTDs-based wideband multi-beam beamformers use a
Vandermonde structure of delay-based steering vectors to
overcome the beam squint problem, resulting in a DVM
beamforming matrix [1], [4]–[7].

This work was funded by the National Science Foundation with Award
Numbers 2229473 and 2229471.

Beamforming has been integrated into the design of neural
networks, such as convolutional neural networks (CNNs), to
enable adaptive beamforming with limited signal snapshots for
applications such as radar [8] and real-time medical ultrasound
imaging [9]. Moreover, recurrent neural networks (RNNs),
which are well-suited for time-series analysis, have been
utilized to recognize speech in conjunction with beamforming
[10], as well as for adaptive beamforming to minimize sidelobe
interference [11]. It is evident that RNN can be utilized for
analyzing time delays of elements in a linear array or other
configurations across a wide frequency range.

Long Short-Term Memory (LSTM) networks are a subclass
of RNNs with specific filtering functions for improving se-
quential modeling. In particular, LSTM networks are adept
at capturing long-term dependencies in temporal data [12],
[13]. Traditional RNNs often struggle to capture long-range
dependencies due to the vanishing or exploding gradient
problem [14], [15]. This limitation hampers the learning and
retention of relevant information over extended sequences.
However, LSTMs address this issue by introducing a memory
block that contains ”memory cells” and gating mechanisms.
These mechanisms enable the network to selectively retain
or discard information over multiple time steps [16]. The
LSTM architecture consists of five main components: the cell
state, the hidden state, the forget gate, the input gate, and the
output gate, which are utilized at every time step [17], [18].
LSTM has been successfully implemented in beamforming
applications [19]–[26] in the past, and has also been utilized
to reduce the complexity of beamformers [27], [28].

In the LSTM, the forget gate plays a significant role in
determining which information is to be kept or discarded from
the previous time step. It accomplishes this by considering
the previous hidden state, ht−1, and the current input, xt,
and passing them through an activation function. The input
gate controls the inflow of new information to be stored in
the long-term memory of the network. First, it generates a
candidate value, C̃t, This candidate value is calculated by
applying two distinct weight matrices and biases that act upon
the previous hidden state, ht−1, and the current input vector,
xt. The computation for the candidate value C̃t is as follows:

2024 IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE)

979-8-3503-5111-8/24/$31.00 ©2024 IEEE 11

20
24

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 W

ire
le

ss
 fo

r S
pa

ce
 a

nd
 E

xt
re

m
e

En
vi

ro
nm

en
ts

 (W
iS

EE
) |

 9
79

-8
-3

50
3-

51
11

-8
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

D
O

I:
10

.1
10

9/
W

iS
EE

61
24

9.
20

24
.1

08
50

41
5

Authorized licensed use limited to: Embry-Riddle Aeronautical University. Downloaded on December 15,2025 at 15:54:48 UTC from IEEE Xplore. Restrictions apply.

C̃t = at(Wc,h · [ht−1] +Wc,xt
· [xt] + bc) (1)

where Wc,h refers to the weight matrix applied to the hidden
state, at is the activation function, and Wc,xt refers to the
weight matrix applied to input xt.

The mathematical structure of the input gate is similar
to that of the forget gate. The final stage of the LSTM is
the output gate, which plays a crucial role in updating the
short-term memory of the network. With these well-designed
components, the LSTM model effectively manages both the
incoming information and the memory storage, resulting in a
powerful and dynamic short-term memory system.

A. Our Previous Work [29]

We proposed a structured neural network to realize multi-
beam beamforming using structure-imposed weight matrices
and submatrices. We have shown that these structured weight
matrices greatly reduce the complexity of the network from
O(M2L) to O(Mp2L), where L is the layers of network, M
is the number of nodes in the input and output layers, p is
the number of submatrices per layer, and M >> L, p. We
also showed that the network architecture could be utilized to
realize multi-beam beamforming without sacrificing accuracy.

B. The Proposed Work

To reduce arithmetic complexity from O(N2L) to O(NsL),
we aim to reduce the number of weight parameters that need
to be trained in an LSTM network. In order to accomplish
this, we impose the factorization of the DVM in [1] as weight
matrices inside the LSTM, representing TTD multi-beam
beamformers based on the elements of the DVM. Imposing
this structure onto the weight matrices does come at the
expense of accuracy, to some extent, which we explore in
detail in Section IV.

The remainder of this paper is structured as follows. In
Section II, we discuss the methodology for using the LSTM
network to realize multi-beam beamforming-based TTDs, in-
cluding the details of forward propagation and backpropaga-
tion. In Section III, we present our experimental setup for the
data collection. In Section IV, we give details on the process of
training the proposed structured LSTM (S-LSTM) network, as
well as the simulated beamformers. Finally, we will conclude
the paper in Section V.

II. METHOD

Seen LSTM as a subclass of RNN, we introduce a structure-
imposed LSTM network to realize multi-beam beamforming-
based TTDs. Our approach introduces the S-LSTM by reg-
ularizing the weight matrices of neural networks utilizing
the structure of the DVM, followed by sparse factorization.
By utilizing the DVM-vector product, we can realize multi-
beam beamforms while ensuring robust and trained structured
neural networks to reduce the complexity in comparison to
conventional LSTMs. This approach not only reduces the
arithmetic complexity but also the space complexities based on
the classical DVM factorization having many sparse matrices,

especially for large problem sizes. The high-level design of
the proposed approach is outlined in Fig 1. The S-LSTM
cell processes input data from each antenna array element to
predict the DVM-vector product in real time.

A. S-LSTM Neural Network for Beamforming

The weight matrices inside each LSTM cell can be rep-
resented as sparse matrices having the network architecture
shown in Fig. 1. At every time step t, we input N incoming
signals to produce N output signals where N represents the
number of elements in the antenna array, while the hidden
layers are passed through the dense weight matrices. We de-
veloped an LSTM network to manage a substantial volume of
input data. We adopt the framework of the DVM, sequentially
followed by the factorization presented in [1], to propose a
structural LSTM network for the implementation of multibeam
beamformers. Consequently, the weight matrices derive from
the factorization of the DVM and are integrated within the S-
LSTM framework. The S-LSTM network consists of 1 LSTM
cell layer and fully connected layers. The inputs and outputs
of the LSTM cells contain 2N nodes representing N real and
N imaginary values.

B. Forward propagation

We replaced the traditional LSTM cell with sparse matrices
in the DVM to reduce network complexity. In the LSTM cell,
we implemented two types of matrices derived from DVM fac-
torization, substituting the traditional fully connected weight
matrices. These include a diagonal matrix (D2N) and a Fourier
matrix (F2N). In a conventional LSTM cell [30], the forward
propagation process is directed by three essential gates: the
forget gate, the input gate, and the output gate. These gates,
in conjunction with the cell state, enable the LSTM to adeptly
handle long-term dependencies by selectively preserving or
discarding information [30].

The following matrix structure is used to construct the S-
LSTM neural network. At each time step t, the forget gate ft
can be computed using the previous cell hidden state ht−1 as

ft = σ(Df1xt +Df2ht−1 + bf)

where, xt ∈ R2N represents the input, while ht−1 ∈ R2N

represents the previous hidden state. Df1 , Df2 ∈ R2N×2N

denote the diagonal weight matrices, and bf refers to the
bias term. The function σ(.) represents the activation function.
During the training of the S-LSTM network, only the weights
along the diagonal of the weight matrices (i.e. Df1 , Df2) were
trained, while the remaining weights were kept at zero.

The input gate it determines which new information should
be added to the cell state [30], while the cell candidate C̃t

represents the potential updates. These are given by:

it = σ(Fi1xt + Fi2ht−1 + bi)

C̃t = tanh(Fc1xt + Fc2ht−1 + bc)

979-8-3503-5111-8/24/$31.00 © 2024 IEEE

2024 IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE)

12
Authorized licensed use limited to: Embry-Riddle Aeronautical University. Downloaded on December 15,2025 at 15:54:48 UTC from IEEE Xplore. Restrictions apply.

xt0

ot0

ht0

8N

2Nyt0

S-LSTM S-LSTM S-LSTM

xt1 xt2N

ht1 ht2N

ot1 ot2N

yt1 yt2N

Fig. 1: The diagram illustrates the S-LSTM architecture, where
consecutive S-LSTM units are linked by a sequence of data
across time stamps t0, t1, · · · , t2N . Inputs xt0 , xt1 , . . . , xt2N

are supplied to the corresponding S-LSTM cells. The hid-
den states ht0 , ht1 , . . . , ht2N move through each cell to the
next, while the output states ot0 , ot1 , . . . , ot2N are transmitted
forward. Moreover, skip connections allow direct information
flow between alternate layers, improving gradient flow during
backpropagation. This approach ensures more comprehensive
feature extraction and better information retention across lay-
ers, with the final prediction at each state via yt0 , yt1 , . . . , yt2N

Where Fi1 , Fi2 ∈ R2N×2N are the Fourier matrices that use
radix factorization to reduce complexity. The updated cell state
Ct can be computed as:

Ct = ft ⊙ Ct−1 + it ⊙ C̃t

where ⊙ denotes element-wise multiplication. Finally, the
output gate ot determines the hidden state ht, which is a
filtered version of the current cell state passed through a tanh
activation:

ot = σ(Do1 · xt +Do2 · ht−1 + bo)

ht = ot ⊙ tanh(Ct)

Where, Do1 and Do2 denote the diagonal weight matrices. The
high level design of the network architecture is shown in the
Fig. 1.

We introduce a skip link connecting the inputs to the S-
LSTM output after the S-LSTM layer. The primary goal of
the S-LSTM layer is to identify the time series characteristics
necessary for computing the output. To compute the output
following the skip connection, we incorporate several addi-
tional dense layers. Additionally, we decompose the weight
matrices into diagonal and Fourier matrices between the final
layers. The forward propagation equations for dense layers can
be derived as follows.

Let ot ∈ R2N be the output vector of the S-LSTM at time
step t. The first dense layer has 8N units, and the last dense
layer has 2N units. Let’s assume W1 ∈ R8N×2Nand W2 ∈
R2N×8N are the weight matrices of the dense layers, and b1 ∈
R8Nand b2 ∈ R2N are the bias terms in each layer. The skip

connection st = xt+ot ∈ R2N is the addition of the input and
the S-LSTM output ot. Thus, the forward propagation equation
for the dense layers can be shown via:

at = σ(W1st + b1) yt = W2at + b2,

where at ∈ R8N is the output of the first dense layer after
applying the activation function. To reduce the complexity of
the dense layers, we utilize the DVM factorization in [1] for
weight matrices, as explained in our previous work [29] s.t.

W1 =

[
w

(1)
1

w
(2)
1

]
, W2 =

[
w

(1)
2 , w

(2)
2

]
. Where w

(p)
1 ∈ R4N×2N

and w
(p)
2 ∈ R2N×4N represent submatrices in which p can

be either 1 or 2. Each submatrix can be factorized into the
following matrices [29].

w
(p)
1 = D̆2MF2MJ2M×2N D̂2N

w
(p)
2 = D̂2N [J2M×2N]TF ∗

2M ,

where M = 2N , JM×N =

[
IN
0N

]
, IN is the identity

matrix, and 0N is the zero matrix. Consequently, in the
backpropagation process, we only train the weights along
the diagonal of the diagonal weight matrices. For Fourier
matrices, we employ the well-known FFT factorization [31],
over λ ∈ [1, 2, ..., log(2N)] steps.

C. Backpropagation

In the context of the Backpropagation algorithm, we utilize
TensorFlow’s automatic differentiation capabilities [32] to
compute gradients and perform weight updates within the
proposed S-LSTM. This process utilizes TensorFlow’s autod-
iff functions, which track operations and calculate gradients
during the forward pass. Subsequently, these gradients are
employed in the backpropagation in time-stamped through
batch learning [33] in order to update the model’s weights.

III. EXPERIMENTAL SETUP FOR DATA ACQUISITION

Fig. 2 shows the experimental system for data acquisition,
highlighting the overall design based on a 32-element an-
tenna array [34]. Key subsystems include the antenna array,
RF receiver chain, and digital hardware unit which is field
programmable gate array (FPGA) based. The RF front-end
integrates a 32-element ULA at 5.8GHz with 32 direct
conversion RF receivers. A centralized local oscillator (LO)
supplies signals via a 32-output power divider connected to a
low-phase-noise oscillator. Each receiver features a 16 dB low-
noise amplifier (LNA) with a 2.4 dB noise figure, followed by
a 4.7GHz to 6GHz bandpass filter. The band-limited signal is
downconverted to low-IF and further amplified by 30 dB, and
digitized using two ADC16x250-8 ADC cards (16 channels,
8-bit, 250MHz).

A. Re-configurable Open Architecture Computing Hardware

ROACH-2 [35] has been used in our systems to sample
the intermediate frequency (IF) signal and data acquisition.
The ROACH board, equipped with a Xilinx Virtex-6 sx475t

979-8-3503-5111-8/24/$31.00 © 2024 IEEE

2024 IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE)

13
Authorized licensed use limited to: Embry-Riddle Aeronautical University. Downloaded on December 15,2025 at 15:54:48 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Multi-channel 5.8 GHz receiver with fully digital back-
end processing using ROACH-2 FPGA board. The system was
custom-designed and built by Madanayake’s group at FIU.

Fig. 3: Digital hardware architecture for data acquisition,
featuring digital gain calibration, storage in single-port RAM,
data routing through a MUX, and channel data accessed via
BRAM software.

FPGA, was integrated with two ADC cards, each supporting
16 channels. A double ridge guide horn antenna (A.H Systems
SAS-571) transmitted tones at 5.705, 5.71, and 5.715GHz,
while the LO was set to 5.70GHz, producing IF signals at 5,
10, and 15MHz. These downconverted signals were sampled
by the ADC at 200MHz to digitize the data. A VALON
5015 frequency synthesizer (10MHz to 15GHz) provided the
LO signal, while a NOISE XT low-jitter clock synthesizer
(2MHz to 7GHz) generated the clock signals for the FPGA
and ADC. Measurements were conducted with approximately
20m separation between the transmitter and receiver. The
digital acquisition system, as depicted in Fig. 3, comprises
two key subsystems: A) digital gain and phase calibration and
B) data acquisition and sampling.

B. Digital Gain and Phase Calibration
In order to compensate for the discrepancies in between the

32 direct conversion RF receiver chains, the sampled 32 signal
streams were digitally calibrated. The idea behind the digital
gain-phase calibration is to retrieve 32 equal sampled signal
streams when the antenna array perceives the same wave at its
32 elements. A double-ridge guided-horn antenna was placed
at a distance of 14m at the direct broadside angle. This ensures
that the receiver antenna array receives the same planar wave
at its all 32 elements. Whilst the horn antenna is transmitting,
each 32 sampled stream is multiplied by a number between
0-255 to receive normalized amplitude waveforms. After such
gain calibration, the digital phase calibration utilizes integer
delay filters to match the phases of the 32 streams which are
capable of delaying each element sample stream by 0-32 clock
cycles.

C. Data Acquisition in 32 Channel ADC
Retrieval of the data utilized the 1 Gbps PPC (Power PC)

link of the ROACH-2 system which provides common registers
between the FPGA fabric and the ROACH-2 control fabric
(software registers). Once the data is written into software
registers, the PPC control logic sends the written data to the
host Linux server using Ethernet. The ADCs generate 8-bit
samples in a rate of 200 MSps. A total of 1024 samples
from each element were captured and stored in 1024 distinct
memory addresses within each of the 32 Xilinx single-port
RAM blocks. The data stored in each RAM block were
subsequently multiplexed into software registers sequentially,
allowing for transmission via the PPC (PowerPC) link. This
was repeated 200 times for the targeted 4 IF frequencies. The
antenna array was rotated from an angle of −90◦ to 90◦ with
1◦ increments relative to the 0◦ broadside direction, while the
transmitting horn antenna was maintained in a fixed broadside
position(0◦), simulating signal reception from various angles
which resulted in a 5-D array of data.

IV. S-LSTM TRAINING AND SIMULATIONS FOR
BEAMFORMERS

The training and testing of the S-LSTM model for beam-
forming were conducted using a dataset composed of simu-
lated beamforming patterns and corresponding desired beam

979-8-3503-5111-8/24/$31.00 © 2024 IEEE

2024 IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE)

14
Authorized licensed use limited to: Embry-Riddle Aeronautical University. Downloaded on December 15,2025 at 15:54:48 UTC from IEEE Xplore. Restrictions apply.

outputs as stated in Section III. The training data was obtained
as time series data, and 64-time steps were created per batch.
We first transformed the raw input data into a fixed-point
representation to ensure numerical stability and compatibility
with hardware implementations. This transformation converts
the data into a fixed-point format, dividing the input values by
29. This ensures that the data falls within a smaller, normalized
range suitable for efficient computation during training. The
transformed data becomes the new input for the training
process. Since the received signal contains only real-valued
components, we applied the Hilbert transform to obtain the
corresponding analytic signal, consisting of real and imaginary
parts. The Hilbert transform was performed along the time
axis.

From the original dataset, which has a dimension of 3 ×
180 × 200 × 1024 × 64, where 3 corresponds to the number
of different frequencies, 180 to the angle values, 200 to the
number of samples, 1024 to the time steps, and 64 to the
antenna element features, a smaller subset was extracted for
model training. The extracted dataset has a reduced dimension
of 3× 180× 1× 64× 64, where the number of samples was
reduced from 200 to 1, and the time steps were shortened from
1024 to 64.

To determine the output values, it is necessary to conduct a
multiplication of the input values by the scaled DVM matrix
ÃN = [αkl]N−1

k,l=0, where α = e−jωτ , ω and τ denote the
temporal frequency and delay, respectively [1], [4]. In the case
of each incoming vector xt, the output yt can be derived as
ÃNxt. In the given equation, we assume that τ = 1

fmaxN
, where

fmax = 100 MHz and ω = 2πf , with f being variable based
on the frequency values (i.e., 5, 10, 15 MHz). Accordingly,
the calculation of separate ÃN matrices will be required for
each frequency. Upon obtaining output data that matches the
input’s dimensions, we proceed to construct the final dataset.
This involves reshaping the data into a 540× 64× 64 matrix.
Furthermore, we have created a validation/testing dataset with
dimensions of 27× 64× 64 to verify and evaluate the trained
model. The input and output matrix will be used for training
the S-LSTM model.

The proposed architecture consists of a sequential S-LSTM
network designed to process input data of shape mb×64×64,
where mb is the batch size. S-LSTM comprises 64 × 64
diagonal and Fourier matrices, followed by an intermediate
hidden layer with 256 units and an output layer with 64
units. The Leaky ReLU activation function, utilizing a minimal
scaling factor of 0.02, is employed to characterize activations
within the layers of the learning process, all while maintaining
the linear nature of the problem without introducing exces-
sive nonlinearity. In our simulation, we considered λ = 1
as described in the forward propagation within Section II.
The simulations are conducted using Python version 3.10.12
Google Compute Engine backend(Colab) and Tensorflow ver-
sion 2.17.0 with Keras as the backend. The model is compiled
using the Adam optimizer with a learning rate of 0.01, and the
mean squared error(MSE) defined by equation 2 is used as the
loss function to measure the error between the predicted(ŷi)

Fig. 4: Training and Validation MSE comparison between
LSTM and S-LSTM models over 400 epochs. The LSTM
model (blue and orange) demonstrates a higher initial MSE,
while S-LSTM (green and red) indicates efficient convergence
with fewer variations, particularly in the early epochs.

and actual values(yi). The training was performed for 400
epochs with mb = 27.

MSE =
1

mb

mb∑
i=1

(yi − ŷi)
2 (2)

The proposed S-LSTM model’s performance was compared
to a conventional LSTM network with fully connected weight
matrices, both following the same overall architecture and
structure as shown in Fig.4. In the conventional network, the
fully connected weight matrices were applied at each layer,
without the structured weight constraints that are inherent to
the S-LSTM architecture. The training and validation MSE of
both models can be shown in Fig.4

Model Training MSE Validation MSE No. of Weights
LSTM 8.0× 10−3 7.9× 10−3 66112

S-LSTM 7.8× 10−2 7.9× 10−2 42688

TABLE I: Final MSE for LSTM and S-LSTM models

This structured approach in the S-LSTM model allows it
to predict beamformed output effectively while reducing com-
putational complexity. The introduction of structured weight
matrices in the S-LSTM enables more efficient representation
learning, leading to a significant performance requiring both
temporal and spatial feature extraction.

In the simulation results as shown in Table I and Fig. 4, the
S-LSTM model achieved MSE of 10−2 showing a progressive
decline in error rates across epochs. Furthermore, for λ = 1,
the S-LSTM model can save up to 35% in model weights
compared to conventional LSTM architecture. Increasing the
value of λ enables us to save more weight, resulting in a
reduced-complexity network structure., but it sacrifices the
MSE. Further analysis suggests that improving the diversity

979-8-3503-5111-8/24/$31.00 © 2024 IEEE

2024 IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE)

15
Authorized licensed use limited to: Embry-Riddle Aeronautical University. Downloaded on December 15,2025 at 15:54:48 UTC from IEEE Xplore. Restrictions apply.

of training data set and fine-tuning model parameters could
enhance performance on more challenging test cases compos-
ing multiple frequencies and delays.

V. CONCLUSION

We have proposed an S-LSTM network to realize multi-
beam beamformers while imposing the DVM structure along
with its factorization to reduce the complexity of the network
from O(N2L) to O(NsL), where 1 < s < 2 and L is the
layers of the network. Our approach allowed the model to
effectively extract patterns and reduce complexity as compared
to the conventional LSTM. The error rates of the proposed S-
LSTM reached an order of 10−2, saving 35% of the weights
compared to the conventional LSTM network. In our future
work, we plan to retrain the S-LSTM using a diverse dataset,
i.e., multiple frequencies and delays, to realize time-advanced
multibeam beamformers.

REFERENCES

[1] S. M. Perera, L. Lingsch, A. Madanayake, S. Mandal, and N. Mas-
tronardi, “Fast dvm algorithm for wideband time-delay multi-beam
beamformers,” the IEEE Transactions on Signal Processing, vol. 70,
no. 5913-5925, 2022.

[2] K. W. Masui, J. R. Shaw, C. Ng, K. M. Smith, K. Vanderlinde, and
A. Paradise, “Algorithms for FFT beamforming radio interferometers,”
The Astrophysical Journal, vol. 879, no. 16, 2019.

[3] S. R. Seydnejad and S. Akhzari, “Performance evaluation of pre-
and post-FFT beamforming methods in pilot-assisted SIMO-OFDM
systems,” Telecommunication Systems, vol. 61, no. 3, pp. 471–487, 2016.

[4] S. Perera, V. Ariyarathna, N. Udayanga, A. Madanayake, G. Wu,
L. Belostotski, R. Cintra, and T. Rappaport, “Wideband n-beam arrays
with low-complexity algorithms and mixed-signal integrated circuits,”
IEEE Journal of Selected Topics in Signal Processing, vol. 12, no. 2,
pp. 368–382, 2018.

[5] S. M. Perera, A. Madanayake, and R. Cintra, “Efficient and self-recursive
delay vandermonde algorithm for multi-beam antenna arrays,” IEEE
Open Journal of Signal Processing, vol. 1, no. 1, pp. 64–76, 2020.

[6] ——, “Radix-2 self-recursive algorithms for vandermonde-type matrices
and true-time-delay multi-beam antenna arrays,” IEEE Access, vol. 8, pp.
25 498–25 508, 2020.

[7] A. E. A. Blomberg, A. Austeng, and R. E. Hansen, “Adaptive beam-
forming applied to a cylindrical sonary array using and interpolated array
transformation,” IEEE Open Journal or Oceanic Engineering, vol. 37,
no. 1, pp. 25–34, 2012.

[8] X. Wu, J. Luo, G. Li, S. Zhang, and W. Sheng, “Fast wideband beam-
forming using convolutional neural network,” Remote sensing (Basel,
Switzerland), vol. 15, no. 3, pp. 712–, 2023.

[9] H. J. Sharahi, C. N. Acconcia, M. Li, A. Martel, and K. Hynynen, “A
convolutional neural network for beamforming and image reconstruction
in passive cavitation imaging,” Sensors, vol. 23, no. 21, 2023. [Online].
Available: https://www.mdpi.com/1424-8220/23/21/8760

[10] T. Hori, Z. Chen, H. Erdogan, J. R. Hershey, J. Le Roux, V. Mitra,
and S. Watanabe, “Multi-microphone speech recognition integrating
beamforming, robust feature extraction, and advanced dnn/rnn backend,”
Computer speech & language, vol. 46, pp. 401–418, 2017.

[11] H. Che, C. Li, X. He, and T. Huang, “A recurrent neural
network for adaptive beamforming and array correction,” Neural
Networks, vol. 80, pp. 110–117, 2016. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0893608016300405

[12] K. P. Deorukhkar and S. Ket, “Image captioning using hybrid lstm-rnn
with deep features,” Sensing and imaging, vol. 23, no. 1, 2022.

[13] B. Cauchi, K. Siedenburg, J. Santos, T. Falk, S. Doclo, and S. Goetze,
“Non-intrusive speech quality prediction using modulation energies and
lstm-network,” IEEE/ACM transactions on audio, speech, and language
processing, vol. 27, no. 7, pp. 1151–1163, 2019.

[14] Q. Yuan, Y. Dai, and G. Li, “Exploration of english speech translation
recognition based on the lstm rnn algorithm,” Neural computing &
applications, vol. 35, no. 36, pp. 24 961–24 970, 2023.

[15] S. C. Kolen, John F.; Kremar, A Field Guide to Dynamical Recurrent
Networks. IEEE Press, 2001.

[16] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[17] D. H. Hopfe, K. Lee, and C. Yu, “Short-term forecasting airport
passenger flow during periods of volatility: Comparative investigation
of time series vs. neural network models,” Journal of air transport
management, vol. 115, pp. 102 525–, 2024.

[18] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to
Forget: Continual Prediction with LSTM,” Neural Computation,
vol. 12, no. 10, pp. 2451–2471, 10 2000. [Online]. Available:
https://doi.org/10.1162/089976600300015015

[19] Z. Meng, S. Watanabe, J. R. Hershey, and H. Erdogan, “Deep long short-
term memory adaptive beamforming networks for multichannel robust
speech recognition,” arXiv.org, 2017.

[20] P. Bhadauria, R. Kumar, and S. Sharma, “Beamforming in vehicle to
infrastructure scenario with respect to lstm and nar method,” Journal of
electrical engineering & technology, vol. 19, no. 1, pp. 641–654, 2024.

[21] L. Yaohui, X. Yuan, T. Shengyu, Z. Yanmin, and Z. Yucheng, “Virtual
array element beamforming algorithm based on lstm neural network,”
Journal of Physics: Conference Series, 2024.

[22] H. Xiang, B. Chen, M. Yang, S. Xu, and Z. Li, “Improved direction-of-
arrival estimation method based on lstm neural networks with robustness
to array imperfections,” Applied intelligence (Dordrecht, Netherlands),
vol. 51, no. 7, pp. 4420–4433, 2021.

[23] R. Kumar and H. Singh, “Performance dependency of lstm and nar
beamformers with respect to sensor array properties in millimeter-wave
v2i scenario,” Microwave and optical technology letters, vol. 65, no. 3,
pp. 859–865, 2023.

[24] R. U. Murshed, Z. B. Ashraf, A. H. Hridhon, K. Munasinghe, A. Ja-
malipour, and F. Hossain, “A cnn-lstm-based fusion separation deep
neural network for 6g ultra-massive mimo hybrid beamforming,” arXiv
(Cornell University), 2022.

[25] I. Rasheed, M. Asif, A. Ihsan, W. U. Khan, M. Ahmed, and K. Rabie,
“Lstm-based distributed conditional generative adversarial network for
data-driven 5g-enabled maritime uav communications,” arXiv (Cornell
University), 2022.

[26] V. Elangovan, W. Xiang, and S. Liu, “A multiagency long short-term
model beamforming prediction model for cellular vehicle to everything,”
SAE international journal of connected and automated vehicles (Print),
vol. 6, no. 4, pp. 459–472, 2023.

[27] S. R. Pavel and Y. D. Zhang, “Optimization of the compressive mea-
surement matrix in a massive mimo system exploiting lstm networks,”
Algorithms, vol. 16, no. 6, pp. 261–, 2023.

[28] N. Han, I.-M. Kim, and J. So, “Lightweight lstm-based adaptive cqi
feedback scheme for iot devices,” Sensors (Basel, Switzerland), vol. 23,
no. 10, pp. 4929–, 2023.

[29] H. Aluvihare, S. M. Perera, A. MAdanayake, and X. Li, “A low-
complexity structure-imposed neural network to realize multi-beam
beamforming,” in review, IEEE Transactions on Aerospace and Elec-
tronic Systems, 2024.

[30] S. Hochreiter, “Long short-term memory,” Neural Computation MIT-
Press, 1997.

[31] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex fourier series,” Math. Comp., vol. 19, pp. 297–301, 1965.

[32] T. Developers, “Automatic differentiation in tensorflow,” https://www.
tensorflow.org/guide/autodiff, 2023, accessed: 2024-09-13.

[33] P. J. Werbos, “Backpropagation through time: what it does and how to
do it,” Proceedings of the IEEE, vol. 78, no. 10, pp. 1550–1560, 1990.

[34] A. Madanayake, K. Lawrance, B. U. Kumarasiri, S. Sivasankar,
T. Gunaratne, C. U. S. Edussooriya, and R. J. Cintra, “Design of
multichannel spectrum intelligence systems using approximate discrete
fourier transform algorithm for antenna array-based spectrum perception
applications,” Algorithms, vol. 17, no. 8, 2024. [Online]. Available:
https://www.mdpi.com/1999-4893/17/8/338

[35] “The Collaboration for Astronomy Signal Processing and Electronics
Research,” 2024, [Accessed 23-05-2024]. [Online]. Available: https:
//casper.berkeley.edu/

979-8-3503-5111-8/24/$31.00 © 2024 IEEE

2024 IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE)

16
Authorized licensed use limited to: Embry-Riddle Aeronautical University. Downloaded on December 15,2025 at 15:54:48 UTC from IEEE Xplore. Restrictions apply.

