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ABSTRACT True-time-delay (TTD) beamformers can generate wideband squint-free beams in analog and
digital signal domains. The delay Vandermonde matrix (DVM) was introduced as a mathematical model
that represents TTD-based multi-beam beamformers while reducing the delays from O(N 2) to O(N logN ),
where N = 2r (r ≥ 1) is the number of beams. In this paper, we propose to reduce the complexity
of delays from O(N logN ) to nearly O(N ) for a small number of beams. More precisely, we present a
recursive algorithm to compute the DVM-vector product with a complexity reduction of at least 21% to at
most 52% compared to our most recent work, and at least 39% to at most 98% compared to the brute-force
DVM-vector calculation. This enhancement was achieved by using 16-beam approximate-DVM (ADVM)
building blocks that recursively execute with the DVM algorithm. The reduced complexity DVM algorithm
achieves nearly linear complexity for smaller input sizes, specifically when N ≤ 1024. This modification
results in a complexity reduction when compared to the O(N logN ) complexity of the DVM algorithm,
spanning from 8 to 1024 beams. For example, by computing the DVM-vector product for N = 8 to
1024 elements antenna arrays, we can obtain wideband RF beams while reducing the required chip area
and power consumption by at least 21% at 1024 beams to at most 52% at 16 beams compared to radix-2
DVM algorithm, and also at least 39% at 8 beams to at most 98% at 1024 beams compared to the brute-
force DVM-vector product computation. With this reduction, we show that the proposed DVM algorithm
is better suited for end-to-end RF-IC design that includes multiple wideband channels. At the end, a signal
flow graph, simulated beam patterns at 150 MHz, 300 MHz, 600 MHz, and 1 GHz frequencies based on the
proposed ADVM algorithm, and a digital overview are provided to demonstrate the simplicity, efficiency,
and accuracy of the proposed TTD multibeam beamformers for RF-IC design.

INDEX TERMS Wideband multi-beam beamforming, true-time delays (TTDs), low-complexity algorithm,
antenna arrays, numerical approximation, discrete Fourier transform, delay Vandermonde matrix, sparse
matrices, performance of algorithms, matrix norms, signal flow graphs, wireless communication systems.

I. INTRODUCTION
Wideband multi-beam beamforming is the key to meet the
ever-expanding range of applications for both frequency

The associate editor coordinating the review of this manuscript and

approving it for publication was Olutayo O. Oyerinde .

range three (FR3) 6-24 GHz as well as frequency range 2
(FR2) - the mm-waves (mmW) in the 24-300 GHz bands -
in next-generation communication systems [1], [2], wireless
networks [3], [4], [5], [6], [7], [8], and radar systems [9],
[10], [11]. For instance, the fifth-generation (5G) ideally
requires a frequency range of 30 to 300GHz [12] while
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6G systems will likely be over the FR3 band [13]. Therefore,
implementing the traditional beamforming process in the
digital domain becomes practically infeasible due to its high
power consumption and costs [14]. With it, the FR2 and
FR3 frequency bands have garnered significant interest as
a solution to meet 5G/6G networks’ demands for network
capacity [12], [13], [15].

Beamforming is a signal processing technique that
improves the strength of signals received by antennas by
adjusting their amplitude and phase in a manner such that
the signal of interest is subject to constructive interference,
while radio frequency interference (RFI) is diminished via
destructive interference. This allows for the creation of a
stronger beam of signal in the desired direction, having
improved signal-to-noise and interference ratio (SNR) [16].
Beamforming overcomes path loss. Therefore, beamforming
enables high-capacity wireless connections to be established
even in environments with multiple signal paths [17]. Along
with the technological advancement, there has been increas-
ing interest in estimating temporal and spatial (directional)
parameters [18].
TTD beamformers with simultaneous multi-beams have

applications in defense for tactical situations. Multi-beam
TTD beamformers will be useful for the development of mul-
tifunctional and adaptable RF sensors and systems that can
meet the need for national defense for improved operations
in spectrally congested and contested environments. Such
truly wideband TTD multi-beams can help support a force
which can operate while under electromagnetic attack due to
the ability to operate across the entire band of interest. The
TTD multi-beam capability will advance electronic warfare
EW and signals intelligence (SIGINT) capabilities to meet
emerging needs in national defense.

Recent advances in beamforming techniques and silicon
integrated circuit (IC) technology have led to the development
of high-bandwidth active beamforming systems. These sys-
tems are becoming increasingly attractive alternatives, espe-
cially in 5G/6G systems that aim to maximize the available
bandwidth of up to 300 GHz to enhance system capacity [12].
To achieve this, wideband multibeam beamformers based on
TTD are essential, and these can be mathematically modeled
using the delay Vandermonde matrix (DVM) [4], [5],
[6], [19]. Furthermore, the TTD-based DVM beamformers
are squint-free and wideband in temporal and spatial fre-
quency responses. This makes the TTD elements more appro-
priate for wideband applications, as signals can be processed
with instantaneous wide bandwidth without introducing
significant distortions [20]. However, the discrete Fourier
transform (DFT) matrix-based beamformers are narrowband
and suffer from the beam squint problem, i.e., TTD systems
providing multiple beams with frequency-dependent beam
steering [4], [21], [22], [23], [24], [25]. To wit, DVM
beamformers are needed for emerging wideband systems,
while legacy systems that are relatively narrowband in
temporal frequency response can use DFT beamformers via
the fast Fourier transform (FFT) algorithm. As we move

to wideband systems that operate over extreme frequency
ranges, we have to move to DVM beamformers, as DFT/FFT
beamformers suffer from the beam squint problem.

The DFT beamformers are realized via FFTs with
O(NlogN ) complexity algorithms. The Cooley-Tukey FFT
algorithm is well-regarded for effectively processing band-
limited and sampled discrete-domain signals by efficiently
computing DFTs [26], [27], [28], [29], [30]. The FFT
algorithm drastically reduces multiplicative complexity,
resulting in significantly improved computation speed [26],
[31], [32], [33], [34]. The use of FFT algorithms has
overreached conventional applications, extending into ML
computations [26], [35], [36], [37], [38], [39], followed
by our work on the development of low-complexity neural
networks to realize TTD-based multi-beam beamformers
[40], [41].

On the other hand, low-complexity beamforming algo-
rithms using an approximate DFT (ADFT) for uniformly
linear or rectangular arrays were proposed in [42] and [43].
Here, a sparse factorization was obtained for the DFT
matrix to improve the efficiency of beamformers, reducing
circuit complexities and power consumption in comparison
to FFT for narrowband beamformers [42]. Thus, with
ADFT, one can realize an N -number of non-overlapping
beams for an N -element array, enabling area-power effi-
cient FFT beamformers [44]. Hence, the ADFT leads to
reduce the multiplicative complexity of the FFT from
O(NlogN ) to O(N ) while preserving its additive complexity
at O(N logN ) [10], [45]. We note here that the ADFT block
contains a certain amount of computational error that prevents
it from producing an exact DFT. Despite this, the applica-
tions of most ADFT algorithms in wireless communication
can accommodate these minor errors without substantially
impacting performance [26]. For instance, ADFT beam-
formers have worst-case sidelobe levels degraded by about
1.5 dB compared to DFT beamformers. Thus, by employing
ADFTs instead of FFTs, these networks can possibly reduce
the required computational operations, which in turn helps
reduce overall circuit complexity, chip area, and power
consumption [10], [46], [47], [48], [49], [50], [51], [52].

A. OUR PRIOR WORK
In [4], we showed a reduction of nearly 60% in addition
and multiplication counts when computing the DVM-vector
product, compared to the brute-force calculation usingO(N 2)
beamforming techniques. The DVM, as a superclass of DFT
matrices, does not possess the periodic and unitary properties
that are typical of DFT matrices [4], [5]. Our work presented
in [19] introduces numerically stable DVM algorithms
with a complexity of O(N logN ), specifically designed for
TTD narrowbandmulti-beam beamformers. Furthermore, the
nodes of the Vandermonde matrices discussed in [19] are a
specific case: they consist of complex nodes that are equally
distributed on the unit circle or any circle with a radius larger
than unity, rather than being limited to the primitive roots
of unity. In contrast, our latest work shows an impressive
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FIGURE 1. Proposed work: (a) A 16-element DVM beamformer with 16 beams can be implemented with eight parallel copies of the
Stratix AX-10 FPGA development system supporting two channels.(b) The 8-channel 0-32 GHz O(N) wideband direct-digital DVM
beamformer can be seen through the RF Chiplet. (c) Simulated 16-beam beamformed signals are shown for beams 0, 4, and 8, using
both approximate-DVM and the exact DVM across various frequencies.(d) The full set of simulated 16-beam DVM beamformers at
1.0 GHz is shown here. (e) The error between the true and approximate 16-beam DVM beamformers, with each beam normalized to
0 dB. (f) The scaling of the approximate DVM algorithm is improved compared to exact DVM-vector and radix-2 DVM-vector
calculations.

complexity reduction compared to O(N 2), leading to an
O(N logN ) DVM algorithm to realize TTD wideband
multibeam beamformers [6]. Thus, we have identified the
critical need for a DVM algorithm to reduce complexity
fromO(N log N ) to almost linear, enabling the realization of
wideband multibeam beamformers with O(N ) delays, rather
than O(N 2) or O(N log N ). We have also recognized the
urgent need for a fast DVM algorithm that leverages the
system’s structure, setting a new standard for reducing both
chip area and power consumption in the implementation
of TTD wideband multi-beam beamformers. On the other
hand, we also emphasize that no TTD beamformers have
reduced complexity than O(N log N ) in Butler matrix/FFT
type beamformers. In fact, TTD N -beam networks are of
complexity O(N 2). Therefore, such beamformers are not
feasible even for moderately large N . Thus, we propose an
algorithmic interpretation to obtain a DVM algorithm while
reducing the complexity to almost linear complexity for a
small number of beams.

B. PROPOSED APPROACH
The realization of wideband multi-beam beamformers
presents a significant challenge due to the inherent com-
plexity of the aperture transceivers. An N -element receiver
array requires N 2 time delays or phasing elements to form
N beams in the beamforming network. While the concept

may be straightforward, realizing wideband multi-beam
beamformers with a reduced complexity–from O(N 2) to
O(N logN )–presents significant challenges due to the com-
plexity of signal flow graphs. Building on our previous
work [6], which reduced delay complexity to O(N logN ),
we present a new algorithm that uses sparse matrix
factorization of the DVM aiming to reduce complexity
of beamformers from O(N logN ) to nearly O(N ), for a
small number of antenna array elements. This reduction
will be achieved by utilizing the radix-2 exact DVM
algorithm in [6] followed by the highly sparse and mul-
tiplierless ADFT matrices in [45], [53]. Simply, we use
matrix embedding in the development of an almost linear
delay DVM algorithm ranging from 8-point to 1024-point.
Additionally, we will obtain an approximate DVM (ADVM)
that requires minimal multiplication (or analog delay [54])
operations. Although we have proposed multiple different
DVM algorithms [4], [5], [19], we have specifically chosen
the DVM factorization presented in [6] because it is the
exact radix-2 DVM algorithm that executes recursively with
the DFT to realize wideband multi-beam beamformers to
present linear ADVM algorithm for small number of antenna
array elements. The primary motivation of the reduced
complexity DVM algorithm is to minimize chip area and
power consumption in integrated circuit design for wideband
multi-beam beamformers. This is vital in mm-wave wireless
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communication, where minimizing the number of delays is
of utmost importance. To pave the way for that, we will
demonstrate a simple Signal Flow Graph (SFG) for the
approximated 16-point DVM algorithm (16-point ADVM) to
answer the complexity demand of SFGs. Finally, we present
simulated beam patterns for a wideband DVM multi-beam
beamformers with N = 16 beams, along with the state-of-
the-art in linear wideband direct-digital DVM beamformers
using the Intel Altera Agilex 9 Direct-RF Chiplet. Thus,
we show Figure 1 to illustrate the overall architecture,
incorporating the simulated approximate-DVM beamformed
signals, errors, and complexity reduction.

C. ORGANIZATION OF THE PAPER
In Section II, we propose highly sparse factors to compute
an ADVM from 8-point to N -point using the exact DVM
and ADFT factorizations. Section III provides algorithms for
computing the ADVM algorithm and discusses the arithmetic
(or delay) complexity of the proposed ADVM algorithm.
At the end of the section, we show that the proposed
N -point ADVM has almost linear-order complexity for a
small number of antenna array elements. Section IV presents
numerical results to show both the error bound and the
proximity of the proposed ADVM to the DVM, evaluated
through the spectral norm. In section V, the proposed ADVM
algorithm will be shown using an SFG, illustrating the
bijection between the system of linear equations and the
fundamental building blocks of the flow graphs, showing
the linear complexity for the 16-point ADVM algorithm.
The proposed ADVM algorithm will be utilized to show the
beamforming patterns for 16 beams, as shown in section VI.
Within the same section, we will provide a brief overview
of the state-of-the-art (SOTA) chiplet using the Intel Altera
Agilex 9. Finally, Section VII concludes the paper.

II. SPARSE FACTORIZATION TO COMPUTE
AN APPROXIMATE-DVM
This section presents sparse factors to obtain an approximate
DVM using scaled DVM and ADFT, aiming to reduce
multiplication (delay) complexity. The goal of the sparse
factorization is to develop a linear order DVM algorithm for
a small number of antenna array elements, as depicted in
section III. After presenting the ADVM algorithm, we will
clarify the meaning of the terminology ‘‘delay complexity.’’
Thus, before obtaining factorization formulas for the DVM,
we state the frequently used notations as follows.

A. FREQUENTLY USED NOTATIONS
In this section, we will state the notations for sparse and
orthogonal matrices that will be utilized throughout this
paper.
DVM definition [4], [5], [6], [19]: The DVM is defined by

AN := [Akl]N = [αkl]N ,N−1
k=1,l=0,

where N = 2r (r ≥ 1) is the number of beams, {α, α2,

. . . , αN } are distinct complex nodes, α = e−jωτ , j2 = −1,

ω is the temporal frequency, and τ is the delay. We can utilize
the definition of the DVM to establish a scaled DVM, which
is the DVM scaled by a diagonal matrix, as given below

ÃN := [̃Akl]N = [αkl]N−1k,l=0.

We note that the coefficient αkl is a temporal Fourier
transform of a pure time-delay of duration τ. The signal x(t)
with Fourier transform X (ω) is related to the delayed version
of the signal x(t − pτ ) via the relationship X (ω)e−jpωτ ,

where p is a positive integer. So the corresponding phase
rotation of X (ω) is simply αp = e−jωpτ . Crucially, the
DVM contains closed-form complex functions of ω given
as complex phase rotations in integer powers p of α. That
is, αp are not necessarily numerical values, but they could
represent complex functions of frequencyω raised to power p,
i.e., seen e−jωpτ as a function of ω. So an N × N DVM by
an N × 1 vector containing powers of α resembles a matrix-
vector product, but we are in the temporal Fourier domain; so
this is defined O(N 2) delay-and-sum product, in contrast to
the conventional O(N 2) multiply-and-sum product.
DVM factorization [6]: This paper introduces a factoriza-

tion for an approximate-DVM, aligning with the execution
of the scaled DVM algorithm in [6]. Thus, let us recall the
factorization for the scaled DVM in [6] given via

ÃN = D̂N [JM×N ]TF∗M D̆MFMJM×N D̂N ,

where M = 2N , JM×N =

[
IN
0N

]
is a sparse matrix

consisting of an identity matrix IN and a zero matrix 0N ,

D̂N = diag
[
α
k2
2

]N−1
k=0

and D̆M = diag
[
F̃Mc

]
are diagonal

matrices, CM is a circulant matrix defined by the first
column c s.t.

c=
[
1, α−

1
2 , · · · , α−

(N−1)2
2 , 1, α−

(N−1)2
2 , α−

(N−2)2
2 , · · · , α−

1
2

]T
,

where T represents the transpose operation, FN =
1
√
N
[wklN ]

N−1
k,l=0 is the DFT matrix, F̃N =

√
N FN is the scaled

DFT matrix, and wN = e−
2π j
N .

DFT factorization [26], [27], [31]: The DVM algorithm
in [6] executes recursively via the FFT algorithm. Thus,
to grasp this, we outline the factorization of theDFT that leads
to the FFT algorithm, following [27] and [31]. The scaled

DFT factorization is given via FN = PTN

[
FN

2
0N

2
0N

2
FN

2

]
HN ,

where for a given vector x = [x0, x1, · · · , xN−1]T ∈ RN ,
PN (N ≥ 3) is an even-odd permutation matrix given via

PN x =

{
[x0, x2, · · · , xN−2, x1, x3, · · · , xN−1]T even N

[x0, x2, · · · , xN−1, x1, x3, · · · , xN−2]T odd N ,

HN =

[
IN
2

IN
2

D̀N
2
−D̀N

2

]
is a scaled orthogonal matrix, D̀N

2
=

diag
[
wlN

]N
2 −1
l=0 is a diagonal matrix, and H∗N is the conjugate

transpose of HN .
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ADFT definition: To obtain a linear order 16-beam ADVM
algorithm, we will incorporate ADFT factorization in place
of the DFT [26], [55], [56] within the factorization of the
scaled DVM. Thus, the 16-beam ADVM algorithm executes
using the ADFT factors, leading us to revisit the sparse
and condensed ADFT factorization formula in [26] with the
fewest factors. Hence, we recall the factorization for the
16-point ADFT [45], [57] and also the 32-point ADFT [53],
[56], [58], [59], s.t., F̂32 = W8 ·W7 ·W6 ·W5 ·W4 ·W3 ·W2 ·W1,
which we utilize as an initialization of the Adft algorithm
in section III-A, where F̂N represent the N -point ADFT.
For an in-depth identification of the elements within the
matrices and the factorization of 16-point and 32-point ADFT
matrices, we refer the readers to [45], [53], [56], and [59].

B. A FACTORIZATION FOR APPROXIMATE-DVM
This section presents a factorization for approximate-DVM
to reduce the number of delays from O(N 2) to nearly
linear, enabling the realization of N -wideband multibeam
beamformers having highly sparse factors. Along with the
factorization of the N beams DVM-based beamformers,
we also obtain 16-point DVM factorization, which will
be utilized as an initialization of the Asdvm algorithm
in section III-A. Furthermore, we utilize the matrix embed-
ding to replace DFT matrices via a 32-point ADFT matrix
to present DVM factorization for 16 beams. Thus, we start
this section by presenting a modified 32-point ADFT
factorization based on [53], [56], and [58].
Proposition 2.1: The factorization of the 32-point approx-

imate DFT can be expressed as:

F̂32 = S4 · S3 · S2 · S1 · S0, (1)

where S0 = W1, S1 = W3 ·W2, S2 = W5 ·W4, S3 = W7 ·W6,
and S4 = W8.

Proof: This is trivial by the matrix multiplication while
setting S1 = W3 ·W2, S2 = W5 ·W4, and S3 = W7 ·W6 in [53],
[56], and [58]. These Si matrices for i = 0, 1, · · · , 4, are
explicitly given in Appendix .
Remark 2.2: Following the above result, the conjugate

transpose of the ADFT can be easily observed as F̂∗32 =
ST0 ·S

T
1 ·S

T
2 ·S

T
3 ·S

∗

4 . Thus, we can leverage both F̂
∗

32 and F̂32
to obtain a factorization for the 16-beam ADVM.

Let’s present a factorization to obtain an approximation
for the scaled DVM from 8-point to N -point to reduce
the arithmetic complexity. We show that our proposed
approximate-DVM algorithm has linear order multiplication
complexity for a small number of antenna array elements.
Proposition 2.3: Let the scaledDVM, i.e., ÃN = [αkl]N−1k,l=0

be defined by nodes {1, α, α2, . . . , αN−1} ∈ C, N = 2r

(r ≥ 4), and M = 2N. Then, an approximation for the N-
point scaled DVM denoted as ÂN , can be obtained through
the following:

ÂN = D̂N [JM×N ]T F̂∗M D̆M F̂MJM×N D̂N , (2)

where F̂M = PTM

[
F̂N

F̂N

]
HM .

Proof:We can obtain the above factorization for ADVM
by utilizing the matrix embeddings of both F̂M and F̂∗M
in places of FM and F∗M , respectively, within the factor-
ization of DVM in [6] followed by the initialization with
Proposition 2.1.

The factorization mentioned above will be utilized to
develop an ADVM algorithm for sizes N ≥ 16. Thus, in the
following, we present an 8-point ADVM factorization based
on the ADFT factorization in [45].
Corollary 2.4: Let 8-point scaled DVM, i.e., Ã8 =

[αkl]7k,l=0 be defined by nodes {1, α, α2, . . . , α7
} ∈ C. Then,

an approximation for the 8-point scaled DVM denoted as Â8,
can be obtained through the following:

Â8 = D̂8[J16×8]T F̂∗16D̆16F̂16J16×8D̂8. (3)
Proof: This follows directly from Proposition 2.3 with

the substitution for N = 16, along with the replacement of
F̂∗16 using the approximated 16-point DFT matrix in [45].

III. APPROXIMATE-DVM ALGORITHM TO REDUCE
COMPLEXITY
Following the ADVM factorization for N beams presented
in Section II, we introduce an approximated scaled DVM
algorithm that executes recursively with an approximate 16-
point scaled DVM algorithm, followed by the matrix embed-
ding of the 32-point ADFT. More specifically, we present
an approximate scaled DVM algorithm for N ≥ 32 points,
referred to as Asdvm, alongside the 16-point approximate
scaled DVM algorithm, called Asdvm16. We note that
Asdvm16 algorithm executes based on the embeddings of the
sparse factors of the ADFT. To optimize the computation
of the matrix-vector product and minimize multiplication
counts, we have relocated the factor 1

√
M

in FM and F∗M to the
end of the computation, and hence computed scaled ADVM
algorithm s.t. y = MÂN z. We will show at the end of the
section that the proposed ADVM algorithm has nearly linear
complexity as opposed toO(N logN ) complexity for a small
number of antenna array elements.

A. LOW-COMPLEXITY APPROXIMATED SCALED DVM
ALGORITHM
Let’s present Asdvm and Asdvm16 algorithms for obtaining
approximated N -point DVM algorithms for N ≥ 16.
As described in Section II, we find that the factorization for
the ADVM is self-explanatory for N = 4, 8, and obtaining
these algorithms may not be necessary. We now explicitly
state an approximate scaled DVM algorithm to compute the
product of a scaled DVM by a vector, i.e., y = MÂN z for a
given N , α, z ∈ CN or RN and c ∈ CM .

The proposed approximate scaled DVM algorithm Asdvm
executes recursively with the approximate scaled FFTs,
initialized with the 16-point approximate DVM algorithm.
We shall refer to the scaled approximate FFT and approxi-
mate inverse FFT algorithms as Adft and Aidft, respectively.
We will begin with the 16-point ADVM algorithm, Asdvm16,
as follows.
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Algorithm 1 Asdvm

Input: N = 2r (r ≥ 4),M = 2N , α ∈ C s.t. |α| = 1, z ∈ CN

or RN , and c ∈ CM .
Output: y = MÂN z.
Function: y=Asdvm(z, N ).

1) if N = 16, then
y← Asdvm16(z,N ),

2) end if
3) if N ≥ 32, then

u1← D̂N · z

u2← J · u1,

v1← Adft(u2,M ),

v2← D̆M · v1,

y1← Aidft(v2,M ),

y2← JT · y1,

y← D̂N · y2,
4) end if
5) return y

Algorithm 2 Asdvm16

Input: N = 16, M = 2N and z ∈ CN or RN .
Output: y = M · Â16z
Function: y=Asdvm16(z, N ).

1) if N = 16, then
w1← D̂N · z

w2← J · w1,

w3← F̂M · w2,

w4← D̆M · w3,

w5← F̂∗M · w4,

w6← JT · w5,

y← D̂N · w6,
2) end if
3) return y

Example 3.1: Based on the proposed algorithms, we show
building blocks in the SFG drawn for the 16-point scaled
ADVM algorithm in Section V. The Asdvm algorithm is stated
based on the sparse factorization in Proposition 2.3, and
hence, the factorization for the scaled ADVM can be stated
as follows.

32Â16 = D̂16 [I16|016] F̂∗32D̆32F̂32

[
I16
016

]
D̂16,

where D̂16 = [d̂k ]15k=0, D̆32 = [d̆k ]31k=0, F̂
∗

32 := the conjugate
transpose of the ADFT, i.e., F̂32, and the sparse factorization
for the F̂32 can be obtained from Proposition 2.1.

B. MULTIPLICATION COMPLEXITY, i.e., GAIN-DELAY
BLOCK COUNTS, OF THE APPROXIMATE-DVM ALGORITHM
This section focuses on the gain-delay block counts [6],
which are based on the computation of the approximated

Algorithm 3 Adft

Input:M = 2r1 (r1 ≥ 5), M1 = M/2, and u2 ∈ CM .
Output: v1 = F̂Mu2.
Function: v1=Adft(u2, M ).

1) if M = 32, then
v1← F̂32u2

2) end if
3) if M ≥ 64, then

p← HM · u2
a1← Adft(p(1 : M1),M1),

a2← Adft(p(M1 + 1 : M ),M1),

v1← PTM ·
[
aT1 aT2

]T
,

4) end if
5) return v1

Algorithm 4 Aidft

Input:M = 2r1 (r1 ≥ 5), M1 = M/2, and v2 ∈ CM .
Output: y1 = F̂∗Mv2.
Function: y1=Aidft(v2, M ).

1) if M = 32, then
y1← F̂∗32v2

2) end if
3) if M ≥ 64, then

q← PM · v2
b1← Aidft(q(1 : M1),M1),

b2← Aidft(q(M1 + 1 : M ),M1),

y1← H∗M ·
[
bT1 bT2

]T
,

4) end if
5) return y1

scaled DVM algorithms in section II. We note here that the
gain-delay block counts can be interpreted as multiplication
counts that relate to the brute-force computation of the scaled
DVM by a vector. The multiplication counts presented in
the frequency domain represent a combination of gains and
delays in the time domain. TTDs require a dedicated TTD
circuit within the analog domain, where delays are realized
through continuous-time analog circuits. In the temporal
frequency domain, true time delays τ ∈ R are expressed as
multiplicative terms e−jωτ

∈ C. Therefore, we refer to the
multiplication counts involved in DVM-vector computations
as gain-delay counts, which are subsequently followed by the
delay complexity associated with the ADVM algorithm.

Let us obtain the number of multiplications (say #m),
i.e., gain-delay blocks [6], required to compute the ADVM
algorithm. We take the number of multiplications required to
compute y = F̂M z, where z ∈ CM , as 0 forM = 16 and 32,
when the multiplications by ±1 and ±j are not counted, and
use Adft, and Aidft algorithms to obtain counts to compute
y = F̂M z for M > 32.
Lemma 3.2: Let N = 2r (r ≥ 4) be given. The appro-

ximated scaled DVM algorithm, i.e., Asdvm algorithm,
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can be computed recursively utilizing the Adft, and Aidft
algorithms with the following gain-delay block counts
(number of multiplications) :

#m(Asdvm,N ) = 4N − 2, for N = 16

#m(Asdvm,N ) = 6N − 6, for N = 32

#m(Asdvm,N ) = 8N − 14, for N = 64

#m(Asdvm,N ) = 10N − 30, for N = 128

#m(Asdvm,N ) = 12N − 62, for N = 256

#m(Asdvm,N ) = 14N − 126, for N = 512

#m(Asdvm,N ) = 16N − 254, for N = 1024

#m(Asdvm,N ) = 2Nr −
17
4
N + 2, for N > 1024. (4)

Proof: Following the approximated scaled DVM
algorithm in Proposition 2.3, we could obtain the number
of multiplications, i.e., gain-delay block counts, using the
equation:

#m(Asdvm,N ) = 2
(
#m(F̂M )

)
+ 2

(
#m(D̂N )

)
+ 2 (#m(J ))+ #m(D̆M ). (5)

Moreover, we could utilize the structures of D̂N , J , and D̆M
followed by the multiplication of each matrix by a vector to
obtain number of gain-delay block counts via:

#m (J) = 0, #m
(
D̂N

)
= N − 1, #m

(
D̆M

)
= M . (6)

Now, we utilize the 32-point ADFT factorization in Propo-
sition 2.1 followed by the Adft and Aidft algorithms
to obtain the multiplication counts corresponding to the
computation of the ADFT by a vector via: #m

(
F̂M

)
= 0,

N − 2, 2N − 6, · · · , 6N − 126, respectively, for N = 16,
32, 64, · · · , 1024. Moreover, to compute the approximated
DFT by a vector, i.e., y = F̂Mu with u ∈ CM , for N > 1024,
we get Nr − 33

8 N + 2 multipliers because we executed the
16-point ADFT via an fft-type algorithm. Thus, using these
along with the equations (5) and (6), we get the multiplication
counts, i.e., gain-delay block counts as in (4) based on
the computation of the proposed approximated scaled DVM
algorithm.
Remark 3.3: 1) The paper [45] along with the equa-

tions (2) and (4), we conclude that the gain-delay
complexity of the 8-point scaled ADVM algorithm
is 4N − 2.

2) We had shown that the proposed approximated scaled
DVM algorithm has almost linear order, i.e., gain-
delay complexity of O(N ) as opposed to the FFT-like
O(N logN ) algorithms, for a small number of antenna
array elements. While the gain-delay blocks show lin-
ear behavior, the adder counts of the ADVM algorithm
reachO(N 2) for smaller values of N , specifically when
N is 8 or 16, due to the embedding of 16-point or
32-point ADFT, respectively, in Corollary 2.4 or Propo-
sition 2.3. However, as N increases, i.e., N ≥ 32, the
adder complexity improves from O(N 2) to O(N logN )

TABLE 1. Gain-delay block counts of the scaled approximate-DVM
algorithm, the direct computation of the scaled DVM by a vector,
O(N log N) DVM algorithm, and percentage reduction of complexities, i.e.,
PA w.r.t. O(N log N) and PL w.r.t. O(N2).

as we embed only a 32-point ADFT in Proposition 2.3
to execute the 16-point ADVM, but not for N ≥ 32.

3) We mention that employing the linear order ADFT
algorithm [53] can significantly reduce the complexity
of the DVM-vector product for any value of N .
We assert that this reduction in complexity is relevant
only for gain-delay block counts and not for adder
counts. The decrease in adder counts transitions from
O(N 2) to O(N logN ), remains as it is in [6] for
large N . But, in integrated circuit (IC) design, gain-
delay blocks carry a significantly higher cost compared
to adders. Therefore, prioritizing cost in IC design
makes ADVM worthwhile compared to the exact and
radix-2 DVM algorithms for a small number of antenna
array elements.

4) Although the gain-delay complexity of the proposed
ADVM algorithm is nearly linear O(N ), the ADVM
beamfomers may not be practical in cases where side-
lobe selectivity and gain are crucial. This is because
the ADVMalgorithm utilizes amatrix embedding based
on 32-point ADFT, which has the worst-case sidelobe
intensity levels degraded by approximately 1.5 dB
when compared to DFT beamformers [10], [46], [47],
[48], [49]. Nevertheless, we have shown a trade-off
between the ADVM beamformers and the exact DVM
beamformers while comparing the simulated beam
patterns obtained at input frequencies of 150 MHz,
300 MHz, 600 MHz, and 1 GHz, with ideal beams in
section VI. We have observed discrepancies at each
frequency that were marginally greater than those
produced by the 16-point exact DVM algorithm [6],
but this difference is expected since we used an ADVM
rather than the exact DVM algorithm.

The proposed DVM is an approximated algorithm as
opposed to the exact DVM algorithms in [4], [5], [6],
and [19]. Thus, we provide the detailed counts in Table 1 to
enhance readers’ comprehension of the explicit gain-delay or
multiplication counts along with the percentage reduction of
complexities as opposed to the best-known DVM algorithm
havingO(N logN ) complexity [6] and the brute-force DVM-
vector calculation.
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Table 1 shows the numerical results for the multiplication
complexity (the gain-delay blocks) of the approximated
scaled DVM algorithm in Lemma 3.2 compared to the brute-
force DVM-vector computations and the radix-2 exact DVM
algorithm. The matrix sizes in the comparison range vary
from 16 × 16 to 1024 × 1024. Let us consider the direct
computation of the scaled DVM by a vector for gain-delay
blocks as (N − 1)2, where the number of gain-delay blocks
being denoted by #m(sdvm) in order to compute the exact
scaled DVM algorithm presented in [6]. The percentage
reductions, denoted as PA and PL , represent the decreases in
gain-delay block counts based on the proposed approximated
scaled DVM algorithm when compared to the O(N logN )
complexity DVM algorithm in [6] and theO(N 2) brute-force
DVM-vector computation. The values in the column before
the last are obtained using

PA(w.r .t.O(N logN )) =
(
Te− Ta
Te

)
× 100%, (7)

where Te is the gain-delay block counts of theDVMalgorithm
in [6], i.e., O(N logN ) complexity, and Ta is the gain-delay
block counts in computing the proposed ADVM algorithm.

The values in the last column are obtained using

PL(w.r .t.O(N 2)) =
(
Td − Ta
Td

)
× 100%, (8)

where Td is the gain-delay block counts in computing the
direct matrix-vector product, i.e., O(N 2) complexity, and Ta
is the gain-delay block counts in computing the proposed
ADVM algorithm.

Table 1 shows that the scaled ADVM algorithm requires
a significantly low number of gain-delay blocks compared
to the brute-force calculation. When the size of the matrices
increases, we observe a significant reduction inmultiplication
complexity (equivalently, delay-gain blocks) for computing
the proposed algorithm. More preciously, numerical results
in Table 1 shows that the proposed ADVM algorithm could
be utilized to compute the DVM-vector product with a
complexity reduction of at least 21% at 1024 beams to
at most 52% at 16 beams compared to our most recent
work based on the O(N logN ) exact DVM algorithm in [6].
We also emphasize that the proposed ADVM algorithm has
a percentage reduction in complexity, having at least 39% at
8 beams to at most 98% at 1024 beams compared to the brute-
force DVM-vector calculation to realize TTD wideband
multibeam beamformers. These complexity reductions will
pave the way for implementing the ADVM algorithm in
RF chiplet design, addressing the demand for chip area and
power consumption while reducing complexity by at least
39% at 8 beams to at most 98% at 1024 beams, as opposed to
brute-force techniques-based chiplet architectures.

We also observe that the proposed scaled ADVMalgorithm
has a low number of gain-delay blocks compared to the
exact DVM algorithms with O(N logN ) complexity in [6]
and O(N 2) complexity algorithms in [4], [5], and [60].
Since the scaled DVM algorithms presented in [4], [5],

and [60] exhibit O(N 2) complexity, equivalent to that of
brute-force calculations, we have chosen not to include these
results in our comparison Table 1. Instead, we compared
the proposed approximated scaled DVM algorithm with
our TTD wideband multi-beam beamformer-based exact
scaled DVM algorithm having O(N logN ) complexity [6].
Although the radix-2 DVM and scaled DVM algorithms are
stated in [19], we haven’t compared the proposed ADVM
algorithm with the complexity results in [19] because the
latter paper is primarily focused on narrowband scenarios,
rather than wideband multi-beam beamformers. On the other
hand, we haven’t compared the complexity result of the
proposed ADVM algorithm with [20] as the TTD-based
multi-beam beamformers in the later paper are realized with
the O(N 2) complexity for N -beam. To sum up, utilizing the
ADFT instead of the FFT for theADVMalgorithm shows that
the complexity reduction percentage decreases with larger
matrix sizes. However, the ADVM maintains linearity for a
small number of beams.

IV. NUMERICAL RESULTS SHOWING THE PROXIMITY
OF THE APPROXIMATION WITH THE EXACT DVM
The proposed ADVM algorithm is somewhat closer to
the exact DVM algorithm. Thus, knowing the numerical
values showing how close the ADVM algorithm is to the
exact DVM algorithm, yielding to the lower computational
complexity, is an approximation problem. Mathematically,
the approximation problem can be stated as a constrained
optimization problemwith respect to the constrained imposed
to reduce the error between the exact DVM with the ADVM.
The required constraint is that the computational cost
of ADVM should be less than that of the exact DVM,
in both theory and implementation. Thus, in the context of
approximations for scaled delay Vandermonde matrices ÃN ,
ADVM is a transformation matrix such that ŷ = ÂN z ≈
y = ÃN z. In essence, the exact and approximate transform
domain signals are closely related in a quantifiable manner.
Thus, an approximated matrix must fulfill the conditions
s.t. (i) preserving key properties of the exact matrix;
(ii) maintaining mathematical proximity with the exact
matrix; and (iii) significantly reducing computational costs
compared to the exact DVM-vector product computation.

To ensure the accurate interpretation of the approximate
spectrum, it is common practice to seek approximate
scaled DVMs that closely resemble the associated exact
scaled DVMs. A way to achieve this is by minimizing
the difference between the exact and the approximated
scaled DVMs, through a matrix norm. This minimization
process should also take into account the constraint of
maintaining low complexity. We know that the matrix norms
satisfy the equivalence property, so we utilize the spectral
norm, i.e., induced 2-norm, which is compatible with the
Frobenius, 1-norm, or∞-norm. Since norms are equivalent,
one could also show the existence of positive constants c1 and
c2 satisfying c1||̃AN − ÂN ||ν ≤ ||̃AN − ÂN ||2 ≤ ||̃AN − ÂN ||ν ,
where ν can be Frobenius, 1-norm, or∞-norm, showing the
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convergence of the ADVMalgorithmwith respect to the other
norms. Hence, we show a possible minimization problem of
deriving an approximated scaled DVM for the best possible
α ∈ C through a constrained optimization problem s.t.

error (̃AN , ÂN ) := minα∈C||̃AN − ÂN ||2, (9)

to minimize error between the exact DVM and the ADVM,
where || · ||2 is the spectral norm. As a result of this,
we will present numerical results based on the equation (9)
to minimize the error as stated in Table 2.

TABLE 2. Minimizing the difference between the exact and the
approximated scaled DVMs through the spectral norm with the best
possible α1, α ∈ C, where α1 = e−j (2q+1)π/2 for q ∈ Z+

0 .

Table 2 values are obtained in the IEEE floating point
format with the significant decimal digits precision of 10−16.
The above-tabulated data shows that the approximated scaled
DVM algorithm convergences w.r.t. the spectral norm for
a set of α values defined as e−j(2q+1)π/2, where q ∈ Z+0 ,
having the error bound from 10−14 to 10−9. For these α

values, we had chosen integer delays s.t. τ = 2q + 1
followed by ω = π/2. Furthermore, we have shown
numerical results for the other specific α values as listed in
the third column of Table 2 to indicate the convergence of
the ADVM algorithm, albeit with an error bound of 10−1.
For these α values, we had chosen fractional delay values
s.t. 0 < τ < 1 followed by an appropriate ω satisfying
α = e−jωτ , e.g., at N = 16 when we had chosen α =

1/16, 1/32, 1/64 we selected ω = π/256, π/128, π/64,
respectively. Furthermore, for a given N , we executed the
proposed DVM algorithm 20 times while varying α values,
in order to minimize the spectral norm. For instance, if we
had fixed α values at N = 256, 512, 1024 to be 1.4142 ×
10−6 − j, the corresponding spectral norms are 0.7460,
5.9829, and 47.4408, respectively. However, our goal is to
identify the optimal α that minimizes the spectral norm.
Therefore, we selected the α values presented in the table
to achieve the minimum spectral norm. Hence, for the given
α, α1 ∈ C values, the ADVM algorithm shows the proximity
to the exact scaled DVM with the minimum spectral norm
while preserving the DVM structure along with the execution
of low-complexity Asdvm16 and Asdvm algorithms.
We note here that the derivation of a brute-force approx-

imation for 8 × 8 DVM using only {±1, 0,±j} would
need an enormous combinatorial search of 564. Therefore,
it becomes essential to explore optimization techniques to
achieve a viable solution within a reasonable time frame.

On the other hand, this power increase in the matrix search
space renders the current methods unfeasible for finding
much larger approximationmatrices, e.g.,N > 64. But, using
the matrix embedding with the 16-point ADFT along with
the Asdvm16 and Asdvm algorithms allows us to reduce the
error between the approximate and exact DVM while greatly
decreasing the computational effort needed. With this said,
we have numerically shown that, even for some largeN = 64,
we have attained spectral norm ranging from at least 10−12 to
at most 10−1, as shown in Table 2 with the gain-delay block
counts of 8N − 14, shown in Lemma 3.2. We remind that the
gain-delay block count is the key factor in determining the
computational complexity.

On the other hand, conventional analog wideband
multi-beamformers are based on applying the spatiotemporal
DVM to signals captured by antenna arrays. Thus, analog
implementations of exact DVM may be difficult due to
the need to convert O(N 2) fractional complex coefficients
into RF circuits. Hence, achieving a transformation similar
to the N -point DVM while reducing the complexity of
delay-gain blocks from O(N logN ) to O(N ) and keeping
minimum errors could enhance bit-shifting operations in
digital hardware and software.

V. SIGNAL FLOW GRAPH SHOWING THE
APPROXIMATE-DVM ALGORITHM
The algorithms of many fast transforms often arise from
a recursive structure. Famously, the FFT has been dubbed
the butterfly algorithm, based on the symmetric, butterfly-
like patterns that appear when the algorithm is represented
visually in a graph [27], [31], [32], [61]. Such graphs illustrate
how signals or data are processed at each stage of an
algorithm, and so-called signal flow graphs. These graphs are
used as a tool to design and improve algorithms and can be
utilized as a building block for IC design. Thus, we utilize an
SFG to denote the 16-point ADVMalgorithm in Figure 2. The
dashed lines in the figure represent a multiplication by −1,
red lines represent a multiplication by j =

√
−1, and dashed

red lines represent a multiplication by −j. With the SFG,
it is straightforward to verify the multiplication and addition
complexity of the algorithm for a given value of N , by simply
counting the number of convergences as additions, and the
number of elements above the arrows as multiplications,
or gain-delay block counts. Therefore, we can utilize the SFG
for implementing the 16-point approximated scaled DVM
algorithm directly in the IC design.

Based on the gain-delay blocks in Lemma 3.2 and the
foundational framework of the SFG shown in Fig. 2, the
explicit gains (excluding the multiplication by ±1 and ±j),
as well as the delays and the total multiplication counts,
i.e., gain-delay block counts in computing the scaled ADVM
algorithm, are depicted in the second, third, and final columns
of Table 3. The fourth column of the table presents the
non-trivial anti-causal counts [6], which correspond to the
number of entries in the pre-computed matrix D̆M . The trivial
anti-causal counts emerge from the multiplication of the
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FIGURE 2. The 16-point approximated scaled DVM algorithm Asdvm16 representing dashed lines for the multiplication by −1, red lines for the
multiplication by j =

√
−1, dashed red lines for the multiplication by −j , d̂k for the kth component of D̂16, and d̆k for the kth component of D̆32. D̂16

and D̆32 are also shown in Example 3.1.

scaled DFT matrix F̃M by a vector c, whose entries are
expressed as ejkωτ , where τ represents a delay, k = p

2 ,
and p denotes a non-negative integer. Since these counts
are calculated in the pre-computation stage of the algorithm,
we have included only the non-trivial anti-causal counts
in Table 3. To efficiently realize trivial anti-causal counts, i.e.,
the entries of c, we multiply every entry in c by the largest

magnitude of the anti-causal term, which is

∣∣∣∣α −(N−1)22

∣∣∣∣. This
approach is implemented during the pre-computation stage
to ensure that anti-causal terms do not pose any challenges
for practical implementations. To exemplify, consider the
simplest transfer function P(ω) = ejωτ

+ e−jωτ . We can
obtain the same magnitude function by modifying P(ω) to
P′(ω) = 1 + e−2ωτ , which is simply the original filter with
extra latency τ .

TABLE 3. Gains, delays, and anti-causal counts of the scaled
approximate-DVM algorithm.

VI. REALIZING MULTI-BEAM BEAMFORMERS USING
APPROXIMATE-DVM
Analog-domain implementations of DVM beamformers
can function in either continuous time (CT) or discrete
time (DT). CT realizations offer superior bandwidths,
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mitigate challenges associated with high-frequency clock
distribution, and prevent temporal aliasing [6], [62]. Nonethe-
less, their accuracy is compromised because the transfer
functions (TFs) of CT TTD elements are highly sensitive
to inevitable device mismatches and variations in process,
voltage, and temperature (PVT) within IC manufacturing.
On the other hand, DT implementations boast reduced
bandwidths while achieving greater accuracy. This is due
to two key factors: first, TTDs can be calibrated with
a precise external clock; second, TF errors arising from
device mismatches can be effectively mitigated through
various offset-cancellation techniques and dynamic element
matching (DEM) methods [6], [63].
We note here that it’s too early to make definitive state-

ments regarding power consumption. However, by following
sections II to V, we can assert that power consumption will
scale almost linearly with N , rather than logarithmically with
N logN , for the small number of antenna array elements.
Nevertheless, we show the simulated beam patterns for a
widebandDVMmulti-beam beamformer withN = 16 beams
followed by the state-of-the-art in DVM beamformers on RF
chiplet.

The proposed analog gain-delay blocks were used to real-
ize a complete wideband DVMmulti-beam beamformer with
N = 16 beams. The fmax value was set to 1 GHz, resulting
in τ = 62.5 ps. A fixed time-delay of τ × (N 2/4) = 4.0. ns
was added to all elements of the ADVM ÂN to ensure
that the time-delays are causal (i.e., positive); the resulting
maximum time-delay is τ × N (N − 1)/2 = 7.5 ns.
Fig. 3 compares the simulated beam shapes obtained at input
frequencies of 150 MHz, 300 MHz, 600 MHz, and 1 GHz,
with ideal beams obtained from a Python implementation
of the algorithm. Moreover, the intensity of these 16-beam
beamformed signals is visualized in dB scale on a Cartesian
grid in Fig. 4.

To enhance the clarity of these beamformed signals and
visualize the intensity of particular beams at each frequency
in Figure 4, we also arbitrarily selected ADVM beam
numbers 0, 4, 8 and 12 and their comparisons to the ideal
DVM-form as a function of frequency in Figure 5. Finally,
we highlight that due to the errors observed at each frequency,
the sidelobe levels are slightly worse (by about 1-2 dB)
when compared to the simulated exact DVM beam patterns
produced by the 16-point exact scaled DVM algorithm
presented in [6]. Therefore, there is about 2 dB worst case
tradeoff in sidelobe level when we reduce the arithmetic
complexity from O(N logN ) down to O(N ) by adoption of
the ADFT in place of the DFT in the DVM factorization. This
discrepancy is anticipated, as the proposed algorithm utilizes
an approximated scaled DVM rather than the exact scaled
DVM algorithm in [6].

A. DIGITAL BACKEND
Fig. 7 shows the FPGA platform based on the gain-delay
blocks for realizations of wideband multi-beam beamform-
ing networks. For example, consider Intel Stratix-10 AX

FIGURE 3. Left column: Simulated approximate-DVM beam shapes for a
16-element ULA with fmax = 1 GHz (blue dashed lines) compared to ideal
shapes obtained from simulations (red solid lines). Four input
frequencies from 150 MHz to 1 GHz were analyzed. The beam shapes are
shown in the left column, while the error between the ideal and
approximate shapes is shown in the right column. Each beam is
normalized to 0 dB maximum gain.

FPGA Development Kit which contains the 10 AX SoC
FPGA with integrated wideband data converters [64]. The
on-package data converters support sampling rates of up
to 64 GSps via 14nm process technology [65]. The FPGAs
contain with two A-Tile Direct RF transceivers (which
run at 64 Gsps), 24 H-Tile and 24 E-Tile multi gigabit
transceiver channels. The Intel Stratix-10 AX development
board provides a state-of-art architecture, offering flexible
and programmable compute, robust connectivity and fre-
quency agility across multiple bands going up to 32 GHz.
These advanced RF signal processing features make the
Intel chiplets [64], [65] well suited for applications in
wideband beamforming for radar, signals intelligence, and
wireless communication systems. The Intel FPGA system can
sample at 64 GSps across 256 phases in a polyphase signal
processing framework, where each digital phase supports
a clock rate of 256 MHz on the digital programmable
FPGA fabric. The chiplets allow 64 GSps sample rates
in real-time by adopting this massively polyphase process-
ing approach where each subchannel supports 256 MHz
of bandwidth.
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FIGURE 4. Along with the polar plots, beam patterns for 16 beams were
simulated from 150 MHz to 1 GHz, in dB scale with the Cartesian grid.

FIGURE 5. A specific beam numbers, i.e., Beam 0, 4, 8, and 12, are
selected and plotted across the frequency spectrum at 0.15, 0.3, 0.6,
and 1 GHz.
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FIGURE 6. Stratix AX-10 FPGA development system supporting two
channels at 32 GHz/channel with 64 GS/s sampling rate. A 16-element
DVM beamformer with 16 beams will require eight parallel copies of the
AX10 board.

Fig. 6 shows an example of a Stratix FPGA devel-
opment board from Intel Altera having 8 channels, with
an instanteneous bandwidth of 4 GHz per channel. The
board can support 8 channels at 4 GHz of bandwidth,
allowing wideband beamforming in the 0-4 GHz band for
an 8-element array, and up to 2 channels at 32 GHz of
instantaneous bandwidth. An 8-element array with 32 GHz
of instantaneous bandwidth would thus require 4 of the above
Intel Stratix boards. We have, at the moment, configured
a single channel with the full 32 GHz of instantaneous
bandwidth necessary for the full demonstration of the
proposed algorithm [66], [67]. However, due to the excessive
hardware requirements of 4 boards, we will aim at an
experimental demonstration in future work.

B. RF FRONT-END
For receive mode beamforming, the RF front-end per channel
has to support the full bandwidth of the signals of interest,
without using a down-conversion stage as the DSP digital
backend samples at twice the highest frequency component
available at RF. Therefore, the RF front-ends are mixedless
and directly process the full RF bandwidth within the
passband of the particular wideband antenna used. A Vivaldi
antenna is a typical sensor for high-sensitivity receive mode
array processors with several octaves of RF bandwidth and
high gain. Low noise amplifiers (LNAs) must cover the
full band. For the DC-32 GHz range, a suitable wideband
amplifier such as Minicircuits AVA-054-DG+ with a gain
of 17 dB and a maximum output level of 19 dBm may
be useful. However, these amplifiers require specialized
packaging technology, such as glass-based packages are
needed for integration in a printed circuit board (PCB).
Transmit mode beamforming is even more challenging with

FIGURE 7. The envisaged 8-channel 0-32 GHz O(N) wideband
direct-digital DVM beamformer using Intel Altera Agilex 9 Direct-RF
Chiplet technology.

components having wideband behavior, which are rare and
also difficult to design. For example, Minicircuits PMA5-
83-2W-DG+ has a frequency response of up to 10 GHz
with a maximum output power of 31 dBm. Generally
speaking, higher power levels in transmit beamforming
make system design much more expensive than that of
receivers. To wit, the proposed algorithms are better suited
for end-to-end RF-IC design that includes multiple wideband
channels, data conversion steps, and digital processors on the
same chip/package with a multi-chiplet approach to system
integration.

C. POTENTIAL ERRORS, UNCERTAINTIES, OR LIMITATIONS
The proposed ADVM factorization has been achieved by
adoption of a ADFT in place of the conventional DFT
matrix only at 16 beams and execute recursively with
the exact DVM algorithm; this was shown to lead to
lower complexity of O(N ) compared to the use of FFTs
which leads to complexity of O(N logN ), a small number
of antenna array elements. The deviation of the beam
shapes (gain, sidelobes) was studied extensively in the
mathematical domain, and the level of deviation was deemed
to be acceptable for many real-world wireless and RF
applications. Nevertheless, a practical measurement in a
real-time system with extremely high bandwidth would be
desirable from an algorithm evaluation standpoint. Particular
designs of antennas having high bandwidth have a pivotal
role in beam fidelity and array gain. For example, tightly
coupled dipole array (TCDA) antenna technology shows
more than 46:1 bandwidth [68]; however, the antenna
gains are relatively low compared to conventional antenna
technologies such as Vivaldi elements, which show much
higher gain but are also much larger in physical size.
All in all, the particular antenna type to be used depends
on the use case. Other sources of error include the effect of
clock jitter in the high-speed ADC/DAC systems, typically
based on time-interleaved sampling, necessary for sampling
extremely wideband signals. However, the use of a phase-
stable reference oscillator operating at 10/100 MHz for
synchronizing the internal ADC/DAC clocks via phase
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locked loops (PLLs) would be an approach for mitigating
jitter issues.

VII. CONCLUSION
Multi-beam true-time delay beamformers have circuit com-
plexity that is proportional to the number of amplifiers
and delay lines utilized within the multi-beam beamforming
network. A direct realization of an N -beam beamformer
has amplifier/gain and delay-line complexity proportional to
O(N 2) for an N -element N -beam system. In recent work,
we proposed a low-complexity N -beam true time delay
beamformer having amplifier/gain and delay complexity cor-
responding to the delay Vandermonde matrix (DVM)-vector
product with O(N logN ) complexity algorithm. In this new
work, we have proposed an N -point approximate-DVM
(ADVM) algorithm that utilizes highly sparse factors in an
approximate computing framework, thus even further reduc-
ing the gain-delay complexity of the DVM-vector product
from our recent work, i.e., O(N logN ) to a new reduced
complexity. Thus, leading to a significant reduction of com-
plexity by a further factor of logN for the small number of
antenna array elements; for example, for 1024 beams, that’s
a 10× reduction. Hence, we can provide N true time delay
beams on an N -element array at amplifier/gain and delay
circuit complexity reduced from the brute-force calculation
of O(N 2) down to O(N s), where s ≈ 1. The proposed
16-point ADVM algorithm executes based on a 32-point
approximated DFT algorithm with linear complexity. The
N -point ADVM algorithm executes recursively with the
16-point ADVM algorithm. The resulting recursion leads
to reducing the gain-delay complexity of the DVM-vector
product to almost linear order. The ability to form large
numbers of true time delay multi-beams over an antenna
array aperture having N -elements, with circuit complexity
scaling as almost linearO(N s) - instead of the usual quadratic
growth, can significantly enhance the practical realizability of
wideband multi-antenna beamforming systems in the future,
including mm-wave and FutureG wireless systems, massive-
MIMO wireless systems, radar and electronic warfare, and
RF imaging applications. The ADVM algorithm leverages
the pre-computation of anti-causal components, and these
anti-causal segments of the signal flow graph were imple-
mented using solely delay elements. This approach yields the
original filter bank but introduces some additional latency.
Moreover, we have simulated beam shapes based on the
ADVM algorithm at frequencies of 150 MHz, 300 MHz,
600MHz, and 1 GHz. These simulated beams were generated
through a Python implementation of the ADVM algorithm
and subsequently compared with the beam patterns produced
by the 16-point exact-scaled DVM algorithm. The simulated
beams of the ADVM algorithm showed a slight deviation
from the exact DVM algorithm while ensuring the precision
of the proposed algorithm. Thus, the signal flow graph,
simulated beam patterns, and FPGA overview elegantly
demonstrate the simplicity, efficiency, and realizability of the
proposed highly sparse factorization of the ADVM, leading

to massively parallel O(N s) DVM multi-beam algorithm
with a significant reduction of cost, chip area, and power
consumption in IC design.

APPENDIX
We provide an explicit factorization for the ADFT for
32-points F̂32 [53], [56], [58], where F̂32 = S4 ·S3 ·S2 ·S1 ·S0.
Let us define the matrices in the factorization of F̂32 [53],
[56], [58] s.t.

S0 =
[
S0,11 017
015 S0,22

]
, (10)

where the block submatrices S0,11 and S0,22 are given
via [53], [58]

S0,11

=



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 −1 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1


and

S0,22 =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 −1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 −1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 −1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 −1 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 −1 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 −1 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 −1



.

The S1 matrix is defined as

S1 =
[
S1,11 S1,12
S1,21 S1,22

]
, (11)
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where the block submatrices S1,11, S1,12 S1,21, and S1,22 are
given via

S1,11 =



1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 −1



,

S1,12 =



0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 −1



,

S1,21 =
[
0 0
0 I15

]
,

and S1,22, as shown at the bottom of the page.

S1,22 =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1



S2,11 =



1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0
−1 1 0 −1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 −1 1 0 0 0 0 0 0 0
0 0 0 0 0 1 −1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 −1 1 0 0 0
0 0 0 0 0 0 0 0 0 1 −1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −1


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The S2 is defined as

S2 =
[
S2,11 016
016 S2,22

]
, (12)

where the block submatrices S2,11, as shown at the bottom of
previous page, and S2,22, as shown at the bottom of the page,
are given via.

S2,22 =



−1 0 0 0 0 0 0 0 0 0 0 0 −1 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0
0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 −1 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 −1 0 0 0 0 0 0 0 0
0 0 1 0 −1 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1
−1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 −1 0 0
1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 −1



S4 =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −j 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 −j 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −j 0 0 0 0 −1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 j 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −j 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 −j 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 −j 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 −j 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −j 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 −j 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −j 0 −1 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0 0 0 j 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −j 0 0 0 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 1 0 0 0 j 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −j 0 0 0 0 0 0 0 0 0 −1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 j 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1 0 0 0 −j 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 j 0 0 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 −1 0 0 0 0 0 0 0 0 0 −j 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 j 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 j 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 j 0 0 0 0 0 0 0 −1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 j 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 j 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 j 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 j 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 −j 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 j 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 1 0 0 0 j 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 j 0 0 0 0 0 0 0 1 0 0 0 0


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The S3 matrix is defined as

S3 =
[
S3,11 016
016 S3,22

]
, (13)

where the block submatrices S3,11 and S3,22, as shown at the
bottom of the page, are given via

S3,11 =

 1 1 0
1 −1 0
0 0 I14



S3,22 =



1 0 0 0 0 0 0 0 0 1 0 0 0 −1 0 0
0 1 0 0 0 1 0 −1 1 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 −1 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 −1 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 −1
0 0 0 0 0 0 0 0 0 1 −1 0 0 1 0 −1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1
1 0 0 0 0 0 0 0 0 −1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 −1 0
0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 −1



F32,11 =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1−j 1−j 1−j −j −j −j −j −j −1−j −1−j −1−j −1 −1
1 1 1−j −j −j −j −1−j −1 −1 −1 −1+j j j j 1+j 1
1 1−j −j −j −1−j −1 −1 −1+j j 1+j 1 1 1−j −j −j −1−j
1 1−j −j −1−j −1 −1+j j 1+j 1 1−j −j −1−j −1 −1+j j 1+j
1 1−j −j −1 −1+j j 1 1−j −j −1−j −1 j 1+j 1 −j −1−j
1 −j −1−j −1 j 1 1−j −j −1 j 1+j 1 −j −1 −1+j j
1 −j −1 −1+j 1+j 1−j −j −1 j 1 −j −1−j −1+j 1+j 1 −j
1 −j −1 j 1 −j −1 j 1 −j −1 j 1 −j −1 j
1 −j −1 1+j 1−j −1−j j 1 −j −1 j 1−j −1−j −1+j 1 −j
1 −j −1+j 1 −j −1 1+j −j −1 j 1−j −1 j 1 −1−j j
1 −1−j j 1 −1−j j 1 −1−j j 1−j −1 j 1−j −1 j 1−j
1 −1−j j 1−j −1 1+j −j −1+j 1 −1−j j 1−j −1 1+j −j −1+j
1 −1−j j −j −1+j 1 −1 1+j −j −1+j 1 −1 1+j −j j 1−j
1 −1 1+j −j j −j −1+j 1 −1 1 −1−j j −j j 1−j −1
1 −1 1 −1−j 1+j −1−j j −j j −j j 1−j −1+j 1−j −1 1



F32,12 =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
−1 −1 −1 −1+j −1+j −1+j j j j j j 1+j 1+j 1+j 1 1
1 1 1−j −j −j −j −1−j −1 −1 −1 −1+j j j j 1+j 1
−1 −1+j j j 1+j 1 1 1−j −j −1−j −1 −1 −1+j j j 1+j
1 1−j −j −1−j −1 −1+j j 1+j 1 1−j −j −1−j −1 −1+j j 1+j
−1 −1+j j 1 1−j −j −1 −1+j j 1+j 1 −j −1−j −1 j 1+j
1 −j −1−j −1 j 1 1−j −j −1 j 1+j 1 −j −1 −1+j j
−1 j 1 1−j −1−j −1+j j 1 −j −1 j 1+j 1−j −1−j −1 j
1 −j −1 j 1 −j −1 j 1 −j −1 j 1 −j −1 j
−1 j 1 −1−j −1+j 1+j −j −1 j 1 −j −1+j 1+j 1−j −1 j
1 −j −1+j 1 −j −1 1+j −j −1 j 1−j −1 j 1 −1−j j
−1 1+j −j −1 1+j −j −1 1+j −j −1+j 1 −j −1+j 1 −j −1+j
1 −1−j j 1−j −1 1+j −j −1+j 1 −1−j j 1−j −1 1+j −j −1+j
−1 1+j −j j 1−j −1 1 −1−j j 1−j −1 1 −1−j j −j −1+j
1 −1 1+j −j j −j −1+j 1 −1 1 −1−j j −j j 1−j −1
−1 1 −1 1+j −1−j 1+j −j j −j j −j −1+j 1−j −1+j 1 −1



F32,21 =



1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
1 −1 1 −1+j 1−j −1+j −j j −j j −j 1+j −1−j 1+j −1 1
1 −1 1−j j −j j −1−j 1 −1 1 −1+j −j j −j 1+j −1
1 −1+j −j j −1−j 1 −1 1−j j −1−j 1 −1 1−j j −j 1+j
1 −1+j −j 1+j −1 1−j j −1−j 1 −1+j −j 1+j −1 1−j j −1−j
1 −1+j −j 1 −1+j −j 1 −1+j −j 1+j −1 −j 1+j −1 −j 1+j
1 j −1−j 1 j −1 1−j j −1 −j 1+j −1 −j 1 −1+j −j
1 j −1 1−j 1+j −1+j −j 1 j −1 −j 1+j −1+j −1−j 1 j
1 j −1 −j 1 j −1 −j 1 j −1 −j 1 j −1 −j
1 j −1 −1−j 1−j 1+j j −1 −j 1 j −1+j −1−j 1−j 1 j
1 j −1+j −1 −j 1 1+j j −1 −j 1−j 1 j −1 −1−j −j
1 1+j j −1 −1−j −j 1 1+j j −1+j −1 −j 1−j 1 j −1+j
1 1+j j −1+j −1 −1−j −j 1−j 1 1+j j −1+j −1 −1−j −j 1−j
1 1+j j j −1+j −1 −1 −1−j −j 1−j 1 1 1+j j j −1+j
1 1 1+j j j j −1+j −1 −1 −1 −1−j −j −j −j 1−j 1
1 1 1 1+j 1+j 1+j j j j j j −1+j −1+j −1+j −1 −1


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F32,22 =



1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
−1 1 −1 1−j −1+j 1−j j −j j −j j −1−j 1+j −1−j 1 −1
1 −1 1−j j −j j −1−j 1 −1 1 −1+j −j j −j 1+j −1
−1 1−j j −j 1+j −1 1 −1+j −j 1+j −1 1 −1+j −j j −1−j
1 −1+j −j 1+j −1 1−j j −1−j 1 −1+j −j 1+j −1 1−j j −1−j
−1 1−j j −1 1−j j −1 1−j j −1−j 1 j −1−j 1 j −1−j
1 j −1−j 1 j −1 1−j j −1 −j 1+j −1 −j 1 −1+j −j
−1 −j 1 −1+j −1−j 1−j j −1 −j 1 j −1−j 1−j 1+j −1 −j
1 j −1 −j 1 j −1 −j 1 j −1 −j 1 j −1 −j
−1 −j 1 1+j −1+j −1−j −j 1 j −1 −j 1−j 1+j −1+j −1 −j
1 j −1+j −1 −j 1 1+j j −1 −j 1−j 1 j −1 −1−j −j
−1 −1−j −j 1 1+j j −1 −1−j −j 1−j 1 j −1+j −1 −j 1−j
1 1+j j −1+j −1 −1−j −j 1−j 1 1+j j −1+j −1 −1−j −j 1−j
−1 −1−j −j −j 1−j 1 1 1+j j −1+j −1 −1 −1−j −j −j 1−j
1 1 1+j j j j −1+j −1 −1 −1 −1−j −j −j −j 1−j 1
−1 −1 −1 −1−j −1−j −1−j −j −j −j −j −j 1−j 1−j 1−j 1 1



The S4 matrix is defined as shown at the bottom of the
16 page.

We also denote the explicit approximated 32-point DFT
matrix as follows [53] and [58]

F̂32 =
[
F32,11 F32,12
F32,21 F32,22

]
, (14)

where [53], [58]. F32,11, F32,12, and F32,21, as shown at the
bottom of the previous page, and F32,22, as shown at the top
of the page.
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