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Abstract—Formation of N simultaneous true-time delay-and-
sum (DAS) RF beams from an N-element array of wideband
antennas has many applications in wireless communications,
electronic warfare, spectrum sensing, radar, and signals intel-
ligence. A conventional DAS wideband beamformer scales as
O(N?) different individual delay line segments (i.e., the delay
complexity) which makes large arrays with many antennas and
wideband beams impractical. This paper introduces a method
based on the factorization of the approximate DFT matrix that
reduces the delay complexity from O(N?) to O(N) which in
turn makes dense aperture antenna arrays with large N elements
lead to N DAS beams at significantly smaller delay line count.
Each delay can be realized in DSP as a FIR filter. Therefore,
a wideband N-beam system at O(N) delay line complexity
as opposed to O(N?) implies a significant reduction leading
to smaller chip area and power consumption for hardware
realization on a digital ASIC chip. We provide an overview of
ongoing work on realizing an 8-beam DAS digital multi-beam
beamformer using the state-of-the-art (SOTA) Agilex-9 Direct-
RF chiplets from Intel which supports sample rates up to 64
GS/s per channel.

Index Terms—full

I. INTRODUCTION

The selective directional enhancement of a uniform plane
wave based on its direction of propagation constitutes a
beamforming operation. For ultrawideband plane waves con-
taminated by wide sense stationary additive white Gaussian
noise (AWGN), the optimal beamformer takes the form of a
true time delay-based delay-end-sum operation. For example,
to directionally enhance a wideband wave arriving at angle ¢
measured from the broadside direction from an N —element
linear aperture of antennas, the delay and sum operation for
beamforming requires the computation of y(t) = ng’:l xp(t—
kT) where 7 = % sin ¢ and where Ax is the inter antenna
distance and c is the speed of light. A single beam requires
N delay elements; thus, N simultaneous beams at arbitrarily
chosen angles would naturally lead to N parallel copies of
the beamformer thus leading to O(N?) delay elements in

This effort is an extension of work done followed by the United States
National Science Foundation (NSF) award numbers 2229473 and 2229471.

Fig. 1. DVM frequency response for N = 16 wideband DAS beams. Each
beam is fully wideband and squint free. Here, w; = 27 f is the temporal
frequency, and w, is the normalized spatial frequency. All 16 beams are
shown in the same plot. Beam cross section takes the familiar sinc wg form.

total. The NV x N delay Vandemonde matrix (DVM) N —beam
beamformer is a special case where each p = 1,2, ..., N beam
is realized by integer multiple delays of 7, = pr/N 2. The
frequency responses (beam shapes) of the DVM for N = 16
beams are shown in Fig. 1. The DVM-form of the N —beam
wideband beamformer will be reviewed in Section II.

The straightforward realization of N —beams using the
DVM-vector operation leads to a parallel hardware realization
that essentially uses N2 delays. The circuit complexity asso-
ciated with this multi-beam receiver/transmitter thus scales as
O(N?); such as “quadratic complexity” makes scaling to a
large number of beams from a high valued N (dense aperture
arrays) extremely challenging. To address this problem, our
recent work led to a new class of DVM beamforming algo-
rithms that factor the matrix-vector product into a sequence
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of sparse matrices-vector products so that the net number of
delays is reduced to O(N log N), where N = 2"(r > 2); this
is the same @%N factor of reduction albeit for the number
of delays just like for the well-known case of applying fast
Fourier transforms (FFTs) in place of direct matrix-vector
operations when one is computing a discrete Fourier transform
(DFT). FFTs exhibit butterfly networks in their signal flow
graph representations. We refer you to our recent work [1] for
a treatment of the O(N log N) wideband DVM beamformers.

II. MATHEMATICAL INTERPRETATION OF O(N)
APPROXIMATE DVM N-BEAM BEAMFORMER

Here, we disclose our most recent innovation: a DVM wide-
band multi-beam beamforming algorithm that achieves N—
wideband beams at linear complexity; that is, the proposed
DVM beamformer requires only O(NN) delays to realize N —
beams. The realized beams are within about 2 dB of the
ideal DVM beams in their directional selectivity. We achieve
this massive reduction by starting from the recently proposed
O(N log N) DVM multi-beam algorithm [1] which makes use
of the exact-DFT. Here, we propose to replace the DFT in [1]
with an approximate DFT instead [2]-[4]. An exact DFT can
be realized at O(N log N) via FFTs while the approximate
DFT has a corresponding matrix sparse factorization that
exhibits O(N) delays in DVM aggregated across its butterfly
networks [2]-[4]. Therefore, even though there is a small (1.5
dB or less) loss of directional selectivity, we can achieve a
massive reduction in number of true time delay (TTD) circuits
while still achieving N — simultaneous beams [2]-[4].

A. Construction of the Delay Vandermonde Matrix (DVM)
[5]-17]
The DVM is explicitly defined by

Ay = [Aply = ["]00 1,

where N = 27(r > 1), {a,a?,...,a™} are distinct complex
nodes s.t. o = e~ 9%7, j2 = —1, w is the temporal frequency,
and 7 is the delay. The scaled DVM, i.e., scaling w.r.t. a

diagonal matrix, is defined as

Ay = [Auln = [V
The coefficient o*! is a temporal Fourier transform of a
pure time-delay of duration 7. The signal z(¢) with Fourier
transform X (w) is related to the delayed version of the
signal x(t — pr) via the relationship X (w)e=7P“7. So the
corresponding phase rotation of X (w) is simply a? = e=J«P7.
Crucially, the DVM contains closed-form complex functions
of w given as complex phase rotations in integer powers p
of . That is, aP are not numerical values; they are complex
functions of frequency w raised to power p. So an N x N DVM
containing powers of « looks like a matrix-vector product but
remember, we are in the temporal Fourier domain; so this is
defined O(N?) number of delay-and-sum dot product, not the
usual O(N?) number of multiply-and-sum dot product.

B. Review of DVM vs DFT, and FFT Algorithms

There are several mathematical techniques available to
derive radix-2 and split-radix FFT algorithms, as described
in [1], [8]-[14]. Even though the derivation of size-N DFT
into two size—% DFTs can be done easily, the extension of
this idea to the DVM is cumbersome because the useful DFT
matrix properties, like periodicity and unitary, are not present
in the DVM [1], [5]. Consequently, considering these math-
ematical properties and the representation of DVM elements
through TTD wideband multi-beam—unlike the narrowband
representation characterized by the FFI-beams—it becomes

evident that DVM serves as a superclass of DFT matrices.

Our previous work introduced various DVM algorithms
designed to accurately compute the exact DVM-vector product
for both narrowband and wideband communication systems.
Our latest study [1] presents a derivation of the DVM algo-
rithm, successfully reducing the complexity of RF N-beam
analog beamforming systems from O(N?) to O(N log N).
While the DVM algorithms proposed in [5], [7] show greater
efficiency compared to brute-force matrix-vector calculations,
their arithmetic complexity remains substantially higher than
O(Nlog N) [1]. On the other hand, our work in [6] focuses
on numerically stable DVM algorithms with complexity of
O(N log N) that apply to Vandermonde matrices with nodes
positioned on the unit circle (not exclusively at the roots of
unity) and also on circles with their center at the origin and a
radius exceeding one. Unlike the DVM algorithms highlighted
in [5]-[7], which are specifically designed for narrowband
communication systems, the radix-2 DVM algorithm presented
in [1] is tailored for TTD wideband communication systems.

With these said, we introduce sparse factors to compute an
approximate DVM (ADVM) using approximate DFT to reduce
delay complexity from quadratic to linear. Before stating the
factorization formula for the approximate DVM, we state the
factorization leading O(N log N) DVM algorithm as follows.

C. Review of DVM factorization [1]

The scaled DVM factorization resulting in an O(N log V)
DVM algorithm is presented in [1], and it executes based on
the DVM factorization defined below

Ay =Dn[Iaxn] T FyDyFadanDy,

I . .
where M = 2N, Jyxn = [ON} is a highly
N
sparse  matrix containing the identity matrix Iy
and the zero matrix Oy, T denotes the transpose
of matrices. The matrices Dy =  diagla®]) ',

2

Dy = diag [a%

matrices, and a circulant matrix C,;

N-1 . -
L and D,,; = diag {F Mc} are diagonal
=0 .
= F}F\/IDMFJW,

which is defined by the first column ¢ st ¢ =
_1 _w-1? _won? o (ve? —1

|:].,Ol 2,000, 2 v]-va 2 , & 2 st ,00 2

The DFT matrix is defined by Fy = Tlﬁ [w%]ﬁleo, having

el . 2nj
the primitive N th roots of unity wy = e~ "~ as the nodes

Authorized licensed use limited to: Embry-Riddle Aeronautical University. Downloaded on December 15,2025 at 16:03:55 UTC from IEEE Xplore. Restrictions apply.

98



2024 IEEE International Conference on RFID Technology and Applications (RFID-TA)

of the DFT matrix. The scaled DFT matrix is denoted by
Fy =VNFy.
Remark 2.1: Tt is important to highlight that the O (N log N)

DVM algorithm in [1] executes recursively utilizing the well-
known FFTs in [8], [9].

Following the discussion on implementing the DVM al-
gorithm using the FFT, we would like to explicitly refer
the reader to papers [15], [16] to compute multiplierless
approximated 16-point and 32-point DFT matrices having
a product of highly sparse matrices. The approximate DFT
factorization is then embedded into the DVM algorithm in
[1] to reduce the complexity of computing the DVM-vector
product, reducing it from O(N?) to O(N).

D. Proposed ADVM-Factorization for O(N) DVM Algorithm

Building on the DVM factorization [1] and multiplierless
approximate DFT factorization [15], [16], we state a factoriza-
tion to approximate DVM. For a comprehensive understanding
and in-depth algorithmic interpretation, we refer readers to
[17].

Proposition 2.2: [from [17]] Let the scaled DVM :AN =
[akl]fxl;lo be defined by nodes {1,a,0?,...,aN"1} € C,
N =2"(r > 3), and M = 2/\N . Then, an approximation
for the scalled DVM denoted as A y by vector x € R* or C",
i.e., y = Anyx can be computed through the following:

y = Anx = Dy [Iann]TFyDyFudxnDyx, (D

where F n is the approximate DFT matrix.

Remark 2.3: Let us assume that we had utilized multipli-
erless approximated DFT matrices in computing the approxi-
mated scaled DVM-vector product in Proposition 2.2, then the
explicit delay complexity in computing the scaled DVM-vector
product is 4N — 2, which intern has O(NN) complexity.

Furthermore, by following the multiplierless 16-point and
32-point DFT algorithms in [15], [16], we could explicitly
compute the approximated scaled DVM-vector product with
6N —6, 8N —14, and 10N — 30 when N = 32,64, 128. Thus,
by following a series of complexity counts, we could state that
the proposed approximated scaled DVM-vector product has
the linear order, i.e. multiplication complexity of O(N) as
opposed to the FFT-like O(N log N) complexity algorithms,
for N = 16 to 1024 [17]. On the other hand, we note that
the proposed DVM-vector product calculates an approximated
DVM algorithm as opposed to the exact DVM algorithms in
[1], [5]-[7], but with O(NN) complexity.

ITII. PROPOSED DVM BEAMFORMING RECEIVER

A. RF Front-Ends

The wideband low-noise amplifiers (LNAs) and Vivaldi
antennas must cover the frequency span of up to 32 GHz as
this is a direct-digital architecture. Design of such components
can be difficult and procurement very expensive. For example,
the LNA ZVA-0.5W303GX+ from MiniCircuits cover up to
30 GHz, with gain of and noise figure 4.2 dB, can be used as

Antenna 1 LNA1 LPF1 ADC1

/Multirate Engine 1

I Polyphase

Massively-Parallel
O(N) DVM

Multi-Beam Algerithm

0-32 GHz

Fractional-Delay FIR
Filters use
128 phases

- Bandwidth: 32 GHz
Sample rate: 64 GS/s
Channels: 8
RF Beams: 8
FPGA clock: 512 MHz
Parallel datapaths: 128

Antenna 8 LNAB LPF & ADCB8

0-32GHz

Fig. 2. The envisaged 8-channel 0-32 GHz O(N) wideband direct-digital
DVM beamformer using Intel Altera Agilex 9 Direct-RF chiplet technology.

a transmit device. Similarly, MiniCircuits LVA-273PN-DG+
has frequency response up to 26.5 GHz, noise figure of about
10 dB, and gain of around 18 dB. The design of the front-
end with up to 8 such amplifiers requires further study as
these amplifiers cost several thousand dollars per unit and
therefore careful optimized and cost-minimum design is a
crucial requirement.

B. Wideband Data Conversion

The signals of interest are assumed to be of immense
bandwidth, typically in the order of F,/2 = B = 32
GHz per channel. Sampling such wideband signals requires
special circuitry as a single analog-to-digital converter (ADC)
typically would not be able to sample, hold, and quantize such
bandwidth at reasonable levels of precision and power con-
sumption. We assume a time-interleave ADC with P parallel
time-interleaved ADC sub-circuits. Each of these P sub-ADCs
is further assumed to undergo temporal decimation by factor
L such that the total number of parallel digital channels on the
digital signal processor (DSP) would be PL and the digital
clock period would be Fgy, = 52. For example, assuming a
channel bandwidth of 32 GHz and a Nyquist rate of F; = 64
GS/s, and a P = 16 phase time-interleaved ADC, each sub-
ADC will be sampling at 4 GS/s, with the DSP operating at
Fei, = 256 MHz for a temporal decimation factor of L = 16.

C. Digital Delay Filters

The digital delays operate within the field programmable
gate array (FPGA) or application specific integrated circuit
(ASIC) fabric at a sample rate of Fo, MHz, over PL parallel
channels that make up the multirate-DSP core that must finally
realize any fractional delays or dot-products that are needed
for the realization of the matrix analysis required in DVM
wideband beamforming in real-time. The basic principle is
as follows: let 7, be a fractional delay filter, which implies
0 < 7, < 1 with reference to the full-scale clock Fy; GHz.
A delay 7, causes a phase rotation in the frequency domain
exp(—jwt,) where w is the normalized frequency variable
with reference to the master sample rate F; GHz.
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An M-th order finite impulse response (FIR) can be de-
signed and realized as a multirate filter to achieve the necessary
fractional time sample delays. Typically, multiplications are
directly correlated to filter order M that is required for the FIR
filter for high bandwidth and precise operation therein causing
FIR delays to be a major factor for complexity in multi-beam
systems. In our hypothetical design, with PL = 256 we may
assume )M = 16 for a reasonable reference design. The block-
wise computation of the order-M FIR fractional delay filter (an
interpolation operation between integer multiples of the clock
at frequency Fj) can be realized as a matrix-vector product of
the form y = Tx where T is a banded Toeplitz matrix.

The structure of the banded Toeplitz matrix lends itself
well for FFT-based computation and can be realized using
the maximally-decimated uniform-DFT polyphase filterbank
approach to efficient FIR filter realization. Here, the number
of phases is PL = 256 thus leading to a massively parallel
digital architecture.

D. Wideband Digital FPGA Platforms

In the past, fully-digital realizations of wideband beam-
forming networks that operate over multi-GH bandwidths have
been only a dream due to the lack of ADC/DAC and fast DSP
technologies. However, the most recent innovations from Intel
Corporation, namely the Series 9 Direct-RF Agilex system on
chip (SoC) using multi-chiplets packaged together offers excit-
ing possibilities for multi-beam wideband DVM beamformers
that span the legacy bands up to 7 GHz (FR1), and upper
mid-band (7-24 GHz) and frequency range two (24-32 GHz)
in a single antenna system and DSP platform. Our proposed
low-complexity O(N) linear delay-complexity digital DVM
algorithm is a key enabler that when coupled with the latest
Direct-RF chiplets leads to a new realm of possibilities for
fully digital broadband antenna aperture arrays. The Series 9
Agilex Direct-RF chiplets offer 8 ADCs, 8 DACs, and a field
programmable gate array (FPGA) device on the same package,
where each DAC/DAC can operate up to 64 GS/s (bandwidth
of 32 GHz).

IV. CONCLUSIONS

The paper presents our innovative, patent-pending algorithm
for low-complexity true time delay DAS multi-beam beam-
forming, which is based on delay Vandermonde matrices. The
proposed DVM factorization significantly enhances efficiency
by reducing the complexity of computing the DVM-vector
product from O(N?) to O(N). This significant reduction
in computational complexity allows us to develop an algo-
rithm for TTD wideband multi-beam beamformers enabling
approximating DVM with O(N) complexity, streamlining the
process and improving performance. The algorithm uses only
O(N) delay lines, which is a linear complexity system, as
opposed to traditional multi-beam wideband beamformers that
have O(N?) which is quadratic in delay complexity. A brief
overview of our ongoing work with fully digital multi-beam
beamformers that use the state-of-the-art (SOTA) chiplets from
Intel Altera was provided. No real-world realization has been

attempted thus far due to lack of resources. However, the
authors are working towards an experimental realization.
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