IEEE JOURNAL OF RADIO FREQUENCY IDENTIFICATION (RFID), VOL., NO. ...

s eewne 2025 1

A Low-complexity Structured Neural Network
Approach to Intelligently Realize Wideband
Multi-beam Beamformers

Hansaka Aluvihare'™, Sivakumar Sivasankar'®, Xianqi Li'*, Arjuna Madanayake'*’, and Sirani M. Perera

Abstract—True-time-delay (TTD) beamformers can produce
wideband squint-free beams in both analog and digital signal
domains, unlike frequency-dependent FFT beams. Our previous
work showed that TTD beamformers can be efficiently realized
using the elements of the delay Vandermonde matrix (DVM),
answering the longstanding beam-squint problem. Thus, building
on our work on DVM algorithms, we propose a structured neural
network (StNN) to realize wideband multi-beam beamformers
using structure-imposed weight matrices and submatrices. The
structure and sparsity of the weight matrices and submatrices
are shown to reduce the computational complexity of the NN
significantly. The proposed StNN architecture has O(pL M log M)
complexity compared to a conventional fully connected L-layers
network with O(M?L) complexity, where M is the number of
nodes in each layer of the network, p is the number of sub-weight
matrices per layer, and M >> p.

We show numerical simulations in the 24 to 32 GHz range
to demonstrate the numerical feasibility of realizing wideband
multi-beam beamformers using the proposed StNN architecture.
We also show the complexity reduction of the proposed NN and
compare that with fully connected NNs, to show the efficiency
of the proposed architecture without sacrificing accuracy. The
accuracy of the proposed NN architecture was shown in terms of
the mean squared error, which is based on an objective function
of the weight matrices and beamformed signals of antenna
arrays, while also normalizing nodes. The proposed StNN’'s
robustness was tested against channel impairments by simulating
with Rayleigh fading at different signal-to-noise ratios (SNRs).
We show that the proposed StNN architecture leads to a low-
complexity NN to realize wideband multi-beam beamformers,
enabling a path for reconfigurable intelligent systems.

Index Terms—Intelligent Systems, Structured Neural Net-
works, Wideband Multi-beam Beamformers, Structured Weight
Matrices, Delay Vandermonde Matrix, Low-complexity Neural
Networks, Wireless Communication Systems

H. Aluvihare is with the Department of Mathematics, Embry-
Riddle Aeronautical University, Daytona Beach, FL, 32703 USA e-
mail:aluvihah @my.erau.edu

S. Sivasankar is with the Department of Electrical and Computer En-
gineering, Florida International University, Miami, FL, 33174 USA e-
mail:ssiva0l1 @fiu.edu

X. Li is with the Department of Mathematics & Systems Engineer-
ing, Florida Institute of Technology, Melbourne, FL. 32901, USA e-mail:
xli@fit.edu (see https://www.fit.edu/faculty-profiles/l/li-xianqi/).

A. Madanayake is with the Department of Electrical
& Computer Engineering, Florida International University,
Miami, FL 33174 USA e-mail: amadanay @fiu.edu (see

https:/fece.fiu.edu/people/faculty/profiles/madanayake-arjuna/).

S. M. Perera is with the Department of Mathematics, Embry-Riddle
Aeronautical University, Daytona Beach, FL, 32703 USA e-mail: per-
eras2@erau.edu (see https://faculty.erau.edu/Sirani.Perera).

This work was supported by the National Science Foundation award
numbers 2229473 and 2229471.

[. INTRODUCTION

Beamforming has been widely explored for its diverse
applications across fields, such as radar, communication, and
imaging. The transmission of beamforming overcomes the
path loss by concentrating energy in a specific direction,
while the reception of beamforming progressively improves
the propagation of planar waves based on the desired direc-
tion of arrival [1]. When the signal of interest is wideband,
multi-beam beamforming based on the spatial Fast Fourier
Transform (FFT) suffers from the beam-squint problem [2].

A. Realize TTD-based Beamformers via DVM

The FFT beams are frequency-dependent and thus cause
poor beam orientations for wideband signals. Fortunately,
the true-time-delay (TDD) beamformers have significantly
mitigated the beam-squint problem associated with spatial
FFT beams [3]. On the other hand, the delay Vandermonde
matrix (DVM) elements can be utilized to determine the
TTD beams [2]-[5]. This amounts to incorporating the DVM
between antennas and source/sink channels and implement-
ing via frequency-dependent phase shifts at each antenna to
achieve TDD beamformers leading to wideband multi-beam
architecture. Thus, utilizing TDD, at time ¢t € R, the N-beam
beamformer §j € CV can be expressed as a product of the
input vector £ € CV and the DVM, ie., Ay € CV*V st
y = AnZ . In this context, each row of the DVM symbolizes
the progressive wideband phase shift associated with a specific
beam. However, computational cost plays a crucial role in
computing the matrix-vector product associated with wideband
multi-beam beamformers. Each TTD is typically realized in
the digital domain using a finite impulse response (FIR) digital
filter - sometimes known as a Frost Structure. Thus, in order
to reduce the delays of N beams from O(N?2) to O(N log N),
we proposed sparse factorization to realize narrowband multi-
beam beamformers in [4] and wideband multibeam beamform-
ers in [2], [3], [5]. The necessity of retaining intermediate val-
ues in memory can result in increased memory demands. Such
circumstances may pose a disadvantage in real-time or low-
latency applications. Hence, a critical requirement emerges
for the development of a real-time training and prediction
algorithm to effectively realize wideband multi-beam beam-
forming. Thus, we propose a structured neural network (StNN)
to efficiently realize wideband multi-beam beamformers by
training and learning weight matrices with structure, enabling
us to develop lightweight and low-complexity NNs. We show

https://orcid.org/0009-0005-8748-761X
https://orcid.org/0009-0007-7810-620X
https://orcid.org/0000-0002-7687-4287
https://orcid.org/0000-0003-3289-9308
https://orcid.org/0000-0002-3975-3742

IEEE JOURNAL OF RADIO FREQUENCY IDENTIFICATION (RFID), VOL., NO. ..., ...

the efficiency and effectiveness of the proposed StNN through
numerical simulations for beamformers in the 24 to 32 GHz
range.

B. Neural Networks Approaches for Beamformers

Several methods have been proposed for the application
of both shallow and deep neural networks or multi-layer
perceptrons in the context of adaptive beamforming as applied
to phased arrays [6]-[9]. In [10], a radial basis function neural
network (RBFNN) was employed to approximate the beam-
formers derived through the application of a minimum mean-
squared error (MSE) beamforming criterion while adhering to
a specified gain constraint. In [11], a NN was trained to create
adaptive transmit and receive narrowband digital beamformers
for a fully digital phased array. Many adaptive algorithms
based on convolutional neural networks (CNN) have been
proposed, such as [12]-[16]. In [12], an approach known
as frequency constraint wideband beamforming prediction
network (WBPNet) is introduced (without a delay structure)
based on a CNN method to tackle the limitations associated
with insufficient received signal snapshots while reducing
computational complexity. This CNN-based method focused
on predicting the direction of arrival (DOA) of interference.
Next, authors in [16] introduce a CNN-based neural beam-
former to predict the interference from received signals and
an LSTM model to predict the samples of desired signals
for a low number of receiving snapshots. In [17], a CNN is
trained based on the data obtained from the optimum Wiener
solution, and results are compared with 8 x 8 antenna arrays.
Moreover, in [18], a scheme is introduced to predict a power
allocation vector before determining the beamforming matrix
with CNN. This method addresses the challenge of overly
complex networks and power minimization problems in the
context of wideband beamforming for synthetic aperture radar
(SAR). The above methods include training a CNN model to
design the beamformer for specific sizes of antenna arrays.
However, as the number of elements in the array increases
(which is expected for mmWave communications), there is
a lack of research that evaluates the relative performance of
the above methods. The authors of [19] proposed a multilayer
neural network model to design a beamformer for 64-element
arrays to tackle the challenges in imperfect CSI and hardware
challenges by maximizing the spectral efficiency. Besides, [20]
proposed a CNN-based beamformer to estimate the phase
values for beamforming. Furthermore, [21] and [22] explored
the recurrent neural network-based algorithm to estimate the
weights in the antenna array. Authors in [21] proposed GRU-
based ML algorithms for adaptive beamforming.

C. Structured Weight Matrices in Neural Networks

As modern NN architectures grow in size and complex-
ity, the demand for computational resources is significantly
increasing. Structured weight matrices present a solution to
mitigate this increased resource consumption by simplifying
computational tasks [23]. These matrices, by leveraging inher-
ent structures, can reduce the computational complexity for
propagating information through the network [24]. However,

2025 2

selecting the appropriate structure within the diverse array of
matrix structures and classes is not a trivial task. To address
this challenge, numerous methods [25]-[32] have been de-
veloped to minimize the computational costs and memory re-
quirements of neural networks. Those existing efforts generally
fall into two categories: reduction techniques focused on fully-
connected NN including weight pruning/clustering [26], [27],
which prune and cluster the weights via scalar quantization,
product quantization, and residual quantization, to reduce the
NN model size, and reduction strategies aimed at convolutional
layers, such as low-rank approximation [30], [33], [34] and
sparsity regularization [25], [28]. These approaches are critical
for enhancing the efficiency of neural networks, making them
more practical for a variety of applications.

D. Objective of the Paper

Our goal is to introduce a structure-imposed NN, ie.
StNN, to realize multi-beam beamformers while dynamically
updating the StNN with low-complexity and lightweight NN.
We have shown that the sparse factorization of the DVM is an
efficient strategy to reduce the complexity in computing the
DVM-vector product from O(N?) to O(N log N). Neverthe-
less, it is crucial to dynamically update delays and sums based
on the DVM-vector product so that we can intelligently realize
multi-beam beamformers. In order to do so, we regularize
weight matrices within network while adopting the sparse
factorization of the DVM in [3]. This adoption leads us to
train, learn, and dynamically update the TTD beamformers
while imposing the structure of the DVM, followed by its
sparse factors based on structured matrices. Hence, we propose
a hybrid of classical and ML algorithms to dynamically realize
wideband multi-beam beamforming, in contrast to weight-
pruning techniques that result in irregular pruned networks
[35]. Since the DVM can be determined by the O(N) param-
eters, utilizing its structure and factorization in NN weight
matrices should reduce the computational complexity. Thus,
the proposed StNN architecture leads to

1) intelligently realizes wideband multi-beam beamformers
while reducing TTD blocks,

2) ensures a robust structure for a trained network while re-
ducing computational complexities incurred by complex
indexing processes,

3) reduce computational complexities due to the usage
of structured and sparse weight matrices, ie., 70%
complexity reduction compared to our previous paper
[36], and

4) obtain a lightweight and robust NN while intelligently
realizing wideband multi-beam beamformers.

We note here that the DVM is a low-displacement rank
(LDR) matrix, and LDR-based neural networks have gained
attention due to their potential to reduce complexity when the
structure is imposed for the neural network [29]-[31]. Thus,
the utilization of the DVM structure followed by factorization
of the low-rank DVM in [3], without the need for retraining
(due to utilization of frequencies, i.e., 24, 27, & 28 GHz)
lead to propose a low-complexity StNN that can be utilized
to intelligently realize wideband multi-beam beamformers.

IEEE JOURNAL OF RADIO FREQUENCY IDENTIFICATION (RFID), VOL., NO. ..., 2025 3
Received Signals (Dataset)
N-element Antenna Array
e
Trained StNN
i i
H : B g
o —— 5§
! Outputs , A E
! 1 Outputs
H H
—

Phase 1: Offline Training

Phase 2: Real-time Deployment

Fig. 1. ML-based architecture of multi-beam beamforming: In the offline training, we train the neural network to align the input data by weight matrices to the
desired output data. In real-time deployment: RF signals from the antennas and low noise amplifiers (LNAs) are beamformed utilizing the structure-imposed
neural network, i.e., StNN. Once the multibeams are formed, they will be sent to the digital processor.

The authors in [29] introduced the concept of leveraging
LDR matrices in NNs to reduce both storage and compu-
tational overhead. This was achieved by factorization via
displacement equations of structured matrices [37]. In con-
trast, our approach employs the StNN, leveraging the DVM
factorization instead of displacement equations. This strategic
choice effectively minimizes the number of trainable weights,
inference time, and floating-point operations (FLOPs), leading
to a more efficient and computationally lightweight neural net-
work architecture for multi-beam beamforming applications.

E. Structure of the Paper

The remainder of the paper is organized as follows. Sec-
tion II introduces the theory of the structure-imposed neural
network, ie., StNN, to realize wideband multi-beam beam-
formers. Section III shows the arithmetic complexity of the
StNN, showing the reduction of the complexity. Section IV
shows the numerical simulations showing the efficiency and
accuracy of the StNN as opposed to the fully connected neural
networks in realizing wideband multibeam beamformers in the
24 GHz to 32 GHZ range. Finally, the Section V concludes
the paper.

II. METHODOLOGY

We first present the background of the DVM factorization
in [3], enabling us to theoretically formulate the Structured
Neural Network to realize wideband multi-beam beamformers.
The StNN utilizes custom weight matrices to effectively incor-
porate the structure of the DVM, followed by a sparse factor-
ization in [3]. This approach enables efficient computation of
DVM-vector multiplications, enabling the realization of wide-
band multi-beam beamformers, and ensuring model stability.
Unlike conventional feed-forward neural networks(FFNN),

StNN significantly reduces the computational complexity. It
optimizes space and storage requirements, handling large-scale
systems involving high values of N, making it a more scalable,
low-complexity learning algorithm compared to conventional
multi-beam beamformers.

The high-level design of the proposed framework is shown
in Figure 1, illustrating a two-phase process comprising offline
training and real-time deployment. During real-time operation,
the StNN processes input data from each antenna element
to estimate the multibeam beamformer output. Prior to de-
ployment, the StNN model undergoes offline training on a
pre-collected dataset of received RF signals. After training,
the StNN predicts N beamformer output signals based on the
true time-delay Vandermonde beamformer, which the digital
processor then uses for further processing.

A. DVM Factorization in [3]

The DVM is defined using the nodes {1, a, a? ... ,aN—l}
via the matrix Ay = {o®} "1 where o = 347 € C,

k=1,1=0°
N = 27(r > 1), w represents the temporal frequency, T
denotes the time delay, and j2 = —1. In [3], we introduced

a scaled version of the DVM, denoted as Ap., followed
by a sparse matrix factorization. This factorization enables
efficient computation of the scaled DVM-vector product using
an optimized algorithm with a computational complexity of
O(N log(N)), as expressed in the following equation:

AHN:DN[J;\,{xN]TFEfDJHFAJJIUXNDN: (l)

where M = 2N, Dy = diag[a%]ﬁtl is a
diagonal scaling matrix, }jM = diag Fycel is a
diagonal matrix and the column vector ¢ st ¢ =

1 -2 (-2 (Noz)? 11T
]_,O.' EPR N ¢ 2 .,].,O.’ 2 & 2 PR &]

IEEE JOURNAL OF RADIO FREQUENCY IDENTIFICATION (RFID), VOL., NO. ..., ...

Fyy = VMFy, Jysy = Oj:rr is a sparse matrix, Iy
denotes the identity matrix, Oy represents the zero matrix,
Fn = \/Lﬁ[wif]f,;lu is the discrete Fourier transform

(DFT) matrix defined via the nodes wy = e_z;;rz, and Fpy
represents the conjugate transpose of the DFT matrix Fjy.
This factorization not only enhances computational efficiency
but also reduces storage and processing complexity, making
it a viable approach for large-scale implementations.

B. DVM Structure-imposed Neural Networks (StNN)

To efficiently compute wideband multi-beam beamformers,
we use the DVM-vector product based on the factorization
equation (1) to impose structure for the weight matrices of
the StNN. The proposed StNN follows an L-layer feedforward
architecture, consisting of an input layer, output layer, and [
hidden layers, where | = L — 2. Notably, this framework is
adaptable, allowing for the addition of more hidden layers and
units to accommodate the accuracy of the predictions.

:1 Skip Connection

Fig. 2. StNN architecture for predicting the output of the TTD beamformers.
2N neurons in the input layer (separating real-vales and imaginary parts of
the received vector # & CN, giving 2N neurons representing the input
vector & € R2N), 4pN neurons in the hidden layer, where p, N € Z+, 4pN
neurons in each hidden layer, and 2N neurons in the output vector y € R2V
resulting the beamformed vector § € CV.

The neural network architecture of the StNN model is
illustrated in Fig. 2. Given that the received RF signal from
N-element antenna array consists of complex-valued signal
i € CN, we separate the real and imaginary components
of each signal to pass that to the StNN. This transformation
ensures that only real-valued inputs z € R?M are processed
within the SINN. Each complex number a + b is mapped to
a real-valued pair (a,b) € R2. Consequently, for N complex-
valued inputs, a corresponding real-valued input vector of size

2N is generated for the StNN.

2025 4

1) Forward Propagation of the StNN: First, we obtain
the forward propagation equations for the StNN. Here, we
consider the input layer consisting 2N neurons and a fully
connected hidden layer with 4pN neurons having a weight
matrix W € R¥N*2N where p is the number of submatrices.
When a 2N sized input vector x is given to the StNN, the
general forward propagation equation for the first hidden layer
through can be expressed as

y W = oWz + M), 2)

where y(1) € R*V is the output of the first hidden layer,
W) e R®PNX2N js the weight matrix between the input
layer and the first hidden layer (defined by the sparse matrices
aligned with the factorization equation 1 (as described next),
6 is the bias vector, and &(.) denotes the activation function
of the current layer.

In general, the forward propagation equation for the output
vector y("+1) at the (I + 1)-th hidden layer can be expressed

as,

where, y(!) is the output vector of the previous hidden layer.
Next, we redesign the weight matrices between the layers of
the StNN. More precisely, weight matrices, W(1) (i.e. weight
matrix between the input layer and the first hidden layer) and
W™ (ie. weight matrix between the last hidden layer and the
output layer) in StNN shown in the Fig. 2, is decomposed into
p smaller sub-weight matrices. For instance, the weight matrix
between the input layer and the first hidden layer, i.e. W),
is structured as shown below.

T
WO = [)) |, 3)
where wgl) fori = 1,2,..-,p are p sub-weight matrices
defined via 9. Similarly, the weight matrix between the last
hidden layer and the output layer, ie. W®), follows the
structure presented below.

W = [wi?, wi, wi?, ..., wd], @)

where w?) fori = 1,2,..-,p are p sub-weight matrices
defined via 10. Moreover, the weight matrix between the
first hidden layer and the second hidden layer, ie., W® is
not fully connected and it acts as a physical delay to the
signals, meaning it does not contain any trainable weights.
Instead, it consists solely of 2pN time delay elements. The
primary purpose of this layer is to introduce delays to the
signal transformed by the first layer. Each delay element
applies a fixed delay to the output signal from the first hidden
layer. With the introduction of a physical delay layer inside
the network, StNN evolves to better fit for wideband multi-
beam beamformers, where beamformers are realized with
TTDs. We note here that the output of the first hidden layer,
ie. y(1) € R*V s a real-valued vector. Therefore, before
applying the delay, this real-valued vector is converted into a
complex-valued signal g(l) as follows.

~(1) _ (1 . (1
E() = Eg;z}pN +J£;p)N+1:4pN’ (5)

IEEE JOURNAL OF RADIO FREQUENCY IDENTIFICATION (RFID), VOL., NO. ..., ...

where 3!} %pN represents the first half of the vector y(1), i,

representing the 1°* element to the 2pN*" element of y(*) to
gather the real part, and ygp)N 4 1:4pn Tepresents the second half
of the vector y1), i.e., representing the (2pN + 1)** element
to the 4pN*® element of y(1) to gather the imaginary part.

Next, the delay is applied to the reconstructed complex signal
7 € C?PN producing §®) € C?%N sit.

g(z) —w®@ -Q(l): (6)
where W(2) = diag [ak]ZPN . Afterwards, Q(Z) is converted

back into a real-valued signal y(z) by separating the real and
imaginary components s.t.

EZ%pN = ygi y%}NH ApN * _Erfr}a’ @
where, y(z) represents the real components of y(z) and y()
represents the imaginary components of the 7. The resultmg
output of the second hidden layer, ie. y(2) € R4V s thus
a real-valued vector. In summary, the second hidden layer is
a non-trainable layer that does not contain any weights but
applies a time delay to the complex signal.

In the third hidden layer, we apply the weighted skip
connection to y(l), which is then added to y(z) to produce
y(3) and hence results the forward propagation equation s.t.

y® =@+ WO 4O, ®)

where W) = diag [wi]:2% " € R*NX4N s a diagonal

matrix in which the we1ghts along the diagonal are trained,
while all the other weights that are not on the main diagonal
remain Zzero.

2) Structure Imposed Sub-weight Matrices: The StNN fea-
tures trainable weights in W1, W) and W%, while the
weights in W) remain frozen. However, the StNN still
exhibits computational complexity of O(N?) in generating
the beamformer output (i.e. this complexity arises due to
fully connected weight matrix-vector multiplications involving
W) and W*) with the input vectors in the corresponding
layer). To mitigate this and achieve a reduced complexity NN,
we impose matrix factorization on the weight matrices, as
expressed in Equation (1). For each submatrix i, i.e wgl), in
W), we employ a split factorization based on Equation (1),
where the factorization is defined as,

’wg(l} = [Dilanr [Filoar Jonr xan [Dilan 9

for p submatrices. This p submatrices approach is necessary
because, when transitioning from the input layer to the first
hidden layer, the number of nodes must increase to effectively
capture patterns among the input features. The increased num-
ber of parameters introduced during the DVM factorization
facilitates the input features into a higher-dimensional space
within the first hidden layer. A similar factorization strategy
is applied to the final layer, utilizing the remaining split DVM
factorization from Equation (1). Specifically, we employ p
submatrices of

w§4) = [f)i]zN[JzszN]T[F;]zM- (10)

2025 5

In summary, we implement the DVM factorization for each
p submatrix within the weight matrices, where each submatrix
is a product of sparse matrices. The structured p submatrices
appear between the input layer and the first hidden layer,
having each submatrix with a size of 2M x M. Furthermore,
there are p submatrices, and each submatrix with a size of
M x 2M appears between the last hidden layer and the output
layer. Moreover, the training process of submatrices involves
learning parameters that are only located along the diagonals
of f),- and li- matrices, while keeping other values fixed at
zero and without updates during backpropagation. Addition-
ally, matrix J within the StNN remains frozen, exempt from
training adjustments during backpropagation.

3) Recursive Algorithm for Weight Matrices: In this sec-
tion, we incorporate the FFT recursion embedded into the
DVM for further reduction of complexity. The main objective
of this approach is to reduce the adders and gain-delay block
counts [3], which leads to the reduction of the complexity of
Al-based circuits. For example when M = 2N, the matrix F;
appears within the submatrices can be factored as follows:

} [Flv Oy
[Fils = Pu | Hilm (11)
On [Fin
and
In In
(Hila = | B ; (12)
[Dilv [=Diln

where [F'i]M =~ [Fi]m, D, is a diagonal weight matrix and
Py is an M x M even-odd permutation matrix.

Thus, utilizing equations (11) and (12), we can recursively
factorize [R]gN matrices. Through this recursion, the matrix
factorization can be performed up to [E}]y, resulting in log(M)
factorization steps. The determination of factorization steps is
based on the performance. Opting for higher steps significantly
reduces the weight of the network. However, it may also
increase the error of the predicted output due to the reduced
number of weights in the NN. Hence, there is a trade-off
when tuning the number of recursive factorization steps in the
StNN model based on the results. Thus, we need to tune the
hyperparameters in the StNN model. In the training process,
P, Op, and Iy are fixed matrices with ones and zeros,
and those matrices are not updated through backpropagation.
During the recursive factorization, we are only updating the
matrices D; and [Fi],, at each recursive step. Here, D;
diagonal matrix at every step is different and independent
of each other, and we allowed the neural network to learn
weights. The [F};], matrix is trained as a full matrix to yield
[Fi]zn In summary, during backpropagation of the recursive
factorization, we only need to train a set of diagonal and [F}];
matrices. When we update weights through gradient descent,
we only update weights that are along the diagonal elements
in each diagonal matrix, while leaving the rest of the values
as zero.

The overall graphical interpretation of the proposed forward
propagation along with the recursion is illustrated in Fig. 3.

IEEE JOURNAL OF RADIO FREQUENCY IDENTIFICATION (RFID), VOL., NO. ..., ...

nput
&', weight p sub-weight matrices

matrices
h 4

y(lJ

e

S0 _ (1)
¥ A r\+JJ2;\ 14pN }

2pN—1
=01

W = diag [of

weight matrices

(2) (2)
Yyopn Yopn 4 1:api

weight matrices

JE p—_— e
W = diag [we], "y

weight
mafrices »
(_
| p sub-weight

y(4) D < matrices s

Fig. 3. The forward propagation of the StNN architecture features input
x, output 3(4), the weight matrices WO W@ W3 and W), the sub-
weight matrices 19;, J, D; complemented by the recursion applied to F; and
F} as shown in equations (11) and (12).

Remark II.1 We note here that another approach to designing
a StNN can be found in [38], i.e., a classical algorithm utilized
to design layers of NNs while imposing structured weight
matrices, to realize states of dynamical systems.

4) Backpropagation of the StNN: The backpropagation
process in the StNN follows the standard gradient-based opti-
mization framework, i.e., PyTorch’s automatic differentiation
engine - Autograd, to compute gradients efficiently. The StNN
architecture is implemented in Python using the PyTorch
library, where the gradients of all trainable parameters are
automatically computed using the framework in sections 1I-B1,
1I-B2, 1I-B3, followed by the backpropagation.

Throughout the training process of the diagonal matrices,
only the weights along the diagonals are updated, while all
off-diagonal elements remain zero and are frozen. This results
in highly sparse weight matrices, significantly reducing the
number of trainable parameters while preserving the model’s
ability to capture essential transformations. We use the Mean
Squared Error (MSE) as the loss function (13) to update

z € R?N, where M =

2025 6

weights via

M, N
1

oW, ... wwy— L ® _ 002 (13

() NMb;;(ys 9s)%, (13)

where W) ... W) are defined via (3) and (4 respectively,

M, is the mini- batch size, (%) and ’“gk) denote the actual and
Ys Y

predicted values at k'™ antenna index for the s data sample,

respectively.

ITI. ARITHMETIC COMPLEXITY ANALYSIS

In this section, we present an analysis of the arithmetic
complexity of the StINN having an arbitrary input vector
2N, which is constructed by
extracting real and imaginary parts of the vector & € R, In
this calculation, we assume that the number of additions (#a)
and multiplications (#m) required to compute [F;] by an N
dimensional vector as N7 and Nt + 3N [3], respectively,
where, N = 2"(r > 1).

Proposition IIL.1 Let StNN be constructed using 5 layers
with weight matrices and sub-weight matrices that have the
input layer with M nodes, 3 hidden layers with 2pM nodes
consisting p submatrices per hidden layer, and an output layer
with M nodes. Then, the number of additions (#a) and
multiplications (#m) of the StNN having the input vector

z € RM to produce the output vector y € RM is given via

#a(StNN)
#m(StNN)

=4prM + 17pM

—2prM + 23pM (14)

where N =27(r > 1), M = 2N, and M >> p.

Proof. Using the number of additions and multiplication
counts in computing the [F;]y by an N dimensional vector
followed by equations (11) and (12), we can calculate the
addition and multiplication counts of the StNN as follows
(assuming log(M) recursive factorization steps), for each sub-
weight matrix i,

#a(D;) =0, #m(D;) = M

#a(J) =0, #m(J) =0
#a([Filanr) = 2Mr +4M, #m([Filopm) = Mr +5M
#a(D;) =0, #m(D;) = 2M.

Using the above counts, the arithmetic complexity for each
sub-weight matrix w® and w'® can be computed via
i i P

#a(w;[l)) =2Mr +4M, #a(w%[‘l)) =2Mr +4M
#m(wy)) = Mr+8M #m(w;[‘l)) = Mr +6M.

We recall that W) and W(*) contain the p number of w;
sub-weight matrices. Thus, with p sub-weight matrices, we
have p(2Mr + 4M) additions and p(Mr + 8 M) multipli-
cations for W) by a vector and p(2Mr + 4M) additions
and p(Mr + 6M) multiplications for W*) by a vector,
respectively. Moreover, arithmetic complexities for computing

IEEE JOURNAL OF RADIO FREQUENCY IDENTIFICATION (RFID), VOL., NO. ..., ...

diagonal weight matrices W(2) and W(®) by vectors can be
computed as follows

#a(W?) =0,
#m(W®) = pM,

#a(WE) =0
#m(W®)) = 2pM.

We note here that, due to the skip connection through Eq.
(8), the layer 3 needs an extra addition count of 2pM . Next,
incorporating bias vectors and computing activation introduces
2pM additions and multiplications per each hidden layer, and
M bias additions and 0 multiplications for the output layer.
Additionally, in the output layer, adding the resultant p number
of M -sized vectors introduces (p— 1)M additions. Therefore,
the total number of additions and multiplication counts for the
StNN is given via (14). O

Remark IIL.2 Let a StNN be constructed using L layers, i.e.,
the input layer with M nodes, L — 2 hidden layers with 2pM
nodes consisting p submatrices per hidden layer, and an output
layer with M nodes. Then, the number of additions (#a) and
multiplications (#m) of the StNN having the input vector
z € RM to produce the output vector y € RM is given via

#a(StNN) =prM L + IITpML —prM — IITpM

#m(StNN) :p‘"’;’”‘ + %;ML - % - %;M (15)

where N =2"(r > 1), M = 2N, and M >> p.

Thus, considering the recursive factorization strategy ap-
plied to each sub-weight matrix, the computational complexity
per single hidden layer is reduced from O(M?) to at least
O(pMlogM), having p sub-weight matrices. Thus, given L
layers, the overall computational complexity of StNN becomes
O(pLMlogM), offering a significant reduction compared to
conventional O(M2L) in fully connected networks.

Remark ITL1.3 The MSE results in Section IV show that there
is a need to adjust and potentially reduce the number of
recursive factorization steps into £(< r) € N to reduce the
MSE values to the order of 10—4. Although the recursive
factorization can be used to reduce the number of learnable
weight matrices in the StNN, utilizing this can result in an
under-parameterized model, especially when the number of
weights becomes insufficient to reduce the MSE. To overcome
this challenge, we reduce the number of factorization steps
(£) as N increases. Additionally, when the factorization runs
up to log M recursive steps, we may encounter a vanishing
gradient problem. This issue arises as the last weights in the
factorization step (i.e., [Fj]2, [Fi]4) may not be updated during
backpropagation due to very small gradients. However, this
can be partially overcome with proper weight initialization
techniques [39]. Therefore, reducing factorization steps to £
steps allows for improving the overall performance of the
model. Hence, computational complexity of the SINN with
£ recursive steps can be derived from (15) via

#ap(StNN) =pl2°L + 14—7pML — pf2f — IITpM (16)

2025 7

#my(StNN) =pl2* 'L + %)M L—pe2t=' — 24_3p M

a7

We note here that the optimal number of steps £ is determined
through empirical evaluation and tuning based on the specific
characteristics of the MSE requirement and dataset, as shown
in the numerical simulation followed by the Table I and II
values in the next Section.

IV. SIMULATION RESULTS

In this section, we present numerical simulations based
on the StNN to realize wideband multi-beam beamformers.
The scaled DVM Ay by the input vector & € CV results
in the output vector § € CV in the Fourier domain. Thus,
we show numerical simulations to assess the accuracy and
performance, which are in terms of MSE followed by FLOPs
and weight reduction, training time, and inference time, of
the StNN model as opposed to FFNNs in realizing wideband
multi-beam beamformers.

A. Numerical Setup for Wideband Multi-beam Beamformers

Using an N-element uniform linear array (ULA), we could
obtain received signals based on the direction of arrival 8,
measured counter-clockwise from the broadside direction. The
received signals wg(t);k = 1,2,...N are defined in the
complex exponential form, s.t.

up(t) = e ITETAT) (1),

where f is the temporal frequency of the signal, ¢ is the time
at which the signal is received, A7, denotes the time delay
at the k' element of the antenna array, n(t) is complex-
valued additive white Gaussian noise (AWGN) with mean 0
and standard deviation of 0.1. Moreover, the time delay Ay
is expressed as follows:

(18)

Ay = (k— l)dff,mfi‘1

[

where d = 0.5\ represents the antenna spacing, A is the
wavelength, ¢ is the speed of light, and @ stands for the angle
of arrival. To train the StNN model, we utilized a dataset
consisting of the size of .S := 10000, time-discretized values
from ¢ = 0 to ¢ = 1 for each antenna array. At time .,
the input vector is determined by the values of & € CV,
and k = 1,2,..., N corresponding to the k™ element of the
antenna array. Consequently, the data set can be represented
as follows.

(19)

[21(t1) z2(t1) z3(t1) T (t1)

z1(t2) w2(t2) ws(t2) Ty (t2)
Xgn=

I1(‘ts) Ty ('ts) Is(.ts) fBNitS)

The input vector at time ¢ for the SINN can be extracted
as z(t,) from each row of Xg . where s is a sample size
extracted from S.

z(ts) = [z1(ts) z2(ts) z3(ts) v (ts)]

IEEE JOURNAL OF RADIO FREQUENCY IDENTIFICATION (RFID), VOL., NO. ..., ...

The StNN is then trained with the values of z(¢s) to predict
the output y(¢s). The output vector y(t.) is computed by
multiplying z(¢,) by the scaled DVM Ay . The StNN is trained
to predict the beamformed vector y(t,) resulting from the
multiplication of the input vector z(t,) by the DVM, s.t.

y(ts)' = An x z(ts)7, (20)

where

Q(tS) = [yl(tS) ya(ts) ys(ts) yN(tS)] .

Each element in Ay can be defined using a’s, where o =
e~27™IT The frequency f is taken as 24 GHz, 27 GHz, and
32 GHz, and the value of 7 can be approximately calculated
using [3], s.t.

_ 2Ax _ 1
" eN T fmaeN

where Az:=d is the antenna spacing. In our scenario,
fmax:=32 GHz represents the maximum frequency of the
received signal.

B. Numerical Simulations in Realizing Wideband Multi-beam
Beamformers

Here, we discuss the numerical simulations of the StNN
to realize wideband multi-beam beamformers. To demonstrate
that the StNN model has lower computational complexity com-
pared to FFNNs. We conducted numerical simulations based
on the execution of StNN and FFNN while taking FLOPs
and weights as quantitative measurements. We standardized
the parameters and metrics for both models to ensure a fair
comparison. The input layer of both networks comprises 2N
neurons, representing the real and imaginary parts of elements
corresponding to the received signal at each element of the
antenna array. Similarly, the output layer has the same number
of nodes as the input layer. The compared FFNN includes
both a delay layer and a skip connection layer. However,
the weight matrices connecting the input layer to the first
hidden layer and the last hidden layer to the output layer are
both fully connected weight matrices without any structure
imposed. We first examine the performance of the SINN for
3 frequencies, i.e., 24GHz, 27GHz, and 32GHz in the range
of 24GHz to 32GHz with the receiving signals at 3 different
angles (i.e., & = 30,40 and 50). We generate 1,000 data
samples for each angle, resulting in a total of 3,000 data
samples for each frequency. Before training the StNN, we split
the dataset into 80% for training and 20% for validation. For
each frequency, we train separate StNN models to evaluate
their performance. We conducted simulations for three antenna
array element sizes: N = 8, 16, and 32. Furthermore, since
the relationship between the input features and the target
variable is relatively straightforward, we have taken a three-
hidden-layer architecture as discussed in Section II to capture
sufficient underlying patterns. Adding more layers introduces
unnecessary complexity, leading the model to struggle with
generalization. Moreover, training deeper networks requires
more computational resources and time [39]. Therefore, we

2025 8

adhered to the discussed hidden layer architecture while in-
creasing p in each hidden layer for enhanced convergence.
All subsequent simulations for StNN and FFNN use the
Leaky-Relu activation [40] function with 0.2 scaling factor.
During training, we used the MSE as the loss function and
the Levenberg-Marquardt algorithm [41] as an optimization
function to learn and update the weights. All the numerical
simulations were done in Python (version - 3.10) and Pytorch
(version - 2.5) framework to design and train the neural
networks.

Remark IV.1 To improve readers’ comprehension of the
theoretical foundation and its relation to the proposed StNN
architecture, we encourage readers to access the codes at
Intelligent Wideband Beamforming using StNN.

The MSE values for the NN predictions in the training and
validation sets for the StNN model are shown in Fig. 4. We
trained both FFNN and StNN models to reach a minimum
MSE value between 10~ and 10~3. Next, we list and compare
the accuracy and performance results of both models w.r.t. the
quantitative measurements, s.t. MSE, weights, FLOPSs, training
time, inference time, and validations in Tables I, II, and IIL
In Table I, the FFNN and StNN models are conceptualized
by the model representing numbers, say-(A, By, By, B3, C)
s.t. A for the number of input nodes, B;’s for the number
of hidden nodes, and C for the number of output nodes.
Here, p and ¢ denote the number of sub-weight matrices
and recursive steps, respectively. The final column of Table
I provides values based on the percentage of weight reduction
ie., Pr(weight) Reduction of the StNN compared to the
FFNN. The Pr(weight) Reduction is calculated using the
formula

W, - W
FFNN SINN . 100%,

Pr(weight) Reduction =
WrrnN

where Wrppnn and Wsey v denote the total trainable weights
of FFNN and StNN, respectively. However, as shown in Fig.
4, when training FFNN and StNN models for 1900 steps (i.e.,
380 steps per one epoch and training over 5 epochs), they
converge to the MSE values of 1071% and 10~4, respectively.
This shows that there is a challenge in maintaining complexity
and accuracy simultaneously. Thus, to obtain the MSE with an
accuracy of 10~%, we trained the StNN for 1900 epochs. The
main reason is that FFNN models have more weights, which
allows for more flexibility during backpropagation, whereas
StNN models have fewer weights with the imposed structure.
Table I shows that for smaller sizes of N (i.e., N = &,16),
performing the recursive factorization steps is feasible without
compromising accuracy. However, with an increase in N,
performing multiple recursive factorization steps results in a
significant reduction of weights in the network. Unfortunately,
this reduction leads to an increase in the MSE, indicating that
the StNN model struggles to capture the patterns between input
and output. Consequently, for larger N values, it becomes
crucial to decrease the recursive steps () to achieve a lower
MSE. In summary, both £ and p act as hyperparameters that
need to be tuned based on accuracy requirements.

https://github.com/Hansaka006/Intelligent-Wideband-Beamforming-using-StNN

IEEE JOURNAL OF RADIO FREQUENCY IDENTIFICATION (RFID), VOL., NO. ...

s eewne 2025 9

TABLE I
THis sHOWS MSE VALUES OF STNN AND FFNN HAVING DIFFERENT ANTENNA ARRAY ELEMENTS. THESE VALUES ARE OBTAINED USING CODES
WRITTEN IN Python (Version-3.10) ALONG WITH THE Pytorch (version-2.5.1) FRAMEWORK. THE TERM "MODEL” CONSISTS OF FIVE NUMBERS
REPRESENTING NODES IN INPUT, 3-HIDDEN, AND OUTPUT LAYERS(THE FIRST HIDDEN LAYER IS A FULLY CONNECTED LAYER, THE SECOND HIDDEN
LAYER IS A DELAY LAYER, THE THIRD IS A SKIP CONNECTION LAYER, AND THE LAST IS ANOTHER FULLY CONNECTED LAYER.). THE NOTATIONS p AND
£ DENOTE THE NUMBER OF SUB-WEIGHT MATRICES AND RECURSIVE STEPS, RESPECTIVELY. THE LAST COLUMN SHOWS THE PERCENTAGE OF SAVINGS
ON UTILIZING STNN ovER FENN, LEADING TO A LIGHTWEIGHT NN.

N Model/ Weights(FFNN) MSE (FFNN) Model/ p/ & Weights(StNN) MSE (StNN) Pr(weight) Reduction
8 (16,32, 32,32, 16)/1104 (2.8+0.8) x 10713 | (16,32,32,32,16)/1/4/220 | (5.6%0.2) x 108 83%
16 (32,64, 64, 64, 32)/4256 (2.8£4.1) x 10712 | (32,64,64,64,32)/1/5/428 | (2.0%0.8) x 10~ 90%
32 | (64,128,128,128,64)/16704 | (3.2+0.9) x 10~12 | (64,128,128,128,64)/1/6/716 | (1.0 %= 3.4) x 104 96%

TABLE 1T
ADDITION AND MULTIPLICATION COUNTS(FLOPS) OF THE STNN AND FENN, LE., FLOPs: = #a(StNN) 4+ #m(StNN), THE PERCENTAGE OF THE
SAVINGS ON UTILIZING STNN (EXECUTING £ < r RECURSIVE STEPS) OVER FFNN, TRAINING AND INFERENCE TIME OF THE STNN AND FFNN.

N | FLOPs(FFNN) FLOPs(StNN) Pr(FLOPs) Reduction Training Training Inference Inference
(Eq.(16)+Eq.(17)) time(s)(FFNN) time(s)(StNN) time(ms)(FFNN) time(ms)(StNN)
8 2240 1024 549 121 89 0.1984 1.2141
16 8576 2240 T4% 799 160 0.2944 2.4063
32 33536 4864 86% 6315 460 0.7621 4.7590
100 T 100 a
g g
w 5 w
- 1074 - - 10-2 4
z z
© ©
= =
w1 107% + W 104 -
c c
m m
S S
1076 10-5 4

1000 1500

Steps

0] 500

(a) Training performance

1000 1500

Steps

0] 500

(b) Validation performance

Fig. 4. The figures (a) and (b) show training and validation results of the StNNs based on the different frequencies (i.e. 24GHz, 27GHz, and 32GHz) for
N = 16. These graphs are obtained referencing the “Models” listed in Table L When StNN is executed for 1900 epochs, it converges to MSE values of 1075,
These graphs are obtained using Python (Version-3.10) along with the Pytorch (version-2.5) framework, and compiled with Levenberg-Marquardt optimizer.

The FFNN achieves low MSE values, i.e., order of 10~12,
compared with the StNN models having MSE values around
10—4, especially as the depth of recursive factorization steps
(€) increases. This is mainly due to the reduced number
of trainable parameters and the imposed structure on the
weight matrices, which may limit the expressiveness of the
model. Despite the MSE to approximately 10~%, the MSE re-
mains adequate for practically realizable wideband mutibeam
beamformers. The Table I also highlights a significant trend:
as N increases, the StNN model demonstrates a substantial
reduction in weights, leading to a significant decrease in
FLOPs as shown in Table II. For larger N values, such as
32, the StNN model achieves a 96% reduction in weights
with an MSE of 10~* compared to the FFNN model. As N

increases, it becomes crucial to adjust the value of p based
on the recursive steps £. Increasing more nodes in the hidden
layer becomes necessary to reduce MSE and enable the StNN
to capture more features [39]. However, the primary advantage
of StNN over FFNN is that it has lower FLOPs, lower training
time, and lighter weights compared to FFNN, leading to
reduced adders and gain-delay block counts for intelligent
beamformer realizations. To provide a clearer comparison
between the FFNN and StNN models, Fig. 5 summarizes
the key performance metrics presented in Tables I and II. As
shown, the StNN model requires significantly fewer parame-
ters and computations than the FFNN model, particularly as N
increases. The findings suggest that incorporating more hidden
units can further reduce the MSE. However, it is crucial to note

IEEE JOURNAL OF RADIO FREQUENCY IDENTIFICATION (RFID), VOL., NO. ..., ...

17500

2025 10

35000
15000 - 30000 -
12500 - 25000 -

1_iig‘mooo— é 20000 -

2 7500 i 15000 -

5000 4 10000
2500 - 5000 -
o{F— W4 0

10 15 20 25 30
N

(a) Training weights vs N

(b) Inference FLOPs vs N

(c) Training time vs N

Fig. 5. Summary of performance metrics comparing FFNN and StNN models across varying values of V. (a) total number of trainable weights, (b) inference
FLOPs, and (c) total training time. StNN demonstrates lower model complexity and computational cost compared to FFNN, especially at higher values of N.

that larger p values may lead to overfitting, highlighting the
importance of selecting the optimal p value based on the given
N. In summary, the MSE trade-off is acceptable, particularly
in scenarios where minimizing computational complexity and
intelligent hardware complexity is a major concern.

Furthermore, Table II shows the percentage FLOP reduction
of the StNN, which is at least 54% to at most 86%. More
importantly, the FLOPs will be further reduced as the number
of antenna array elements increases, showing the feasibility of
adopting the proposed StNN in reducing the computational de-
mand. In addition to FLOP reductions, StNN also significantly
reduces training time, showing a nearly 14-fold improvement
or 93% reduction in training time for 32-element antenna
arrays due to the smaller number of training parameters and
structure-imposed weight and sub-weight matrices within the
DVM factorization imposed for the design of StNN.

Although the current inference observed for the StNN
appears to be higher than that of the FFNN, despite the lower
FLOPs, training time, and weight counts. This difference is
largely due to implementation factors; the FFNN inference
was performed using PyTorch’s highly optimized modules
that leverage parallel computation and hardware acceleration.
In contrast, the current implementation of the StNN does
not incorporate parallelism or hardware-specific optimizations.
However, the theoretical reduction of FLOPs, training time,
and weight counts remains consistently lower than that of the
FFNN. With further optimization, including GPU-level parallel
processing or FPGA deployment, the inference time of StNN is
expected to align more closely with the FFNN. To ensure a fair
comparison, a real-world deployment and hardware-specific
benchmarking of inference time, such as using an FPGA or a
GPU, would be essential. Nevertheless, the theoretical FLOPs,
inference time, and weight reductions indicate that StNN’s
low-power intelligence chips could be an efficient solution for
real-time applications.

We note here that our previous work on the S-LSTM net-
work for multi-beam beamformers [36], saved 30% of training
weights to achieve an MSE of 8 x 10(~2) for N = 16 elements
antenna array. Although the S-LSTM approach outperformed
conventional LSTM beamforming algorithms, the complexity
of the S-LSTM remained relatively high due to the large num-
ber of parameters as opposed to the StNN. Thus, in this paper,
we showed that the SINN reduces 90% of training parameters

compared to FFNN, achieving a significantly lower MSE
of 2 x 10(-4). These results demonstrate that the proposed
approach is generalizable to intelligent wideband multibeam
beamformers with lower computational overhead. In particular,
the FLOPs presented in Table I and II are closely tied to the
logic resource requirements in hardware such as FPGAs. Since
FPGAs are resource-constrained platforms, especially in terms
of DSP slices and logic utilization, models with significantly
fewer FLOPs, such as the proposed StNN, are inherently more
suitable for efficient implementation. The reduction in FLOPs
directly translates to a reduced number of adders and gain-
delay block counts, leading to lower power consumption, less
resource usage, and potentially higher throughput in FPGA-
based intelligent beamforming systems.

Furthermore, the ability to achieve such performance gains
with reduced weights and FLoP counts opens pathways for
deploying Al-driven wideband multi-beam beamformers in
resource-constrained environments. Future work will explore
the applicability of this approach to larger antenna array
elements, ie., 128, 256, 512, as well as its adaptability
to intelligent signal delaying in nonlinear and time-varying
beamforming scenarios.

C. Evaluation Under Fading and SNR Variations

To assess the robustness of the proposed StNN architec-
ture under practical channel impairments, we augmented the
simulation to include Rayleigh fading while varying signal-
to-noise ratios (SNRs). More specifically, for a ULA with
N = 16 antenna elements and carrier frequency f. = 27 GHz,
we modeled the baseband received signal at the k-th antenna
as:

uk(t) = hg - ej(z?ffct-l"}bk) + ng (t)1

where hy ~ €N(0,1) represents a single-tap complex
Rayleigh fading coefficient for the k-th antenna, ¢y = 2m- d—;-
k - sin(#) denotes the deterministic phase offset due to angle
of arrival 8, ny(t) ~ CN(0,0?) is AWGN, scaled according
to the desired SNR level.

The inter-element spacing was set to half the minimum
wavelength in the operating band, ie., dy = Apin/2 with
Amin = ¢/fmax- A time vector of 1000 samples over 1
microsecond duration was used to simulate signals, which

IEEE JOURNAL OF RADIO FREQUENCY IDENTIFICATION (RFID), VOL., NO. ...

were passed through a Rayleigh fading channel and corrupted
with noise corresponding to SNR levels ranging from 10 dB to
30 dB. The composite noisy received signal vector X(t) € CV
was then processed through the TTD DVM beamformer to
store the input and output signals to train the StNN model.

TABLE III
THE VALIDATION MSE OF THE STNN IN RAYLEIGH FADING CONDITIONS
ACROSS VARIOUS SNR LEVELS IS PRESENTED. THIS ALSO CONSIDERS
THE WAVELENGTH A, FOR A 16-ELEMENT ANTENNA ARRAY, AS WELL
AS THE PERCENTAGE REDUCTION IN BOTH FLOPS AND WEIGHTS FOR
THE SUB-WEIGHT MATRICES SETTING OF p = 1.

SNR (dB) | £ | Validation MSE StNN | Pr(weights) | Pr(FLOPs)

Reduction Reduction
30 5 7.24 % 1072 90% 86%
30 3 3.79 x 10~3 85% 63%
30 2 9.20 x 108 67% 55%
20 5 4.03 x 1072 90% 86%
20 3 1.04 x 102 85% 63%
20 2 7.92 x 10~7 67% 55%
10 5 7.40 x 1071 90% 86%
10 3 3.13 x 10~2 85% 63%
10 2 3.99 x 10~7 67% 55%

Table III presents the validation MSE results of StNN

models trained with distinct values of the recursive factor-
ization parameter £, all in the configuration p = 1. The
results indicate that at higher SNR levels, larger values of
£ yield acceptable performance. However, under lower SNR
conditions, the StNN requires a higher number of trainable
parameters within the weight matrices to effectively capture
environmental variations and produce accurate beamformer
outputs. Therefore, £ must be reduced, which eventually leads
to the reduction of the number of recursive factorization steps.
This leads to a lesser reduction in weight and FLOP savings
compared to the FFNN baseline. However, StNN is still able to
produce accurate MSE, saving 67% fewer weights and almost
50% fewer FLOPs compared to FFNN. This confirms that
the proposed StNN maintains robust performance even in the
presence of multipath fading and degraded SNR scenarios.

V. CONCLUSION

We introduced a novel structured neural network (StNN) to
intelligently realize wideband multi-beam beamformers utiliz-
ing structured weight matrices and submatrices. The proposed
StNN leverages the factorization of the DVM in our previous
work to reduce the computational complexities of matrix-
vector computations in the layers of neural networks. Numer-
ical simulations show that StNN-based wideband multi-beam
beamformers can be implemented with fewer FLOPs, lower
training time, and a lightweight neural network, achieving an
accuracy of 1074 to intelligently realize beamformers. Even
as the number of elements in antenna arrays increases, the
FLOPs, weights, and inference time are significantly reduced
while maintaining accuracy order of 10~%. This makes a
compelling argument for the feasibility of adopting the StNN
for power-hungry intelligent chip design. Simulation within
the range of 24 GHz to 32 GHz shows that the StNN
can be utilized to accurately realize wideband multi-beam
beamformers as opposed to the conventional fully connected

s eewne 2025 11

neural network with the complexity reduction from O(M?2L)
to O(pL M log M), where M is the number of nodes in
each layer of the network, p is the number of submatrices
per layer, and M >> p. Numerical simulations conducted
within the 24 GHz to 32 GHz range have shown that the
proposed structured neural architecture can be efficiently,
accurately, and intelligently utilized to realize wideband multi-
beam beamformers in a robust environment.

REFERENCES

[1] H. L. Van Trees, Optimum array processing: Part IV of detection,
estimation, and modulation theory. John Wiley & Sons, 2002.

[2] S. M. Perera, V. Ariyarathna, N. Udayanga, A. Madanayake, G. Wu,
L. Belostotski, Y. Wang, S. Mandal, R. J. Cintra, and T. S. Rappaport,
“Wideband n-beam arrays using low-complexity algorithms and mixed-
signal integrated circuits,” IEEE Journal of Selected Topics in Signal
Processing, vol. 12, no. 2, pp. 368-382, 2018.

[3] S. M. Perera, L. Lingsch, A. Madanayake, S. Mandal, and N. Mas-
tronardi, “A fast dvm algorithm for wideband time-delay multi-beam
beamformers,” IEEE Transactions on Signal Processing, vol. 70, pp.
5913-5925, 2022.

[4] S. M. Perera, A. Madanayake, and R. J. Cintra, “Radix-2 self-recursive
sparse factorizations of delay vandermonde matrices for wideband multi-
beam antenna arrays,” IEEE Access, vol. 8, pp. 25498-25 508, 2020.

[5] ——, “Efficient and self-recursive delay vandermonde algorithm for
multi-beam antenna arrays,” IEEE Open Journal of Signal Processing,
vol. 1, pp. 64-76, 2020.

[6] H. Al Kassir, Z. D. Zaharis, P. I. Lazaridis, N. V. Kantartzis, T. V. Yioult-
sis, I. P. Chochliouros, A. Mihovska, and T. D. Xenos, “Antenna array
beamforming based on deep learning neural network architectures,” in
2022 3rd URSI Atlantic and Asia Pacific Radio Science Meeting (AT-
AP-RASC), 2022, pp. 1-4.

[7]1 Z. D. Zaharis, C. Skeberis, T. D. Xenos, P. I. Lazaridis, and J. Cosmas,
“Design of a novel antenna array beamformer using neural networks
trained by modified adaptive dispersion invasive weed optimization
based data,” IEEE Transactions on Broadcasting, vol. 59, no. 3, pp.
455-460, 2013.

[8] Z.D. Zaharis, T. V. Yioultsis, C. Skeberis, T. D. Xenos, P. I. Lazaridis,
G. Mastorakis, and C. X. Mavromoustakis, “Implementation of antenna
array beamforming by using a novel neural network structure,” in
2016 International Conference on Telecommunications and Multimedia
(TEMU). 1IEEE, 2016, pp. 1-5.

[9] A. H. Sallomi and S. Ahmed, “Multi-layer feed forward neural network
application in adaptive beamforming of smart antenna system,” in
2016 Al-Sadeq International Conference on Multidisciplinary in IT and
Communication Science and Applications (AIC-MITCSA). 1EEE, 2016,
pp. 1-6.

[10] G. Castaldi, V. Galdi, and G. Gerini, “Evaluation of a neural-network-

based adaptive beamforming scheme with magnitude-only constraints,”

Progress In Electromagnetics Research B, vol. 11, pp. 1-14, 2009.

L T. Cummings, T. J. Schulz, T. C. Havens, and J. P. Doane, “Neural

networks for real-time adaptive beamforming in simultaneous transmit

and receive digital phased arrays: Student submission,” in 2019 IEEE

International Symposium on Phased Array System & Technology (PAST).

IEEE, 2019, pp. 1-8.

[12] X. Wu, 1. Luo, G. Li, S. Zhang, and W. Sheng, “Fast wideband
beamforming using convolutional neural network,” Remote Sensing,
vol. 15, no. 3, 2023. [Online]. Available: https://www.mdpi.com/
2072-4292/15/3/712

[13] Z. Liao, K. Duan, J. He, Z. Qiu, and B. Li, “Robust adaptive beam-

forming based on a convolutional neural network,” Electronics, vol. 12,

no. 12, p. 2751, 2023.

S. Bianco, P. Napoletano, A. Raimondi, M. Feo, G. Petraglia, and

P. Vinetti, “Aesa adaptive beamforming using deep learning,” in 2020

IEEE Radar Conference (RadarConf20), 2020, pp. 1-6.

[15] H. Huang, Y. Peng, J. Yang, W. Xia, and G. Gui, “Fast beamforming
design via deep learning,” IEEE Transactions on Vehicular Technology,
vol. 69, no. 1, pp. 1065-1069, 2019.

[16] P. Ramezanpour and M.-R. Mosavi, “Two-stage beamforming for reject-
ing interferences using deep neural networks,” IEEE Systems Journal,
vol. 15, no. 3, pp. 44394447, 2021.

(1]

[14]

https://www.mdpi.com/2072-4292/15/3/712
https://www.mdpi.com/2072-4292/15/3/712

IEEE JOURNAL OF RADIO FREQUENCY IDENTIFICATION (RFID), VOL., NO. ...

[17] T. Sallam and A. M. Attiya, “Convolutional neural network for 2d
adaptive beamforming of phased array antennas with robustness to
array imperfections,” International Journal of Microwave and Wireless
Technologies, vol. 13, no. 10, pp. 1096-1102, 2021.

[18] W. Xia, G. Zheng, Y. Zhu, J. Zhang, . Wang, and A. P. Petropulu,
“Deep learning based beamforming neural networks in downlink miso
systems,” in 2019 IEEE International Conference on Communications
Workshops (ICC Workshops), 2019, pp. 1-5.

[19] T. Lin and Y. Zhu, “Beamforming design for large-scale antenna arrays
using deep learning,” IEEE Wireless Communications Letters, vol. 9,
no. 1, pp. 103-107, 2020.

[20] R. Lovato and X. Gong, “Phased antenna array beamforming using
convolutional neural networks,” in 2019 IEEE International Symposium
on Antennas and Propagation and USNC-URSI Radio Science Meeting,
2019, pp. 1247-1248.

[21] L Mallioras, Z. D. Zaharis, P. I. Lazaridis, and S. Pantelopoulos, “A
novel realistic approach of adaptive beamforming based on deep neural
networks,” IEEE Transactions on Antennas and Propagation, vol. 70,
no. 10, pp. 88338848, 2022.

[22] H. Che, C. Li, X. He, and T. Huang, “A recurrent neural network for
adaptive beamforming and array correction,” Neural Networks, vol. 80,
pp- 110-117, 2016.

[23] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proceedings of the IEEE,
vol. 105, no. 12, pp. 2295-2329, 2017.

[24] M. Kissel and K. Diepold, “Structured matrices and their application in
neural networks: A survey,” New Generation Computing, vol. 41, no. 3,
pp- 697-722, 2023.

[25] 1. Feng and T. Darrell, “Learning the structure of deep convolutional
networks,” in Proceedings of the IEEE international conference on
computer vision, 2015, pp. 2749-2757.

[26] Y. Gong, L. Liu, M. Yang, and L. Bourdev, “Compressing deep
convolutional networks using vector quantization,” arXiv preprint
arXiv:1412.6115, 2014.

[27] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

[28] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” Advances in neural information
processing systems, vol. 29, 2016.

[29] L. Zhao, S. Liao, Y. Wang, Z. Li, J. Tang, and B. Yuan, “Theoretical
properties for neural networks with weight matrices of low displacement

s eewne 2025 12

rank,” in international conference on machine learning. PMLR, 2017,
pp- 4082-4090.

[30] S. R. Kamalakara, A. Locatelli, B. Venkitesh, J. Ba, Y. Gal, and A. N.
Gomez, “Exploring low rank training of deep neural networks,” arXiv
preprint arXiv:2209.13569, 2022.

[31] L. Lingsch, M. Michelis, E. de Bezenac, S. M. Perera, R. K
Katzschmann, and S. Mishra, “Beyond regular grids: Fourier-based
neural operators on arbitrary domains,” in the International Conference
on Machine Learning, PMLR 235, 2024, pp. 30610-30629.

[32] S. Liao and B. Yuan, “Circconv: A structured convolution with low
complexity,” in Proceedings of the AAAI Conference on Artificial Intel-
ligence, vol. 33, no. 01, 2019, pp. 42874294

[33] T. N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B. Ramab-
hadran, “Low-rank matrix factorization for deep neural network training
with high-dimensional output targets,” in 2013 IEEE international
conference on acoustics, speech and signal processing. IEEE, 2013,
Pp. 6655-6659.

[34] M. Jaderberg, A. Vedaldi, and A. Zisserman, “Speeding up convo-
lutional neural networks with low rank expansions,” arXiv preprint
arXiv:1405.3866, 2014.

[35] S. Anwar, K. Hwang, and W. Sung, “Structured pruning of deep
convolutional neural networks,” ACM Journal on Emerging Technologies
in Computing Systems (JETC), vol. 13, no. 3, pp. 1-18, 2017.

[36] H. Aluvihare, C. Shanahan, S. M. Perera, S. Sivasankar, U. Kumarasiri,
A. Madanayake, and X. Li, “A low-complexity 1stm network to realize
multibeam beamforming,” in 2024 IEEE International Conference on
Wireless for Space and Extreme Environments (WiSEE), 2024, pp. 11-
16.

[37] T. Kailath and V. V. Olshevsky, “Displacement structure approach to
polynomial vandermonde and related matrices,” Linear Algebra Appl.,
vol. 261, pp. 49-90, 1997.

[38] H. Aluvihare, L. Lingsch, X. Li, and S. M. Perera, “A low-complexity
structured neural network to realize states of dynamical systems,” in
review, SIAM Journal on Applied Dynamical Systems, 2025.

[39] I Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[40] A. L. Maas, A. Y. Hannun, A. Y. Ng et al., “Rectifier nonlinearities
improve neural network acoustic models,” in Proc. icml, vol. 30, no. 1.
Atlanta, GA, 2013, p. 3.

[41] 1. I. Moré, “The levenberg-marquardt algorithm: implementation and
theory,” in Numerical analysis: proceedings of the biennial Conference
held at Dundee, June 28-July 1, 1977. Springer, 2006, pp. 105-116.

http://www.deeplearningbook.org

	Introduction
	Realize TTD-based Beamformers via DVM
	Neural Networks Approaches for Beamformers
	Structured Weight Matrices in Neural Networks
	Objective of the Paper
	Structure of the Paper

	Methodology
	DVM Factorization in ref6
	DVM Structure-imposed Neural Networks (StNN)
	Forward Propagation of the StNN
	Structure Imposed Sub-weight Matrices
	Recursive Algorithm for Weight Matrices
	Backpropagation of the StNN

	Arithmetic Complexity Analysis
	Simulation Results
	Numerical Setup for Wideband Multi-beam Beamformers
	Numerical Simulations in Realizing Wideband Multi-beam Beamformers
	Evaluation Under Fading and SNR Variations

	Conclusion
	References

