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ABSTRACT: Catalysis is inherently complex. The lack of precise
knowledge available to experimental researchers about the
microenvironment, catalytic sites, mechanisms, and changes that
occur under reaction conditions has hindered the effectiveness of
deep-learning artificial intelligence algorithms to predict catalyst
behavior under reaction conditions. Given the type and quality of
data available in the scientific literature, there are still open
questions on how machine learning can be used by experimentalists
working in the field of catalysis to accelerate catalyst design. Here,
we present a framework that leverages large language models to
extract textual data from known and trusted sources to automati-
cally generate large, but relatively low-fidelity, experimental
catalysis data sets across many research groups. We also show that instead of using deep-learning models, which require high-
quality data, shallow learning models with posthoc interpretability can extract valuable information about experimental catalytic
systems from these low-fidelity data sets. The innovation of this work lies not in the model development but in the prompt
engineering, data encoding, and question architectures employed to extract meaningful information. We applied this framework to
two different model reactions: the electrocatalytic reduction of carbon dioxide and the electrocatalytic oxygen reduction reaction. We
showcase that this framework has the ability to uncover known and established facts within the catalysis community, such as the
catalytic properties of Cu, as well as novel insights, including the critical role of voltages above a certain threshold in producing
multicarbon products from CO2. We anticipate that this proposed framework will serve as an entryway for experimental catalytic
researchers to utilize machine learning to rapidly process literature, generate novel hypotheses, and design experiments to accelerate
catalyst development.
KEYWORDS: machine learning, large language models, shallow learning, interpretable machine learning, electrocatalysis, CO2 reduction

1. INTRODUCTION
There is a growing need within the catalysis community to gain
a deeper understanding of how machine learning can be
utilized to guide the design of novel catalysts and catalytic
systems.1−5 Currently, there are some areas where general-
ization of machine learning models has proven to be very
effective in catalysis. For example, machine learning has
demonstrated success in predicting the synthesis, structure, or
other physical properties of materials employing a diverse
range of machine learning techniques.6−18 However, predicting
how a catalyst will perform (e.g., the rate of reaction,
selectivity, energy efficiency, etc.) under a given set of
operating conditions (e.g., temperature, pressure, applied
voltage, etc.) is much more difficult.2,19−22 The challenge is
that the complexity of catalysis is so extensive that it is nearly
impossible to measure, control, or describe all the factors that
influence a catalyst’s performance. For example, there are
certain properties that catalytic research can measure and
control, such as the elemental composition of the catalysts,
which influences the adsorption of key intermediates, the

surface area of the catalysts, which affects the turnover
frequency, and the porosity and tortuosity of a catalyst,
which affects the mass transfer of reactants and products to and
from the catalyst’s surface.23−27 In contrast, variables such as
impurities in the reactant feed streams or catalytic synthesis,
defects in the catalytic surface, or structural changes that occur
during the reaction’s operation are either too challenging to
measure and control or simply overlooked and not reported in
the literature.28,29 The aforementioned challenges render it
virtually impossible to construct the high-fidelity data sets of
experimental catalysis obtained from diverse research groups
that are suitable for deep-learning algorithms. Moreover,
artificial intelligence and machine learning are developing so
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rapidly that it is unclear exactly how this lack of high-fidelity
data will impact the use of large language models and artificial
neural networks.3,30 Some researchers have started to experi-
ment in using large language models, some for data extraction
and some for creating chat bots within scientific fields.31−34

Thus, the open question is how experimental researchers
should utilize machine learning to accelerate catalyst design.
To bridge this gap, we propose a novel artificial intelligence

framework that starts with questions pertaining to a catalytic
system. This framework automatically extracts information
from predetermined, reliable sources selected by the user and
uncovers insights related to the specific questions. The
framework consists of three separate components. The first
component automatically obtains large data sets by applying
large language models as a textual data extraction tool on
existing literature. We show that Generative Pretraining
Transformer (GPT) models offer a high ease of use and
sufficient extraction capabilities. We also show that while the
textual data extracted from LLMs alone may not capture all the
intricate parameters required for modeling catalytic systems, it
can still provide valuable, albeit low-fidelity, data sets that can
provide insights and trends. In addition, utilizing LLMs trained
on only user-selected trusted sources offers an alternative to
other opaque chatbot-style large models.
The second component of our framework is the encoding of

data, ensuring its compatibility with machine-learning algo-
rithms for processing. Encoding is frequently overlooked in the
machine-learning process. In this study, we demonstrate that
appropriately selecting either label encoding or a one-hot
encoding style can reveal distinct types of information
pertaining to catalytic processes.
The third component of our framework is the type of

machine-learning model that we utilized to be of the most
utility to experimental catalytic researchers. In this work, we
focus on shallow learning models such as decision trees and
random forest rather than deep learning approaches, as they
offer greater interpretability between the extracted parameters.
Unlike neural networks, which function as a black box, shallow
models identify feature importance and relationships within
the data. The transparency of relationships provided by shallow
learning models is crucial in catalysis research, where
understanding the underlying factors driving selectivity can
be as important as making accurate predictions. In addition, we
show that these shallow-learning models work well on the
types of low-fidelity data sets that can be automatically
extracted from GPT text models.
As a first model reaction, we investigated what information

this artificial intelligence framework could glean from the
electrocatalytic CO2 reduction reaction (CO2RR). The
CO2RR has several properties that make it an ideal test case
for this framework. First and foremost, the CO2RR is a highly
researched field, with many publications, due to the demand
for novel technologies to convert CO2 into value-added
products, which is crucial for mitigating the impacts of
anthropogenic climate change. The majority of these studies
focus on catalyst development and improving the selectivity of
CO2 conversion, providing extensive catalytic data that are key
to understanding the underlying reaction mechanisms.
However, the sheer volume of published research makes it
nearly impossible for any individual researcher to stay fully
informed. Thus, it leaves room for crucial catalytic insight gaps
for researchers in the field. Moreover, despite the large amount
of publications and the many review articles, there are

currently no repositories with large enough databases within
this field to perform insightful machine learning.
In this study, we obtained the key parameters that control

(1) whether the electron transfer process was low (2 e−

transfers) or high (more than 2 e− transfers), (2) whether
the reaction produced multicarbon or single-carbon products,
(3) whether CO or formate/formic acid was the favored
product, and (4) whether CO or ethylene was the favored
product. We then demonstrated that this AI framework
independently determined some known parameters about the
CO2RR (such that Cu is a catalyst that produces ethylene, and
In and Bi produce formic acid), and some more complex
interactions such as voltages more negative than −0.43 V vs
RHE are critical for producing multicarbon products. We
anticipate that this proposed framework will serve as the
entryway for experimental catalytic researchers to utilize
machine learning to rapidly process the literature and generate
novel hypotheses. We also anticipate that this framework,
which incorporates posthoc interpretable models, will provide
catalytic researchers with additional information that will
facilitate extrapolation and the development of novel catalytic
systems.
As a second model reaction, and to demonstrate

reproducibility of this extraction framework, we took another
reaction, the oxygen reduction reaction (ORR), and performed
the same procedure of feature extraction and ML predictions.
For this demonstration, we took a smaller data set spanning 5
years of literature from 2020 to 2024. Using this framework,
we identified the most influential features on the model’s
prediction to be Pt, nanoparticle structure, Fe, KOH as the
electrolyte, and Pd. If the reaction conditions contained any of
those features, the model was more likely to predict that the
half-wave potential was higher than the median.

2. METHODS

2.1. Data Collection, Processing, and Encoding
A collection of peer-reviewed publications was obtained using Google
Scholar (https://scholar.google.com) to serve as our starting library.
These articles were from a 10-year period of 2013−2023 relating to
electrochemical CO2 reduction.

To extract textual data from the manuscript library, a commercial
Generative Pretraining Transformer (GPT) API: ChatPDF API
(https://www.chatpdf.com/) was used. Given a prompt, the API
collected low-fidelity textual data on electrochemical CO2 catalyst and
reaction parameters from the literature articles. The prompt was
created by repetitively adjusting the prompt wording on a few known
papers to extract data and compare the output to the known features.
It was then expanded to larger sets of data, and if a feature requested
for extraction was consistently not being extracted by the LLM, it was
removed from the prompt, and the resulting papers were checked to
see if they contained the feature. The prompt given to API was “can
you extract the relevant electrochemical CO2 catalyst data with
columns including: metal, voltage, units of voltage (mv or V),
reference electrode, electrolyte, product, catalyst surface area, a yes or
no on if it is a gas diffusion electrode, and if the catalyst structure one
of the following: nanoparticle, polycrystalline, foil, thin film, porous,
oxide derived, or amorphous in table format?”. The response was then
cleaned and put into table formatting for postprocessing (Supporting
Information Figure S1). A manual check of 20% of each year’s articles
was performed to ensure they were being extracted properly, and a
qualitative assessment showed that the automated text extraction was
very similar to human extraction.

The post-processing of the data included evaluating, cleaning, and
handling missing data points. For values within the other categories
that the GPT API could not find, the data point was assigned as “not
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specified”. If a data point is being predicted a specific way and has a
“not specified,” it shows that there is enough data in the data set that
the model recognized the pattern in the other features and was able to
predict the corresponding question. Some of the columns needed
cleaning; for example, the voltage was collected with a unit of V or
mV. The unit was separated into its own column and used to convert
all voltages in mV to V. The voltage was then standardized using the
reference electrode column of the table, so that every point references
the RHE. If the pH was not reported, we used the standard conditions
for the electrolyte given. Additionally, for all the columns, minor
variations of spelling and names were standardized.

Once the database was in a clean and usable format, a mixed
encoding strategy was implemented where the numerical values were
left continuous, the catalyst metals were one-hot encoded, and the
other categorical columns were label encoded (Supporting
Information Table S1 and S2). For the label-encoded features, they
were strategically given numerical values based on general size and
likeness to each other. For example, the ionic radius of Na is smaller
than that of K; therefore, the sodium-based electrolytes were grouped
together and given smaller values than the potassium-based
electrolytes.

2.2. Machine Learning
The processed and encoded database was then used as the input for
the binary classification machine learning models. For each of the
proposed questions, the database only utilized the data points relevant
to the specific prediction (i.e., for CO vs formate only data points with
CO or formate from the database were used). Therefore, each of the
predictions used a different number of data points from the database.

The models utilized were scikit-learn version 1.3.2 Python package
for the decision tree and random forest classifiers.35 The training of
the models used a training/test/validation split of 0.8/0.1/0.1 for each
of the proposed questions. Evaluation of the models utilized
validation versus training data to determine the optimal layers of
the decision trees and the random forest. For the evaluation of the
results for the random forest model, two methods were used. First, the
built-in feature importance from scikit-learn with label-encoded
features. Second SHAP (SHapley Additive exPlanations) force plots
were used with one-hot encoded features for further catalytic
understanding.36

3. RESULTS AND DISCUSSION
The flow diagram for the integrated LLM-shallow learning
framework, which starts with a topic search query and
subsequently generates valuable catalytic insights, is depicted
in Figure 1. The initial step involves utilizing a commercial
scientific search engine to generate a list of digital object
identifiers of peer-reviewed publications pertaining to the topic
query: “electrochemical CO2 reduction.” By restricting the
search to a 10 year period, spanning from 2013 to 2023, 2302
peer-reviewed PDF-formatted manuscripts on the topic of
electrochemical CO2 reduction were identified. To ensure the
relevance of the data, a thorough review of the collected PDFs
was conducted to remove articles unrelated to CO2 reduction,
verify that all of the manuscripts contained experimental data,
and exclude review papers. Review papers were excluded as
they may potentially introduce multiple repetitive data points,
potentially biasing machine learning models.
Following the procurement of the PDF-formatted manu-

script collection, a commercial Generative Pretrained Trans-
former Large Language Model (GPT LLM) was employed to
read and automatically extract textual data (see Methods and
Supporting Information for more details).
To extract textual data from the scientific literature, the GPT

LLM model must be capable of handling the inconsistency in
the terminology and completeness of the reported data, which
can vary significantly across different authors and journals.
These inconsistencies necessitate the implementation of
effective prompt engineering as a critical component of
LLMs for data extraction purposes. Engineered prompts
guide the model to retrieve the most relevant information,
despite variations within the publications. Here, we engineered
a single prompt that would extract specific textual information
regarding the nature of the catalyst, the electrochemical
reaction conditions [specifically, the catalyst material, catalyst
structure, applied voltage, reference electrode, electrolyte, and

Figure 1. Flow diagram for the integrated LLM-shallow learning framework. The framework starts with a topic search query to produce a collection
of PDF-formatted manuscripts. An LLM is then used on the manuscript collection to automatically produce a low-fidelity database of reaction
conditions and catalytic properties. From this database, shallow-learning models produce catalytic insights without significant model tuning.
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whether the system utilized a gas-diffusion electrode (GDE)
setup], and the major product from each manuscript.
As illustrated in Figure 2, the prompt that yielded the most

effective results for our electrocatalytic data extraction was:
“extract the relevant electrochemical CO2 catalyst data with
columns including: metal, voltage, units of voltage (mv or V),
reference electrode, electrolyte, product, catalyst surface area, a
yes or no on if it is a gas diffusion electrode, and if the catalyst
structure one of the following: nanoparticle, polycrystalline,
foil, thin film, porous, oxide derived, or amorphous in table
format with no other wording?” Examining this prompt shows
several key aspects of prompt engineering specifically tailored
for catalytic data extraction. First, the user must clearly define
the specific features to be extracted and verify if different units
are reported (e.g., in the voltage feature). Second, binary
categorical features (e.g., yes or no for GDE systems) should
be explicitly stated to provide a binary output. Third, complex
multiclass categorical features (e.g., the catalyst structure) can
be prebinned during prompt engineering. This step is crucial
for subsequent machine learning phases. Having excessive
classes for any one feature can hinder the learning of shallow-
learning models. Therefore, prebinning the features into user-
specified classes using the GPT LLM facilitates the extraction
of the most information from shallow-learning models.
Running this prompt on all manuscripts in the collection

produced an unencoded database as presented in Figure 2.
Following the creation of the GPT LLM database, post-
processing was performed to encode and standardize the data
set. First, the database was analyzed to ensure all categories
had enough data to be effectively used in the subsequent
machine-learning studies. After examining the database, we
observed that some information, such as the surface area of the
catalyst and the faradaic efficiency of the major product, was

not consistently reported. Consequently, this information was
deemed insufficient for subsequent machine-learning studies
and was not included in the final database.
Second, there was the further binning of certain categorical

values, such as structure and electrolyte, into more concise
categories, which was done with the GPT-prompt engineering
binning. Refining the bins improves model performance by
preventing overfitting to minor variations and allowing the
algorithms to learn generalizable patterns rather than
memorizing specific cases. For instance, the category
“structure” could include items such as nanoparticle, nanowire,
nanotube, and nanosized. Binning these into an overarching
class of “nanoparticle” ensures that the model captures
underlying trends in catalytic behavior rather than being
influenced by slight naming variations across publications.
Another example of binning was for the products of the
reaction. If the literature article had multiple products listed
under the same conditions, the LLM would combine multiple
products into the data point. To address this issue, we
categorized these examples into three categories: (1) single
carbon products, if all the products listed were single carbons,
(2) multicarbon products, if all the products listed were
multicarbon, and (3) mixed carbon products, if the data point
contained both single and multicarbon products. Note, those
data points that contained multiple products were only used
for predicting the carbon−carbon coupling ability of the
catalysts.
The third step is encoding the data set. Typically, categorical

data are either labeled encoded (by assigning each class a
number) or one-hot encoded, where each class in a category is
separated into its own feature. However, we observed that a
strategic mixed encoding method, where a combination of
label and one-hot encodings is used for different features

Figure 2. Schematic showing the workflow starting with the search query to obtain a library of .pdf documents (left), followed by a GPT LLM
prompt applied to all manuscripts in the collection to an unencoded database (middle). This database is then encoded so that it is suitable for
interpretable shallow-learning to obtain new catalytic insights (right).
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depending on the nature of the categorical data, can extract
additional knowledge from shallow-learning models. Label
encoding was used for the features of electrolyte, structure, and
product because the numerical values help preserve the
meaningful order relationships. For instance, the electrolyte
was encoded to group similar cations together and separate
organic versus aqueous electrolytes. In contrast, one-hot
encoding was used for the catalyst metals to ensure that
relationships between catalyst compositions were captured by
the model. The objective of the mixed encoding strategy was
to maintain the dimensionality of the data set relatively low by
utilizing only one-hot encoding for one feature while

preserving the numerical relationships of the label-encoded
features. This produced a strategically encoded, low fidelity
database suitable for shallow machine learning models to
answer questions on the intricacies of the CO2RR (Figure 2).
Once the database is created, we employed shallow learning

models with native or posthoc interpretability to gain insights
from the machine learning models. For instance, decision trees
are inherently interpretable because they make predictions
based on a series of decision points where each decision best
separates the data. Features at the top of the tree are the most
important and have the greatest impact on decision-making.
Therefore, analyzing the decisions at the top of the decision

Figure 3. Model accuracies (1) and confusion matrices from the results of the decision tree (2) and random forest (3) models for each of the four
questions asked to the database. (a) Whether the electron transfer process was low (2 e− transfers) or high (more than 2 e− transfers). (b) Whether
CO or formate/formic acid was the major product, (c) whether the reaction produced multicarbon or single-carbon products, (d) whether CO or
ethylene was the major product.
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tree can provide valuable insights to the experimental
researcher regarding properties that are more likely to
influence the outcome of the catalytic reaction. Random forest
models, which are an ensemble learning method that builds
multiple decision trees and combines their outputs to improve
accuracy and reduce overfitting, are also highly interpretable.
First, by measuring how each tree improves decision splits,
random forests can provide insights into which features are
most important. Random forests are also highly receptive to
posthoc interpretability techniques such as SHAP, which
quantifies the impact of each feature on a machine learning
model’s predictions. Moreover, shallow learning models can
provide this comprehensive understanding of a data set with
very minimal tuning. In both decision trees and random
forests, the primary parameter that influences overfitting versus
underfitting is the tree depth, which is very easy to tune.
Therefore, we opted to analyze this data set using both
decision trees and random forest models to gain maximum
insight from the low fidelity data, with minimum tuning
required.
The next step to gaining human understanding using

machine learning is to ask the machine learning models the
correct questions for the type of data that you have. Here, our
goal was to determine how the interactions of the different
catalysts and reaction parameters that the GPT LLM model
extracted affected the outcome of the CO2RR. To achieve this,
we designed a series of binary classification questions relating
to CO2 electroreduction. Specifically, we asked the models to
classify: (1) whether the electron transfer process was low (2
e− transfers) or high (more than 2 e− transfers), (2) whether
CO or formate/formic acid was the major product, (3)
whether the reaction produced multicarbon or single-carbon
products, and (4) whether CO or ethylene was the major
product. These questions were chosen as they are of interest
within the CO2 electroreduction community. Moreover,
choosing only binary classification questions helps with the
model interpretability, and understanding which features affect
the outcome of these binary classification questions helps
humans understand these complex data sets.
For question 1 (whether the electron transfer process was

low or high) and question 3 (whether the reaction produced

multicarbon or single-carbon products), the full data set was
used for machine learning. For questions 2 (whether CO or
formate/formic acid was the major product) and 4 (whether
CO or ethylene was the major product), a subset of the data
set was used that only contained examples where one of the
two products of interest was produced. Each data set was split
into a training set to train the model, a validation set to select a
tree depth that limits over- and under-fitting, and a final testing
of data that the model has not seen during training. For each
tree depth, the accuracy of the model on the training set and
the validation set was calculated (Supporting Information
Figures S5−S12). To prevent over- and under-fitting, the
smallest tree depth that produced maximum accuracy on the
validation set was used. Once the tree depth was chosen, the
accuracy of the testing data was calculated for each model, with
no additional tuning.
The accuracy and confusion matrices of each testing set for

both the decision tree and random forest models across the
four classification tasks are shown in Figure 3. In many
machine learning studies, the goal is to obtain a generalization
model that can achieve high accuracy on the data set (both
training and testing) collected. Here, the goal is to use the
model accuracy of the shallow learning models to quantify the
quality and amount of data collected by the GPT LLM
automated data extraction. Figure 3 shows that relatively high
shallow-learning accuracies can be achieved from data
automatically collected from GPT LLM techniques. Specifi-
cally, for predicting electron transfer as low (2 e−) or high (>2
e−), the decision tree model achieved an average accuracy of
0.82 with a 5-fold cross-validation of 0.80, while the random
forest model performed slightly better at 0.86 with a cross-
validation of 0.82 (Figure 3a). The prediction of whether CO
or formate/formic acid was the favored product resulted in an
average accuracy of 0.81 for both models (Figure 3b). The 5-
fold cross-validation for the decision tree was 0.80, and the
random forest was 0.81. The classification of multicarbon
versus single-carbon products yielded similar results, with the
decision tree reaching 0.86 average accuracy and the random
forest slightly lower at 0.85 (Figure 3c). The 5-fold cross-
validation was 0.83 for the decision tree and 0.85 for the
random forest model. The highest accuracy was observed in

Figure 4. Feature importance (1) and decision trees (2) for (a) whether the electron transfer process was low (2 e− transfers) or high (more than 2
e− transfers). (b) Whether CO or formate/formic acid was the major product, (c) whether the reaction produced multicarbon or single-carbon
products, and (d) whether CO or ethylene was the major product.
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the classification of CO versus ethylene selectivity, where both
models achieved 0.93 average accuracy with a 5-fold cross-
validation score of 0.90 for both models, suggesting that there
could be a clearer distinction or separation of features within
the data set (Figure 3d).
The relatively high accuracy of the shallow learning models

suggests the effectiveness of the GPT LLM data collection
procedure. If there were large inaccuracies with the automated
data collection of the features, then we would have expected a
very low accuracy in the testing. Additionally, significant
inaccuracies in the extraction of the products would result in
either highly unbalanced data sets or poor predictive
performance. Since the accuracies were high, we can have
high confidence that the GPT LLM model is able to extract the
relevant information from a single prompt. Moreover, analysis
of the confusion matrices in Figure 3 shows whether the data
set is balanced or imbalanced. Typically, in machine learning
models, one desires a highly balanced data set to improve the
prediction power. However, when data from the experimental
literature are collected, the data might be inherently
imbalanced due to the actual results and findings from
experimental researchers. Here, we can see that despite the
desire of the CO2RR community to produce high-value
multicarbon products, the major products of most studies are
biased toward single-carbon, low electron transfer products.
Beyond classification accuracy, the interpretability of these

models provides valuable insights into the underlying trends
governing the CO2 electroreduction. Here, we show that
combining the analysis of feature importance from the random
forest model with the analysis of the first few splits of the
decision trees can provide great insights into key parameters of
a catalytic reaction. For example, starting with the low or high
electron classification in Figure 4-1a, the random forest feature
importance found that the two most important contributors to
the difference between high and low electron transfers were the
use of Cu catalysts and the voltage. Now connecting that to the
decision tree (Figure 4-2a), the first split of the decision tree
was whether the catalyst contains Cu. The tree determined
that if the catalyst contained Cu, the electron transfer rate
would be high, with over half, 299 out of the 519 high electron
samples, using Cu in the catalysts. If the catalyst did not
contain copper, the model predicted that it would have low
electron transfer, with 85% of the low electron samples not
containing copper. Moreover, the decision tree shows that 29
samples used catalysts that contained both Cu and Sn, and
100% of those samples underwent low electron transfers. This
is an interesting observation because it demonstrates that
combining Cu with Sn favors the typical Sn-only mechanism
compared to the Cu-only mechanism.
The two major products for samples that undergo low

electron transfers are carbon monoxide (CO) or formate/
formic acid. Since both of these products are single carbon and
exhibit low electron transfers, we expected different trends
highlighted by both the random forest and decision tree
models than the earlier questions. As shown in Figure 4-1b, the
random forest model identified the presence of Sn in the
catalyst as the most important feature, followed by voltage and
the presence of Bi in the catalyst. This finding was further
supported by the decision tree model (Figure 4-2b), which
showed that both Sn and Bi produce formate/formic acid. For
those researchers already experienced with electrocatalytic
CO2 reduction, it is known that both Sn and Bi are catalysts
that primarily form formate/formic acid. Nevertheless, the fact

that the GPT LLM machine learning framework was able to
independently arrive at these conclusions lends credibility to
the overall process and the other findings of the model.
For the case of single versus multicarbon product formation,

the feature importance noted by the random forest model was
overwhelmingly the presence of Cu in the catalyst, followed by
voltage (Figure 4-1c). This trend is similar to the electron
transfer classification, as the underlying reaction pathways
largely overlap, except those of methane and methanol, which
require a higher electron transfer, shift from the high electron
transfer category to the single carbon category. The depend-
ence on copper previously seen by the electron transfer
classification and the random forest model is reiterated in the
decision tree model, with the root node containing Cu.
However, only having a catalyst that contains Cu does not fully
determine if a multicarbon product is made. Instead, while
80% of single carbon data points lack a Cu presence in the
catalyst, the formation of multicarbon products is only
observed by the model when Cu is present and the voltage
is more negative than −0.431 V vs RHE, as seen by the second
split in the decision tree (Figure 4-2c). This tie between the
applied voltage and the catalysts for promoting C−C coupling
is an important observation and one that might not be obvious
to those who even work in the field of electrocatalytic CO2
reduction. These machine learning insights are consistent with
trends we have seen in DFT literature for C−C bond
formations. It has been demonstrated that C−C bonds are
formed at −0.4 V vs RHE through a CO dimer,37 which is
similar to our −0.431 V prediction for C−C coupling.
For the final proposed question, we evaluated how machine

learning models predict the formation of CO versus ethylene.
We asked this as it is similar to both the electron transfer and
the carbon−carbon coupling, but on a more precise scale. As
expected, the random forest returned that Cu was the most
important feature (Figure 4-1d). The decision tree also
confirmed the importance of Cu as an important feature
shown in (Figure 4-2d). If the catalyst did not contain copper,
it separated 86% of the CO data points from the majority of
the ethylene production data. However, interestingly, 58% of
the samples whose catalyst contained Cu produced CO over
ethylene. Analyzing the decision tree further shows that a
voltage more negative than −0.91 V vs RHE was required to
classify the sample as ethylene. Here, 62% of samples whose
catalysts contained Cu and voltage was more negative than
−0.91 V vs RHE produced ethylene over CO. Comparing this
to the carbon−carbon coupling predictions, the voltage to
produce ethylene with a Cu catalyst −0.91 V, was relatively
higher than separating single carbon from multicarbon
products −0.431 V vs RHE, suggesting that forming ethylene
requires a more negative potential compared to other
multicarbon products. These findings are consistent with
DFT studies for C−C coupling versus ethylene formation. The
DFT study mentioned before found that ethylene formation
needs −1.0 V vs RHE, which was more than their finding of
−0.4 for C−C coupling.37

While feature importance for random forest has proven itself
to be an important tool for identifying key catalytic parameters,
it does not provide direct insight into how these features
influence the reaction. To further investigate the impact of the
features on the reaction, we used SHAP to quantify the
contribution of individual features to the model’s predictions.
SHAP works by connecting optimal credit allocations with
local explanations. For binary classification, SHAP will tell you
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if higher or lower values indicate a specific prediction by the
model, making it a powerful method for interpreting machine-
learning models. By structuring the complicated problem of
CO2 electroreduction as a series of binary classification
questions, we can extract more detailed insights into
underlying reaction trends. To truly understand how each
individual feature influenced the reaction, we decided to one-
hot encode the previously label-encoded features. For example,
instead of stating that “electrolyte” influences a reaction a
certain way, it breaks down each electrolyte in the database and
determines how the reaction is influenced by the individual
electrolytes.
For each SHAP analysis, we took the six most relevant and

distinguishing features and displayed them in Figure 5. In the
case of predicting low or high electron transfer (Figure 5a), the
features chosen were Cu, voltage, polycrystalline structure,
porous structure, and Sn- and Au-containing catalysts. The
SHAP analysis displays a strong distinction between catalysts
containing Cu and those that do not. Catalysts containing Cu
overwhelmingly contribute to high electron transfer, as
indicated by the red data points in the plot, while catalysts
without Cu present overwhelmingly contribute to low electron
transfer. This reinforces the well-known connection that Cu
catalysts have within the reaction and shows that machine
learning models can pick up on catalytic trends within the data.
Since the reported voltages are continuous values rather than

binary, their SHAP values display a gradient from blue to red
rather than distinct classifications. In the case of the electron
transfer, we see that lower values (i.e., more negative
potentials) are most prominent in creating high electron
transfer. Interestingly, some higher values (i.e., less negative)
potentials were still able to facilitate high electron transfers,
indicating that the voltage was not the sole determining factor.
Additionally, two structures were also shown as promising
features by SHAP analysis with opposing influences on the
reaction. Polycrystalline catalysts were found to be more likely
to facilitate high electron transfer, while porous catalysts were
more likely to produce low electron transfer. Circling back to

catalyst metals, the model was able to correctly identify that
both Sn and Au are known to favor low electron transfer
products, which further reinforces known catalytic trends.
Moving the case of CO versus formate/formic acid

production (Figure 5b), the key features identified by the
SHAP analysis were almost all relating to catalyst composition.
The model determined that the presence of Sn, Bi, or oxygen
in the catalyst strongly favored formate/formic acid formation,
whereas catalysts containing Au or Ni were more likely to favor
CO production. Additionally, the last feature that was the most
significant in the SHAP analysis was the electrolyte KHCO3,
which favored formate/formic acid production. Comparing
these results to the feature importance in Figure 4, we see that
while voltage was ranked as the second most important feature
in the overall classification, it was not as influential in
determining the favored product. This suggests that while
voltage plays an important role in the reaction, its effect on
product distribution may be more complex and catalyst
composition dependent rather than a primary factor. This is
a benefit to using SHAP in congruence with the feature
importance within a random forest model to understand which
features are important and how they can interact to influence
specific outcomes.
Moving to the single carbon versus multicarbon classi-

fication (Figure 5c), we expected to observe similar trends in
features as the electron transfer again due to their similarity in
products produced, which we do see, with the Cu catalyst,
voltage, polycrystalline, and porous structures all having the
same overarching trends as the electron transfer SHAP had
shown. However, two new features were highlighted with
regard to carbon−carbon coupling. The use of KOH as the
electrolyte and the catalyst being oxide-derived strongly
favored the production of multicarbon products. Although
oxide-derived catalysts are well-known for producing multi-
carbon products, the utilization of KOH for C−C coupling
may not be immediately apparent to individuals working in the
field of electrocatalytic CO2 reduction.

Figure 5. SHAP force plots including the top 6 influential features for each of the four questions asked to the database. (a) Whether the electron
transfer process was low (2 e− transfers) or high (more than 2 e− transfers). (b) Whether CO or formate/formic acid was the major product, (c)
whether the reaction produced multicarbon or single-carbon products, (d) whether CO or ethylene was the major product.
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Lastly, for the case of CO versus ethylene production
(Figure 5d), we observe a combination of the features
previously identified by the electron transfer and multicarbon
classifications. These features include Cu, voltage, Au, and
polycrystalline and porous. As expected, Cu in the catalyst
favors the production of ethylene, as ethylene requires multiple
electron transfers and carbon−carbon coupling. It is also
observed that more negative voltage values favor ethylene,
while more positive and intermediate values favor CO
production. Similar to previous findings in both the electron
transfer and the CO versus formate questions, SHAP
determined that catalysts containing Au favor CO. Addition-
ally, SHAP reinforced that the porous and polycrystalline
structures promote opposite effects on product production, as
polycrystalline favors ethylene and porous favors CO. Lastly,
we see that catalysts containing Pd favor CO.
To demonstrate reproducibility of this extraction framework,

we took another reaction, the ORR, and performed the same
procedure of feature extraction and ML predictions. For this
demonstration, we took a smaller data set spanning 5 years of
literature from 2020 to 2024. Since ORR has different features
than the CO2RR the prompt was updated to the following:
“extract the relevant electrochemical ORR catalyst data with
columns including: metal, if the catalyst is an oxide yes or no,
half wave potential, Tafel slope, overpotential, reference
electrode, electrolyte, the catalyst support material, pH, scan
rate, rpm, average electron number, and if the catalyst structure
one of the following: nanoparticle, polycrystalline, foil, thin
film, porous, oxide derived, or amorphous”. The resulting
database was evaluated and cleaned using the same procedure
as the CO2 database, removing features that did not have
enough data points for predictions.

Unlike the CO2RR, the ORR does not have as many
products to use for predictions. Therefore, a new question was
proposed that needed to be answered. For the ORR, the half-
wave potential is an important indicator of catalytic efficiency
and was found to be reported in many ORR papers. We
decided from the extracted literature articles to predict if the
half-wave potential was higher or lower than the median half-
wave potential over the 5-year span of articles. The median
from the extracted papers was found to be 0.86 V vs RHE.
Data points higher than the 0.86 V were marked as above
median for training the machine learning models. We chose to
predict if the reaction parameters were above the median half-
wave potential, as those would be the more favorable reaction
conditions. Additionally, we chose the half-wave prediction as
it is still a binary classification problem, the same as the CO2
predictions. The data set used for the machine learning
consisted of 693 data points, of which 352 were below the
median and 341 were above the median half-wave potential.
Starting with decision trees, the binary classification of

predicting above the median produced an accuracy of 0.70
with a max depth of 6. For the smaller ORR data set, this is
considered good as there are fewer data points for model
training and is better than a 50/50 random guessing that could
occur with low amounts of data. The random forest model on
the ORR data produced an accuracy of 0.74 with a maximum
depth of 5. The comparison of both models’ predictions can be
seen in (Figure 6). The feature importance from the random
forest gave Pt as the most important feature with an
importance of 0.12. This was closely followed by the catalyst
structure being a nanoparticle as the next most important
feature, with an importance of 0.08. To understand how the
individual features influenced the prediction, SHAP was
performed on the random forest model. SHAP identified the

Figure 6. Confusion matrices from the results of the decision tree (left) and random forest (right) for the Oxygen Reduction Reaction (ORR)
dataset to predict if the half-wave potential was more positive or more negative than the median half-wave potential.

Figure 7. SHAP force plots (left) and feature importance (right) for the Oxygen Reduction Reaction (ORR) dataset that shows which features are
most important in predicting if the half-wave potential was above or below the median half-wave potential.
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most influential features on the model predictions to be Pt,
nanoparticle structure, Fe, KOH as the electrolyte, and Pd. If
the reaction conditions contained any of those features the
model was more likely to predict that the half-wave potential
was higher than the median (Figure 7).
With both the ORR and CO2 data sets, there are important

catalytic descriptors that we believe could have made the
accuracy of the models significantly higher. However, they are
not consistently reported within the text of the literature.
These parameters were left out of the database, including
faradic efficiency, surface area, and catalyst support material.
Since LLMs are currently limited to reading text and some of
these features are commonly reported within figures as data
points on a graph, they are difficult to extract. Advancements in
computer vision and large language models are needed to
extract these important catalytic parameters in their current
form. Additionally, there is no standard way to report specific
data features within literature articles. Some articles lacked
important features such as catalyst surface area within the
paper as a whole, which leads to significant gaps when doing
machine learning predictions.
As a test to determine if non-catalytic parameters influenced

the model as a feature, we added the year of publication to the
ORR predictions. The year of publication is good to know
within the data set to keep track of trends within the literature.
However, we wanted to determine if it would influence the
model decision making, as it is not directly related to the
catalytic reaction parameters. For the decision tree model, it
did not affect the model accuracy as it remained at 0.70 at a
max depth of 6. For the random forest model, it only slightly
increased the accuracy to 0.77 with an additional 2 correctly
predicted data points at a max depth of 6. Thus, adding the
year as a feature does not significantly increase the accuracy of
the models.

4. CONCLUSION
There are still open questions regarding how machine learning
models trained on experimental data taken from across
research groups can be utilized to design novel catalysts,
given the limitations in terms of data depth and quality.
Nevertheless, the framework presented showcases several key
applications of machine learning that will be beneficial to
numerous experimental researchers engaged in catalysis.
First, we show that commercial GPT LLM models are

accurate enough to construct low-fidelity databases automati-
cally with a single prompt, given that the prompt is engineered
properly. Second, we show that a mixed label and one-hot
encoding system of this GPT LLM database is necessary to
extract maximum information from the low-fidelity database.
Third, we demonstrate that, due to the low fidelity of the
automated database, applying shallow-learning models with
posthoc interpretability can provide human researchers with a
greater understanding of the complexity of the catalytic system
compared to simply running a “black-box” deep learning model
that provides a prediction without any indication of the
reasoning behind it. Furthermore, these shallow learning
models can be utilized with minimal tuning, enhancing their
accessibility compared with more intricate models. Finally, we
demonstrate that instead of using the database to make a
complex multiclass prediction, dividing the problem into
several binary classification problems provides the experimen-
tal researcher with more insights from the interpretable
algorithms.

To demonstrate these findings, we applied this framework to
the electrocatalytic reduction of carbon dioxide as a model
reaction due to the challenges in understanding product
selectivity. We observed that this framework was able to
independently obtain information that is known by the CO2
electrocatalysis community, such that Sn and Bi produce
formate/formic acid, Au and Ni produce CO, and Cu
undergoes both high electron-transfer reactions and C−C
coupling. The fact that these well-known relations were
identified by the machine-learning framework gives credence
to the machine-learning model. In addition, the framework was
able to identify more complex interactions that could be useful
to experimental researchers. For example, the framework
indicates that to produce multicarbon products, oxide-derived
Cu catalysts in KOH with a voltage more negative than ca.
−0.45 V vs RHE will likely create multicarbon products. To
produce ethylene specifically, the model suggests that
polycrystalline Cu at a voltage more negative than ca. −0.9
V vs RHE is preferred.
We believe that using this type of analysis gives experimental

researchers more confidence in the outcomes and more
understanding than a “chat bot” style GPT model, where no
information is given on why or how the decisions are being
made. Moreover, we believe that as artificial intelligence and
large language models continue to advance, they will play a
critical role in helping catalytic researchers understand these
complex systems more effectively.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/jacsau.5c01087.

Data encoding tables, additional decision tree graphs,
max depth determination figures, additional full SHAP
analysis figures, and database of extracted properties
(PDF)
Sample Python code (PDF)
Information on metals, voltage, units of voltage,
reference electrode, electrolyte, surface area, GDE,
structure, and molarity (XLSX)

■ AUTHOR INFORMATION
Corresponding Author

Kevin C. Leonard − Department of Chemical & Petroleum
Engineering, The University of Kansas, Lawrence, Kansas
66045, United States; Center for Environmentally Beneficial
Catalysis, The University of Kansas, Lawrence, Kansas
66045, United States; orcid.org/0000-0002-0172-3150;
Email: kcleonard@ku.edu

Author
Brianna R. Farris − Department of Chemical & Petroleum
Engineering, The University of Kansas, Lawrence, Kansas
66045, United States; Center for Environmentally Beneficial
Catalysis, The University of Kansas, Lawrence, Kansas
66045, United States

Complete contact information is available at:
https://pubs.acs.org/10.1021/jacsau.5c01087

Notes
The authors declare no competing financial interest.

JACS Au pubs.acs.org/jacsau Article

https://doi.org/10.1021/jacsau.5c01087
JACS Au 2025, 5, 5578−5589

5587

https://pubs.acs.org/doi/10.1021/jacsau.5c01087?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/jacsau.5c01087/suppl_file/au5c01087_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.5c01087/suppl_file/au5c01087_si_002.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.5c01087/suppl_file/au5c01087_si_003.xlsx
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kevin+C.+Leonard"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-0172-3150
mailto:kcleonard@ku.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Brianna+R.+Farris"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/jacsau.5c01087?ref=pdf
pubs.acs.org/jacsau?ref=pdf
https://doi.org/10.1021/jacsau.5c01087?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


■ ACKNOWLEDGMENTS
This work was funded by the U.S. National Science
Foundation Research Traineeship (NRT) grant through
Award DGE-1922649. We also acknowledge support by the
U.S. Army DEVCOM ARL Army Research Office (ARO)
Energy Sciences Competency, Electrochemistry Program
award # W911NF-22-1-0293. The views and conclusions
contained in this document are those of the authors and should
not be interpreted as representing the official policies, either
expressed or implied, of the U.S. Army or the U.S.
Government.

■ REFERENCES
(1) Sun, J.; Liu, C. What and how can machine learning help to
decipher mechanisms in molecular electrochemistry? Curr. Opin.
Electrochem. 2023, 39, 101306.
(2) Mou, L. H.; Han, T. T.; Smith, P. E.; Sharman, E.; Jiang, J.
Machine Learning Descriptors for Data-Driven Catalysis Study. Adv.
Sci. 2023, 10, 2301020.
(3) Behr, A. S.; Chernenko, D.; Koßmann, D.; Neyyathala, A.; Hanf,
S.; Schunk, S. A.; Kockmann, N. Generating knowledge graphs
through text mining of catalysis research related literature. Catal. Sci.
Technol. 2024, 14, 5699−5713.
(4) Yang, W.; Fidelis, T. T.; Sun, W. H. Machine Learning in
Catalysis, from Proposal to Practicing. ACS Omega 2020, 5, 83−88.
(5) Toyao, T.; Maeno, Z.; Takakusagi, S.; Kamachi, T.; Takigawa, I.;
Shimizu, K. I. Machine Learning for Catalysis Informatics: Recent
Applications and Prospects. ACS Catal. 2020, 10, 2260−2297.
(6) Hickey, K.; Feinstein, J.; Sivaraman, G.; MacDonell, M.; Yan, E.;
Matherson, C.; Coia, S.; Xu, J.; Picel, K. Applying machine learning
and quantum chemistry to predict the glass transition temperatures of
polymers. Comput. Mater. Sci. 2024, 238, 112933.
(7) Mohan, M.; Smith, M. D.; Demerdash, O. N.; Simmons, B. A.;
Singh, S.; Kidder, M. K.; Smith, J. C. Quantum Chemistry-Driven
Machine Learning Approach for the Prediction of the Surface Tension
and Speed of Sound in Ionic Liquids. ACS Sustainable Chem. Eng.
2023, 11, 7809−7821.
(8) Zhang, S. Q.; Xu, L. C.; Li, S. W.; Oliveira, J. C.; Li, X.;
Ackermann, L.; Hong, X. Bridging Chemical Knowledge and Machine
Learning for Performance Prediction of Organic Synthesis. Chem.�
Eur. J. 2023, 29, No. e202202834.
(9) AlQuraishi, M. Machine learning in protein structure prediction.
Curr. Opin. Chem. Biol. 2021, 65, 1−8.
(10) Kouba, P.; Kohout, P.; Haddadi, F.; Bushuiev, A.; Samusevich,
R.; Sedlar, J.; Damborsky, J.; Pluskal, T.; Sivic, J.; Mazurenko, S.
Machine Learning-Guided Protein Engineering. ACS Catal. 2023, 13,
13863−13895.
(11) Zhang, W.; Wang, Y.; Ren, S.; Hou, Y.; Wu, W. Novel Strategy
of Machine Learning for Predicting Henry’s Law Constants of CO2 in
Ionic Liquids. ACS Sustainable Chem. Eng. 2023, 11, 6090−6099.
(12) Huang, C.; Jia, X.; Zhang, Z. A modified back propagation
artificial neural network model based on genetic algorithm to predict
the flow behavior of 5754 aluminum alloy. Materials 2018, 11, 855.
(13) Cao, Z.; Dan, Y.; Xiong, Z.; Niu, C.; Li, X.; Qian, S.; Hu, J.
Convolutional Neural Networks for Crystal Material Property
Prediction Using Hybrid Orbital-Field Matrix and Magpie Descrip-
tors. Crystals 2019, 9, 191.
(14) Valli Priyadharshini, K.; Vijay, A.; Swaminathan, K.;
Avudaiappan, T.; Banupriya, V. Materials property prediction using
feature selection based machine learning technique. Mater. Today:
Proc. 2022, 69, 710−715.
(15) Don-Tsa, D.; Mohou, M. A.; Amouzouvi, K.; Maaza, M.;
Beltako, K. Predictive models for inorganic materials thermoelectric
properties with machine learning. Mach. Learn.: Sci. Technol. 2024, 5,
035067.
(16) Tamtaji, M.; Chen, S.; Hu, Z.; Goddard, W. A.; Chen, G. A
Surrogate Machine Learning Model for the Design of Single-Atom

Catalyst on Carbon and Porphyrin Supports towards Electro-
chemistry. J. Phys. Chem. C 2023, 127, 9992−10000.
(17) Rittig, J. G.; Felton, K. C.; Lapkin, A. A.; Mitsos, A. Gibbs−
Duhem-informed neural networks for binary activity coefficient
prediction. Digital Discovery 2023, 2, 1752−1767.
(18) Saquer, N.; Iqbal, R.; Ellis, J. D.; Yoshimatsu, K. Infrared
spectra prediction using attention-based graph neural networks.
Digital Discovery 2024, 3, 602−609.
(19) Farris, B. R.; Niang-Trost, T.; Branicky, M. S.; Leonard, K. C.
Evaluation of Machine Learning Models on Electrochemical
CO2Reduction Using Human Curated Datasets. ACS Sustainable
Chem. Eng. 2022, 10, 10934−10944.
(20) Rosser, D. A.; Farris, B. R.; Leonard, K. C. Predictive machine
learning models trained on experimental datasets for electrochemical
nitrogen reduction. Digital Discovery 2024, 3, 667−673.
(21) Leonard, K. C.; Hasan, F.; Sneddon, H. F.; You, F. Can
Artificial Intelligence and Machine Learning Be Used to Accelerate
Sustainable Chemistry and Engineering? ACS Sustainable Chem. Eng.
2021, 9, 6126−6129.
(22) Singh, S.; Sunoj, R. B. Molecular Machine Learning for
Chemical Catalysis: Prospects and Challenges. Acc. Chem. Res. 2023,
56, 402−412.
(23) Al Abdulghani, A. J.; Turizo-Pinilla, E. E.; Fabregas-Angulo, M.
J.; Hagmann, R. H.; Ibrahim, F.; Jansen, J. H.; Agbi, T. O.; Bhat, S.;
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