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Abstract

Legendre pairs constitute an important combinatorial object that can be used to construct Hadamard

matrices. In this paper, we search for Legendre pairs exploring matrix structures and obtain a low

arithmetic and time complexity algorithm instead of conventional combinatorial algorithms. First,

we explore the structure of the Legendre pair matrix equation and study its properties. Next, we

study the boundaries of the spectra of the matrices appearing in the Legendre pair matrix equation,

using Gershgorin circles. After stating an invariant that characterizes Legendre pairs and their re-

lation to the discrete Fourier transform (DFT) matrix, we propose a low-complexity algorithm, i.e.,

a fast Fourier transform (FFT)-like algorithm, to compute the product of the DFT matrix with

each sequence of the Legendre pair having any odd length. By utilizing the FFT-like algorithm,

we present a low-time complexity algorithm associated with searching for Legendre pairs. Finally,

we show numerical results based on the C implementation of the FFT-like algorithm yielding a

low time complexity in searching for Legendre pairs as opposed to conventional combinatorial algo-

rithms. This leads us to demonstrate that the proposed FFT-like algorithm significantly accelerates

the search for Legendre pairs of orders 45 and 63, achieving at least 99% improvement in speed

compared to the conventional algorithms.
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1. Introduction

Hadamard matrices are n×n matrices H with elements from {−1,+1} such that H ·Ht = n ·In,

where t denotes matrix transposition and In is the n × n identity matrix. These matrices are

considered trivial when their order is either n = 1 or n = 2. Beyond these two trivial orders, a

well-known necessary condition for the existence of Hadamard matrices is that n ≡ 0 (mod 4). The

sufficiency of this condition is the famous Hadamard conjecture, still open after more than 130

years [1, 2]. Despite several dozens of known constructions for Hadamard matrices, the Hadamard

conjecture remains open, mainly because each construction either covers a rather sparse set of

orders or fails for several orders. There is a construction that furnishes a promising avenue towards

a more structured form of the Hadamard conjecture, i.e., that conjecturally does not fail for any

order which is a multiple of four [3]. This construction is based on a combinatorial object called

Legendre pairs. Legendre pairs were introduced in [4], where the authors show how to apply the

DFT matrix to search for these combinatorial objects. The importance of Legendre pairs is that

they can be used to build Hadamard matrices and the conjecture that Legendre pairs of every odd

length exist, implies the Hadamard conjecture, albeit via the very specialized structure of Legendre

pairs [3]. From the computational point of view, the smallest odd order for which Legendre pairs

are not known to exist is 115 [5]. In order to tackle the smallest open case, i.e., ℓ = 115 with our

new algorithm, one would first have to further carefully integrate and incorporate the concept of

Djokovic-Kotsireas compression [6] into the current implementation, as well as further optimize the

current code. This is planned to be the objective of future work.

In this paper, we explore a new perspective to search for Legendre pairs, i.e., using matrix

analysis and linear algebra. We start by exploring the structure of the Legendre pair matrix

equation. Structural properties of matrices can be explored to solve many problems in applied

sciences and engineering efficiently. These matrices have been studied individually in mathematics,

engineering, and computer science disciplines for quite a long time. Within the last two decades, the

theories of structured matrices got more attention as they are positioned to bridge diverse disciplines

[7, 8, 9, 10, 11, 12]. More specifically, recent work has been done to show that the theories of matrix

analysis could be utilized to solve problems in narrowband multi-beam beamforming [13], wideband

multi-beam beamforming [14], mutual coupling effects in antenna arrays [15], image processing

[16, 17], and reduction and minimization of circuit complexity and power consumption [18, 13, 19,

20, 14, 21] through the derivation of FFT-like algorithms. Challenges remain to develop algorithms
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for solving problems in diverse disciplines while offering low-complexity, accuracy, and stability at

the same time [9, 22]. However, if we could solve linear systems using fast and recursive algorithms,

we could obtain numerically stable algorithms with the same order of complexity [23, 24, 25, 26].

Thus, we exploit the structure of the Legendre pair matrix equation to obtain a low-complexity

and exact algorithm for searching for these objects.

The FFT is an algorithm that is used to compute the DFT matrix and its inverse efficiently.

The FFT algorithm can be used to reduce the brute-force calculation of the n × n DFT matrix

by an n × 1 vector from O(n2) to O(n log(n)), where n = 2t (t ≥ 1) [27, 28, 29]. The structure

and properties of the DFT matrix yield this complexity reduction. An n × n circulant is another

structured matrix and can be defined using O(n) as opposed to O(n2) parameters. More specifically,

circulant matrices are completely determined using the first row (or column) by a cyclic shift of

the entries to the right (or down). Furthermore, it is known that the circulant matrices can be

diagonalized using the DFT and its conjugate transpose and hence computed by using the FFT

algorithms [30, 31, 32, 33]. In this paper, we introduce and incorporate the FFT technique to search

for Legendre pairs of odd length ℓ, efficiently. Thus, we obtain visible speed-ups, especially for

odd lengths > 50 while reducing the arithmetic complexity from O(ℓ2) to O(n log(n)), where n > ℓ

is the closest power of 2 to ℓ.

The organization along with the contribution of the paper is as follows. Section 2 presents

preliminary results illustrating the use of structured matrices to study the Legendre pair ma-

trix equation and its correlation with the established properties of the two circulant core (2cc)

Hadamard matrix. Section 3 presents an algorithm with low arithmetic complexity for computing

the product of the DFT matrix with each sequence of the Legendre pair. This algorithm allows for

an efficient search for Legendre pairs while minimizing both arithmetic and time complexities. Sec-

tion 4 presents numerical results demonstrating that the sparse factorization discussed in Section 3

yields an FFT-like algorithm. This, in turn, is utilized in a C implementation, resulting in the algo-

rithm with a low time complexity for searching for Legendre pairs. This algorithm overreaches the

time complexity of the existing combinatorial algorithms in searching for Legendre pairs. Finally,

Section 5 concludes the paper.
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2. Preliminaries and Trivial Properties of the Legendre Pair Matrix Equation via

Structured Matrices

This section begins by reviewing the definition of the Legendre pair matrix equation and dis-

cussing its basic properties. In the sequel, the Legendre pair matrix equation will be presented as a

structured matrix. Legendre pairs are defined via the concept of the periodic autocorrelation func-

tion (PAF). Thus, we start the discussion with the definition of the PAF followed by the Legendre

pair sequence as stated below.

Definition 2.1. (Periodic autocorrelation function (PAF)) The periodic autocorrelation

function (PAF) of a finite sequence LA = [a0, . . ., an−1] is defined as:

PAFA(s) =
n−1∑
k=0

akak+s, s = 0, . . ., n− 1

where k + s is taken mod n.

Each PAFA(s) value is the inner product of the sequence LA and its right cyclic shift by s.

Definition 2.2. (Legendre pair) Let (LA, LB) be a pair of sequences of odd length ℓ, consisting

of elements from the set {−1,+1}. (LA, LB) is called a Legendre pair if

PAF(LA, s) + PAF(LB , s) = −2, where s = 1, . . .,
ℓ− 1

2
.

For technical reasons and w.l.o.g. (see [34]) we impose the additional normalization conditions

a1 + . . .+ aℓ = 1, b1 + . . .+ bℓ = 1, (1)

where ai and bi, for i = 1, 2, . . ., ℓ denote the elements of LA, LB respectively.

When (LA, LB) forms a Legendre pair of order ℓ and A,B are two ℓ× ℓ circulant matrices with
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their first rows as LA, LB respectively, a 2cc Hadamard matrix can be constructed as:

H2ℓ+2 =



− − + . . . + + . . . +

− + + . . . + − . . . −

+ +
...

... A B

+ +

+ −
...

... Bt −At

+ −



, (2)

where + stands for +1 and − stands for −1. Let us recall that the determinant of the Hadamard

matrix (2), is given by

det(H2ℓ+2) = ±(2ℓ+ 2)ℓ+1. (3)

In the sequel, we show a relationship between det(H2ℓ+2) and the Legendre pair matrix equation,

which will be defined next, to reassure the Property 3 based on the structured matrices. It is

important to note that an even-order Legendre pair does not exist. Had there been one, we would

have had a Hadamard matrix of order 2ℓ+2, which is congruent to 2 modulo 4. Nevertheless, such

a matrix does not exist.

2.1. Fundamentals of the Legendre Pair Matrix Equation

This section starts with the Legendre pair matrix equation, followed by reestablishing the

connection between the Legendre pair matrix equation and the 2cc Hadamard matrix via block

Gauss-Jordan form and structured matrices.

Lemma 2.3. (Legendre pair matrix equation in [35]) Let (LA, LB) be a Legendre pair of

(odd) order ℓ. Let A,B be two ℓ × ℓ circulant matrices, whose first rows are LA, LB respectively.

Then the following matrix equation is satisfied:

AAt +BBt = (2ℓ+ 2)Iℓ − 2Jℓ, (4)

where Iℓ denotes the ℓ × ℓ identity matrix and Jℓ denotes the ℓ × ℓ all-ones matrix. Moreover,

the equation (4) is called the Legendre pair matrix equation.
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We denote the right-hand-side matrix of the Legendre pair matrix equation by M (ℓ) = (2ℓ +

2)Iℓ − 2Jℓ, and remark that M (ℓ) is a circulant matrix with first row equal to r = [2ℓ,−2, . . .− 2︸ ︷︷ ︸
ℓ−1 terms

]

s.t.

M
(ℓ)
ij =

 2ℓ if i = j, where i, j = 1, 2, . . ., ℓ,

−2 if i ̸= j, where i, j = 1, 2, . . ., ℓ.
(5)

In the subsequent proposition, we show a relationship linking the determinants of 2cc Hadamard

matrices denoted as H2ℓ+2 in equation (2), with the Legendre pair matrix equation (4), using block

Gauss-Jordan form of the 2cc Hadamard matrix.

Proposition 2.4. Let H2ℓ+2 =

 H11 H12

Ht
12 H22

 and A,B be two ℓ × ℓ circulant matrices sat-

isfying Equation (4), where H11 =

−1 −1

−1 1

, H12 =

1 . . . 1 1 . . . 1

1 . . . 1 −1 . . . − 1


2,2ℓ

, and H22 =

 A B

Bt −At

 . Then

det(H2ℓ+2) = 2(ℓ+ 1)2det(M (ℓ)). (6)

Proof. One can decompose the matrix H22 into lower and upper block triangular matrices using

the Schur complement of the block At of the matrix H22 s.t.

H22 =

 A+B(At)−1Bt B

0 −At

 I 0

−(At)−1Bt I

 ,

where A is the non-singular circulant matrix. Thus, we get

det(H22) = −det(A+B(A−1)tBt) · det(At). (7)

Similarly, we could decompose H2ℓ+2 using the nonsingular block circulant matrix H22 s.t.

H2ℓ+2 =

 H11 −H12H
−1
22 Ht

12 H12

0 H22

 I 0

H−1
22 Ht

12 I

 ,

and obtain det(H2ℓ+2) = det(H11 −H12H
−1
22 Ht

12) · det(H22). On the other hand, we can continue

the block lower and upper decomposition of H22 in order to decompose the matrix H22 using a
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block Gauss-Jordan form of H22 s.t.

H22 =

 I −B(At)−1

0 I

 A+B(At)−1Bt 0

0 −At

 I 0

−(At)−1Bt I

 .

Since A is non-singular and H22 admits the Gauss-Jordan elimination, we could obtain the inverse

of H22 s.t.

H−1
22 =

 I 0

(At)−1Bt I

 (A+B(At)−1Bt)−1 0

0 −(At)−1

 I B(At)−1

0 I

 .

Thus, from the above, using the circulant matrices A and B generated by LA and LB , respectively,

and followed by the block matrix multiplication, we get

H12H
−1
22 Ht

12

=

2 . . . 2 1 . . . 1

0 . . . 0 −1 . . . − 1


2,2ℓ

 (A+B(At)−1Bt)−1 0

0 −(At)−1

2 . . . 2 1 . . . 1

0 . . . 0 −1 . . . − 1

t

2,2ℓ

.

(8)

Since A and B are circulant matrices derived from the Legendre pair LA and LB , respectively, with

the normalization condition (1), the sum of each column in the circulant matrices (At)−1Bt and

B(At)−1 equals 1. As a result, the entries in the first and last matrices in the factorization (8) will

be simplified. Hence, from the above followed by the matrix multiplication, we get

H12H
−1
22 Ht

12 =

ℓ ℓ

ℓ −ℓ

 .

From the above and using the matrix H11, we get

det(H11 −H12H
−1
22 Ht

12) = −2(ℓ+ 1)2. (9)

Thus, by (7) and (9), we get

det(H2ℓ+2) = 2(ℓ+ 1)2det((A+B(At)−1Bt)At). (10)

Since A and B are non-singular circulant matrices, they are commutative, so we have ABA−1 = B.

Thus, we get

AAt +BBt = AAt +B(A−1)tBtAt. (11)

Hence, from (4), (10), and (11), we get the result.
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In the following proposition, we use the structure of the matrix M (ℓ) identified via the Legendre

pair matrix equation (4) to obtain the determinant of the Legendre pair matrix equation, for any

odd length ℓ.

Proposition 2.5. Let M (ℓ) be defined as in (5). Then,

det(M (ℓ)) = 2ℓ(ℓ+ 1)ℓ−1. (12)

Proof. The matrix M (ℓ) is circulant. Thus, by using the well-known decomposition of the circulant

matrices via the DFT matrices [36, 30, 9, 37, 14], M (ℓ) can be expressed via

M (ℓ) = FℓDℓF
∗
ℓ , (13)

where Fℓ =
1√
ℓ
[ωjk]ℓ−1

j,k=0, ω = e
−2πi

ℓ is a primitive ℓth root of unity, i2 = −1, Dℓ = diag(
√
ℓFℓ · rt),

and F ∗
ℓ is the conjugate transpose of Fℓ. Furthermore, the diagonal elements of Dℓ are eigenvalues

of the circulant matrix M (ℓ). Let these eigenvalues be represented as λj ’s associated with M (ℓ),

then these can be explicitly expressed as

λj = 2ℓ− 2(ωj + ω2j + . . .+ ω(ℓ−1)j), (14)

where j = 0, 1, . . ., ℓ− 1. Thus, the above equation is simplified into

λj =

 2, j = 0

2ℓ+ 2, j = 1, 2, . . ., ℓ− 1.
(15)

Since Fℓ and F ∗
ℓ are unitary matrices and following equations (13) and (15), we get the result.

We note that Propositions 2.4 and 2.5 confirm that the determinant of the Hadamard matrix

can be calculated using equation (3).

2.2. Eigenvalues and Eigenvectors of the Legendre Pair Matrix Equation

In this section, we continue utilizing the structure of the Legendre pair matrix equation to

obtain eigenvalues, eigenvectors, characteristic polynomial, spectral radius, and a bound for the

spectrum of the matrices A and B. These properties will be utilized as auxiliary results for the

facts on PSD values in Section 3.

Since the Legendre pair matrix equation can be seen as a circulant matrix M (ℓ) and the matrix

M (ℓ) admits the decomposition (13), the normalized eigenvectors of the circulant matrix M (ℓ) are
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the Fourier modes given via vj = 1√
ℓ
(1, ωj , ω2j , . . ., ω(ℓ−1)j), for j = 0, 1, . . ., ℓ − 1. Moreover, the

eigenvalues of the Legendre pair matrix equation are given via equation (15). Thus, the matrix

M (ℓ) has the eigenvalues 2 (with multiplicity 1) and 2ℓ+ 2 (with multiplicity ℓ− 1). This leads to

the following immediate result based on the characteristic polynomial of the matrix M (ℓ).

Corollary 2.6. Let M (ℓ) be defined as in (5). Then its characteristic polynomial, denoted by

PM(ℓ)(x), is given via

PM(ℓ)(x) = (x− 2)(x− 2ℓ− 2)ℓ−1 (16)

Proof. This immediately follows from equations (13) and (15).

Since the eigenvalues of the Legendre pair matrix equation are known, we can state the spectral

radius as follows.

Corollary 2.7. Let M (ℓ) be defined as in (5). Then its spectral radius is given via

ρ(M (ℓ)) = 2ℓ+ 2. (17)

Proof. This is a direct consequence of the eigenvalues of M (ℓ) listed in (15).

Since the eigenvalues and spectral radius of the Legendre pair matrix equation are stated,

we could obtain a bound for the spectrum of eigenvalues based on the Gershgorin disc. Before

presenting the next Corollary, let us introduce the Gershgorin disc as follows [38, 39].

Definition 2.8. (Gershgorin disc) Let A be a complex n × n matrix with entries aij. For

i ∈ {1, 2, . . ., n}, let Ri be the sum of the absolute values of the non-diagonal entries in the ith row

s.t. Ri =
∑

j ̸=i
|aij |. Let D(aii, Ri) ⊆ C be a closed disc centered at aii with radius Ri, then the

disc D(aii, Ri) is called a Gershgorin disc.

In the following, we use the notation D(a,R) ⊆ C to denote a closed disc with center a ∈ C and

radius R > 0.

Corollary 2.9. Let M (ℓ) be defined as in (5). Then its eigenvalues lie within the Gershgorin circle

D(2ℓ, R) ⊆ C, where R = 2ℓ− 2.

Proof. This follows immediately from Propositions 2.4 and 2.5, and the Gershgorin circle theorem

[38, 39].
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We utilize the following example to illustrate the above Corollary.

Example 2.10. Consider the Legendre pair of order ℓ = 45, given by the sequences LA and LB:

L_A:=[-1,-1,1,1,-1,1,1,-1,1,1,-1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,

1,-1,-1,1,-1,-1,1,1,1,1,1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1];

L_B:=[1,-1,-1,1,1,1,-1,-1,1,1,1,1,1,-1,-1,-1,1,1,-1,1,1,1,-1,

-1,1,-1,1,-1,-1,-1,-1,1,-1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,1];

In Figure 1, the spectra of the circulant matrices A and B are shown using red points representing

the eigenvalues of matrix A and blue points representing the eigenvalues of matrix B, respectively.

The light green circle in the figure represents an experimentally determined bound of 11 = 45−1
4 on

the radius. Therefore, the theoretically predicted bound of 45−1 = 44 on the radius is not optimal.

Figure 1: This plot shows the eigenvalues of the Legendre pair of order ℓ = 45. The red points represent the

eigenvalues of matrix A, while blue points indicate the eigenvalues of matrix B. The green circle of radius 11, is a

scaled version of the Gershgorin circle centered at (−1, 0).

Continuing from Corollary 2.9, we obtain the following result based on the eigenvalues of the

matrices A and B.
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Proposition 2.11. Let (LA, LB) be a Legendre pair of (odd) order ℓ. Let A,B be two ℓ × ℓ

circulant matrices, whose first rows are determined by the sequences LA, LB respectively. Then 1

is an eigenvalue of A and also of B.

Proof. The matrices A and B are ℓ × ℓ circulant matrices and hence admit the well-known DFT

decomposition s.t.

A = FℓDAF
∗
ℓ , and B = FℓDBF

∗
ℓ , (18)

where DA = diag(Fℓ ·Lt
A) and DB = diag(Fℓ ·Lt

B). Furthermore, the matrices DA and DB consist

of eigenvalues of the matrices A and B, respectively. Let us denote the eigenvalues of A and B by

(λA)j and (λB)j , respectively, for j = 0, 1, . . ., ℓ− 1. Thus, using equation (18) allows us to express

the entries of DA and DB by:

(λA)j = a1 + a2ω
j + a3ω

2j + . . .+ aℓω
(ℓ−1)j , and (λB)j = b1 + b2ω

j + b3ω
2j + . . .+ bℓω

(ℓ−1)j .

Thus, when j = 0, the above equations simplify to

(λA)0 = a1 + a2 + a3 + . . .+ aℓ, and (λB)0 = b1 + b2 + b3 + . . .+ bℓ. (19)

Therefore, based on property (1), i.e., the normalization property yielding the sums in the RHS of

the above equation to 1, we get that 1 is an eigenvalue of A and also B.

3. A Low-complexity Algorithm to Compute PSD Values and Search Legendre Pair

In this section, we first introduce the DFT matrix followed by the FFT and FFTW algorithms.

Next, we compute the product of the DFT matrix, with each of the two sequences LA and LB of

the Legendre pair (LA, LB), and we obtain the PSD (power spectral density) as detailed in the

Definition 3.1.

Moreover, we state the matrix representation of Bluestein’s algorithm in computing the product

of the DFT matrix with each of the two sequences LA and LB of the Legendre pair (LA, LB), as

an auxiliary result in searching for Legendre pairs using the FFTW in Section 4. We show that the

matrix factorization based on Bluestein’s algorithm yields a low arithmetic complexity algorithm

while reducing the complexity from O(ℓ2) to O(n log(n)), where n > ℓ is the closest power of 2 to

ℓ.

Finally, we obtain bounds for the PSD values, which can be useful in further pruning the search

space of Legendre pairs.
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3.1. DFT, FFT, and FFTW

The FFT is the most frequently used algorithm in digital signal processing [40, 41, 42], and is

used to efficiently compute the DFT and its inverse. The DFT of a sequence of n inputs x = {xk}n−1
k=0

is a sequence of n outputs y = {yk}n−1
k=0 defined via y = Fnx, where

Fn =
1√
n
[ωjk

n ]n−1
j,k=0 (20)

is the n × n normalized DFT matrix and ωn = e−
2πi
n , which is the superset of ω in (13) as ω

defines only the primitive odd, i.e., ℓth, root of unity. When n = 2t (t ≥ 1), the DFT matrix can

be computed using the FFT algorithm [27, 28] because the DFT matrix admits the decomposition

Fn = PT
n

Fn
2

Fn
2

Hn, (21)

where

Pn x =

 [x0, x2, . . ., xn−2, x1, x3, . . ., xn−1]
T

if n is even

[x0, x2, . . ., xn−1, x1, x3, . . ., xn−2]
T

if n is odd
,

Hn =

 In
2

In
2

D̀n
2

−D̀n
2


is a unitary matrix w.r.t. scaling, D̀n

2
= diag

[
wl

n

]n
2 −1

l=0
, and In is the identity matrix. Hence, the

DFT by a vector can be computed using O(n log(n)) as opposed to O(n2) complexity. To reduce the

number of multiplications further, one could utilize the normalized DFT matrix s.t. F̃n =
√
n Fn

and its conjugate transpose by F ∗
n . As a result, we could further reduce the complexity within the

order O(n log(n)) using the decomposition s.t. F̃n = PT
n

F̃n
2

F̃n
2

Hn.

The difference in complexity of the FFT algorithms from 1965 [27] and the lowest best-known

FFT [29] is about 25%, and yet there is a gap between mathematical theories and implementation of

the highly optimized FFT packages [43, 44]. Authors in these books implemented FFT in practice

by creating the FFTW library, which is a widely used free software library that computes the DFT

and its various special cases. Here, we will adopt the FFTW to compute the PSD of the candidate

Legendre pairs with the reduction of arithmetic complexity from O(ℓ2) to O(n log(n)), and also a

drastic time complexity reduction in Section 4.
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3.2. A FFT-like Algorithm to Compute PSD Values

In this section, we will propose a low arithmetic complexity algorithm for the computation of the

set of PSD values, as an alternative to the conventional brute-force approach involving the product

of the DFT matrix with each of the two sequences LA and LB of the Legendre pair (LA, LB). This

low arithmetic complexity algorithm will be utilized as a foundation to search for Legendre pairs

with a low time complexity algorithm. The algorithm is presented through the matrix representation

of Bluestein’s algorithm. Before starting the algorithm, let us define the PSD values.

Definition 3.1. (Power spectral density (PSD) values) Consider two sequences, LA and LB,

each of odd order ℓ and m = ℓ−1
2 . Let the DFTs (normalized w.r. t. ℓ) of these sequences are

denoted by

DFT(LA) = [µ0, . . ., µℓ−1]

and

DFT(LB) = [ν0, . . ., νℓ−1].

Then, the PSD values of these sequences are defined as:

PSD(LA, s) = ℜ(µs)
2 + ℑ(µs)

2, s = 1, . . .,m

and

PSD(LB , s) = ℜ(νs)2 + ℑ(νs)2, s = 1, . . .,m.

The PSD values in the above start from s = 1 (omitting s = 0) because µ0 = ν0 = 1 is

corresponding to the eigenvalues of A and B being 1, and this was shown in Proposition 2.11. In

addition, we compute only the first m PSD values because of the symmetry property present in

each sequence, i.e., PSD(LA, s) = PSD(LA, ℓ− s) and PSD(LB , s) = PSD(LB , ℓ− s).

Based on the PSD values of the two sequences, we have the PSD invariant property s.t.

PSD(LA, s) + PSD(LB , s) = 2ℓ+ 2, ∀s = 1, . . .,m. (22)

In other words, Legendre pairs are characterized by the constancy of PAF (i.e., the PAF values

sum to −2) and the constancy of the PSD (i.e., the PSD values sum to 2ℓ+2). We illustrate these

constancy properties of PAF and PSD with the following example:
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Example 3.2. Consider the Legendre pair of order ℓ = 45 (for which m = 22, 2ℓ+ 2 = 92)

L_A:=[-1,-1,1,1,-1,1,1,-1,1,1,-1,-1,1,-1,-1,1,-1,1,1,-1,1,-1,

1,-1,-1,1,-1,-1,1,1,1,1,1,1,-1,-1,1,1,1,1,-1,-1,-1,-1,-1];

L_B:=[1,-1,-1,1,1,1,-1,-1,1,1,1,1,1,-1,-1,-1,1,1,-1,1,1,1,-1,

-1,1,-1,1,-1,-1,-1,-1,1,-1,-1,-1,1,-1,1,-1,1,-1,1,-1,1,1];

• the PAF constancy property (with the PAF constant −2) is materialized as follows:

s 1 2 3 4 5 6 7 8 9 10 11

PAF(A, s) 1 −3 13 −11 −7 −3 −3 −3 −3 1 −3

PAF(B, s) −3 1 −15 9 5 1 1 1 1 −3 1

−2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2

s 12 13 14 15 16 17 18 19 20 21 22

PAF(A, s) −3 −3 1 1 1 1 −3 1 1 1 1

PAF(B, s) 1 1 −3 −3 −3 −3 1 −3 −3 −3 −3

−2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2

• the PSD constancy property (with the PSD constant 2ℓ+ 2 = 92) is materialized as follows:

s, PSD(L_A,s), PSD(L_B,s), PSD(L_A,s) + PSD(L_B,s)

1, 18.78398162, 73.21601830, 92

2, 75.60311755, 16.39688232, 92

3, 75.70559038, 16.29440935, 92

4, 67.60652789, 24.39347193, 92

5, 58.80933390, 33.19066596, 92

6, 58.94004336, 33.05995648, 92

7, 16.29533595, 75.70466380, 92

8, 12.42889922, 79.57110066, 92

9, 32.58359208, 59.41640783, 92

10, 8.393304174, 83.60669564, 92

11, 21.17900710, 70.82099280, 92
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12, 43.12722512, 48.87277485, 92

13, 72.68711906, 19.31288084, 92

14, 89.20751650, 2.792483344, 92

15, 76, 16, 92

16, 88.23332322, 3.766676806, 92

17, 69.87139244, 22.12860750, 92

18, 59.41640784, 32.58359212, 92

19, 49.23886682, 42.76113297, 92

20, 4.797361782, 87.20263814, 92

21, 6.227140824, 85.77285911, 92

22, 6.864911913, 85.13508805, 92

We note here that the PSD(LA, s) and PSD(LB , s) are the square of the magnitude of the

eigenvalues of the matrices A and B generated by the Legendre pair sequences (LA, LB) in equation

(19) for s = 1, 2, . . ., ℓ−1
2 .

Remark 3.3. Numerical experimental evidence gathered for odd values ℓ < 100 suggests that the

values of PSD(LA, 1) and PSD(LB , 1) are very often a lot larger than the constant 2ℓ+2, therefore

this implies that very large swaths of the search space do not contain solutions. As a consequence,

these large regions of the search space that do not contain solutions can be pruned efficiently from

the search, based on theoretical estimates on the size of the PSD(LA, 1) and PSD(LB , 1), as well as

(possibly) other PSD values.

Following Example 3.2, one could utilize the FFTW to calculate a set of PSD values instead of

brute-force product of the DFT matrix with each of the two sequences LA and LB of the Legendre

pair (LA, LB) while reducing arithmetic and time complexities. The FFTW implementation was

done based on the Cooley-Tukey algorithm [27] along with Rader’s [45, 46] and Bluestein’s [47]

FFT algorithms. Rader’s and Bluestein’s are FFT algorithms computing the DFT of prime and

arbitrary sizes by re-expressing the DFT as a cyclic convolution. Since we consider the Legendre

pair of odd order ℓ, we state Bluestein’s algorithm in the matrix-vector form to compute the product

of the DFT matrix with each of the two sequences LA and LB of the Legendre pair (LA, LB) using

O(n log(n)) as opposed to O(ℓ2) complexity algorithms. This is followed by the definition of the

16



PSD values concluding that the PSD values can be computed using O(n log(n)) as opposed to the

existing O(ℓ2) complexity algorithms, in the literature.

Proposition 3.4. Let ℓ be the order of the Legendre pair (LA, LB), then the product of the DFT

matrix with each of the two sequences LA and LB of the Legendre pair (LA, LB) can be computed

using the following decomposition

DFT(LA) = D̂ℓTℓD̂ℓL
t
A, (23)

where Tℓ = Kℓ×nTn[Kℓ×n]
t, n > ℓ is the closest power of 2 to ℓ, DFT :=

√
ℓFℓ,

Kℓ×n =
[
Iℓ 0ℓ×(n−ℓ)

]
, Tn is the symmetric Toeplitz matrix determined via the first column (or

row) s.t.

tn×1 =
[
t0, t1, t2, . . ., t(ℓ−1), 0, . . ., 0

]t
, tj = e−

πj2i
ℓ , and D̂ℓ =

[
diag(e−

πk2i
ℓ )

]ℓ−1

k=0
.

The DFT(LB) is computed using the same factorization as in (23) with the input sequence LB.

Proof. The symmetric Toeplitz matrix Tℓ is padded with zeros in order to obtain another symmetric

Toeplitz matrix Tn with a length of n, which is the closest power of 2 to ℓ. The first column (or

row) of Tn is determined using tn×1 =
[
t0, t1, t2, . . . , t(ℓ−1), 0, . . . , 0

]t
. Next, we embed Tn into the

circulant matrix R2n s.t. R2n =

Tn T̃n

T̃n Tn

, where a symmetric Toeplitz matrix T̃n is determined

via its first column (or row) s.t. t̃n×1 =
[
t0, 0, . . ., 0, t(ℓ−1), t(ℓ−2), . . ., t2, t1

]t
. Next, we use 2-FFT

(as opposed to the well-known 3-FFTs computing a Toeplitz matrix-vector product) to compute

R2n s.t. R2n = F ∗
2nD2nF2n, where D2n = diag

[
F̃2nt2n×1

]
, t2n×1 =

t
t̃

, and F̃2n is the normalized

DFT matrix. Next, we extract Tn from R2n via Tn = [J2n×n]
tR2nJ2n×n, where J2n×n =

 In

0n

.
Afterwards, we extract Tℓ from Tn using Kℓ×n. Finally, scaling Tℓ by diagonal matrices D̂ℓ and

getting the product of the matrices with each of the two sequences LA and LB of the Legendre pair

(LA, LB) gives the result.

Remark 3.5. 1. The above proposition shows that the matrix representation of Bluestein’s FFT

algorithm is executed via the symmetric Toeplitz matrices Tℓ [47, 44].

2. We recall here that, computing the Toeplitz matrices by a vector using 2-FFTs [14, 37] as

opposed to 3-FFTs [9, 15] for an even length s.t. n = 2t had been proposed.

17



3. One could also pad the odd length ℓ Legendre pair sequences (LA, LB) to the closet even length

of n = 2t s.t. n > ℓ, and execute the product of the DFT matrix with each of the two sequences

LA and LB of the Legendre pair (LA, LB) by using the 2-FFT algorithms in [14, 37]. Since the

purpose is also to search for Legendre pairs of odd length ℓ using a low time complexity-based

FFTW in C (as in Section 4), which is the Bluestein’s FFT algorithm, we proceed with the

matrix factorization of Bluestein’s FFT in Proposition 23 in order to reduce arithmetic and

time complexities.

Corollary 3.6. The arithmetic complexity in computing the product of the DFT matrix with each of

the two sequences LA and LB of the Legendre pair (LA, LB) of length ℓ cost O(n log(n)) operations,

where n > ℓ.

Proof. Following equation (23), the Toeplitz matrix Tℓ is computed using Tn followed by 2-FFTs

with complexity O(n log(n)). The cost of computing each diagonal matrix D̂ℓ and D2n by a vector

cost O(ℓ) and O(n), respectively. Thus, the overall cost is O(n log(n)) as n > ℓ.

We recall here that there is also a Winograd FFT algorithm [48] and it minimizes the number

of multiplications at the expense of a large number of additions, but this trade-off didn’t benefit

current processors that need specialized hardware multipliers and was not utilized to implement

the FFTW [44].

3.3. Utilize the FFT-like Algorithm for Noise Filtering

The PSD shows the influence of noise signals over a spectrum of frequencies. Thus, the PSD

serves as a tool for analyzing noise signals and identifying harmonics, guiding the design of filters.

The FFT algorithm is a powerful technique for analyzing the autocorrelation function of a discrete

noise signal in order to characterize its PSD. Thus, the FFT-like algorithms are highly efficient in

accurately determining the spectral information of dominant noise powers.

In this section, we utilize the proposed FFT-like algorithm with ℓ = 45 for noise filtering with a

simple example. We consider a function of time f(t) = cos(ω1t)+sin(ω2t) with frequencies ω1 = 40π

and ω2 = 240π. We then add a large amount of Gaussian white noise to this signal as shown in

the first panel of Figure 2. In the second and the third figure panels, we computed the FFT of this

noisy signal by using the built-in fft command in MATLAB and codes based on Proposition 3.4,

respectively. Then, we use the PSD values to filter out noise in both cases. As shown in the bottom
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two panels, it is possible to clear noise from the signal that has a power below a threshold, which

we took as 22 because m = 22. Figure 2 displays the resemblance between the numerical results

obtained from the proposed algorithm and the fft function.

Figure 2: Noise filtering using the built-in fft and the proposed algorithm. The top one shows the function f(t) with

the added noise. The second and third figure panels show noise signals in the Fourier domain using the built-in FFT

(labeled with BFFT) and the proposed algorithm (labeled with PAlgo) followed by the PSD to filter out noise. The

proposed algorithm resembles the numerical results with the fft function. The x-axis of the top panel represents time

and the bottom two panels represent frequency. The y-axis of the bottom two panels shows FFT followed by PSD

filtered values based on the proposed algorithm and the fft function.

4. Numerical Results for Time Complexity of Searching for Legendre Pairs

In this section, we show that the FFTW-based matrix factorization,i.e., Bluestein’s algorithm

in Section 3 could be utilized to speed up the process of searching Legendre pairs compared to the

existing combinatorial searching algorithms. We illustrate these speedups in the particular cases

s.t. ℓ = 45 and ℓ = 63.

4.1. Numerical Results for ℓ = 45

The factorization based on ℓ = 45 = 5 · 9 allows one to employ 5-decompression (resp. 9-

decompression) of a pair of sequences of length 9 (resp. 5), to construct Legendre pairs of order

ℓ = 45. Here is the pair of sequences of length 9, that constitutes the 5-compression of the Legendre

pair of order 45 presented in Example 3.2 s.t.

[[1,−1, 3, 3,−1,−1, 1,−3,−1], [−1, 1,−1, 3,−1,−1,−3,−1, 5]].
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Here is a pair of sequences of length 5, that constitutes the 9-compression of the Legendre pair of

order 45 presented in Example 3.2 s.t.

[[1,−3, 3, 3,−3], [1, 3,−3,−3, 3]].

Our currently available C code implementations find Legendre pairs of order ℓ = 45 in about 20

minutes, while the FFTW-enabled C codes find Legendre pairs of order ℓ = 45 in less than 10

seconds. Thus, the proposed FFT-like algorithm enables the search for Legendre pairs of order

ℓ = 45 with a 99% efficiency, outperforming existing methods.

4.2. Numerical Results for ℓ = 63

The factorization ℓ = 63 = 7 · 9 allows one to employ 7-decompression [6] of a pair of sequences

of length 9, to construct Legendre pairs of order ℓ = 63. In particular, we employ two copies of the

same sequence of length 9 s.t.

S9 = [−7, 1, 1, 1, 1, 1, 1, 1, 1].

This sequence has the following properties:

PAF(S9, s) = −7, s = 1, . . ., 4 and PSD(S9, s) = 64, s = 1, . . ., 4,

i.e., it satisfies the hypotheses of Proposition 1 in [34]. Since the first element of S9 has a unique 7-

decompressed, the complexity of the 7-decompression code required in order to construct Legendre

pairs of order ℓ = 63 is dominated by the remaining 8 elements, each one of which can be 7-

decompressed in
(
7
4

)
= 35 ways. Therefore, we need to compute 358 ≈ 241 DFTs of {−1,+1}-

sequences of length 63. For each one of these 241 DFTs, we perform a lookup in the computed DFT

vector of length 63, in order to see whether all the 63−1
2 = 31 PSD values are less than the PSD

constant 2 · 63 + 2 = 128.

Using the FFTW library in C:

1. 4 Legendre pairs are found in less than 60 minutes, with about 0.2% of the entire space

traversed;

2. 56 Legendre pairs are found in 12 hours, with about 3% of the entire space traversed.

From the above data, one can conclude that the entire search space can be traversed super fast

with our novel implementation, while the existing C implementation for Legendre pairs of order

ℓ = 63 did not even produce any results i.e. not even one Legendre pair after 24 hours.
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5. Conclusion

In this paper, we provided novel perspectives on Legendre pairs, using concepts from matrix

analysis and linear algebra. These perspectives can be used (with great benefits) in current com-

putational schemes to search for Legendre pairs. The structured matrices perspectives on Legendre

pairs make use of the Legendre pair matrix equation, to investigate its properties. We introduced

a structured matrix approach to obtain a low arithmetic complexity algorithm for computing the

product of the DFT matrix with each sequence of the Legendre pair, regardless of their odd lengths.

This method enables efficient computation of power spectral density values, and hence, search for

Legendre pairs with reduced time complexity. Finally, we showed numerical results based on the

C implementation of FFTW in searching for Legendre pairs while attaining a low time complex-

ity algorithm so that the proposed technique excels the conventional combinatorial algorithms in

searching Legendre pairs. More specifically, we had shown that the proposed FFT-like algorithm

significantly accelerates the search for Legendre pairs of orders 45 and 63, achieving at least 99%

improvement in speed compared to conventional algorithms, in the literature.
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Appendix: Legendre Pairs database for some small lengths

In here, we put a list of Legendre pairs for readers to test the corresponding problems for small

lengths.

ell = 3:

A:=CirculantMatrix([1,1,-1]);

B:=CirculantMatrix([1,1,-1]);

ell = 5:

A:=CirculantMatrix([-1, -1, 1, 1, 1]);

B:=CirculantMatrix([-1, 1, -1, 1, 1]);

ell = 7:

A:=CirculantMatrix([-1, -1, 1, -1, 1, 1, 1]);

B:=CirculantMatrix([-1, -1, 1, -1, 1, 1, 1]);

ell = 9:

A:=CirculantMatrix([-1, -1, -1, 1, -1, 1, 1, 1, 1]);

B:=CirculantMatrix([-1, -1, 1, 1, -1, 1, -1, 1, 1]);

ell = 11:

A:=CirculantMatrix([-1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1]);

B:=CirculantMatrix([-1, -1, 1, 1, -1, 1, -1, 1, -1, 1, 1]);

ell = 13:

A:=CirculantMatrix([-1, -1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, 1]);

B:=CirculantMatrix([-1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1]);

ell = 15:

A:=CirculantMatrix([-1, -1, -1, -1, -1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1]);

22



B:=CirculantMatrix([-1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1]);

ell = 17:

A:=CirculantMatrix([-1, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1]);

B:=CirculantMatrix([-1, -1, -1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, 1]);

ell = 19:

A:=CirculantMatrix([-1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, 1, 1]);

B:=CirculantMatrix([-1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1]);

Appendix: perform 7-decompression for S9 = [−7, 1, 1, 1, 1, 1, 1, 1, 1], to find for LP (63).

#include <stdio.h>

#include <stdlib.h>

#include <fftw3.h>

#include <math.h>

int main(int argc, char *argv[])

{

int ii, N=63;

fftw_complex *in, *out;

fftw_plan p;

in = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * N);

out = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * N);

p = fftw_plan_dft_1d(N, in, out, FFTW_FORWARD, FFTW_ESTIMATE);

int i, v = 63;

int Op1s[] = {0,2,3,4,5,6,7,8,9};

int Om1s[] = {0};

int Op3s[] = {0};

int Om3s[] = {0};

int Op5s[] = {0};

int Om5s[] = {0};

int xm1[1], xp1[9], xm3[1], xp3[1], xm5[1], xp5[1], A[64];

float PSD1, PSD2, PSD3, PSD4, PSD5, PSD6, PSD7, PSD8, PSD9, PSD10,

PSD11, PSD12, PSD13, PSD14, PSD15, PSD16, PSD17, PSD18, PSD19, PSD20,

PSD21, PSD22, PSD23, PSD24, PSD25, PSD26, PSD27, PSD28, PSD29, PSD30, PSD31;

A[1] = -1; A[10] = -1; A[19] = -1; A[28] = -1; A[37] = -1; A[46] = -1; A[55] = -1;

for (xp1[1] = 1; xp1[1] <= 35; xp1[1]++)

for (xp1[2] = 1; xp1[2] <= 35; xp1[2]++)
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for (xp1[3] = 1; xp1[3] <= 35; xp1[3]++)

for (xp1[4] = 1; xp1[4] <= 35; xp1[4]++)

for (xp1[5] = 1; xp1[5] <= 35; xp1[5]++)

for (xp1[6] = 1; xp1[6] <= 35; xp1[6]++)

for (xp1[7] = 1; xp1[7] <= 35; xp1[7]++)

for (xp1[8] = 1; xp1[8] <= 35; xp1[8]++)

{

for(i=1; i<=8; i++)

switch (xp1[i]) {

case 1 : A[Op1s[i]] = -1 ; A[Op1s[i]+9] = -1 ; A[Op1s[i]+18] = -1 ; A[Op1s[i]+27] = 1 ; A[Op1s[i]+36] = 1 ; A[Op1s[i]+45] = 1 ; A[Op1s[i]+54] = 1 ; break;

case 2 : A[Op1s[i]] = -1 ; A[Op1s[i]+9] = -1 ; A[Op1s[i]+18] = 1 ; A[Op1s[i]+27] = -1 ; A[Op1s[i]+36] = 1 ; A[Op1s[i]+45] = 1 ; A[Op1s[i]+54] = 1 ; break;

case 3 : A[Op1s[i]] = -1 ; A[Op1s[i]+9] = -1 ; A[Op1s[i]+18] = 1 ; A[Op1s[i]+27] = 1 ; A[Op1s[i]+36] = -1 ; A[Op1s[i]+45] = 1 ; A[Op1s[i]+54] = 1 ; break;

case 4 : A[Op1s[i]] = -1 ; A[Op1s[i]+9] = -1 ; A[Op1s[i]+18] = 1 ; A[Op1s[i]+27] = 1 ; A[Op1s[i]+36] = 1 ; A[Op1s[i]+45] = -1 ; A[Op1s[i]+54] = 1 ; break;

case 5 : A[Op1s[i]] = -1 ; A[Op1s[i]+9] = -1 ; A[Op1s[i]+18] = 1 ; A[Op1s[i]+27] = 1 ; A[Op1s[i]+36] = 1 ; A[Op1s[i]+45] = 1 ; A[Op1s[i]+54] = -1 ; break;

case 6 : A[Op1s[i]] = -1 ; A[Op1s[i]+9] = 1 ; A[Op1s[i]+18] = -1 ; A[Op1s[i]+27] = -1 ; A[Op1s[i]+36] = 1 ; A[Op1s[i]+45] = 1 ; A[Op1s[i]+54] = 1 ; break;

case 7 : A[Op1s[i]] = -1 ; A[Op1s[i]+9] = 1 ; A[Op1s[i]+18] = -1 ; A[Op1s[i]+27] = 1 ; A[Op1s[i]+36] = -1 ; A[Op1s[i]+45] = 1 ; A[Op1s[i]+54] = 1 ; break;

case 8 : A[Op1s[i]] = -1 ; A[Op1s[i]+9] = 1 ; A[Op1s[i]+18] = -1 ; A[Op1s[i]+27] = 1 ; A[Op1s[i]+36] = 1 ; A[Op1s[i]+45] = -1 ; A[Op1s[i]+54] = 1 ; break;

case 9 : A[Op1s[i]] = -1 ; A[Op1s[i]+9] = 1 ; A[Op1s[i]+18] = -1 ; A[Op1s[i]+27] = 1 ; A[Op1s[i]+36] = 1 ; A[Op1s[i]+45] = 1 ; A[Op1s[i]+54] = -1 ; break;

case 10 : A[Op1s[i]] = -1 ; A[Op1s[i]+9] = 1 ; A[Op1s[i]+18] = 1 ; A[Op1s[i]+27] = -1 ; A[Op1s[i]+36] = -1 ; A[Op1s[i]+45] = 1 ; A[Op1s[i]+54] = 1 ; break;

case 11 : A[Op1s[i]] = -1 ; A[Op1s[i]+9] = 1 ; A[Op1s[i]+18] = 1 ; A[Op1s[i]+27] = -1 ; A[Op1s[i]+36] = 1 ; A[Op1s[i]+45] = -1 ; A[Op1s[i]+54] = 1 ; break;

case 12 : A[Op1s[i]] = -1 ; A[Op1s[i]+9] = 1 ; A[Op1s[i]+18] = 1 ; A[Op1s[i]+27] = -1 ; A[Op1s[i]+36] = 1 ; A[Op1s[i]+45] = 1 ; A[Op1s[i]+54] = -1 ; break;

case 13 : A[Op1s[i]] = -1 ; A[Op1s[i]+9] = 1 ; A[Op1s[i]+18] = 1 ; A[Op1s[i]+27] = 1 ; A[Op1s[i]+36] = -1 ; A[Op1s[i]+45] = -1 ; A[Op1s[i]+54] = 1 ; break;

case 14 : A[Op1s[i]] = -1 ; A[Op1s[i]+9] = 1 ; A[Op1s[i]+18] = 1 ; A[Op1s[i]+27] = 1 ; A[Op1s[i]+36] = -1 ; A[Op1s[i]+45] = 1 ; A[Op1s[i]+54] = -1 ; break;

case 15 : A[Op1s[i]] = -1 ; A[Op1s[i]+9] = 1 ; A[Op1s[i]+18] = 1 ; A[Op1s[i]+27] = 1 ; A[Op1s[i]+36] = 1 ; A[Op1s[i]+45] = -1 ; A[Op1s[i]+54] = -1 ; break;

case 16 : A[Op1s[i]] = 1 ; A[Op1s[i]+9] = -1 ; A[Op1s[i]+18] = -1 ; A[Op1s[i]+27] = -1 ; A[Op1s[i]+36] = 1 ; A[Op1s[i]+45] = 1 ; A[Op1s[i]+54] = 1 ; break;

case 17 : A[Op1s[i]] = 1 ; A[Op1s[i]+9] = -1 ; A[Op1s[i]+18] = -1 ; A[Op1s[i]+27] = 1 ; A[Op1s[i]+36] = -1 ; A[Op1s[i]+45] = 1 ; A[Op1s[i]+54] = 1 ; break;

case 18 : A[Op1s[i]] = 1 ; A[Op1s[i]+9] = -1 ; A[Op1s[i]+18] = -1 ; A[Op1s[i]+27] = 1 ; A[Op1s[i]+36] = 1 ; A[Op1s[i]+45] = -1 ; A[Op1s[i]+54] = 1 ; break;

case 19 : A[Op1s[i]] = 1 ; A[Op1s[i]+9] = -1 ; A[Op1s[i]+18] = -1 ; A[Op1s[i]+27] = 1 ; A[Op1s[i]+36] = 1 ; A[Op1s[i]+45] = 1 ; A[Op1s[i]+54] = -1 ; break;

case 20 : A[Op1s[i]] = 1 ; A[Op1s[i]+9] = -1 ; A[Op1s[i]+18] = 1 ; A[Op1s[i]+27] = -1 ; A[Op1s[i]+36] = -1 ; A[Op1s[i]+45] = 1 ; A[Op1s[i]+54] = 1 ; break;

case 21 : A[Op1s[i]] = 1 ; A[Op1s[i]+9] = -1 ; A[Op1s[i]+18] = 1 ; A[Op1s[i]+27] = -1 ; A[Op1s[i]+36] = 1 ; A[Op1s[i]+45] = -1 ; A[Op1s[i]+54] = 1 ; break;

case 22 : A[Op1s[i]] = 1 ; A[Op1s[i]+9] = -1 ; A[Op1s[i]+18] = 1 ; A[Op1s[i]+27] = -1 ; A[Op1s[i]+36] = 1 ; A[Op1s[i]+45] = 1 ; A[Op1s[i]+54] = -1 ; break;

case 23 : A[Op1s[i]] = 1 ; A[Op1s[i]+9] = -1 ; A[Op1s[i]+18] = 1 ; A[Op1s[i]+27] = 1 ; A[Op1s[i]+36] = -1 ; A[Op1s[i]+45] = -1 ; A[Op1s[i]+54] = 1 ; break;

case 24 : A[Op1s[i]] = 1 ; A[Op1s[i]+9] = -1 ; A[Op1s[i]+18] = 1 ; A[Op1s[i]+27] = 1 ; A[Op1s[i]+36] = -1 ; A[Op1s[i]+45] = 1 ; A[Op1s[i]+54] = -1 ; break;

case 25 : A[Op1s[i]] = 1 ; A[Op1s[i]+9] = -1 ; A[Op1s[i]+18] = 1 ; A[Op1s[i]+27] = 1 ; A[Op1s[i]+36] = 1 ; A[Op1s[i]+45] = -1 ; A[Op1s[i]+54] = -1 ; break;

case 26 : A[Op1s[i]] = 1 ; A[Op1s[i]+9] = 1 ; A[Op1s[i]+18] = -1 ; A[Op1s[i]+27] = -1 ; A[Op1s[i]+36] = -1 ; A[Op1s[i]+45] = 1 ; A[Op1s[i]+54] = 1 ; break;

case 27 : A[Op1s[i]] = 1 ; A[Op1s[i]+9] = 1 ; A[Op1s[i]+18] = -1 ; A[Op1s[i]+27] = -1 ; A[Op1s[i]+36] = 1 ; A[Op1s[i]+45] = -1 ; A[Op1s[i]+54] = 1 ; break;

case 28 : A[Op1s[i]] = 1 ; A[Op1s[i]+9] = 1 ; A[Op1s[i]+18] = -1 ; A[Op1s[i]+27] = -1 ; A[Op1s[i]+36] = 1 ; A[Op1s[i]+45] = 1 ; A[Op1s[i]+54] = -1 ; break;

case 29 : A[Op1s[i]] = 1 ; A[Op1s[i]+9] = 1 ; A[Op1s[i]+18] = -1 ; A[Op1s[i]+27] = 1 ; A[Op1s[i]+36] = -1 ; A[Op1s[i]+45] = -1 ; A[Op1s[i]+54] = 1 ; break;

case 30 : A[Op1s[i]] = 1 ; A[Op1s[i]+9] = 1 ; A[Op1s[i]+18] = -1 ; A[Op1s[i]+27] = 1 ; A[Op1s[i]+36] = -1 ; A[Op1s[i]+45] = 1 ; A[Op1s[i]+54] = -1 ; break;

case 31 : A[Op1s[i]] = 1 ; A[Op1s[i]+9] = 1 ; A[Op1s[i]+18] = -1 ; A[Op1s[i]+27] = 1 ; A[Op1s[i]+36] = 1 ; A[Op1s[i]+45] = -1 ; A[Op1s[i]+54] = -1 ; break;

case 32 : A[Op1s[i]] = 1 ; A[Op1s[i]+9] = 1 ; A[Op1s[i]+18] = 1 ; A[Op1s[i]+27] = -1 ; A[Op1s[i]+36] = -1 ; A[Op1s[i]+45] = -1 ; A[Op1s[i]+54] = 1 ; break;

case 33 : A[Op1s[i]] = 1 ; A[Op1s[i]+9] = 1 ; A[Op1s[i]+18] = 1 ; A[Op1s[i]+27] = -1 ; A[Op1s[i]+36] = -1 ; A[Op1s[i]+45] = 1 ; A[Op1s[i]+54] = -1 ; break;

case 34 : A[Op1s[i]] = 1 ; A[Op1s[i]+9] = 1 ; A[Op1s[i]+18] = 1 ; A[Op1s[i]+27] = -1 ; A[Op1s[i]+36] = 1 ; A[Op1s[i]+45] = -1 ; A[Op1s[i]+54] = -1 ; break;

case 35 : A[Op1s[i]] = 1 ; A[Op1s[i]+9] = 1 ; A[Op1s[i]+18] = 1 ; A[Op1s[i]+27] = 1 ; A[Op1s[i]+36] = -1 ; A[Op1s[i]+45] = -1 ; A[Op1s[i]+54] = -1 ; break;

}

for (ii = 0; ii < N; ++ii){

in[ii][0]=A[ii+1];

in[ii][1]=0;

}

fftw_execute(p);

if ( out[1][0]*out[1][0] + out[1][1]*out[1][1] > 128 ) continue;

if ( out[2][0]*out[2][0] + out[2][1]*out[2][1] > 128 ) continue;

if ( out[3][0]*out[3][0] + out[3][1]*out[3][1] > 128 ) continue;

if ( out[4][0]*out[4][0] + out[4][1]*out[4][1] > 128 ) continue;

if ( out[5][0]*out[5][0] + out[5][1]*out[5][1] > 128 ) continue;

if ( out[6][0]*out[6][0] + out[6][1]*out[6][1] > 128 ) continue;

if ( out[7][0]*out[7][0] + out[7][1]*out[7][1] > 128 ) continue;

if ( out[8][0]*out[8][0] + out[8][1]*out[8][1] > 128 ) continue;

if ( out[9][0]*out[9][0] + out[9][1]*out[9][1] > 128 ) continue;
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if ( out[10][0]*out[10][0] + out[10][1]*out[10][1] > 128 ) continue;

if ( out[11][0]*out[11][0] + out[11][1]*out[11][1] > 128 ) continue;

if ( out[12][0]*out[12][0] + out[12][1]*out[12][1] > 128 ) continue;

if ( out[13][0]*out[13][0] + out[13][1]*out[13][1] > 128 ) continue;

if ( out[14][0]*out[14][0] + out[14][1]*out[14][1] > 128 ) continue;

if ( out[15][0]*out[15][0] + out[15][1]*out[15][1] > 128 ) continue;

if ( out[16][0]*out[16][0] + out[16][1]*out[16][1] > 128 ) continue;

if ( out[17][0]*out[17][0] + out[17][1]*out[17][1] > 128 ) continue;

if ( out[18][0]*out[18][0] + out[18][1]*out[18][1] > 128 ) continue;

if ( out[19][0]*out[19][0] + out[19][1]*out[19][1] > 128 ) continue;

if ( out[20][0]*out[20][0] + out[20][1]*out[20][1] > 128 ) continue;

if ( out[21][0]*out[21][0] + out[21][1]*out[21][1] > 128 ) continue;

if ( out[22][0]*out[22][0] + out[22][1]*out[22][1] > 128 ) continue;

if ( out[23][0]*out[23][0] + out[23][1]*out[23][1] > 128 ) continue;

if ( out[24][0]*out[24][0] + out[24][1]*out[24][1] > 128 ) continue;

if ( out[25][0]*out[25][0] + out[25][1]*out[25][1] > 128 ) continue;

if ( out[26][0]*out[26][0] + out[26][1]*out[26][1] > 128 ) continue;

if ( out[27][0]*out[27][0] + out[27][1]*out[27][1] > 128 ) continue;

if ( out[28][0]*out[28][0] + out[28][1]*out[28][1] > 128 ) continue;

if ( out[29][0]*out[29][0] + out[29][1]*out[29][1] > 128 ) continue;

if ( out[30][0]*out[30][0] + out[30][1]*out[30][1] > 128 ) continue;

if ( out[31][0]*out[31][0] + out[31][1]*out[31][1] > 128 ) continue;

printf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d\n",

(int)rint(out[1][0]*out[1][0] + out[1][1]*out[1][1]) % 10, (int)rint(out[2][0]*out[2][0] +

out[2][1]*out[2][1]) % 10, (int)rint(out[3][0]*out[3][0] + out[3][1]*out[3][1]) % 10,

(int)rint(out[4][0]*out[4][0] + out[4][1]*out[4][1]) % 10, (int)rint(out[5][0]*out[5][0] +

out[5][1]*out[5][1]) % 10, (int)rint(out[6][0]*out[6][0] + out[6][1]*out[6][1]) % 10,

(int)rint(out[8][0]*out[8][0] + out[8][1]*out[8][1]) % 10, (int)rint(out[9][0]*out[9][0] +

out[9][1]*out[9][1]) % 10, (int)rint(out[10][0]*out[10][0] + out[10][1]*out[10][1]) % 10, (int)rint(out[11][0]*out[11][0] + out[11][1]*out[11][1]) % 10, (int)rint(out[12][0]*out[12][0] +

out[12][1]*out[12][1]) % 10, (int)rint(out[13][0]*out[13][0] + out[13][1]*out[13][1]) % 10, (int)rint(out[15][0]*out[15][0] + out[15][1]*out[15][1]) % 10, (int)rint(out[16][0]*out[16][0] +

out[16][1]*out[16][1]) % 10, (int)rint(out[17][0]*out[17][0] + out[17][1]*out[17][1]) % 10, (int)rint(out[18][0]*out[18][0] + out[18][1]*out[18][1]) % 10, (int)rint(out[19][0]*out[19][0] +

out[19][1]*out[19][1]) % 10, (int)rint(out[20][0]*out[20][0] + out[20][1]*out[20][1]) % 10, (int)rint(out[22][0]*out[22][0] + out[22][1]*out[22][1]) % 10, (int)rint(out[23][0]*out[23][0] +

out[23][1]*out[23][1]) % 10, (int)rint(out[24][0]*out[24][0] + out[24][1]*out[24][1]) % 10, (int)rint(out[25][0]*out[25][0] + out[25][1]*out[25][1]) % 10, (int)rint(out[26][0]*out[26][0] +

out[26][1]*out[26][1]) % 10, (int)rint(out[27][0]*out[27][0] + out[27][1]*out[27][1]) % 10, (int)rint(out[29][0]*out[29][0] + out[29][1]*out[29][1]) % 10, (int)rint(out[30][0]*out[30][0] +

out[30][1]*out[30][1]) % 10, (int)rint(out[31][0]*out[31][0] + out[31][1]*out[31][1]) % 10);

}

fftw_destroy_plan(p); fftw_free(in); fftw_free(out); return(0);

}
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