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 A B S T R A C T

In this paper, we solve systems of linear equations having an 𝑛 × 𝑛 coefficient matrix as a 
symmetric Toeplitz matrix having elements found via the measured mutual coupling effects 
of electromagnetic fields caused by antenna array elements. This coefficient matrix is called 
the mutual coupling matrix. In general, these mutual coupling matrices are characterized as 
dense matrices. However,building on our prior work, we have introduced a symmetric Toeplitz 
structure, defining its elements through the self- and mutual coupling effects of antenna array 
elements. Thus, in this paper, we propose an algorithm to uncouple the mutual coupling 
effect of antenna arrays using (𝑛 log(𝑛)) as opposed to (𝑛3) complexity while defining the 
mutual coupling matrix as a matrix defined by the structure, i.e., a symmetric Toeplitz matrix. 
The proposed mutually coupled systems will be solved using a sparse factorization of the 
uncoupling matrices consisting of diagonal and butterfly matrices. The proposed algorithm has 
low arithmetic complexity compared to brute-force computations in solving systems of linear 
equations associated with mutual coupling matrices. The proposed factorization also leads to an 
alternative method to solve the system of linear equations having symmetric Toeplitz matrices as 
coefficient matrices with (𝑛 log(𝑛)) as opposed to the (𝑛3) complexity algorithm. To evaluate 
the accuracy and efficiency of the proposed Toeplitz solver, we have benchmarked our algorithm 
against highly optimized libraries such as SciPy, NumPy, and PyTorch, specifically focusing 
on operations involving Toeplitz system solvers and inversion. We show that the proposed 
Toeplitz solver achieves exceptional efficiency, especially when utilizing GPU acceleration in
PyTorch, all while maintaining accuracy. For the demonstration of numerical results based on 
the proposed digital uncoupling algorithm and the effect of attenuation, we use S-parameters 
at 1.4 GHz of an 8-element sub-array and a 16-element sub-array. We show that the diagonal 
elements of the uncoupling matrices steadily decrease as one moves away from the main 
diagonal, highlighting the diminishing effect of mutual coupling and the predominance of self-
coupling over mutual coupling. Finally,  an 8-element signal flow graph will be presented to 
show the uncoupling of mutual coupling effects of antenna arrays in digital signal processing
perspective.
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Nomenclature

In order to enhance the composition of the paper, we state nomenclature based on the frequently utilized terminologies.
Active reflection coefficient 𝛤𝑎𝑐𝑡
ADC Analog to digital converter
ASIC Application-specific integrated circuit
BPF Bandpass filter
Calibration matrix 𝐀𝑛
CMOS Complementary metal-oxide semiconductor
Conjugate transpose of the mutual coupling matrix 𝐂∗

𝑛
DFT Discrete Fourier transform
FFT Fast Fourier transform
FPGA Field programmable gate array
Grid size of the antenna array 𝑁 ×𝑁 , where 𝑁2 = 𝑛
Input vector 𝐲
LNA Low noise amplifier
LPF Low pass filter
MSE mean-squared error
Mutual coupling matrix 𝐂𝑛
Number of elements in antenna array 𝑛
Output vector 𝐱
RF Radio frequency
RAM Random access memory
SFG Signal flow graph
TCA Tightly-coupled array
TCDA Tightly-coupled dipole array
ULA Uniform linear array
Uncoupling matrix 𝐐𝑛
VLSI Very large scale integration
VNA Vector network analyzer

1. Introduction

Uniformly spaced antenna arrays are extremely important and play a crucial role in all modern wireless communications, 
radar (national defense and weather monitoring), microwave imaging for biomedical applications, radio astronomy, location, 
and navigation. When antenna arrays are engineered, there exist electromagnetic fields that interact between antennas, causing 
unexpected and undesired distortions of the antenna array. These interactions also cause detrimental issues in system performance
in terms of the deviation of the antenna beam patterns and an increase in the noise figure of the receivers. The mutual coupling 
effect between antenna elements in an array configuration is ever-present. It can be reduced by, for example, using low-scattering
antennas, but it can never be removed as it arises due to physics. Near-field interaction of electric and magnetic fields ensures 
such mutual coupling, which in turn introduces distortions to element radiation patterns of individual antennas and subsequent 
array processing [1–5]. The impact of mutual coupling at a specific frequency can generally be represented using a complex-valued 
coupling matrix [1]. Our previous work shows that these mutual coupling matrices can be expressed as symmetric tridiagonal
Toeplitz matrices [6]. This representation is particularly relevant for an antenna array comprising another antenna array on each 
side. In most cases, a digital receiver array consists of an 𝑁×𝑁 grid containing 𝑛 = 𝑁2 elements, each paired with direct-conversion
receivers, as shown in Fig.  6, in Appendix. Thus, building on our work, we propose developing an understanding of mutual coupling
matrices as symmetric Toeplitz matrices. Additionally, we propose an approach to solve systems of equations that utilize these
symmetric Toeplitz matrices as coefficient matrices, achieving a reduction in computational complexity from 𝑂(𝑛3) to 𝑂(𝑛 log 𝑛).

1.1. Mutual coupling effect of antenna-array elements  via matrices

Mutual coupling is a function of antenna element design, array geometry, and inter-element spacing. Because electromagnetic 
fields attenuate rapidly with distance from an antenna, for a given antenna element, the effect of mutual coupling is dominant 
across its nearest neighbors [3,6]. The mutual coupling can be experimentally measured, using a vector network analyzer (VNA), 
and included as part of the multi-dimensional filter design problem to ensure the coupling effects are included in the final measured 
array response [7]. The mutual coupling is both frequency and polarization-dependent. The effect of mutual coupling at a particular 
frequency can typically be modeled by a complex-valued coupling matrix [1]. The elements in the coupling matrices can be estimated 
using parametric estimation methods [3,8,9] or Fourier decomposition of measured element patterns [1,4] or measured scattering 
2 
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Fig. 1. An example of a tightly-coupled dipole array (TCDA) designed by Volakis et al. [12] consisting of a grid of 𝑁 = 11 (dual polarized) 
ideband dipole elements each operating over the 130 MHz–6.0 GHz band. Each element in the array is electromagnetically coupled to every 
ther element causing a frequency-dependent linear transform to appear between the incident radio waves and 𝑁2 (for one polarization) radio 
requency output port signals (ports at the bottom of the array, not shown here), where 𝑁2 = 𝑛. It has been shown through measurements of 
-parameter matrices that the electromagnetic coupling matrix can be closely approximated by a symmetric (due to the same mutual coupling 
ffect on the array elements), banded(when the mutual coupling effects dominate across nearest neighbors), and unitary (due to passivity) Toeplitz 
atrix. The authors thank Satheesh Bojja Venkatakrishnan for images of the TCDA [12].

(S-) parameter-based formulations that describe the gain and phase of each coefficient [4,6,10]. The mutual coupling matrices are 
full and dense matrices. On the other hand, by following the radio-frequency (RF) measurements it was confirmed that the coupling
is small for antenna arrays when the distance between antennas increases above a wavelength [6]. The S-parameters are not directly 
related to beamformer behavior due to the effects of the reflection coefficient at the LNA input port and the finite propagation delays 
due to transmission-line effects of the finite-length transmission lines that appear between antenna ports and LNAs [11].

Since an 𝑁 ×𝑁 array contains 𝑛 = 𝑁2 elements where every element couples to every other element, the S-parameters lead to 
a coupling matrix, which is an (𝑛 × 𝑛) square matrix. The paper [6] employed an S-parameter-based approach in a narrowband at
a particular frequency and introduced a new structure for the mutual coupling matrices, so-called symmetric tridiagonal Toeplitz 
matrices, and stated a fast algorithm to furnish the uncoupling effect of the mutually coupled antenna elements for a low-order
coupling function where each antenna is coupled to its nearest neighbors. In this paper, we extend the result in [6] while proposing
a low-complexity system-solving algorithm having symmetric Toeplitz matrices as the coefficient matrix to facilitate higher-order
coupling, albeit at greater system complexity.

The support for higher-order coupling is desired for extending the digital mutual coupling analysis to emerging high-bandwidth 
array geometries, such as magnetic photonic crystal-based tightly-coupled arrays (TCAs) that exhibit usable frequency ranges 
spanning several octaves at the price of high mutual coupling between elements [12]. Further, extension to square (or rectangular)
array geometries from the original uniform linear array (ULA) necessitates the adoption of the Toeplitz matrix (banded when 
coupling effects get minor beyond 𝑘-neighbors) models for the mutual coupling coefficients when an 𝑁 × 𝑁 rectangular antenna 
array elements are represented by a vector containing 𝑛 = 𝑁2 elements. Fig.  1 shows how an 𝑁×𝑁 square array of uniformly spaced
elements have a vector representation 𝐱 = (𝑥(0) 𝑥(1)⋯ 𝑥(𝑛 − 1))𝑇 . Fig.  1 further shows a real-world wideband square-shaped TCA 
having a frequency range of 130 MHz–6 GHz and multiple applications in wireless communications, radar, microwave imaging, 
sensing, and multi-functional electronic warfare systems. We identify the dominant mutual coupling as those taking the form of 
banded Toeplitz matrices when the array signals are represented as an 𝑛-element column vector.
3 
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1.2. Banded Toeplitz and few other Toeplitz solvers

Many inversion techniques proposed for the banded and tridiagonal matrices are tested on banded Toeplitz matrices [13]. The 
manuscript [14] provides an explicit formula for the inverse of a tridiagonal Toeplitz matrix via the solution of finite difference
equations. The formulas in [14] neither provide sparse factorization nor generator representation of semiseparable matrices [13].
The exact formula to compute the inverse of a specific covariance matrix in the symmetric tridiagonal Toeplitz matrix form was
presented in [15]. The paper [15] uses the same technique as proposed in [14] but in a simpler way. It was identified in [13] that
the inverse of covariance matrices can be seen as semiseparable plus diagonal matrices. It was proved in [16], that it is sufficient 
to calculate the band surrounding the diagonal to calculate the inverse of banded Toeplitz matrices. But the paper [16] does not 
provide the sparse factorization for the inverse of banded Toeplitz matrices. The inverse of the nonsymmetric tridiagonal matrix and 
its adaptation to the Toeplitz matrix was discussed in [13]. In [17], an inversion formula for tridiagonal 2-Toeplitz and tridiagonal 3-
Toeplitz matrices is provided, with inversion of general tridiagonal k-Toeplitz matrices in [18]. The complexity of algorithms in [17] 
exceeds (𝑛) and does not have sparse factorization. In [19], inverses of tridiagonal and banded Toeplitz matrices are obtained by 
solving difference equations and provided with representation in terms of generators but did not include the sparse factorization for
the inverse of matrices. Formulas in [19] are similar to those in [14]. The manuscript [20] presents a fast algorithm for the inversion 
of Toeplitz matrices (not necessarily banded) using displacement equations and Fourier representation of Toeplitz matrices. The 
proposed algorithm in [20] has the cost of 4 length 𝑛 FFT algorithms having the complexity of order (𝑛 log 𝑛) plus (𝑛). The 
authors in [20] have compared their method with the (𝑛 log2 𝑛) algorithms in [21–23] to compute the inverse of Toeplitz matrices.
The superfast approximation algorithm was proposed in [24] to compute the inverse of block Toeplitz matrices with Toeplitz blocks
(not necessarily banded) by using displacement equations and a modified Newton method. But the proposed algorithm in [24] 
does not contain the sparse matrix factorization and is not an exact algorithm i.e. it is an approximation. The technical report [25] 
proposed a superfast divide and conquer algorithm to solve linear systems of equations having a coefficient matrix such as the
Toeplitz or Hankel using displacement equations. The manuscript [26] proposed a fast algorithm to solve non-singular Toeplitz or 
Hankel system of linear equations with (𝑚(𝑛) 𝑛𝜇(log 𝑛)) where 𝑚(𝑛) and 𝜇(𝑑) bound the arithmetic and boolean cost of multiplying 
polynomials of degree 𝑛 and integers modulo 2𝑑 + 1 using displacement equations. But algorithms in [25,26] do not provide sparse 
factorization to solve the non-singular Toeplitz system of linear equations. Apart from the algorithms to solve the system of equations 
having banded Toeplitz matrices, one can observe displacement approaches to compute the inverse of Toeplitz matrices in [27–30] 
with low arithmetic complexity. Moreover, there are fast algorithms that approximate the solution of Toeplitz and Toeplitz-like linear
systems of equations by using a nearly linear number of arithmetic operations [31,32]. Furthermore, one could observe the spectrum 
of finite and infinite orthogonal and symmetric Toeplitz and the generation of bounded operators based on the spectrum in [33].
Additionally, it is important to highlight that the explicit inverses of Toeplitz and Hankel matrices are known as 𝑇  or H Bezoutian
matrices [34–37], and these algorithms have the complexity of (𝑛2) operations. Concerning the extensive literature behind Toeplitz 
matrices, we finally refer to books [13,38] for more literature reviews on solving banded Toeplitz and Toeplitz systems. Furthermore, 
we highlight from [38] that solving a Toeplitz system cost a complexity of (𝑛2). This reduction in complexity is referred to as a
fast algorithm in [38]. The same source also notes that utilizing the preconditioned conjugate gradient method for approximating
the solution of a Toeplitz system can achieve a lower complexity of (𝑛 log(𝑛)). Therefore, one could say the need to solve exact 
Toeplitz systems utilizing 2FFTs, especially in light of the extensive literature on Toeplitz system solvers. Consequently, our emphasis
is to uncouple the mutual coupling effect of antenna arrays by employing the product of sparse matrices to efficiently solve exact 
symmetric Toeplitz systems using 2FFTs with (𝑛 log(𝑛)) as opposed to (𝑛3) brute-force complexity.

1.3. Organization of the paper

The paper is organized as follows. Section 2 proposes structured matrix-based uncoupling architecture for the mutually coupled 
elements of antenna arrays, while Section 3 proposes sparse factorization for the uncoupled matrices leading to a low-complexity, 
exact, radix-2, and recursive algorithm using 2 FFTs. It is important to highlight that Section 3 does not suggest a method
for computing the Toeplitz matrix–vector product using the FFT algorithm, as this is a widely recognized approach typically 
accomplished through standard 3FFTs, with a few exceptions where 2FFTs have been proposed for solving these systems [38–40]. 
Our contribution, however, lies in deriving an exact solution for Toeplitz systems via the sparse factorization of the uncoupling
matrix.  Section 4 shows the arithmetic complexity (quantified using the number of necessary adders and gains) and associated 
numerical results for the proposed algorithm and compares them with the brute-force system solver. In Section 5, We use S-
parameters at 1.4 GHz of an 8-element sub-array and a 16-element sub-array for the demonstration of numerical results based
on the proposed digital uncoupling algorithm and the effect of the attenuation. In Section 6, the proposed algorithm is implemented 
via an 8-element signal flow graph, while Section 7 concludes the paper.

2.  Structured matrix interpretation of the uncoupling architecture

This section starts by defining mutual coupling matrices as a structured matrix, called a symmetric Toeplitz matrix, and ends 
by showing the existence of an uncoupling matrix to decouple the mutual coupling effects in antenna arrays. We note here that in 
radio receivers, the concept of active reflection coefficient, 𝛤𝑎𝑐𝑡, was introduced to explain the impact of mutual coupling on the
sensitivity of the array [41,42]. However, 𝛤𝑎𝑐𝑡 depends on the beamformer and differs from an isolated antenna element reflection 
coefficient due to mutual coupling [41]. Thus, to mitigate this beam dependence, decoupling networks have been investigated at 
the antenna ports [43–49].
4 
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2.1. Definition: Mutual coupling matrix

Let us consider a normalized mutual coupling of a uniform linear array of 𝑛 elements. Then, the 𝑛 × 𝑛 mutual coupling matrix 
𝐂𝑛 can be described as a symmetric Toeplitz matrix of the form, 

𝐂𝑖,𝑙 =
{

𝑎, 𝑖 = 𝑙
𝑏
|𝑖−𝑙|, 𝑖 ≠ 𝑙

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑎 𝑏1 𝑏2 ⋯ 𝑏𝑛−1
𝑏1 𝑎 𝑏1 ⋱ ⋮
𝑏2 𝑏1 𝑎 ⋱ 𝑏2
⋮ ⋱ ⋱ ⋱ 𝑏1

𝑏𝑛−1 ⋯ 𝑏2 𝑏1 𝑎

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(1)

where 𝑎 = 𝛼𝑒−𝑗𝜃 ∈ C correspondence to the self-coupling, 𝑏
|𝑖−𝑙| ∈ C correspondence to mutual coupling from the neighboring

elements, 𝑏𝑖−𝑙 = 𝑏𝑙−𝑖 due to the same mutual coupling effect on the array elements, 𝛼 ≤ 1 and |𝑏
|𝑖−𝑙|| ≤ 1 due to passivity (all

the antenna elements are connected to a single transmitter and/or receiver), 𝑎 ≠ 𝑏
|𝑖−𝑙|, 𝑗2 = −1, |𝑏

|𝑖−𝑙|| > |𝑏
|𝑖−𝑙|+1| because mutual 

coupling reduces monotonically with distance from the antenna to its neighbors, 𝛼 captures the effect of the reflection coefficient 
combined with the antenna impedance, 𝜃 is the phase angle.

One could also simplify the structure of the mutual coupling matrix from Toeplitz into a (𝑘 + 1)-banded Toeplitz matrix 
(i.e. 𝑏

|𝑖−𝑙| = 0 for |𝑖 − 𝑙| > 𝑘∕2) due to the fact that the mutual coupling is dominant across its few nearest neighbors [3,6]. The 
mutual coupling matrix 𝐂𝑛 embeds the frequency-dependent behavior of the measured electromagnetic effects between elements, 
antenna driving point impedance function, the characteristic impedance of the transmission lines, and frequency-dependent behavior
of the LNA driving point impedance, in the Toeplitz matrix having complex coefficients(symmetric coefficients across the diagonal). 

2.2. Existence of an uncoupling matrix

Acknowledging the passivity of the system, the inverse of the coupling matrix exists and can be represented as 𝐐𝑛 = 𝐂−1
𝑛  [50].

According to the mutual coupling matrix (1), the mutual coupling effect diminishes consistently as the distance between the antenna 
and its neighbors increases. Specifically, we observe that |𝑏

|𝑖−𝑙|| > |𝑏
|𝑖−𝑙|+1| with |𝑏|𝑖−𝑙|| ≤ 1, and 𝑏

|𝑖−𝑙| = 0 for |𝑖 − 𝑙| > 𝑘∕2 because
the mutual coupling primarily influences only a few of the nearest neighbors, i.e., self-coupling dominates over mutual coupling 
within the coupling matrix. Furthermore, the mutual coupling is a spatial linear transformation from C𝑛 to C𝑛 s.t. 𝐱 ↦ 𝐂𝑛𝐱 ensuring
𝐱1 ≠ 𝐱2 ↦ 𝐂𝑛𝐱1 ≠ 𝐂𝑛𝐱2, where 𝐱1, 𝐱2 ∈ C𝑛. Thus, by invertible matrix theorem, the existence of 𝐐𝑛 is guaranteed, and hence the 
coupling effect can be reversed (i.e., uncoupled) in the digital signal processor using a brute-force linear system solver at every time
step, i.e. solving 𝐂𝑛𝐱 = 𝐲 is equivalent in calculating 𝐱 = 𝐂−1

𝑛 𝐲 = 𝐐𝑛𝐲. The existence of 𝐐𝑛 is significant because it is possible to
digitally undo the mutual coupling effects of antenna arrays by multiplying the array outputs by the uncoupled matrix 𝐐𝑛 at each 
time step.

On the other hand, Proposition  3.1 followed by the Algorithms in Section 3 show that we have not computed the explicit 
inverse of the symmetric Toeplitz matrices 𝐂𝑛, but rather computing the conjugate transpose of the mutual coupling matrix 𝐂∗

𝑛
followed by the calibration matrix 𝐀𝑛. The calibration matrix 𝐀𝑛 is diagonal and can be found numerically as stated in Remark  3.2, 
experimentally by illuminating the array with a plane-wave at broadside direction and shown numerically through Section 6. Finally,
we recall from [51] that the explicit inverse of a matrix is hardly ever computed, especially for linear system solutions, because this 
is too expensive and numerically less accurate. We emphasize that we have not utilized explicit inverse to solve symmetric Toeplitz 
systems; rather, we have bypassed it through conjugate transpose of symmetric Toeplitz matrices followed by the calibration matrix. 

The most straightforward realization would require measurement of S-parameters, one-time pre-computation of 𝐂−1
𝑛  using 𝐂𝑛

and realization of 𝐱 = 𝐂−1
𝑛 𝐲 where 𝐲 is the 𝑛-element vector of samples at a given time step obtained from 𝑛-receivers in the array,

and 𝐱 is the 𝑛-element vector of samples corresponding to the 𝑛-elements albeit with mutual coupling effects removed using digital 
hardware. The complexity of the brute-force computation of 𝐱 is (𝑛3). Although perfectly reasonable for small arrays (for example,
when 𝑛 = 8) the arithmetic complexity grows in cubic powers with array size and becomes computationally difficult even for 
reasonably large 𝑛. In a typical phased-array radar containing hundreds of elements, the complexity of the brute-force system solver
can become expensive in terms of both chip area and power consumption. To reduce the arithmetic complexity to a manageable 
level, we explore the structure of the mutual coupling matrices to facilitate a sparse matrix factorization that in turn allows the 
desired computation albeit at a significantly reduced complexity, i.e. (𝑛 log 𝑛), when compared to the brute-force approach as in 
the next section.

3. A low-complexity algorithm  to solve symmetric Toeplitz systems: Decouple the mutual coupling effect

The realization of uncoupling caused by the mutual coupling effect can be obtained by solving a symmetric Toeplitz system of 
the form 𝐂𝑛𝐱 = 𝐲,  and is equivalent in calculating 𝐱 = 𝐐𝑛𝐲. For this realization, the coefficients defining the symmetric Toeplitz 
matrix 𝐂𝑛, i.e. 𝑎, 𝑏|𝑖−𝑙| ∈ C can be found experimentally via S-parameter measurements with a vector network analyzer(VNA). Let 
us first introduce all the notations before discussing the factorization for the uncoupling matrix 𝐐 .
𝑛

5 
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3.1.  Other frequently used explicit matrices

Here, we introduce the remaining notations for sparse and orthogonal matrices which will frequently be used in this paper. 
We recall that 𝑛 × 𝑛 coupling matrix 𝐂𝑛 has identified as a symmetric Toeplitz matrix (1), 𝐐𝑛 is the uncoupling matrix, and 𝐂∗

𝑛 is 
the conjugate transpose of 𝐂𝑛. In 2.2, we have introduced 𝐀𝑛 as the calibration matrix consisting only of diagonal elements. This 
matrix will be determined numerically or experimentally, as mentioned in Remark  3.2. Additionally, it will be numerically derived
in Section 5 and illustrated in Section 6.

For a given vector 𝐱 = [𝑥0, 𝑥1,… , 𝑥𝑛−1]𝑇 ∈ 𝑅𝑛, let us introduce an even–odd permutation matrix 𝐏𝑛 (𝑛 ≥ 3) by

𝐏𝑛 𝐱 =

{

[

𝑥0, 𝑥2,… , 𝑥𝑛−2, 𝑥1, 𝑥3,… , 𝑥𝑛−1
]𝑇 even 𝑛,

[

𝑥0, 𝑥2,… , 𝑥𝑛−1, 𝑥1, 𝑥3,… , 𝑥𝑛−2
]𝑇 odd 𝑛.

We define the DFT matrix by 𝐅𝑛 = 1
√

𝑛
[𝑤𝑘𝑙

𝑛 ]𝑛−1𝑘,𝑙=0 where 𝑛 = 2𝑡(𝑡 ≥ 1), 𝑤𝑛 = 𝑒−
2𝜋𝑗
𝑛 , a scaled DFT matrix by 𝐅̃𝑛 =

√

𝑛 𝐅𝑛 and 

its conjugate transpose by 𝐅∗
𝑛, a highly sparse matrix by 𝐉𝑚×𝑛 =

[

𝐈𝑛
𝟎𝑛

]

 where 𝑚 = 2𝑛, 𝐈𝑛 is the identity matrix and 𝟎𝑛 is the

zero matrix, a scaled orthogonal matrix by 𝐇𝑛 =

[

𝐈 𝑛
2

𝐈 𝑛
2

𝐃̀ 𝑛
2

−𝐃̀ 𝑛
2

]

 where 𝐃̀ 𝑛
2
= diag

[

𝑤𝑙
𝑛
]

𝑛
2−1
𝑙=0 , and its conjugate transpose by 𝐇∗

𝑛,

diagonal matrices by 𝐃̃𝑚 = diag
[

𝐅̃𝑚𝐫
]

= diag
[

𝑓𝑖
]𝑚
𝑖=1 and 𝐃𝑚 = diag

[

𝑑𝑖
]𝑚
𝑖=1 , where 𝑑𝑖 = 𝑓 ∗

𝑖  (i.e. 𝑑𝑖 is the conjugate of 𝑓 ∗
𝑖 ) and 𝐫 s.t. 

𝐫 =
[

𝑎, 𝑏1, 𝑏2,… , 𝑏(𝑛−1), 𝑎, 𝑏(𝑛−1),… , 𝑏2, 𝑏1
]𝑇 . is the first column of a circulant matrix 𝐑𝑚.

3.2. Sparse and recursive factors for uncoupling  matrices and to solve symmetric Toeplitz systems

This section proposes sparse and recursive factors to uncouple the mutual coupling effect, i.e. solve 𝐂𝑛𝐱 = 𝐲 or equivalently 
computing 𝐱 = 𝐐𝑛𝐲 while proposing a sparse factorization for the uncoupling matrix 𝐐𝑛. We clarify that our primary objective is 
to develop an algorithm that effectively solves symmetric Toeplitz-structured systems, not to compute the Toeplitz-vector product 
or the explicit inverse of the Toeplitz matrices. We propose an approach to compute the uncoupling matrix 𝐐𝑛 and factor it into 
sparse matrices yielding an (𝑛 log 𝑛) algorithm, to decouple the mutual coupling effects via digital signal processing. 

Proposition 3.1.  Let the mutual coupling matrix 𝐂𝑛, where (𝑛 = 2𝑡), is given via (1). Then the mutual coupling effect can be uncoupled,
i.e. the linear system 𝐂𝑛𝐱 = 𝐲 can be solved or equivalently 𝐱 = 𝐐𝑛𝐲 can be computed using 

𝐱 = [𝐉𝑚×𝑛]𝑇𝐅∗
𝑚𝐃𝑚𝐅𝑚𝐉𝑚×𝑛𝐀𝑛𝐲. (2)

Proof.  Identifying the mutual coupling matrix 𝐂𝑛 as a symmetric Toeplitz matrix, it can be fully determined by the by its first column
(also row) [𝑎, 𝑏1, 𝑏2,… , 𝑏𝑛−1

]𝑇 . We use the matrix embedding to construct a circulant matrix using the Toeplitz matrices [38,39,52]
s.t. 

𝐑𝑚 =
[

𝐂𝑛 𝐂̂𝑛
𝐂̂𝑛 𝐂𝑛

]

, (3)

here the symmetric Toeplitz matrix 𝐂̂𝑛 is defined by its first column (also row) 
[

𝑎, 𝑏(𝑛−1),… , 𝑏2, 𝑏1
]𝑇 . We use the similarity 

transformation of the circulant matrix defined via the non-singular DFT matrices using 2-DFT matrices as in [52,53] s.t. 
𝐑𝑚 = 𝐅∗

𝑚𝐃̃𝑚𝐅𝑚. (4)

Now, we scale the 𝐑𝑚 matrix by rectangular sparse matrices to extract the mutual coupling matrix 𝐂𝑛 s.t. 

𝐂𝑛 =
[

𝐈𝑛 𝟎𝑛
]

𝐑𝑚

[

𝐈𝑛
𝟎𝑛

]

. (5)

Since 𝐀𝑛 is the calibration matrix (a diagonal matrix) it can be found experimentally or numerically as stated in Remark  3.2 
so that we can uncouple the mutual coupling effect using 𝐀𝑛 followed by the sparse factorization of 𝐂∗

𝑛 leads to a parallel digital
realization. Thus, we can solve 𝐂𝑛𝐱 = 𝐲 or equivalent in calculating 𝐱 = 𝐐𝑛𝐲 via 

𝐱 = 𝐂∗
𝑛𝐀𝑛𝐲 =

[

𝐈𝑛 𝟎𝑛
]

𝐅∗
𝑚𝐃𝑚𝐅𝑚

[

𝐈𝑛
𝟎𝑛

]

𝐀𝑛𝐲. (6)

 □

Remark 3.2. 
1. We can determine the matrix 𝐀𝑛 numerically. The first step involves computing 𝐂𝑛𝐂∗

𝑛 ∶= 𝐌𝑛 (say) followed by 𝐌−1
𝑛 𝐲 = 𝐚̃

(say). It is important to highlight that 𝐌𝑛 is a Hermitian matrix, and consequently, 𝐌−1
𝑛  also possesses this property. 

Additionally, referring to Section 2.2, since 𝐂𝑛 is invertible, it follows that 𝐌𝑛 is invertible. Thus, 𝐚̃ exists. Upon obtaining 𝐚̃, 
we compute the component-wise conjugate of 𝐚̃. Subsequently, we divide each element by its squared magnitude to calculate
𝐚 ∶= [𝑎0, 𝑎1,… , 𝑎𝑛−1]𝑇 ∈ C𝑛. Once we have 𝐚, we construct the diagonal matrix 𝐀𝑛 with these elements. We then compute the 
matrix–vector product 𝐀 𝐲, and subsequently multiply the result by 𝐂∗ to yield 𝐱.
𝑛 𝑛
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2. The calibration matrix 𝐀𝑛 can be found experimentally by illuminating the array with a plane wave at a broadside direction,
leading to a parallel digital realization.

3. We note from Proposition  3.1 that the uncoupling matrix can be given via 𝐐𝑛 = 𝐂∗
𝑛𝐀𝑛 = [𝐉𝑚×𝑛]𝑇𝐅∗

𝑚𝐃𝑚𝐅𝑚𝐉𝑚×𝑛𝐀𝑛, and hence 
𝐐𝑛 could be utilized to uncouple the mutual coupling effect of antenna arrays, rather than computing the explicit inverse of
the mutual coupling matrix. 

4. Our numerical results in Section 5 demonstrate that when the matrix 𝐂𝑛 is symmetric, it is possible to incorporate a calibration 
matrix 𝐀𝑛 for the input signals prior to performing the factorization of the uncoupling matrix 𝐐𝑛.

5. We have proposed solving a symmetric Toeplitz system to uncouple the mutual coupling effect of antenna arrays via a sparse 
factorization of the uncoupling matrix, but have not computed nor proposed the well-known Toeplitz-vector product using
FFTs, in this paper. The linear transformation or the linear system solving problems based on Toeplitz matrices, such as 
computing the Toeplitz-vector product or banded Toeplitz-vector product or other Toeplitz solvers are in Section 1.2, and 
one could also find the inverse of a Toeplitz matrix via displacement structure in  [52,54–57], and hence are not proposed 
in this paper.

3.3. Radix-2 and recursive algorithms to digitally uncouple the mutual coupling  via symmetric Toeplitz systems

Following the factorization proposed for uncoupling the mutual coupling effect in Section 3.2, we present radix-2 algorithms 
for the uncoupling matrix 𝐐𝑛 which execute recursively with scaled 2 FFT algorithms (to reduce the multiplication count we have 
moved the scaling factor at the end of the computation). Hence in computing the uncoupled matrix–vector product, we have moved 
the factor 1

√

𝑚
 in 𝐅𝑚 and 𝐅∗

𝑚 to the end of the computation, and computed 𝐱 = 𝑚𝐐𝑛𝐲 for a given 𝑛, 𝑎, 𝑏|𝑖−𝑙| ∈ C, 𝐲 ∈ C𝑛 and 𝐫 ∈ C𝑚.

Algorithm 3.3. 
nput: 𝑛 = 2𝑡 (𝑡 ≥ 1), 𝑚 = 2𝑛, 𝑎, 𝑏

|𝑖−𝑙| ∈ C, 𝐲 ∈ C𝑛, and 𝐫 ∈ C𝑚.
utput: 𝐱 = 𝑚𝐐𝑛𝐲.
unction: 𝐱=uncoupl(𝐲, 𝑛).
1. if 𝑛 = 2, then

𝐱 ← 1
𝑎2−𝑏21

[

𝑎 −𝑏1
−𝑏1 𝑎

]

𝐲,

2. end if
3. if 𝑛 ≥ 4, then

𝐳 ← 𝐀𝑛 ⋅ 𝐲,
𝐮1 ← 𝐉𝑚×𝑛 ⋅ 𝐳,
𝐯1 ← dft(𝐮1, 𝑚),
𝐯2 ← 𝐃𝑚 ⋅ 𝐯1,
𝐱1 ← idft(𝐯2, 𝑚),
𝐱 ← [𝐉𝑚×𝑛]𝑇 ⋅ 𝐱1,

4. end if
5. return 𝐱
The proposed 𝑢𝑛𝑐𝑜𝑢𝑝𝑙 algorithm executes recursively with scaled FFTs in [58,59]. Let us refer to the scaled FFT and scaled inverse 

FFT algorithms by 𝐯1 = dft (𝐮1, 𝑚) and 𝐱1 = idft (𝐯2, 𝑚), respectively.

lgorithm 3.4. 
nput: 𝑚 = 2𝑡1

(

𝑡1 ≥ 1
)

, 𝑚1 = 𝑚∕2, and 𝐮1 ∈ C𝑚.
utput: 𝐯1 = 𝐅̃𝑚𝐮1.
unction: 𝐯1=dft(𝐮1, 𝑚).
1. if 𝑚 = 2, then

𝐯1 ←
[

1 1
1 −1

]

𝐮1,

2. end if
3. if 𝑚 ≥ 4, then

𝐩 ←𝐇𝑚 ⋅ 𝐮1
𝐬1 ← dft(𝐩(1 ∶ 𝑚1), 𝑚1),

𝐬2 ← dft(𝐩(𝑚1 + 1 ∶ 𝑚), 𝑚1),

𝐯1 ← 𝐏𝑇
𝑚 ⋅

[

𝐬𝑇1 𝐬𝑇2
]𝑇 ,

4. end if
5. return 𝐯
1
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Algorithm 3.5. 
nput: 𝑚 = 2𝑟1

(

𝑟1 ≥ 1
)

, 𝑚1 = 𝑚∕2, and 𝐯2 ∈ C𝑚.
Output: 𝐱1 = 𝐅̃∗

𝑚𝐯2.
Function: 𝐱1=idft(𝐯2, 𝑚).

1. if 𝑚 = 2, then
𝐱1 ←

[

1 1
1 −1

]

𝐯2,

2. end if
3. if 𝑚 ≥ 4, then

𝐪 ← 𝐏𝑚 ⋅ 𝐯2
𝐛1 ← idft(𝐪(1 ∶ 𝑚1), 𝑚1),

𝐛2 ← idft(𝐪(𝑚1 + 1 ∶ 𝑚), 𝑚1),

𝐱1 ←𝐇∗
𝑚 ⋅

[

𝐛𝑇1 𝐛𝑇2
]𝑇 ,

4. end if
5. return 𝐱1

Remark 3.6. 
1. The sole condition for the algorithm’s termination for 𝑛 = 2 is the scenario where 𝑎 = 𝑏1. However, this situation does 
not occur in practice, as self-coupling fundamentally differs from mutual coupling, leading to 𝑎 ≠ 𝑏

|𝑖−𝑙|∀ 𝑖, 𝑗, as stated in 
Section 2.1. On the other hand, the condition 𝑎 = 𝑏1 becomes irrelevant for the mutual coupling matrices when 𝑛 ≥ 4. This
is because the stipulation of 𝑛 = 2 is not influenced by the algorithm’s execution for 𝑛 ≥ 4.

2. We note that the proposed algorithms can be executed for the size of the mutual coupling matrices 𝑛 such that 𝑛 = 2𝑡 where 
𝑡 ≥ 1. 

3. The proposed algorithm to uncouple the mutual coupling effect executes recursively with the FFT and inverse FFT algorithm
as of the paper [39]. But the proposed algorithm is different from the delay Vandermonde matrix (DVM) algorithm in [39] 
because the 𝐱 = uncoupl(𝐲, 𝑛) algorithm is based on a linear system solver having the mutual coupling matrix (which is
a Toeplitz-structured matrix) as the coefficient matrix, i.e., we are not computing the Toeplitz matrix–vector product or a 
Vandermonde-structured matrix by a vector in [39], but rather solves a mutual coupling system (which is solving a Toeplitz
system using 2FFTs).

4. Complexity of the algorithm

4.1. Complexity of systolic array processors

The proposed fast algorithms must be realized as real-time stream processors on an application-specific integrated circuit (ASIC)
or field programmable gate array (FPGA) realization. The array outputs are typically bandlimited using suitable microwave filters
before being amplified and down-converted to baseband using frequency mixer circuits before being converted to the discrete domain 
using dedicated analog to digital converters (ADCs) that time synchronously sample each of the down-converted outputs pertaining 
to the antenna elements in the array. For an 𝑛− element array, there typically exists 𝑛 number of parallel ADCs that feed the digital 
signal processor with sample values, with a new frame of 𝑛− samples per clock cycle. The clock period of the system is equal to the 
ADC sample period and is the reciprocal of the clock frequency of the digital system.

The proposed algorithms for efficiently uncoupling the electromagnetic coupling between antenna elements albeit in the digital 
domain can be achieved by architecting a custom arithmetic processor that consists of a fully parallel systolic array realization of the 
proposed Toeplitz system solver algorithm using multiplier and adder/subtractor blocks realized as parallel processing digital logic 
circuits. Typically, the processors would operate based on fixed-point digital arithmetic conformant to the two’s complement number 
representation in binary. A massively-parallel fully-pipelined systolic array processor that directly implements the fast algorithm for 
digital uncoupling of electromagnetic mutual coupling necessitates the parallel realization of very large scale integration (VLSI)
integrated circuits using a standard cell library. Such standard cell libraries are available from chip foundries, such as the Taiwan 
Semiconductor Manufacturing Corporation (TSMC) 65 nm CMOS library, which can be employed by processor designers to realize
custom algorithms as ASICs. The chip area and power consumption of the processors will be dominated by the arithmetic complexity 
of the core algorithm; to wit, it is imperative to minimize the number of multiplications per second to reduce power consumption,
as well as the number of multipliers on the chip to reduce chip area and therefore implementation cost. The proposed fast algorithm 
aims to reduce the number of multiplications in the digital decoupling operation.

4.2. Arithmetic complexity of the algorithm

We determine the number of additions and multiplications, denoted as 𝛼(𝐱, 𝑛) and 𝛽(𝐱, 𝑛), required to compute the length 𝑛
vector 𝐱 while uncoupling the mutual coupling effect. Consequently, the values of 𝛼(𝐱, 𝑛) and 𝛽(𝐱, 𝑛) correspond to the adders and 
8 
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gains needed for the algorithms presented in Section 3.2. These counts are obtained to compute the uncoupling algorithm, i.e., 𝐱 =
uncoupl(𝐲, 𝑛), which executes recursively with the scaled FFTs in [58]. Thus, we take the number of additions and multiplications
required to compute 𝐯 = 𝐅̃𝑛𝐮, where 𝐮 ∈ C𝑛, as 𝑛𝑡 and 12 𝑛𝑡 −

3
2 𝑛 + 2, respectively, when the multiplications by ±1 and ±𝑗 are not

counted. 

Lemma 4.1.  Let 𝑛 = 2𝑡(𝑡 ≥ 1) be given. The uncoupling algorithm, i.e., 𝐱 = uncoupl(𝐲, 𝑛), can recursively be computed using 𝐯1 = dft(𝐮1, 
), and 𝐱1 = idft(𝐯2, 𝑚) algorithms with the following arithmetic complexities (respectively, adders and gains):

𝛼(𝐱, 𝑛) = 4𝑛𝑡 + 𝑛,

𝛽(𝐱, 𝑛) = 2𝑛𝑡 − 𝑛 + 4. (7)

Proof.  Referring to the uncoupling algorithm, we get 
𝛼(𝐱, 𝑛) = 2

(

𝛼(𝐅̃𝑚), 𝑚
)

+ 2
(

𝛼(𝐉𝑚×𝑛, 𝑚 × 𝑛)
)

+ 𝛼(𝐃𝑚, 𝑚) + 𝛼(𝐀𝑛, 𝑛). (8)

A similar equation holds for the number of multiplications as well. Following the structures of 𝐀𝑛, 𝐉𝑚×𝑛, and 𝐃𝑚, and the 
multiplication of each matrix by a complex input, we have

𝛼
(

𝐀𝑛, 𝑛
)

= 0, 𝛽
(

𝐀𝑛, 𝑛
)

= 𝑛,
𝛼
(

𝐉𝑚×𝑛, 𝑚 × 𝑛
)

= 0, 𝛽
(

𝐉𝑚×𝑛, 𝑚 × 𝑛
)

= 0,
𝛼
(

𝐃𝑚, 𝑚
)

= 0, 𝛽
(

𝐃𝑚, 𝑚
)

= 𝑚.

ultiplications of 𝐉𝑚×𝑛 from the right and left of the DFT do not affect the multiplication counts, but do affect the addition counts 
(due to 𝟎𝑛 matrix). Hence, we have to subtract 𝑚+𝑛 addition counts (due to no 𝑚 and 𝑛 additions after and before 𝐉𝑚×𝑛, respectively)
from the total addition counts. By following 𝑛𝑡 additions and 12 𝑛𝑡 −

3
2 𝑛 + 2 multiplications to compute 𝐯 = 𝐅̃𝑛𝐮 with 𝐮 ∈ C𝑛, we get

addition and multiplication counts as in (7) based on the computation of the proposed uncoupling algorithm. □

5. Numerical results

To demonstrate the effectiveness of the decoupling approach, we take simulated data from [60] of a 71-element array. This array
was developed for a Square Kilometer Array and the impact of mutual coupling on the array prototypes was investigated [11,61–64]. 
This array is a dual-polarization square array with 36 elements realizing vertical polarization and 35 elements implementing 
horizontal polarization. In this work, we use S-parameters at 1.4 GHz of an 8-element sub-array and a 16-element sub-array for
the demonstration of the proposed digital uncoupling method. Both sub-arrays are horizontally polarized and consist of 2 rows of 4
antennas and 4 rows of 4 antennas. These 8-element and 16-element arrays are represented by 8 × 8 and 16 × 16 coupling matrices. 
These matrices are Toeplitz structured, although errors persist due to irregularities in the antenna array. Thus, the coupling matrices
can be defined via the first row (or the first column) of the symmetric Toeplitz matrices of sizes 16 × 16 and 8 × 8, respectively as 
follows 

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.1701 + 0.1738𝑗
0.1517 + 0.0834𝑗

−0.0376 + −0.0678𝑗
−0.0017 + 0.0371𝑗
0.0660 + −0.0014𝑗
−0.0373 + −0.0830𝑗
−0.0207 + 0.0633𝑗
0.0347 + −0.0233𝑗
−0.0516 + 0.0129𝑗
0.0208 + 0.0512𝑗
0.0216 + −0.0319𝑗
−0.0221 + −0.0012𝑗
0.0288 + −0.0034𝑗
−0.0082 + −0.0423𝑗
−0.0216 + 0.0231𝑗
0.0142 + 0.0025𝑗

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.1537 + 0.0466𝑗
0.0295 + 0.1927𝑗
0.0502 + −0.0528𝑗
−0.0279 + −0.0121𝑗
0.0874 + 0.0684𝑗
0.0465 + −0.1080𝑗
−0.0624 + 0.0060𝑗
0.0122 + 0.0344𝑗

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (9)

In these numerical experiments, we compare the uncoupled vectors as calculated by the conjugate transpose of the coupling 
matrix by a given vector 𝐂∗

𝑛𝐲, the proposed sparse factorization for the uncoupled matrix by the vector 𝐐𝑛𝐲, and the brute-force 
calculation of the inverse of the coupling matrix by the vector 𝐂−1

𝑛 𝐲. The coupled vectors are initialized as 𝐲 ∼Unif(0, 1) ∈ C8

or C16. We present several of these vectors and the corresponding absolute error between the conjugate transpose, the proposed 
factorization to uncouple the mutual coupling effect, and the brute-force calculation of the inverse of the coupling matrix by 𝐲 for 
the 8 × 8 and 16 × 16 coupling matrices in Tables  1 and 2. Furthermore, according to the simulated data presented in [60], the 
mutual coupling matrices of sizes 8 × 8 and 16 × 16 are not unitary; instead, they are characterized as symmetric Toeplitz matrices. 
9 
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Table 1
Four sets of random input vectors, y are denoted in the first column. The absolute 
error between the conjugate transpose of the 8 × 8 coupling matrix by the vector y
and the proposed sparse uncoupling factorization by the vector y is denoted in the 
second column. The first element of the second column generally has the lowest error, 
with a magnitude of 10−4 or 10−5. The subsequent values have larger errors, on the 
order of magnitude of 10−2. The absolute error between the brute-force calculation of 
the inverse of the coupling matrix by the vector y and the proposed sparse uncoupling 
factorization by the vector y is shown in the third column. The last column shows 
the elements of the calibration matrix 𝐀𝑛 for the mutual coupling matrix which is not 
unitary.
 y |𝐐𝑛𝐲 − 𝐂∗

𝑛𝐲| |𝐐𝑛𝐲 − 𝐂−1
𝑛 𝐲| 𝐀𝑛  

 0.6407+0.0045j 0.0000+0.0001j 0.5400+0.0649j 1.8255−0.2194j 
 0.5986+0.2322j 0.0311+0.0913j 0.5483+0.0747j 1.7906−0.2440j 
 0.1655+0.1895j 0.1202+0.0292j 0.7473+0.3775j 1.0661−0.5385j 
 0.6948+0.7587j 0.1745+0.0331j 0.4150+0.0776j 2.3284−0.4351j 
 0.8495+0.2478j 0.1700+0.0187j 0.6049+0.2481j 1.4151−0.5803j 
 0.4349+0.9336j 0.0015+0.0519j 0.5727+0.1474j 1.6375−0.4216j 
 0.1612+0.4344j 0.0679+0.1064j 0.5800+0.3585j 1.2475−0.7711j 
 0.5435+0.3484j 0.0066+0.0202j 0.2457+0.2428j 2.0591−2.0348j 
 0.2115+0.2340j 0.0000+0.0001j 0.4684+0.2614j 1.6280−0.9086j 
 0.6933+0.5751j 0.0606+0.0429j 0.5066+0.2460j 1.5974−0.7757j 
 0.3751+0.1305j 0.1024+0.0111j 0.7301+0.7225j 0.6920−0.6848j 
 0.2441+0.8575j 0.1756+0.0678j 0.4625+0.2332j 1.7239−0.8694j 
 0.4610+0.5553j 0.1553+0.0503j 0.3476+0.3769j 1.3224−1.4337j 
 0.1269+0.8865j 0.0355+0.0007j 0.5705+0.4708j 1.0428−0.8605j 
 0.2463+0.9159j 0.0841+0.0534j 0.5091+0.5581j 0.8922−0.9781j 
 0.2608+0.7185j 0.0107+0.0161j 0.2035+0.4157j 0.9500−1.9404j 
 0.3371+0.0594j 0.0000+0.0001j 0.1951+0.1464j 3.2791−2.4602j 
 0.1288+0.0309j 0.0732+0.0370j 0.7695+0.0068j 1.2994−0.0114j 
 0.8776+0.0212j 0.0694+0.0390j 0.4748+0.3931j 1.2496−1.0347j 
 0.3734+0.9278j 0.1057+0.1104j 0.4711+0.1861j 1.8361−0.7252j 
 0.3254+0.5637j 0.1383+0.1568j 0.3872+0.3352j 1.4763−1.2781j 
 0.5335+0.6979j 0.0610+0.0501j 0.2920+0.1113j 2.9899−1.1401j 
 0.1442+0.4455j 0.1131+0.0720j 0.6262+0.3301j 1.2496−0.6587j 
 0.0027+0.6169j 0.0096+0.0122j 0.2304+0.3262j 1.4444−2.0451j 
 0.9762+0.9394j 0.0001+0.0001j 0.2643+0.2091j 2.3267−1.8412j 
 0.2968+0.8063j 0.0083+0.0284j 0.6361+0.7429j 0.6650−0.7767j 
 0.1864+0.9151j 0.0654+0.0232j 0.6240+0.4307j 1.0854−0.7492j 
 0.5483+0.1735j 0.1167+0.0174j 0.4413+0.2168j 1.8253−0.8969j 
 0.2232+0.1288j 0.1606+0.0137j 0.6331+0.3192j 1.2593−0.6349j 
 0.2413+0.6357j 0.1184+0.0059j 0.6039+0.5430j 0.9156−0.8233j 
 0.3995+0.7100j 0.0061+0.0576j 0.5229+0.2932j 1.4550−0.8157j 
 0.6310+0.0369j 0.0058+0.0107j 0.3849+0.2107j 1.9989−1.0941j 

Thus, we demonstrate the elements of the calibration matrix 𝐀𝑛 as the last column of Tables  1 and 2 so that one could calibrate the 
input signal before the uncoupling the mutual coupling effect as shown in Proposition  3.1 and signal flow graph 2(b).

We benchmark the performance of our algorithm in terms of execution time and mean-squared error in recovering the 
uncoupled input. For comparison, we employ several popular, highly optimized libraries in Python. This includes the SciPy library
implementation of the Levinson–Durbin recursion algorithm [65,66], which is specifically designed for solving systems of Toeplitz
matrices. This algorithm is faster than generic least-squares methods, though numerically less stable. Additionally, we employ the
NumPy and PyTorch libraries, with optimized numerical inversion algorithms, and we investigate the benefits of GPU acceleration 
within PyTorch. Input sizes vary from 8 to 4096 points, with results averaged over 10 randomly initialized, complex-valued inputs.

The results from these experiments are organized in Figs.  3 and 4. As shown in Fig.  3, the proposed algorithm is generally faster 
than its direct counterpart. The Levinson–Durbin algorithm solves the Toeplitz system slightly faster than the SciPy implementation 
of the proposed algorithm; however, using GPU acceleration, the proposed algorithm achieves significantly better scaling properties
than all other approaches. Results in Fig.  4 show that the errors are slightly higher than those of direct approaches, but are still in 
a similar order of magnitude. Likewise, the errors of the proposed algorithm are highly correlated. This slight increase in error is
due to numerical errors introduced during the computation of the calibration matrix components, 𝐀𝑛. 

6. Signal flow graph for uncoupling architecture

Signal flow graphs depict the transformations performed at each stage of the algorithm. The input of coupled samples is 
represented by the elements 𝑦(𝑘) on the left side, and the output of decoupled samples by 𝑥(𝑘) on the right for 𝑘 = 0, 1,… , 𝑛 − 1.
Likewise, stages of the algorithm follow successively from left to right. Two arrows converging upon the same node represent an 
10 
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Table 2
Two sets of random input vectors, y are denoted in the first column. The absolute error 
between the conjugate transpose of the 16 × 16 coupling matrix by the vector y and 
the proposed sparse uncoupling factorization by the vector y is denoted in the second 
column. The first element of the second column generally has the lowest error, with a 
magnitude of 10−4 or 10−5. The subsequent values have larger errors, on the order of 
magnitude of 10−2. The absolute error between the brute-force calculation of the inverse 
of the coupling matrix by the vector y and the proposed sparse uncoupling factorization 
by the vector y is shown in the third column. The last column shows the elements of 
the calibration matrix 𝐀𝑛 for the mutual coupling matrix which is not unitary. 
 y |𝐐𝑛𝐲 − 𝐂∗

𝑛𝐲| |𝐐𝑛𝐲 − 𝐂−1
𝑛 𝐲| 𝐀𝑛  

 0.6449+0.6593j 0.0001+0.0002j 0.4050+0.2441j 1.8112−1.0917j 
 0.9392+0.5427j 0.0256+0.0348j 0.3115+0.2719j 1.8221−1.5904j 
 0.0321+0.0329j 0.0943+0.0084j 0.7978+0.3139j 1.0854−0.4270j 
 0.4639+0.6987j 0.0536+0.0233j 0.2094+0.0012j 4.7745+0.0274j 
 0.1754+0.1808j 0.1707+0.0404j 0.4226+0.2522j 1.7448−1.0412j 
 0.1420+0.6781j 0.0619+0.0398j 0.4678+0.0760j 2.0824−0.3385j 
 0.3299+0.3493j 0.1400+0.1395j 0.4636+0.2991j 1.5231−0.9828j 
 0.6412+0.6690j 0.1073+0.1579j 0.1925+0.3559j 1.1758−2.1740j 
 0.3070+0.0868j 0.2044+0.1565j 0.5598+0.1554j 1.6586−0.4605j 
 0.7124+0.6715j 0.0103+0.0907j 0.3220+0.1037j 2.8139+0.9060j 
 0.3825+0.8124j 0.0998+0.0966j 0.6187+0.3060j 1.2986−0.6422j 
 0.0579+0.8343j 0.1974+0.0232j 0.6491+0.2623j 1.3244−0.5351j 
 0.7555+0.2851j 0.0045+0.1426j 0.3974+0.1478j 2.2106−0.8221j 
 0.6373+0.0601j 0.0459+0.0347j 0.7746+0.2613j 1.1591−0.3910j 
 0.4733+0.4374j 0.1254+0.0445j 0.7544+0.3269j 1.1159−0.4836j 
 0.7038+0.2423j 0.0054+0.0291j 0.1792+0.3026j 1.4488−2.4462j 
 0.7491+0.5099j 0.0001+0.0001j 0.2319+0.2662j 1.8604−2.1354j 
 0.3049+0.2759j 0.0574+0.0100j 0.5769+0.4481j 1.0812−0.8398j 
 0.4161+0.5586j 0.0186+0.0343j 0.2688+0.2012j 2.3847−1.7848j 
 0.4000+0.3128j 0.0372+0.1058j 0.2913+0.3011j 1.6596−1.7156j 
 0.3899+0.2268j 0.1015+0.0287j 0.5011+0.1110j 1.9024−0.4212j 
 0.3674+0.6286j 0.1195+0.0680j 0.2343+0.2572j 1.9357+2.1248j 
 0.0036+0.1138j 0.0759+0.0050j 0.2331+0.3254j 1.4550−2.0310j 
 0.0440+0.4585j 0.1578+0.0482j 0.2637+0.2279j 2.1712−1.8759j 
 0.6635+0.4380j 0.0356+0.0577j 0.1898+0.0584j 4.8125−1.4795j 
 0.1295+0.0121j 0.0654+0.0219j 0.7655+0.2207j 1.2061−0.3477j 
 0.3164+0.9211j 0.0990+0.1044j 0.4021+0.0195j 2.4811+0.1200j 
 0.2909+0.7783j 0.0890+0.0681j 0.2740+0.3910j 1.2022−1.7152j 
 0.2578+0.5242j 0.0382+0.1240j 0.5445+0.3045j 1.3990−0.7822j 
 0.9911+0.5197j 0.0386+0.0279j 0.4549+0.2147j 1.7979−0.8484j 
 0.5935+0.2366j 0.0838+0.0008j 0.7356+0.5743j 0.8446−0.6594j 
 0.2793+0.5878j 0.0087+0.0158j 0.3635+0.3731j 1.3397−1.3750j 

addition. The symbols in red above the arrows represent multiplication by the respective quantity, and a dashed line represents 
multiplication by −1. Although multiplications by −1 and ±𝑗 are depicted, these are not included in the evaluation of the 
computational complexity. Permutation matrices within the FFT are not depicted by the signal flow graph. Therefore, it is necessary 
to keep careful track of the elements between computational stages. Likewise, because the outputs of the FFT are in bit-reversed 
order, the elements of 𝐃𝑚 are also depicted in bit-reversed order.

Following the uncoupling algorithm, i.e., 𝐱 = uncoupl(𝐲, 𝑛) in Section 3.3, we present the 8-point signal flow graph for the 
scaled mutual decoupling algorithm in Fig.  5. Numerical simulation performed in MATLAB reveals that for a complex input of
coupled values 𝐲 of size 𝑛 = 8, the 𝓁2-norm of the difference of uncoupled values 𝐱 calculated by the proposed factorization and the 
brute-force method is on the order of 10−16. Thus, the error is close to machine precision.

While the proposed signal flow graph shares design similarities with the one presented in [39], there are notable differences in 
the diagonal scalings and calibration weights employed in the proposed approach compared to the paper [39].

7. Conclusion

We have proposed a sparse factorization for the 𝑛 × 𝑛 uncoupled matrices followed by a fast, exact, and recursive algorithm 
to uncouple the mutual coupling effect of electromagnetic fields caused by antenna array elements while reducing the complexity 
from (𝑛3) to (𝑛 log(𝑛)). The proposed factorization also shows an alternative method to solve the system of linear equations having
symmetric Toeplitz matrices as coefficient matrices with (𝑛 log(𝑛)) as opposed to the (𝑛3) complexity algorithm. We evaluated the 
proposed algorithm using S-parameters at 1.4 GHz, obtained from an 8-element sub-array and a 16-element sub-array. Our numerical
results showed the effectiveness of the algorithm in mitigating the mutual coupling effect, considering the impact of attenuation. 
These findings exhibit promising outcomes, indicating the potential utilization of the proposed algorithm for uncoupling the mutual 
11 
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(a) 8 × 8 uncoupled matrices.

(b) 16 × 16 uncoupled matrices.

Fig. 2. These plots represent the attenuation of signals corresponding to the uncoupled matrices based on the distance between antennas using
the brute-force inverse of the coupling matrix as denoted by (1), the conjugate transpose of the coupling matrix as denoted by 𝐂∗

𝑛 , and the 
roposed sparse factorization to uncouple the mutual coupling effect as denoted by (2). The results are plotted in a log10 scale to better illustrate 
he structure of the matrices. The elements with the largest magnitude of the 16×16 uncoupling matrix are along the main diagonal, i.e., elements 
corresponding to self-uncoupling, and these are generally normalized to have a magnitude of 1. Elements along the diagonal directions of these
uncouple matrices show that the signals attenuate when antennas are far away. The numerical results clearly show that the diagonal elements
of the uncoupling matrices steadily decrease as one moves away from the main diagonal, highlighting the diminishing effect of mutual coupling
and the predominance of self-coupling over mutual coupling.

Fig. 3. Execution time trends, averaged over 10 randomly initialized inputs, for all implementations of the proposed algorithm and several 
enchmark algorithms in solving Toeplitz systems. The proposed algorithm gains substantial benefits from GPU acceleration compared to all the 
ther Toeplitz system solvers while maintaining uniformity as the size of the Toeplitz systems increases. This assures that the proposed Toeplitz 
olver has a low-complexity even for larger Toeplitz systems.

coupling effect of the antenna arrays.  We implemented the proposed algorithm alongside highly optimized libraries such as SciPy,
NumPy, and PyTorch. These libraries present benchmarks due to their optimizations and hardware-specific improvements, especially 
in matrix inversion and recursive algorithms. Our algorithm has shown competitive performance, particularly when leveraging GPU 
acceleration in PyTorch. It has achieved superior scaling properties with larger input sizes, effectively navigating the complexities
posed by these advanced baselines. The signal flow graph shows the connection of the algebraic operations in the linear system with 
12 
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Fig. 4. Mean-squared error trends, averaged over 10 randomly initialized inputs, for all implementations of the proposed algorithm and several 
enchmark experiments. Although the proposed algorithm has a slightly higher error, than the other Toeplitz system solvers, the MSE is still 
ignificantly lower in magnitude, especially for larger Toeplitz systems.

Fig. 5. Signal flow graph for 8-point scaled mutual decoupling algorithm, i.e., 𝐱 = 16𝐐8𝐲, where 𝐐8 = 𝐂∗
8𝐀8, 𝐀8 = diag

[

𝑎𝑘
]7
𝑘=0, 𝑤𝑘,𝑛 = 𝑒−𝑖

2𝜋𝑘
𝑛 , 

= 2𝑛, 𝑗2 = −1, and 𝑑𝑘 is the 𝑘th component of 𝐃16.
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Fig. 6. Overview of a typical antenna array with receivers and digital signal processing hardware. This block diagram is representative of a 
ide range of wireless engineering applications including those in wireless communication systems such as 4G/LTE and 5G, radio astronomy 
maging, radar, and electronic warfare. The mutual coupling between the antennas causes a linear mixing of signals that is undesirable as it 
auses smudging in imaging applications, loss of directivity in radar, and loss of signal-to-interference ratio in wireless communications. This 
aper discusses a digital signal processing-based fast algorithm that uncouples the mutual coupling using proposed linear algebra techniques that 
re realized as application-specific fast systolic-array processors operating in real-time on the digitized array signals.

the fundamental building blocks of the flow graph, the simplicity of the proposed algorithm, and the architecture for the VLSI. In
contrast to the brute-force uncoupling algorithms, the proposed simplified uncoupled algorithm is expected to reduce the required 
size of the digital signal processing hardware, thereby reducing the cost, power consumption, and complexity of the mutually coupled
system.

Appendix

Fig.  6 shows a typical digital receiver array consisting of an 𝑁 ×𝑁 grid of 𝑛 = 𝑁2 elements, with 𝑛 number of dedicated direct-
conversion receivers. Each antenna in the array has a dedicated receiver, where each receiver consists of a low-noise amplifier 
(LNA) (shown as 𝐴1) and bandpass filter (BPF) followed by a direct down-conversion stage (mixers) that implement the Fourier 
transform relation 𝑥(𝑡)𝑒−𝑗𝜔𝑐 𝑡 ⟺ 𝑋(𝜔+𝜔𝑐), where 𝜔 is the circular frequency related to temporal frequency 𝑓 𝐻𝑧 via 𝜔 = 2𝜋𝑓 , and 
𝜔𝑐 = 2𝜋𝑓𝑐 where 𝑓𝑐 𝐻𝑧 is a carrier frequency. The down-conversion of the bandlimited radio signals causes them to be replicated
at the lower-frequency range (baseband) while mutual coupling functions between array elements remain the same albeit frequency 
translated down to baseband. Subsequent amplification stages (shown as 𝐴2) followed by image-rejection low-pass filters (LPFs) lead 
to the desired analog signals that are sampled and quantized by the analog to digital converters (ADCs) to yield the digital baseband
signal applied to the array processor chip. The array processor implements fast algorithms for digital uncoupling of electromagnetic 
mutual coupling, which occurs in real-time through fast massively-parallel systolic array realization of the proposed algorithm, 
14 
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followed by digital multi-beam and adaptive beamformers (not discussed in this paper) that yield multiple RF beams in the digital
signal processor.

Data availability

Data will be made available on request.
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