
Fine-Grained Graph Rationalization
Zhe Xu

zhexu3@illinois.edu
University of Illinois
Urbana-Champaign
Urbana, IL, USA

Menghai Pan
Yuzhong Chen
Huiyuan Chen
menpan@visa.com
yuzchen@visa.com
hchen@visa.com
Visa Research

Foster City, CA, USA

Yuchen Yan
yucheny5@illinois.edu
University of Illinois
Urbana-Champaign
Urbana, IL, USA

Mahashweta Das
mahdas@visa.com
Visa Research

Foster City, CA, USA

Hanghang Tong
htong@illinois.edu
University of Illinois
Urbana-Champaign
Urbana, IL, USA

Abstract
Rationale discovery is defined as finding a subset of the input data
that maximally supports the prediction of downstream tasks. In
the context of graph machine learning, graph rationale is defined
as identifying the critical subgraph in the given graph topology.
In contrast to the rationale subgraph, the remaining subgraph is
named the environment subgraph. Graph rationalization can en-
hance the model performance because the mapping between the
graph rationale and the prediction label is viewed as invariant, by
definition. To ensure the discriminative power of the extracted ra-
tionale subgraphs, a key technique named intervention is applied,
whose core idea is that given changing environment subgraphs,
the semantics from the rationale subgraph is invariant, which guar-
antees the correct prediction result. However, most, if not all, of
the existing graph rationalization methods develop their interven-
tion strategies on the graph level, which is coarse-grained. In this
paper, we propose FIne-grained Graph rationalization (FIG). Our
idea is driven by the self-attention mechanism, which provides rich
interactions between input nodes. Based on that, FIG can achieve
node-level and virtual node-level intervention. Our experiments in-
volve 7 real-world datasets, and the proposed FIG shows significant
performance advantages compared to 13 baseline methods.

CCS Concepts
• Mathematics of computing → Graph algorithms; • Com-
puting methodologies → Neural networks; • Information
systems→ Data mining.

Keywords
graph rationale discovery; graph neural network

This work is licensed under a Creative Commons Attribution 4.0 International License.
CIKM ’25, Seoul, Republic of Korea
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2040-6/2025/11
https://doi.org/10.1145/3746252.3761307

Figure 1: Illustration of the rationale/environment decom-
position and intervention. Round nodes denote graph ratio-
nales, and square nodes (with stripes) denote the environ-
ments. The intervention aims to ensure the rationale from
graph G truly has the discriminative power for the label 𝑦G .
ACM Reference Format:
Zhe Xu, Menghai Pan, Yuzhong Chen, Huiyuan Chen, Yuchen Yan, Mahash-
weta Das, and Hanghang Tong. 2025. Fine-Grained Graph Rationalization.
In Proceedings of the 34th ACM International Conference on Information and
Knowledge Management (CIKM ’25), November 10–14, 2025, Seoul, Republic of
Korea. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3746252.
3761307

1 Introduction
Rationale refers to a subset of the input features that play a crucial
role in model predictions for downstream tasks [8, 18, 37, 49, 55, 77,
84]. In the context of graph machine learning, graph rationale is
defined as a subgraph of the input graph containing the most task-
relevant semantics. The application of graph rationale is broad; for
example, it can greatly enhance model performance for graph-level
tasks [33, 55, 61, 67, 81] by identifying the key components of the
input graph. Additionally, the discovery of rationales can improve
model explainability [37], as it highlights the parts of the input
graph that significantly contribute to the final prediction.

Existing graph rationalization solutions [37, 55] employ a train-
able augmenter to execute the rationale/environment decomposi-
tion. In this process, a node/edge mask is generated by the aug-
menter to decompose the given graph into a rationale graph and
an environment graph. Inspired by the content-style decomposi-
tion [27], the key idea of graph rationalization is to preserve the

3708

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3746252.3761307
https://doi.org/10.1145/3746252.3761307
https://doi.org/10.1145/3746252.3761307
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3746252.3761307&domain=pdf&date_stamp=2025-11-10

CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea Zhe Xu et al.

utility of the graph rationale when combined with changing envi-
ronment graphs (see Figure 1). To achieve this, a technique named
intervention is used, where the environment graph interacts with
the rationale graph.

The intervention mechanism (named intervener) is essential in
the graph rationalization process, as it must accurately represent the
interaction between the rationale and the environment. Intuitively,
the intervener should work in an adversarial behavior against
the augmenter mentioned above, a point largely overlooked in the
existing literature. If the intervener is more powerful, it can capture
more detailed interactions between the rationale and environment
subgraphs. Given such a powerful intervener, the augmenter is com-
pelled to minimize these interactions between the graph rationale
and the environment to obtain a “purer” graph rationale.

Unfortunately, existing works develop interveners in a coarse
and non-parametric manner. After performing rationale/environ-
ment decomposition on the graph data, they compute graph-level
embeddings for the rationale and environment subgraphs. The inter-
vention is then designed as an interaction between these graph-level
embeddings. For example, [37] adds the environment embedding
into the rationale embedding as the intervened rationale embed-
ding; [55] defines the intervened prediction as the Hadamard prod-
uct between the predictions based on the rationale subgraph and
the environment subgraph. We argue that such a graph-level
non-parametric intervention is insufficient to fully represent
the interaction between the rationale and environment graphs ef-
fectively.

In response to this limitation, we propose a fine-grained, paramet-
ric intervention named FIne-grained Graph rationalization (FIG).
FIG draws inspiration from the self-attention module in the Trans-
former model, which captures interactions between input tokens.
Building upon insights from Transformer [51] and its linear variant
Linformer [54], FIG formulates the interaction between the ratio-
nale and environment subgraphs at the node-level or the virtual
node-level. The two variants are named FIG-N and FIG-VN. Fur-
thermore, to maximize the effectiveness of the intervention, we
formulate a min-max game involving the node encoder, augmenter,
intervener, and predictor, forcing the rationale subgraph to be as
informative as possible.

We conduct comprehensive experiments on 7 graph-level bench-
marks to evaluate the proposed approach and compare FIG-N/VN
against 13 state-of-the-art baseline methods. The results demon-
strate that FIG and its variants outperform the baseline methods,
validating their superior performance. Our primary contributions
in this paper are summarized as follows: (1) we address the graph
rationalization problem via a fine-grained node/virtual node-level
model, FIG; (2) a min-max game is proposed to boost the effective-
ness of the proposed intervener; (3) extensive experiments covering
13 baseline methods and 7 real-world datasets demonstrate the
efficacy of the proposed method.

2 Preliminaries
Section 2.1 introduces the notations used throughout this paper.
Then, the classic Transformer architecture is introduced in Sec-
tion 2.2, whose self-attention module is an important building block

of our model. Last but not least, we introduce the overall ideas of
existing graph rationalization works in Section 2.3.

2.1 Notations
We adopt the following notation conventions: bold uppercase let-
ters for matrices and tensors (e.g., A), bold lowercase letters for
column vectors (e.g., u), lowercase and uppercase letters in regular
font for scalars (e.g., 𝑑 , 𝐾), and calligraphic letters for sets (e.g.,
T). To index vectors/matrices/tensors, we follow the syntax from
NumPy (0-based). Specifically, A[𝑝, :] and A[:, 𝑞] represent the 𝑝-th
row and the 𝑞-th column of matrix A respectively; A[𝑝, 𝑞] repre-
sents the entry at the 𝑝-th row and the 𝑞-th column. Similarly, u[𝑝]
denotes the 𝑝-th entry of vector u. In addition, the slicing syntax
for vectors/matrices/tensors is used. For example, for a matrix A,
A[𝑖 : 𝑗, :] denotes rows from the 𝑖-th row (included) to the 𝑗-th row
(excluded) and A[:, : 𝑘] denotes all the columns before the 𝑘-th col-
umn. ⊤ denotes the transpose of matrices and vectors. ⊙ represents
the Hadamard product, and ◦ denotes function composition. We
use | | for the concatenation operation, and the specific dimension
of concatenation will be clarified based on the context.

An attributed graph can be represented as G = (A,X, E), where
A ∈ R𝑛×𝑛 is the adjacency matrix, X ∈ R𝑛×𝑑𝑋 is the node feature
matrix, and E ∈ R𝑛×𝑛×𝑑𝐸 is the edge feature tensor. Here, 𝑛 denotes
the number of nodes, and𝑑𝑋 (𝑑𝐸) represents the dimensions of node
(edge) features, respectively. This paper assumes the node and edge
feature dimensions are the same (i.e., 𝑑𝑋 = 𝑑𝐸 = 𝑑) for brevity;
if they differ, a fully connected layer can map them into a shared
feature space. Our main focus in this paper is on graph property
prediction tasks. The ground truth of a graph is represented by 𝑦.

2.2 Graph Transformer
The core modules of the Transformer architecture [51] are the
self-attention layer and the feed-forward network layer. Given the
input as a sequence of symbol representations H ∈ R𝑛×𝑑𝐻 , it is
first transformed into the query, key, and value matrices as

Q = HW𝑄 , K = HW𝐾 , V = HW𝑉 , (1)

whereW𝑄 ∈ R𝑑𝐻 ×𝑑𝑄 ,W𝐾 ∈ R𝑑𝐻 ×𝑑𝐾 ,W𝑉 ∈ R𝑑𝐻 ×𝑑𝑉 . For brevity,
we set 𝑑𝐻 = 𝑑𝑄 = 𝑑𝐾 = 𝑑𝑉 = 𝑑 . Then, the self-attention module is,

P = Attn(H) = 𝜎
(
QK⊤
√
𝑑

)
, (2a)

H← PV + H. (2b)

Typically, the non-linearity𝜎 is Softmax. The feed-forward network
(FFN) updates the representations H as:

H← FFN(H) + H. (3)

Optional techniques such as normalization [3, 24], dropout [47],
and multi-head attention [51] are omitted here for brevity.

While Transformers were initially designed for sequence or set
data with positional encoding, numerous techniques have since
been introduced to adapt Transformers for graph data. Interested
readers are referred to [41] for a detailed taxonomy. Interestingly, it
is well-known in both the graph learning [9] and natural language
processing communities [54, 78] that, from the message-passing
perspective, the key idea of the Transformer architecture is to

3709

Fine-Grained Graph Rationalization CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea

construct a weighted complete graph, whose adjacency matrix
is P = 𝜎

(
QK⊤√
𝑑

)
with complexity 𝑂 (𝑛2).

2.3 Invariant Rationale Discovery on Graphs
The graph rationale is a subgraph that encodes most downstream
task-relevant semantics. A typical example is the functional groups
in polymer graphs [37, 55], which fundamentally determines the
chemical property of polymers. Mathematically, a given graph is
decomposed into a rationale graph and an environment graph:
G = Gra ∪ Genv. Commonly, the graph embeddings on Gra and
Genv are computed as hra and henv. To ensure the rationale graph is
invariant w.r.t. the prediction results when combined with different
environments, a utility loss is minimized given the rationale em-
bedding hra intervened by the environment embedding h̃env, i.e.,
minLutil (hra

intervene←−−−−−−−− h̃env). Here, h̃env could be either from the
same graph (i.e., h̃env = henv), or could be environment embeddings
from other graphs, such as those in the batch.

A key difference among existing methods lies in the inter-
vention operation, of which we mention two: (1) GREA [37] de-
signs the intervention as sum, i.e., hra+h̃env and (2) DIR [55] designs
an element-wise intervention: 𝜃pred (hra) ⊙ Sigmoid(𝜃pred (h̃env)),
where ⊙ is the Hadamard product and 𝜃pred is a predictor. The
above intervention is graph-level because hra and f̃env are graph
embeddings. In Figure 2a, an overview of the GREA [37] is pre-
sented. As a comparison, we aim to design the intervention at finer
grains (e.g., node level) to handle the interaction between rationale
and environment graphs, which will be detailed as follows.

3 Proposed Model
This section introduces the proposed method, FIG. Figure 2b pro-
vides an overview of FIG, highlighting its four parametric modules:
the encoder, augmenter, intervener, and predictor.
Encoder. The encoder, denoted as 𝜃enc : G → R𝑛×𝑑 , accepts a
graph data as input and outputs a node embeddingmatrix. There are
various graph encoders available, such as graph neural networks
(GNNs) [57] and graph Transformers [41]. From the methodology
perspective, the encoder module is not the main contribution of
this paper, so in this section, we do not specify a specific graph
encoder 𝜃enc.
Predictor. The predictor, denoted as 𝜃pred : R𝑑 → R𝑐 takes as
input a graph embedding and outputs a prediction vector/scalar. For
graph regression tasks, 𝑐 = 1; for graph classification tasks, 𝑐 is the
number of classes. A typical predictor is a multi-layer perceptron
(MLP) with appropriate activation functions. Details of the encoder
and predictor in our implementation are presented in Section 4.

In subsequent subsections, we will elaborate on the augmenter
and intervener, two essential modules. Their detailed designs derive
two variants of the proposed FIG.

3.1 Node-Level Variant: FIG-N
Node-level augmenter. The augmenter is a critical module of
the proposed FIG. For the node-level variant, termed FIG-N, the
augmenter’s primary function is decomposing the node set into two
distinct subsets: rationale nodes and environment nodes. This decom-
position is operated by parameterizing the node-level augmenter

as a learnable node partitioner, denoted by 𝜃aug-N,

m = Sigmoid(MLP(H, 𝜃aug-N)), (4)

whose input is the node embeddingmatrixH ∈ R𝑛×𝑑 , and its output
is a partition vector m ∈ [0, 1]𝑛 . MLP is a multi-layer perceptron.
Each entry within m, such as m[𝑖], denotes the probability of the
𝑖-th node being categorized as a rationale node.

For the partition vector m, its top-𝐾 entries are indexed as
idxra = argtopK(m) which is used to index the rationale nodes
from the node embedding matrix H; naturally, the remaining nodes
are categorized as the environment nodeswhose indices are idxenv =

{1, . . . , 𝑛}/idxra. 𝐾 is a hyper-parameter whose impact is studied
in Section 4.5. Also, in our implementation, we use a soft argtopK
operation to maintain differentiability, whose details are in Sec-
tion B.

Using the indices mentioned above, rationale and environment
embeddings, denoted as Hra and Henv, respectively, can be ex-
tracted from the node embedding matrix H:

Hra = H[idxra, :] ∈ R𝐾×𝑑 , (5a)

Henv = H[idxenv, :] ∈ R(𝑛−𝐾)×𝑑 , (5b)

Node-level intervener. The design of the fine-grained intervener
draws inspiration from the Transformer architecture [51]. Explicitly,
the node-level intervener 𝜙 is presented as,

Hinter, P = Transformer(Hra | |Henv), (6a)
𝑤ℎ𝑒𝑟𝑒 P = Attn(Hra | |Henv) . (6b)

In this representation, the operator | | concatenates along the first
dimension of the matrices Hra and Henv. We dub the Eqs. (1)-(3)
as Transformer and P is the intermediate attention matrix from
the self-attention layer (Eq. (6b)). Here, the self-attention module
models the interactions between the rational nodes Hra and the
environment nodes Henv. 𝜙 includes all the parameters of the Attn
(Eq. (6b)) and FFN (Eq. (3)) modules. In some contexts where the
attention matrix P is not explicitly used as an output, input/output
of the intervener 𝜙 can be presented as Hinter = 𝜙 (Hra | |Henv).
FIG-N optimization objective. The utility loss is computed as
Lutil (Hra | |Henv) = Ltask (𝜃pred◦Readout◦𝜙 (Hra | |Henv) [: 𝐾], y),
whereLtask is the task-specific objective; e.g., it is themean squared
error for regression or the cross-entropy for classification. Notice
that we select the top-𝐾 rows of the output of𝜙 , i.e., the intervened
rationale part and ideally, we expect 𝜙 (Hra | |Henv) [: 𝐾] = Hra.

As Figure 1 shows, invariant rationale discovery is to find the
graph rationale so that the utility loss is minimized given changing
environments. Thus, the utility objective is

Lutil = Lutil (Hra | |Henv) + 𝛼Lutil (Hra | |H̃env), (7)

where H̃env is the node embeddings from the changing environ-
ments. In practical implementations, H̃env is the environment node
embeddings from other graphs in the mini-batch. Additionally, to
fully utilize the rich interactions from the fine-grained intervention
module, we apply the following regularization term,

Lreg (Hra | |Henv) = s⊤P(1 − s) + (1 − s)⊤Ps, (8)

3710

CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea Zhe Xu et al.

(a) GREA [37]

(b) FIG (Ours)

Figure 2: Pipeline comparison between existing work GREA and proposed FIG. ◦ denotes function composition. GREA designs
the intervention at the graph level, and the proposed FIG designs the intervention at the node/virtual node level. The augmented
environment H̃env is from another graph G̃ (through the Encoder and Augmenter) in the batch.

where P ∈ R𝑛×𝑛 is the self-attention matrix from Eq. (6b),

s[𝑖] =
{
1 if 𝑖 < 𝐾.
0 otherwise.

(9)

The binary s vector is used to designate whether a particular
row of the matrix Hra | |Henv originates from the rationale
nodes or the environment nodes. The underlying notion of the
regularization term Eq. (8) is to impose penalties on interactions
between the rationale nodes and the environment nodes. Namely,
these two terms s⊤P(1−s) and (1−s)⊤Ps denote the total weights
on the links (i.e., cut) between the rationale and environment
subgraphs. To handle the changing environments, we introduce
an additional regularization term on the changing environments as
Lreg (Hra | |H̃env) where H̃env is the environment node embeddings
from another graph within the same mini-batch. Then, the total
regularization term is

Lreg = Lreg (Hra | |Henv) + Lreg (Hra | |H̃env), (10)
and the final objective function is Lutil + 𝛽Lreg. To fully harness
the capabilities of the fine-grained parametric intervener, it is cru-
cial to note—as highlighted in the introduction—that the behavior
of the intervener 𝜙 operates in an adversarial fashion to the other
modules. As a result, we formulate a min-max game that involves
𝜃 = {𝜃enc, 𝜃aug-N, 𝜃pred} and 𝜙 as,

min
𝜃

max
𝜙

Lutil + 𝛽Lreg . (11)

Here, the intervener 𝜙 is trained to decrease the utility of the
graph rationale by facilitating interactions between the ra-
tionale nodes and the environment nodes. Conversely, the
encoder, augmenter, and predictor (i.e., 𝜃) are optimized in an op-
posing manner to the intervener’s objectives.

Remark 1. The min-max objective is necessary. If it is replaced with
the min objective, trivial solutions exist. E.g., if feature dimension 𝑑

Algorithm 1: FIG-N single training step for graph G
Input :a labelled graph (G, 𝑦), a sampled graph G̃ from

the same batch as G, 𝜃 = {𝜃enc, 𝜃aug-N, 𝜃pred}, 𝜙 ;
Output :updated 𝜃 and 𝜙 ;

1 compute H = 𝜃enc (𝐺) and H̃ = 𝜃enc (𝐺̃);
2 compute (Hra,Henv) = 𝜃aug-N (H), (H̃ra, H̃env) = 𝜃aug-N (H̃)

via Eqs. (4), (5a), and (5b);
3 concatenate Hra | |Henv and Hra | |H̃env;
4 compute Lutil and Lreg via Eqs. (7), (9), and (10);
5 update 𝜃 via gradient descent with 𝜕 (Lutil+𝛽Lreg)

𝜕𝜃
;

6 update 𝜙 via gradient ascent with 𝜕 (Lutil+𝛽Lreg)
𝜕𝜙

;

is large enough,𝜙 could be an identity functionwith P = I, so that (1)
Lreg = 0 and (2) we would always have 𝜙 (Hra | |Henv) [: 𝐾] = Hra.
However, in that case, the pipeline degenerates to a regular graph
classification/regression model, with no intervener.

Complexity of FIG-N.As the encoder 𝜃enc and the predictor 𝜃pred
are off-the-shelf, the FIG-N introduces two new modules: the node-
level augmenter, 𝜃aug-N, and the Transformer-based intervener, 𝜙 .
Notably, despite these additions, the increase in the number of
parameters remains modest. The parameters for 𝜃aug-N originate
from the MLP defined in Eq. (4). In a configuration where the MLP
has 3 layers with a feature dimension of 𝑑 , the parameter count
is 𝑂 (2𝑑2). The intervener 𝜙 , driven by the Transformer layer in
Eq. (6a), has its parameters confined to 𝑂 (3𝑑2 + 2𝑑2) = 𝑂 (5𝑑2),
owing to its query, key, value projection matrices and the feed-
forward net (FFN from Eq. (3), typically a 3-layered MLP).

A step-by-step algorithm for FIG-N is in Algorithm 1. In test
phase, the output of 𝜃pred ◦ Readout ◦ 𝜙 (Hra | |Henv) is evaluated.

3711

Fine-Grained Graph Rationalization CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea

Algorithm 2: FIG-VN single training step for graph G
Input :a labeled graph (G, 𝑦), a sampled graph G̃ from

the same batch as G, 𝜃 = {𝜃enc, 𝜃aug-VN, 𝜃pred}, 𝜙 ;
Output :updated 𝜃 and 𝜙 ;

1 compute H = 𝜃enc (𝐺) and H̃ = 𝜃enc (𝐺̃);
2 compute (Hra,Henv) = 𝜃aug-VN (H),
(H̃ra, H̃env) = 𝜃aug-VN (H̃) via Eqs. (12), (13), and (14);

3 concatenate Hra | |Henv and Hra | |H̃env;
4 compute Lutil and Lreg via Eqs. (7), (9), and (10);
5 update 𝜃 via gradient descent with 𝜕 (Lutil+𝛽Lreg)

𝜕𝜃
;

6 update 𝜙 via gradient ascent with 𝜕 (Lutil+𝛽Lreg)
𝜕𝜙

;

3.2 Virtual Node-Level Variant: FIG-VN
In the previously introduced FIG-N, its augmenter decomposes the
nodes into rationale nodes and environment nodes via a trainable
node partitioner 𝜃aug-N so that the interaction is conducted at the
node level (Eqs. (6a)) whose dense attention matrix’s complex-
ity is quadratic in terms of the node numbers. This section
extends this idea to extract the graph rationale at the virtual node
level, which has a lower computation complexity (linear in
terms of the node numbers) compared to FIG-N and provides
an intermediate intervention granularity between the node-level
model (FIG-N) and the graph-level model (GREA [37]).
Virtual node-level augmenter. Our idea is partly inspired by
the speedup technique from Linformer [54], which reformulates
both the attention matrix and node (token) embedding matrix to
dimensions of R𝑛×𝑟 and R𝑟×𝑑 , respectively. This reformulation
ensures that their multiplication scales linearly with the number
of nodes (tokens) 𝑛 because 𝑟 ≪ 𝑛 and 𝑑 represents the feature
dimension.

Building upon this insight, given node embeddings H from the
encoder, the virtual node embeddings are:

HVN = Softmax(WN-VN)H. (12)

Here, the row-wise applied Softmax function, along with
Softmax(WN-VN) ∈ R𝑟×𝑛 , yields a trainable matrix assigning 𝑛
nodes to 𝑟 virtual nodes, where 𝑟 acts as a tunable hyper-parameter.
More specifically, Softmax(WN-VN) can be viewed as the adja-
cency matrix between 𝑟 virtual nodes and 𝑛 original nodes;
the virtual node embedding, HVN, is the aggregation of original
node embeddings after 1-stepmessage passing. In experiments,
we set 𝑟 = 8. As all the virtual node embeddings are learned, a sub-
set of the 𝑟 virtual nodes can be designated as rationale virtual
nodes, whose rationality is data-driven by the intervention proce-
dure discussed in subsequent subsections. For brevity, the initial 𝐾
virtual nodes are deemed as rationale virtual nodes, while the last
𝑟 − 𝐾 nodes are considered the environment virtual nodes; their
embeddings are:

Hra = HVN [: 𝐾, :] ∈ R𝐾×𝑑 , (13)

Henv = HVN [𝐾 :, :] ∈ R(𝑟−𝐾)×𝑑 . (14)

Like the FIG-N, here𝐾 is a hyperparameter whose impact is studied
in Section 4.5. The parameter of 𝜃aug-VN is only WN-VN.

Virtual node-level intervener. This section discusses the design
of a virtual node-level intervener, similar to the intervener intro-
duced in Section 3.1. The main difference is that the intervention
here functions on the virtual nodes rather than the given real ones.
We recall the rationale and environment virtual node embeddings
Hra ∈ R𝐾×𝑑 and Henv ∈ R(𝑟−𝐾)×𝑑 . Thanks to the property of
the Transformer that it can process sets with variable size, the
design of the virtual node-level intervener 𝜙 is similar to the node-
level intervener as Hinter, P = Transformer(Hra | |Henv) or short
as Hinter = 𝜙 (Hra | |Henv) if the attention matrix P is not used.
Notably, for FIG-VN, P ∈ R𝑟×𝑟 describes the interaction among the
𝑟 virtual nodes, whose complexity is only 𝑂 (𝑟2).
FIG-VN optimization objective. The output of 𝜃pred ◦ Readout ◦
𝜙 (·) is used forminimizing the utility lossLutil = Lutil (Hra | |Henv)+
𝛼Lutil (Hra | |H̃env), where Lutil (Hra | |Henv) = Ltask (𝜃pred ◦
Readout ◦ 𝜙 (Hra | |Henv) [: 𝐾], y) and Lutil (Hra | |H̃env) is defined
similarly. For modeling the changing environment, H̃env is the
virtual node embeddings from other graphs in the mini-batch. Ad-
ditionally, the previously proposed regularization term Eq, (8) can
be extended to the virtual node-level variant: Lreg (Hra | |Henv) =
s⊤P(1 − s) + (1 − s)⊤Ps. The total regularization term, consider-
ing the changing environment H̃env, is Lreg = Lreg (Hra | |Henv) +
Lreg (Hra | |H̃env). As the P depicts interactions among virtual nodes,
we construct the rationale/environment indicator vector s analo-
gously to Eq. (9). Put everything together, and the optimization
objective of FIG-VN is min𝜃 max𝜙 Lutil + 𝛽Lreg, where 𝜃 =

{𝜃enc, 𝜃aug-VN, 𝜃pred}.
Complexity of FIG-VN. As we mentioned the encoder 𝜃enc and
the predictor 𝜃pred are off-the-shelf. Thus, the extra modules intro-
duced by the FIG-VN are the virtual node-level augmenter 𝜃aug-VN
and the Transformer-based intervener𝜙 . The parameters for𝜃aug-VN
originate from the matrixWN-VN, as defined in Eq. (12), whose com-
plexity is𝑂 (𝑛𝑟), where𝑛 denotes the number of nodes. For practical
implementation purposes, 𝑛 is pre-set; it is set to 10× the average
size of graphs from the dataset, and we truncate the input graphs
if their sizes are larger than 10× the average size. The intervener
𝜙 parameters originate from the Transformer layer, outlined in
Eq. (6a). The number of parameters here is 𝑂 (5𝑑2), owing to its
query, key, value projection matrices, and the feed-forward net
(Eq. (3), typically a 3-layered MLP).

A step-by-step algorithm for FIG-VN is in Algorithm 2. In test
phase, the output of 𝜃pred ◦ Readout ◦ 𝜙 (Hra | |Henv) is evaluated.

4 Experiments
In this section, the datasets and baseline methods are detailed first.
Subsequent subsections evaluate the effectiveness of FIG, supple-
mented by efficiency studies, ablation studies, sensitivity studies,
training convergence, and a visualization of the attention matrix.
The detected rationales are visualized in the Appendix, Section 4.6.

4.1 Setup
In this paper, 7 publicly-accessible real-world datasets are used:
(1) graph classification datasets molhiv [23], moltox21 [23], mol-
bace [23], molbbbp [23] and (2) graph regression datasets ZINC [14],
AQSOL [14], and mollipo [23]. We strictly follow the metrics and

3712

CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea Zhe Xu et al.

Table 1: Effectiveness comparison (mean±std) with baseline methods. (↓) denotes the lower the better and (↑) denotes the higher
the better. Statistics in grey are reported in the original papers. The best is bold, and the second best is underlined. N/A means
the method cannot work on regression tasks.

Graph Regression Graph Classification
Dataset ZINC AQSOL mollipo molhiv moltox21 molbace molbbbp
Metric MAE(↓) MAE(↓) RMSE(↓) AUC(↑) AUC(↑) AUC(↑) AUC(↑)
GIN 0.350±0.008 1.237±0.011 0.783±0.017 77.1±1.5 75.6±0.9 80.7±1.2 69.5±1.0
GAT 0.723±0.010 1.638±0.048 0.923±0.011 75.0±0.5 72.2±0.6 75.3±0.8 67.1±0.6
GATv2 0.729±0.015 1.722±0.022 0.943±0.021 72.2±0.5 73.6±0.2 76.8±1.6 65.7±0.7
GatedGCN 0.579±0.023 1.533±0.035 0.819±0.033 74.8±1.6 75.0±0.8 81.2±1.2 68.3±0.9
GT 0.226±0.014 1.319±0.026 0.882±0.020 73.5±0.4 75.0±0.6 77.1±2.3 65.0±1.1
GraphiT 0.202±0.011 1.162±0.005 0.846±0.023 74.6±1.0 71.8±1.3 73.4±3.6 64.6±0.5
SAN 0.139±0.006 1.199±0.218 0.816±0.112 77.9±0.2 71.3±0.8 79.0±3.1 63.8±0.9
SAT 0.094±0.008 1.236±0.023 0.835±0.008 78.8±0.6 75.6±0.7 83.6±2.1 69.6±1.3
Graphormer 0.122±0.006 1.265±0.025 0.911±0.015 79.3±0.4 77.3±0.8 79.3±3.0 67.7±0.9
GraphTrans 0.192±0.011 1.233±0.052 0.915±0.032 78.1±0.5 76.4±0.8 78.0±1.8 70.5±0.9
GPS 0.070±0.004 1.032±0.007 0.780±0.021 78.8±1.0 75.7±0.4 79.6±1.4 69.6±1.1
DIR N/A N/A N/A 77.1±0.6 73.1±0.2 74.8±0.3 70.5±1.4
GREA 0.227±0.020 1.177±0.019 0.769±0.025 79.3±0.9 78.2±0.9 82.4±2.4 69.9±1.8
FIG-N 0.095±0.008 0.990±0.012 0.708±0.013 80.1±0.7 78.8±0.5 85.3±2.0 73.8±0.7
FIG-VN 0.086±0.012 1.011±0.009 0.706±0.009 80.2±1.0 78.2±0.6 84.5±1.3 73.1±0.8

Table 2: Comparison of parameter count and FLOPs between
the proposed augmenter/intervener and graph encoders.

Model # Parameters FLOPs

GIN 1, 708, 807 53, 008, 220
SAT 2, 790, 739 101, 520, 116
GraphTrans 2, 793, 307 111, 548, 906
GPS 3, 236, 239 133, 229, 235
{𝜃aug-N, 𝜙} 453, 001 31, 303, 800
{𝜃aug-VN, 𝜙} 363, 320 14, 558, 400

dataset split recommended by the given benchmarks. To be con-
crete, the area under the ROC curve (AUC) is the metric for datasets
molhiv, moltox21, molbace, molbbbp; root-mean-square deviation
(RMSE) is the metric for dataset mollipo; mean absolute error (MAE)
is the metric for datasets ZINC and AQSOL. The detailed statis-
tics of the datasets are given in Table 5 (Appendix). We report the
average result with the standard deviation in 10 runs1.

Our baseline methods include (1) 4 graph neural network models:
GIN [59], GAT [52], GATv2 [7], and GatedGCN [6] (2) 7 graph Trans-
formers: GT [13], GraphiT [40], SAN [29], SAT [9], Graphormer [74],
GraphTrans [56], GPS [46], and (3) 2 graph rationale discovery
methods: DIR [55] and GREA [37].

4.2 Effectiveness Study
The effectiveness comparison between the proposed FIG-N, FIG-
VN, and baseline methods is provided in Table 1. To ensure a
fair comparison, some pre-trained models, such as the pre-trained
Graphormer [74], are excluded. As DIR [55] is designed to conduct

1The code is available at https://github.com/pricexu/FIG

interventions on the label prediction vectors, it cannot be directly
applied to graph regression tasks.

We have several observations. First, our proposed FIG-N and
FIG-VN consistently outperform, or are at least on par with,
all the baseline methods on the graph classification and regression
datasets. Second, the virtual-node variant FIG-VN does not lead
to significant performance degradation compared to the node-
level variant FIG-N.

4.3 Efficiency Study
A detailed comparison regarding the number of parameters and the
FLOPs (floating point operations) is presented in Table 2, where we
list 4 typical 5-layered encoders (GIN, SAT, GraphTrans, and GPS),
and our proposed node-/virtual node-level augmenter, intervener
modules (i.e., {𝜃aug-N, 𝜙} and {𝜃aug-VN, 𝜙}). The comparison shows
that our proposed interveners are lightweight and only increase
very minor computational costs.

We also compare the training efficiency (iterations/second) of
FIG-N and FIG-VN in Table 3 working with different encoders (GIN
and GPS). The batch size is set as 32. We note that the inclusion of
our proposed augmenter and intervener, represented as {𝜃aug-N, 𝜙}
or {𝜃aug-VN, 𝜙}, introduces a slight reduction in training speed. That
is because the proposed parametric augmenter and intervener in-
crease the data pipeline steps, as presented in figure 2b, and
enlarge the computational graph for auto-gradient tools, such as
PyTorch. Fortunately, the parameter count of the parametric aug-
menter and intervener is low, ensuring that the overall training
speed of the model is not dramatically affected.

3713

https://github.com/pricexu/FIG

Fine-Grained Graph Rationalization CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea

Table 3: Wall-clock speed comparison (iterations/second) of
encoder–intervener combinations. Higher is better. Num-
bers in parentheses indicate the speed drop compared to the
vanilla encoder.

Encoder Intervener mollipo molbace molbbbp

GIN
None 29.38 25.62 27.11
FIG-N 23.05 (↓6.33) 21.23 (↓4.39) 21.61 (↓5.50)
FIG-VN 23.35 (↓6.03) 21.46 (↓4.16) 22.32 (↓4.79)

GPS
None 24.29 20.51 22.30
FIG-N 19.57 (↓4.72) 17.83 (↓2.68) 18.67 (↓3.63)
FIG-VN 19.93 (↓4.36) 18.16 (↓2.35) 18.88 (↓3.42)

Table 4: Ablation study (mean±std) of the proposed model
FIG. (↓) indicates lower is better; (↑) indicates higher is better.

Dataset mollipo molbace molbbbp
Metric RMSE(↓) AUC(↑) AUC(↑)
𝜃enc ◦ 𝜃pred 0.780±0.021 79.6±1.4 70.5±0.9
FIG-N w/o reg 0.736±0.022 84.3±0.7 72.3±1.0
FIG-VN w/o reg 0.758±0.018 83.2±1.5 71.9±0.7
FIG-N w/ reg 0.708±0.013 85.3±2.0 73.8±0.7
FIG-VN w/ reg 0.706±0.009 84.5±1.3 73.1±0.8

4.4 Ablation Study
We conducted an ablation study on the proposed models, FIG-N
and FIG-VN. We designed two ablated variants as baselines: (1)
𝜃enc ◦ 𝜃pred which is a pure composition of the encoder 𝜃enc and
the predictor 𝜃pred without any rationale discovery module. Many
of the existing graph classifiers are in this form, and here we se-
lect the GraphGPS [46], which also serves as the backbone of our
FIG model. (2) FIG-N w/o reg and FIG-VN w/o reg which remove
the regularization term (Eq. (10)) from the objective function. Our
results in Table 4 highlight that (1) equipped with the proposed
Transformer-based intervener, the model’s performance improves
across all the datasets; e.g., the AUC is improved from 79.6% to
84.3% (FIG-N) on the molbace dataset. (2) With the proposed regu-
larization term, the model’s performance can be improved further;
e.g., the AUC of the FIG-N is improved from 72.3% to 73.8% on the
molbbbp dataset.

4.5 Sensitivity Study
In this section, we carefully study the impact of hyperparameter
𝐾 (from Eq. (5a), (5b), (13), and (14)), which determines the ratio of
the rationale and environment subgraphs. In our implementation,
we set 𝐾 = round(𝐾̂ ×𝑛) (for FIG-N) or 𝐾 = round(𝐾̂ × 𝑟) (for FIG-
VN). We evaluate the model performance across varying 𝐾̂ on the
molbace and molbbbp datasets in Figure 3. We note that the model
performance degrades if most nodes/virtual nodes are marked as
the environment component. Similar performance degradation is
observed if too many nodes/virtual nodes are marked as the ra-
tionale nodes (e.g., 𝐾̂ = 0.875). That is because for a small 𝐾̂ (e.g.,
0.25), too few nodes/virtual nodes are involved for the downstream

(a) molbace (b) molbbbp

Figure 3: Performance of FIG-N/VN with different 𝐾̂ .

tasks; for a large 𝐾̂ (e.g., 1), the model degenerates to a vanilla graph
encoder. The best performance is observed when 𝐾̂ is 0.75 or 0.675.

4.6 Training Convergence
We study the impact of the min-max objective on the training sta-
bility of FIG-N and FIG-VN. We monitor the training losses of both
FIG-N and FIG-VN across datasets (molbace and molbbbp) using
two encoders (GIN and GPS). The results, presented in Figure 4,
demonstrate that the training remains stable even when 𝜃 (repre-
senting the encoder, augmenter, and predictor) and 𝜙 (representing
the intervener) engage in a min-max game.

4.7 Attention Visualization
In this section, we aim to evaluate the significance of the regular-
ization term by visualizing the attention matrix P of the intervener
𝜙 in Figure 5. For clarity in visualization, FIG-VN is chosen because
its number of virtual nodes is predefined. Specifically, we set the
number of virtual nodes 𝑟 to 16 with 𝐾 at 10, designating 10 virtual
nodes to rationales and the remainder as environments. All the
visualization results are obtained from the molbace dataset. It is
worth noting that the attention matrix P is normalized row-wise
by Softmax. From our observations, we highlight two insights:
• Interestingly, even in the absence of the regularization term,
in Figure 5(a), interactions between rationales and envi-
ronments appear significantly weaker than those within
the rationales themselves. One potential explanation is the
changing of the environment. In optimizing the utility loss
Lutil = Ltask (Hra | |Henv) + 𝛼Ltask (Hra | |H̃env), the ever-
changing environment (H̃env) might lead the model to mini-
mize interactions between rationales and environments so
that the utility of the rationale can be preserved.
• The first observation aligns with the motivation to introduce
the regularization term, which aims to penalize rationale-
environment interactions. When the proposed regulariza-
tion term (Eq. (8)) is implemented, in Figure 5(b), there is a
noticeable decrease in rationale-environment interac-
tions (the off-diagonal blocks in Figure 5). As our earlier
ablation study demonstrated, this leads to improved model
performance.

5 Related Work
This section introduces two topics related to this paper: (1) invariant
learning on graphs and (2) Transformer on graphs.

3714

CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea Zhe Xu et al.

(a) molbace, GIN (b) molbace, GPS (c) molbbbp, GIN (d) molbbbp, GPS

Figure 4: Training loss of FIG-N/VN with different datasets and encoders.

Figure 5: Heatmap of the adjacency matrix of the intervener
𝜙 . (a) without the regularization term Eq. (8) and (b) with the
regularization term Eq. (8).

Invariant Learning on Graphs. Invariant learning, which has
extensive applications in many fields such as computer vision [2,
8, 20, 27], is gaining more attention in the community of graph
machine learning [4, 16, 34, 36, 39, 43, 50, 53, 58, 62–65, 68–72,
75, 76, 79, 80, 82, 83]. OOD-GNN [31] applies random Fourier fea-
tures to eliminate the statistical dependence between relevant and
irrelevant graph representations. [5] studies the graph invariant
representation learning with a particular focus on the size discrep-
ancies between the training/test graphs. DIR [55] decomposes the
given graph into a rationale subgraph and an environment sub-
graph; after that, it uses a graph classifier to conduct prediction
on the above two graphs respectively, and its intervention is via
the Hadamard product between the prediction vectors. Similarly,
GREA [37] conducts the rationale/environment decomposition at
the node level, and its intervention operation is to directly add the
environment graph embedding into the rationale graph embedding.
In a similar vein, GIL [32] decomposes the given graph into the
invariant and variant subgraphs; based on that, it infers the envi-
ronment label, as input of the invariance regularization term [28].
Furthermore, invariant learning can also benefit graph contrastive
learning [25, 26, 48, 85, 86] to enhance data augmentation. Using
invariant learning to address the OOD generalization challenges
on graph [12, 19, 21, 30, 49, 73, 77, 87] is promising, but our paper
does not concentrate on this setting, and we leave it as future work.
Transformer on Graphs. Transformer [1, 11, 38, 44, 45, 51] has
achieved significant success in various domains, including natural
language processing [51], computer vision [22], and more [10, 15,
17, 35, 42, 60, 66]. In recent years, there has been a surge of inter-
est in enhancing graph machine learning methods by leveraging
the capabilities of Transformers. For example, GraphTrans [56]
concatenates the Transformer architecture after various message-
passing neural networks; GPS [46] proposes a powerful layer which

operates both a graph convolution layer and a Transformer layer
in parallel; GT [13] generalizes the attention module on graphs
via concatenating the spectral vectors with the raw node features
and computing the attention weights on all the existing edges;
Graphormer [74] encodes both the node centrality and node-pair
shortest path into the Transformer architecture. A comprehensive
survey about the graph Transformer can be found in [41].

6 Conclusion
This paper studies the invariant rationale discovery problem on
graphs. Distinct from existing methods, our solutions (FIG-N and
FIG-VN) are designed at more fine-grained levels, specifically at
the node and virtual node levels, so that they can better model
the interactions between the rationale and environment subgraphs.
More importantly, we formulate the intervener and the other model
modules in a min-max game, which can significantly improve the
quality of the extracted graph rationales. Comprehensive experi-
ments on 7 real-world datasets illustrate the effectiveness of the
proposed method compared to 13 baseline methods. Our evaluation
of the proposed augmenters’ and interveners’ efficiency shows that
they can largely retain the overall training efficiency.

Acknowledgments
This work is partially supported by NSF (2134079). The content of
the information in this document does not necessarily reflect the po-
sition or the policy of the Government, and no official endorsement
should be inferred. The U.S. Government is authorized to reproduce
and distribute reprints for Government purposes notwithstanding
any copyright notation hereon.

A Hardware and Implementations.
We implement FIG-N, FIG-VN, and all the baseline methods in
PyTorch and PyTorch-geometric. All the efficiency study results are
from one NVIDIA Tesla V100 SXM2-32GB GPU on a server with
96 Intel(R) Xeon(R) Gold 6240R CPU @ 2.40GHz processors and
1.5T RAM. We directly use those statistics when baseline methods
have pre-existing results for specific datasets. In cases where such
results are absent, we implement the models based on either the
available code or details described in the associated publications.

We first introduce some shared implementations among FIG-
N/VN and baseline methods. The batch size is set as 32, and the
weight decay is set as 0. The hidden dimension is set as 300. The
dropout rate for both the encoder and the intervener is searched
between {0, 0.5}. The pooling is searched between {mean, sum}. The
normalization is searched between the batch normalization [24]
and layer normalization [3]. The learning rate is initialized as 0.0001

3715

Fine-Grained Graph Rationalization CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea

Table 5: Statistics of datasets used in our experiments. We report the average number of nodes and edges per graph, input
feature dimensions, class count (if applicable), and the train/validation/test splits.

Dataset # Graphs Avg. Nodes Avg. Edges Features # Classes Split (train/val/test) Metric

ZINC 12,000 23.2 49.8 21 (node), 4 (edge) N/A 10,000 / 1,000 / 1,000 MAE
AQSOL 9,833 17.6 35.8 65 (node), 5 (edge) N/A 7,836 / 998 / 999 MAE
mollipo 4,200 27.0 59.0 9 (node), 3 (edge) N/A 3,360 / 420 / 420 RMSE
molhiv 41,127 25.5 54.9 9 (node), 3 (edge) 2 32,901 / 4,113 / 4,113 AUC
moltox21 7,831 18.6 38.6 9 (node), 3 (edge) 2 6,264 / 783 / 784 AUC
molbace 1,513 34.4 73.7 9 (node), 3 (edge) 2 1,210 / 151 / 152 AUC
molbbbp 2,039 24.1 51.9 9 (node), 3 (edge) 2 1,631 / 204 / 204 AUC

and will decay by a factor 1
4 if the validation performance is not

improved in 10 epochs. Next, we detail the implementation of FIG-
N/VN and baseline methods.

The statistics of the datasets used are presented in Table 5.
Implementation of FIG-N/VN. The encoder is set as GPS [46] on
ZINC, AQSOL,mollipo, molhiv, molbace, and set as GraphTrans [56]
on moltox21 and molbbbp. We follow the typical design for the
predictor module as a 3-layered MLP with ReLU activation in the
intermediate layers. In our implementation, we set 𝛽 =

2×𝛽
𝑛×(𝑛−1)

(FIG-N) or 𝛽 =
2×𝛽

𝑟×(𝑟−1) (FIG-VN). The𝛼 and 𝛽 are searched between
[0.2, 2], step size 0.2. In our implementation, the 𝐾 is set as 𝐾 =

round(𝐾̂ × 𝑛) (for FIG-N) or 𝐾 = round(𝐾̂ × 𝑟) (for FIG-VN). 𝑟
is searched between {8, 16, 32} for FIG-VN. We have a detailed
sensitivity study to explore the best selection of 𝐾̂ in Section 4.5,
which shows the best 𝐾̃ is around 0.75.
Implementation of baseline methods.We search the number of
layers of GIN [59], GAT [52], GATv2 [7], GatedGCN [6], DIR [55],
andGREA [37] between {2, 3, 5, 10} and report the best performance,
considering configurations both with and without a virtual node
connecting to all the given nodes.

Regarding the Transformer-based baselines (GT [13], GraphiT [40],
SAN [29], SAT [9], Graphormer [74], GraphTrans [56], GPS [46]),
for the (absolute or relative) positional encoding, we adhere to the
suggestions made in their original papers. We also searched the
number of layers between {2, 3, 5, 10}.

Our GIN, GAT, GATv2, and GatedGCN implementations are
from the PyTorch-geometric package. Our implementations of GT,
GraphiT, SAN, SAT, Graphormer, GraphTrans, GPS, DIR, and GREA
are adapted from publicly available code.

B Soft argtop-K Trick
In the main content, for the FIG-N model, the augmenter will gener-
ate the partition vector m which is then used to partition the node
embedding matrix via selecting the top-𝐾 indices from m:

m = Sigmoid(MLP(H, 𝜃aug-N)) ∈ R𝑛 (15)

idxra = argtopK(m) ∈ N𝐾+ (16)

Hra = H[idxra, :] ∈ R𝐾×𝑑 (17)

Henv = H[idxenv, :] ∈ R(𝑛−𝐾)×𝑑 (18)

The hard argtopK breaks the differentiability of the model
so that 𝜃aug-N has no gradient. Here, we present a soft argtop-𝐾

trick which is inspired by the soft top-K trick2. Overall, the key
ideas are as follows,

(1) The index vector idxra ∈ N𝐾+ can be viewed as a list of one-
hot index encoding idx ∈ {0, 1}𝐾×𝑛 whose every row is a
one-hot vector. If the 𝑖-th row’s 𝑗-th element is 1, it means
the 𝑗-th element in m is the 𝑖-th largest element in m. Then,
we can use the matrix multiplication to index the matrix H:

H[idxra, :] ⇐⇒ idx · H ∈ R𝐾×𝑑 (19)

(2) We aim to find a soft and differentiable matrix to approximate
idx. The trick is to use the fact that every row of idx is one-
hot, which can be approximated by the output of the
softmax function. Hence, the implementation is to call the
softmax 𝐾 times repeatedly.

(3) The parameterization trick can be used:
y_hard - y_soft.detach() + y_soft, whose main idea is to
ensure that (1) the forward process uses the hard indexing
and (2) the backpropagation updates the soft indices.

We provide the exemplar code as follows.

import torch
def soft_arg_top_K(K, H, m):

"""
Select the argtop K indices from the vector m, and index

the node embedding matrix H.

Args:
K: number of nodes selected
H: node embedding matrix (n, d)
m: masking vector (n,)

Returns:
Aggregated embedding of shape (K, d).

"""
top_K_indices = []
for i in range(K):

top1_index_soft = torch.nn.Softmax(m)
top1_index_hard = torch.zeros_like(top1_index_soft)
top1_index_hard[torch.argmax(top1_index_soft)] = 1
top1_index = top1_index_hard - top1_index_soft.detach

() + top1_index_soft
top_K_indices.append(top1_index)
m = m - top1_index_hard * 1e6

top_K_indices = torch.stack(top_K_indices, dim=0)
return torch.mm(top_K_indices, H)

2https://github.com/ZIB-IOL/merlin-arthur-classifiers/blob/main/soft-topk.py

3716

https://github.com/ZIB-IOL/merlin-arthur-classifiers/blob/main/soft-topk.py

CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea Zhe Xu et al.

C GenAI Usage Disclosure
We used ChatGPT and Grammarly to assist with grammar correc-
tion and word refinement. Microsoft Copilot was used to support
code development. We take full responsibility for the accuracy and
integrity of all content presented in this work.

References
[1] Mengting Ai, Tianxin Wei, Yifan Chen, Zhichen Zeng, Ritchie Zhao, Girish

Varatkar, Bita Darvish Rouhani, Xianfeng Tang, Hanghang Tong, and Jingrui
He. 2025. ResMoE: Space-efficient Compression of Mixture of Experts LLMs
via Residual Restoration. In Proceedings of the 31st ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, V.1, KDD 2025, Toronto, ON, Canada,
August 3-7, 2025, Yizhou Sun, Flavio Chierichetti, Hady W. Lauw, Claudia Perlich,
Wee Hyong Tok, and Andrew Tomkins (Eds.). ACM, 1–12. doi:10.1145/3690624.
3709196

[2] Martín Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. 2019.
Invariant Risk Minimization. CoRR abs/1907.02893 (2019). arXiv:1907.02893

[3] Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. 2016. Layer Normaliza-
tion. CoRR abs/1607.06450 (2016). arXiv:1607.06450

[4] Wenxuan Bao, Zhichen Zeng, Zhining Liu, Hanghang Tong, and Jingrui He.
2025. Matcha: Mitigating Graph Structure Shifts with Test-Time Adaptation. In
The Thirteenth International Conference on Learning Representations, ICLR 2025,
Singapore, April 24-28, 2025. OpenReview.net. https://openreview.net/forum?id=
EpgoFFUM2q

[5] Beatrice Bevilacqua, Yangze Zhou, and Bruno Ribeiro. 2021. Size-Invariant Graph
Representations for Graph Classification Extrapolations. In Proceedings of the
38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021,
Virtual Event (Proceedings of Machine Learning Research, Vol. 139), Marina Meila
and Tong Zhang (Eds.). PMLR, 837–851.

[6] Xavier Bresson and Thomas Laurent. 2017. Residual Gated Graph ConvNets.
CoRR abs/1711.07553 (2017). arXiv:1711.07553

[7] Shaked Brody, Uri Alon, and Eran Yahav. 2022. How Attentive are Graph Atten-
tion Networks?. In The Tenth International Conference on Learning Representations,
ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net.

[8] Shiyu Chang, Yang Zhang, Mo Yu, and Tommi S. Jaakkola. 2020. Invariant
Rationalization. In Proceedings of the 37th International Conference on Machine
Learning, ICML 2020, 13-18 July 2020, Virtual Event (Proceedings of Machine
Learning Research, Vol. 119). PMLR, 1448–1458.

[9] Dexiong Chen, Leslie O’Bray, and Karsten M. Borgwardt. 2022. Structure-Aware
Transformer for Graph Representation Learning. In International Conference
on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA
(Proceedings of Machine Learning Research, Vol. 162), Kamalika Chaudhuri, Stefanie
Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato (Eds.). PMLR,
3469–3489.

[10] Huiyuan Chen, Zhe Xu, Chin-Chia Michael Yeh, Vivian Lai, Yan Zheng, Minghua
Xu, and Hanghang Tong. 2024. Masked Graph Transformer for Large-Scale
Recommendation. In Proceedings of the 47th International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR 2024, Washington
DC, USA, July 14-18, 2024, Grace Hui Yang, Hongning Wang, Sam Han, Claudia
Hauff, Guido Zuccon, and Yi Zhang (Eds.). ACM, 2502–2506. doi:10.1145/3626772.
3657971

[11] Lingjie Chen, Ruizhong Qiu, Siyu Yuan, Zhining Liu, Tianxin Wei, Hyunsik Yoo,
Zhichen Zeng, Deqing Yang, and Hanghang Tong. 2024. WAPITI: A Watermark
for Finetuned Open-Source LLMs. CoRR abs/2410.06467 (2024). arXiv:2410.06467
doi:10.48550/ARXIV.2410.06467

[12] Kaize Ding, Zhe Xu, Hanghang Tong, and Huan Liu. 2022. Data Augmentation
for Deep Graph Learning: A Survey. SIGKDD Explor. 24, 2 (2022), 61–77. doi:10.
1145/3575637.3575646

[13] Vijay Prakash Dwivedi and Xavier Bresson. 2020. A Generalization of Trans-
former Networks to Graphs. CoRR abs/2012.09699 (2020). arXiv:2012.09699

[14] Vijay Prakash Dwivedi, Chaitanya K. Joshi, Anh Tuan Luu, Thomas Laurent,
Yoshua Bengio, and Xavier Bresson. 2023. Benchmarking Graph Neural Networks.
J. Mach. Learn. Res. 24 (2023), 43:1–43:48.

[15] Dongqi Fu, Liri Fang, Zihao Li, Hanghang Tong, Vetle I Torvik, and Jingrui He.
2024. What Do LLMs Need to Understand Graphs: A Survey of Parametric
Representation of Graphs. arXiv preprint arXiv:2410.12126 (2024).

[16] Dongqi Fu and Jingrui He. 2021. SDG: A Simplified and Dynamic Graph Neural
Network. In SIGIR ’21: The 44th International ACM SIGIR Conference on Research
and Development in Information Retrieval, Virtual Event, Canada, July 11-15,
2021, Fernando Diaz, Chirag Shah, Torsten Suel, Pablo Castells, Rosie Jones, and
Tetsuya Sakai (Eds.). ACM, 2273–2277. doi:10.1145/3404835.3463059

[17] Dongqi Fu, Zhigang Hua, Yan Xie, Jin Fang, Si Zhang, Kaan Sancak, Hao Wu,
Andrey Malevich, Jingrui He, and Bo Long. 2024. VCR-Graphormer: A Mini-
batch Graph Transformer via Virtual Connections. In The Twelfth International
Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11,

2024. OpenReview.net. https://openreview.net/forum?id=SUUrkC3STJ
[18] Dongqi Fu, Zhe Xu, Bo Li, Hanghang Tong, and Jingrui He. 2020. A View-

Adversarial Framework for Multi-View Network Embedding. In CIKM ’20: The
29th ACM International Conference on Information and Knowledge Management,
Virtual Event, Ireland, October 19-23, 2020, Mathieu d’Aquin, Stefan Dietze, Claudia
Hauff, Edward Curry, and Philippe Cudré-Mauroux (Eds.). ACM, 2025–2028.
doi:10.1145/3340531.3412127

[19] Dongqi Fu, Zhe Xu, Hanghang Tong, and Jingrui He. 2023. Natural and Artificial
Dynamics in GNNs: A Tutorial. In Proceedings of the Sixteenth ACM International
Conference on Web Search and Data Mining, WSDM 2023, Singapore, 27 February
2023 - 3 March 2023, Tat-Seng Chua, Hady W. Lauw, Luo Si, Evimaria Terzi, and
Panayiotis Tsaparas (Eds.). ACM, 1252–1255. doi:10.1145/3539597.3572726

[20] Yaroslav Ganin and Victor S. Lempitsky. 2015. Unsupervised Domain Adap-
tation by Backpropagation. In Proceedings of the 32nd International Conference
on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015 (JMLR Workshop
and Conference Proceedings, Vol. 37), Francis R. Bach and David M. Blei (Eds.).
JMLR.org, 1180–1189.

[21] Shurui Gui, Xiner Li, Limei Wang, and Shuiwang Ji. 2022. GOOD: A Graph
Out-of-Distribution Benchmark. In NeurIPS.

[22] Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen, Jianyuan Guo, Zhenhua
Liu, Yehui Tang, An Xiao, Chunjing Xu, Yixing Xu, Zhaohui Yang, Yiman Zhang,
and Dacheng Tao. 2023. A Survey on Vision Transformer. IEEE Trans. Pattern
Anal. Mach. Intell. 45, 1 (2023), 87–110. doi:10.1109/TPAMI.2022.3152247

[23] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen
Liu, Michele Catasta, and Jure Leskovec. 2020. Open Graph Benchmark: Datasets
for Machine Learning on Graphs. CoRR abs/2005.00687 (2020). arXiv:2005.00687

[24] Sergey Ioffe and Christian Szegedy. 2015. Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of
the 32nd International Conference on Machine Learning, ICML 2015, Lille, France,
6-11 July 2015 (JMLR Workshop and Conference Proceedings, Vol. 37), Francis R.
Bach and David M. Blei (Eds.). JMLR.org, 448–456.

[25] Baoyu Jing, Yuchen Yan, Kaize Ding, Chanyoung Park, Yada Zhu, Huan Liu,
and Hanghang Tong. 2024. Sterling: Synergistic Representation Learning on
Bipartite Graphs. In Thirty-Eighth AAAI Conference on Artificial Intelligence,
AAAI 2024, Thirty-Sixth Conference on Innovative Applications of Artificial In-
telligence, IAAI 2024, Fourteenth Symposium on Educational Advances in Artifi-
cial Intelligence, EAAI 2014, February 20-27, 2024, Vancouver, Canada, Michael J.
Wooldridge, Jennifer G. Dy, and Sriraam Natarajan (Eds.). AAAI Press, 12976–
12984. doi:10.1609/AAAI.V38I12.29195

[26] Baoyu Jing, Yuchen Yan, Yada Zhu, and Hanghang Tong. 2022. COIN: Co-Cluster
Infomax for Bipartite Graphs. CoRR abs/2206.00006 (2022). arXiv:2206.00006
doi:10.48550/ARXIV.2206.00006

[27] Jean Kaddour, Aengus Lynch, Qi Liu, Matt J. Kusner, and Ricardo Silva. 2022.
Causal Machine Learning: A Survey and Open Problems. CoRR abs/2206.15475
(2022). arXiv:2206.15475 doi:10.48550/arXiv.2206.15475

[28] Masanori Koyama and Shoichiro Yamaguchi. 2020. Out-of-Distribution Gen-
eralization with Maximal Invariant Predictor. CoRR abs/2008.01883 (2020).
arXiv:2008.01883

[29] Devin Kreuzer, Dominique Beaini, William L. Hamilton, Vincent Létourneau, and
Prudencio Tossou. 2021. Rethinking Graph Transformers with Spectral Attention.
In Advances in Neural Information Processing Systems 34: Annual Conference on
Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021,
virtual, Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang,
and Jennifer Wortman Vaughan (Eds.). 21618–21629.

[30] Haoyang Li, Xin Wang, Ziwei Zhang, and Wenwu Zhu. 2022. Out-Of-
Distribution Generalization on Graphs: A Survey. CoRR abs/2202.07987 (2022).
arXiv:2202.07987

[31] Haoyang Li, Xin Wang, Ziwei Zhang, and Wenwu Zhu. 2023. OOD-GNN: Out-of-
Distribution Generalized Graph Neural Network. IEEE Trans. Knowl. Data Eng.
35, 7 (2023), 7328–7340. doi:10.1109/TKDE.2022.3193725

[32] Haoyang Li, Ziwei Zhang, Xin Wang, and Wenwu Zhu. 2022. Learning Invariant
Graph Representations for Out-of-Distribution Generalization. In NeurIPS.

[33] Ting-Wei Li, Ruizhong Qiu, and Hanghang Tong. 2025. Model-Free Graph Data
Selection under Distribution Shift. CoRR abs/2505.17293 (2025). arXiv:2505.17293
doi:10.48550/ARXIV.2505.17293

[34] Zihao Li, Dongqi Fu, Mengting Ai, and Jingrui He. 2025. APEX2: Adaptive and
Extreme Summarization for Personalized Knowledge Graphs. In Proceedings of
the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining, V.1,
KDD 2025, Toronto, ON, Canada, August 3-7, 2025, Yizhou Sun, Flavio Chierichetti,
Hady W. Lauw, Claudia Perlich, Wee Hyong Tok, and Andrew Tomkins (Eds.).
ACM, 741–752. doi:10.1145/3690624.3709213

[35] Zihao Li, Xiao Lin, Zhining Liu, Jiaru Zou, Ziwei Wu, Lecheng Zheng, Dongqi Fu,
Yada Zhu, Hendrik F. Hamann, Hanghang Tong, and Jingrui He. 2025. Language
in the Flow of Time: Time-Series-Paired Texts Weaved into a Unified Temporal
Narrative. CoRR abs/2502.08942 (2025). arXiv:2502.08942 doi:10.48550/ARXIV.
2502.08942

[36] Zihao Li, Lecheng Zheng, Bowen Jin, Dongqi Fu, Baoyu Jing, Yikun Ban, Jingrui
He, and Jiawei Han. 2025. Can Graph Neural Networks Learn Language with

3717

https://doi.org/10.1145/3690624.3709196
https://doi.org/10.1145/3690624.3709196
https://arxiv.org/abs/1907.02893
https://arxiv.org/abs/1607.06450
https://openreview.net/forum?id=EpgoFFUM2q
https://openreview.net/forum?id=EpgoFFUM2q
https://arxiv.org/abs/1711.07553
https://doi.org/10.1145/3626772.3657971
https://doi.org/10.1145/3626772.3657971
https://arxiv.org/abs/2410.06467
https://doi.org/10.48550/ARXIV.2410.06467
https://doi.org/10.1145/3575637.3575646
https://doi.org/10.1145/3575637.3575646
https://arxiv.org/abs/2012.09699
https://doi.org/10.1145/3404835.3463059
https://openreview.net/forum?id=SUUrkC3STJ
https://doi.org/10.1145/3340531.3412127
https://doi.org/10.1145/3539597.3572726
https://doi.org/10.1109/TPAMI.2022.3152247
https://arxiv.org/abs/2005.00687
https://doi.org/10.1609/AAAI.V38I12.29195
https://arxiv.org/abs/2206.00006
https://doi.org/10.48550/ARXIV.2206.00006
https://arxiv.org/abs/2206.15475
https://doi.org/10.48550/arXiv.2206.15475
https://arxiv.org/abs/2008.01883
https://arxiv.org/abs/2202.07987
https://doi.org/10.1109/TKDE.2022.3193725
https://arxiv.org/abs/2505.17293
https://doi.org/10.48550/ARXIV.2505.17293
https://doi.org/10.1145/3690624.3709213
https://arxiv.org/abs/2502.08942
https://doi.org/10.48550/ARXIV.2502.08942
https://doi.org/10.48550/ARXIV.2502.08942

Fine-Grained Graph Rationalization CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea

Extremely Weak Text Supervision?. In Proceedings of the 63rd Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2025,
Vienna, Austria, July 27 - August 1, 2025, Wanxiang Che, Joyce Nabende, Ekaterina
Shutova, and Mohammad Taher Pilehvar (Eds.). Association for Computational
Linguistics, 11138–11165. https://aclanthology.org/2025.acl-long.545/

[37] Gang Liu, Tong Zhao, Jiaxin Xu, Tengfei Luo, and Meng Jiang. 2022. Graph
Rationalization with Environment-based Augmentations. In KDD ’22: The 28th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington,
DC, USA, August 14 - 18, 2022, Aidong Zhang and Huzefa Rangwala (Eds.). ACM,
1069–1078. doi:10.1145/3534678.3539347

[38] Zhining Liu, Rana Ali Amjad, Ravinarayana Adkathimar, Tianxin Wei, and Hang-
hang Tong. 2025. SelfElicit: Your Language Model Secretly Knows Where is the
Relevant Evidence. In Proceedings of the 63rd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), ACL 2025, Vienna, Austria,
July 27 - August 1, 2025, Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and
Mohammad Taher Pilehvar (Eds.). Association for Computational Linguistics,
9153–9173. https://aclanthology.org/2025.acl-long.448/

[39] Zhining Liu, Ruizhong Qiu, Zhichen Zeng, Hyunsik Yoo, David Zhou, Zhe Xu,
Yada Zhu, Kommy Weldemariam, Jingrui He, and Hanghang Tong. 2024. Class-
Imbalanced Graph Learningwithout Class Rebalancing. In Forty-first International
Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.
OpenReview.net. https://openreview.net/forum?id=pPnkpvBeZN

[40] Grégoire Mialon, Dexiong Chen, Margot Selosse, and Julien Mairal. 2021.
GraphiT: Encoding Graph Structure in Transformers. CoRR abs/2106.05667
(2021). arXiv:2106.05667

[41] ErxueMin, Runfa Chen, Yatao Bian, Tingyang Xu, Kangfei Zhao,Wenbing Huang,
Peilin Zhao, Junzhou Huang, Sophia Ananiadou, and Yu Rong. 2022. Transformer
for Graphs: An Overview from Architecture Perspective. CoRR abs/2202.08455
(2022). arXiv:2202.08455

[42] Xuying Ning, Dongqi Fu, Tianxin Wei, Wujiang Xu, and Jingrui He. [n. d.].
Graph4MM: Weaving Multimodal Learning with Structural Information. In Forty-
second International Conference on Machine Learning.

[43] Ruizhong Qiu, Dingsu Wang, Lei Ying, H. Vincent Poor, Yifang Zhang, and
Hanghang Tong. 2023. Reconstructing Graph Diffusion History from a Single
Snapshot. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, KDD 2023, Long Beach, CA, USA, August 6-10, 2023,
Ambuj K. Singh, Yizhou Sun, Leman Akoglu, Dimitrios Gunopulos, Xifeng Yan,
Ravi Kumar, Fatma Ozcan, and Jieping Ye (Eds.). ACM, 1978–1988. doi:10.1145/
3580305.3599488

[44] Ruizhong Qiu, Zhe Xu, Wenxuan Bao, and Hanghang Tong. 2025. Ask, and
it shall be given: On the Turing completeness of prompting. In The Thirteenth
International Conference on Learning Representations, ICLR 2025, Singapore, April
24-28, 2025. OpenReview.net. https://openreview.net/forum?id=AS8SPTyBgw

[45] Ruizhong Qiu, Weiliang Will Zeng, James Ezick, Christopher Lott, and Hang-
hang Tong. 2025. How efficient is LLM-generated code? A rigorous & high-
standard benchmark. In The Thirteenth International Conference on Learning
Representations, ICLR 2025, Singapore, April 24-28, 2025. OpenReview.net. https:
//openreview.net/forum?id=suz4utPr9Y

[46] Ladislav Rampásek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy
Wolf, and Dominique Beaini. 2022. Recipe for a General, Powerful, Scalable
Graph Transformer. In NeurIPS.

[47] Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from
overfitting. J. Mach. Learn. Res. 15, 1 (2014), 1929–1958. doi:10.5555/2627435.
2670313

[48] Yongduo Sui, Caizhi Tang, Zhixuan Chu, Junfeng Fang, Yuan Gao, Qing Cui,
Longfei Li, Jun Zhou, and XiangWang. 2024. Invariant Graph Learning for Causal
Effect Estimation. In Proceedings of the ACM on Web Conference 2024, WWW 2024,
Singapore, May 13-17, 2024, Tat-Seng Chua, Chong-WahNgo, Ravi Kumar, HadyW.
Lauw, and Roy Ka-Wei Lee (Eds.). ACM, 2552–2562. doi:10.1145/3589334.3645549

[49] Yongduo Sui, Qitian Wu, Jiancan Wu, Qing Cui, Longfei Li, Jun Zhou, Xi-
ang Wang, and Xiangnan He. 2023. Unleashing the Power of Graph Data
Augmentation on Covariate Distribution Shift. In Advances in Neural Infor-
mation Processing Systems 36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt,
and Sergey Levine (Eds.). http://papers.nips.cc/paper_files/paper/2023/hash/
3a33ddacb2798fc7d83b8334d552e05a-Abstract-Conference.html

[50] Katherine Tieu, Dongqi Fu, Yada Zhu, Hendrik F. Hamann, and Jingrui He.
2024. Temporal Graph Neural Tangent Kernel with Graphon-Guaranteed.
In Advances in Neural Information Processing Systems 38: Annual Confer-
ence on Neural Information Processing Systems 2024, NeurIPS 2024, Vancou-
ver, BC, Canada, December 10 - 15, 2024, Amir Globersons, Lester Mackey,
Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and
Cheng Zhang (Eds.). http://papers.nips.cc/paper_files/paper/2024/hash/
abd3c6b90e474ec50a52c446926b00be-Abstract-Conference.html

[51] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you

Need. In Advances in Neural Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach,
CA, USA, Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach,
Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (Eds.). 5998–6008.

[52] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings. OpenReview.net.

[53] Dingsu Wang, Yuchen Yan, Ruizhong Qiu, Yada Zhu, Kaiyu Guan, Andrew
Margenot, and Hanghang Tong. 2023. Networked Time Series Imputation via
Position-aware Graph Enhanced Variational Autoencoders. In Proceedings of the
29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD
2023, Long Beach, CA, USA, August 6-10, 2023, Ambuj K. Singh, Yizhou Sun, Leman
Akoglu, Dimitrios Gunopulos, Xifeng Yan, Ravi Kumar, Fatma Ozcan, and Jieping
Ye (Eds.). ACM, 2256–2268. doi:10.1145/3580305.3599444

[54] Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. 2020.
Linformer: Self-Attention with Linear Complexity. CoRR abs/2006.04768 (2020).
arXiv:2006.04768

[55] Yingxin Wu, Xiang Wang, An Zhang, Xiangnan He, and Tat-Seng Chua. 2022.
Discovering Invariant Rationales for Graph Neural Networks. In The Tenth Inter-
national Conference on Learning Representations, ICLR 2022, Virtual Event, April
25-29, 2022. OpenReview.net.

[56] Zhanghao Wu, Paras Jain, Matthew A. Wright, Azalia Mirhoseini, Joseph E. Gon-
zalez, and Ion Stoica. 2022. Representing Long-Range Context for Graph Neural
Networks with Global Attention. CoRR abs/2201.08821 (2022). arXiv:2201.08821

[57] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
Philip S. Yu. 2021. A Comprehensive Survey on Graph Neural Networks. IEEE
Trans. Neural Networks Learn. Syst. 32, 1 (2021), 4–24. doi:10.1109/TNNLS.2020.
2978386

[58] Haobo Xu, Yuchen Yan, DingsuWang, Zhe Xu, Zhichen Zeng, Tarek F. Abdelzaher,
Jiawei Han, andHanghang Tong. 2024. SLOG: An Inductive Spectral GraphNeural
Network Beyond Polynomial Filter. In Forty-first International Conference on
Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net.
https://openreview.net/forum?id=0SrNCSklZx

[59] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Pow-
erful are Graph Neural Networks?. In 7th International Conference on Learning
Representations, ICLR 2019, NewOrleans, LA, USA, May 6-9, 2019. OpenReview.net.

[60] Peng Xu, Xiatian Zhu, and David A. Clifton. 2022. Multimodal Learning with
Transformers: A Survey. CoRR abs/2206.06488 (2022). arXiv:2206.06488 doi:10.
48550/arXiv.2206.06488

[61] Zhe Xu, Yuzhong Chen, Menghai Pan, Huiyuan Chen, Mahashweta Das, Hao
Yang, and Hanghang Tong. 2023. Kernel Ridge Regression-Based Graph Dataset
Distillation. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, KDD 2023, Long Beach, CA, USA, August 6-10, 2023,
Ambuj K. Singh, Yizhou Sun, Leman Akoglu, Dimitrios Gunopulos, Xifeng Yan,
Ravi Kumar, Fatma Ozcan, and Jieping Ye (Eds.). ACM, 2850–2861. doi:10.1145/
3580305.3599398

[62] Zhe Xu, Yuzhong Chen, Qinghai Zhou, Yuhang Wu, Menghai Pan, Hao Yang,
and Hanghang Tong. 2023. Node Classification Beyond Homophily: Towards a
General Solution. In Proceedings of the 29th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining, KDD 2023, Long Beach, CA, USA, August 6-
10, 2023, Ambuj K. Singh, Yizhou Sun, Leman Akoglu, Dimitrios Gunopulos,
Xifeng Yan, Ravi Kumar, Fatma Ozcan, and Jieping Ye (Eds.). ACM, 2862–2873.
doi:10.1145/3580305.3599446

[63] Zhe Xu, Kaize Ding, Yu-Xiong Wang, Huan Liu, and Hanghang Tong. 2022.
Generalized Few-Shot Node Classification. In IEEE International Conference on
Data Mining, ICDM 2022, Orlando, FL, USA, November 28 - Dec. 1, 2022, Xingquan
Zhu, Sanjay Ranka, My T. Thai, Takashi Washio, and Xindong Wu (Eds.). IEEE,
608–617. doi:10.1109/ICDM54844.2022.00071

[64] Zhe Xu, Kaize Ding, Yu-Xiong Wang, Huan Liu, and Hanghang Tong. 2024.
Generalized few-shot node classification: toward an uncertainty-based solution.
Knowl. Inf. Syst. 66, 2 (2024), 1205–1229. doi:10.1007/S10115-023-01975-7

[65] Zhe Xu, Boxin Du, and Hanghang Tong. 2022. Graph Sanitation with Application
to Node Classification. In WWW ’22: The ACM Web Conference 2022, Virtual
Event, Lyon, France, April 25 - 29, 2022, Frédérique Laforest, Raphaël Troncy, Elena
Simperl, Deepak Agarwal, Aristides Gionis, Ivan Herman, and Lionel Médini
(Eds.). ACM, 1136–1147. doi:10.1145/3485447.3512180

[66] Zhe Xu, Kaveh Hassani, Si Zhang, Hanqing Zeng, Michihiro Yasunaga, Limei
Wang, Dongqi Fu, Ning Yao, Bo Long, and Hanghang Tong. 2024. How to make
LLMs strong node classifiers? arXiv preprint arXiv:2410.02296 (2024).

[67] Zhe Xu, Ruizhong Qiu, Yuzhong Chen, Huiyuan Chen, Xiran Fan, Meng-
hai Pan, Zhichen Zeng, Mahashweta Das, and Hanghang Tong. 2024.
Discrete-state Continuous-time Diffusion for Graph Generation. In Ad-
vances in Neural Information Processing Systems 38: Annual Conference
on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver,
BC, Canada, December 10 - 15, 2024, Amir Globersons, Lester Mackey,
Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and
Cheng Zhang (Eds.). http://papers.nips.cc/paper_files/paper/2024/hash/

3718

https://aclanthology.org/2025.acl-long.545/
https://doi.org/10.1145/3534678.3539347
https://aclanthology.org/2025.acl-long.448/
https://openreview.net/forum?id=pPnkpvBeZN
https://arxiv.org/abs/2106.05667
https://arxiv.org/abs/2202.08455
https://doi.org/10.1145/3580305.3599488
https://doi.org/10.1145/3580305.3599488
https://openreview.net/forum?id=AS8SPTyBgw
https://openreview.net/forum?id=suz4utPr9Y
https://openreview.net/forum?id=suz4utPr9Y
https://doi.org/10.5555/2627435.2670313
https://doi.org/10.5555/2627435.2670313
https://doi.org/10.1145/3589334.3645549
http://papers.nips.cc/paper_files/paper/2023/hash/3a33ddacb2798fc7d83b8334d552e05a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/3a33ddacb2798fc7d83b8334d552e05a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/abd3c6b90e474ec50a52c446926b00be-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/abd3c6b90e474ec50a52c446926b00be-Abstract-Conference.html
https://doi.org/10.1145/3580305.3599444
https://arxiv.org/abs/2006.04768
https://arxiv.org/abs/2201.08821
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1109/TNNLS.2020.2978386
https://openreview.net/forum?id=0SrNCSklZx
https://arxiv.org/abs/2206.06488
https://doi.org/10.48550/arXiv.2206.06488
https://doi.org/10.48550/arXiv.2206.06488
https://doi.org/10.1145/3580305.3599398
https://doi.org/10.1145/3580305.3599398
https://doi.org/10.1145/3580305.3599446
https://doi.org/10.1109/ICDM54844.2022.00071
https://doi.org/10.1007/S10115-023-01975-7
https://doi.org/10.1145/3485447.3512180
http://papers.nips.cc/paper_files/paper/2024/hash/91813e5ddd9658b99be4c532e274b49c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/91813e5ddd9658b99be4c532e274b49c-Abstract-Conference.html

CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea Zhe Xu et al.

91813e5ddd9658b99be4c532e274b49c-Abstract-Conference.html
[68] Yuchen Yan, Yuzhong Chen, Huiyuan Chen, Xiaoting Li, Zhe Xu, Zhichen Zeng,

Zhining Liu, and Hanghang Tong. 2024. THeGCN: Temporal Heterophilic Graph
Convolutional Network. CoRR abs/2412.16435 (2024). arXiv:2412.16435 doi:10.
48550/ARXIV.2412.16435

[69] Yuchen Yan, Yuzhong Chen, Huiyuan Chen, Minghua Xu, Mahashweta Das,
Hao Yang, and Hanghang Tong. 2023. From Trainable Negative Depth
to Edge Heterophily in Graphs. In Advances in Neural Information Process-
ing Systems 36: Annual Conference on Neural Information Processing Sys-
tems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023,
Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt,
and Sergey Levine (Eds.). http://papers.nips.cc/paper_files/paper/2023/hash/
de2d52c5cf2bea853ef39bb2e1535dde-Abstract-Conference.html

[70] Yuchen Yan, Yongyi Hu, Qinghai Zhou, Lihui Liu, Zhichen Zeng, Yuzhong Chen,
Menghai Pan, Huiyuan Chen,Mahashweta Das, andHanghang Tong. 2024. PaCEr:
Network Embedding From Positional to Structural. In Proceedings of the ACM on
Web Conference 2024, WWW 2024, Singapore, May 13-17, 2024, Tat-Seng Chua,
Chong-Wah Ngo, Ravi Kumar, Hady W. Lauw, and Roy Ka-Wei Lee (Eds.). ACM,
2485–2496. doi:10.1145/3589334.3645516

[71] Yuchen Yan, Lihui Liu, Yikun Ban, Baoyu Jing, and Hanghang Tong. 2021. Dy-
namic Knowledge Graph Alignment. In Thirty-Fifth AAAI Conference on Artificial
Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Ar-
tificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances
in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021. AAAI Press,
4564–4572. doi:10.1609/AAAI.V35I5.16585

[72] Yuchen Yan, Si Zhang, and Hanghang Tong. 2021. BRIGHT: A Bridging Algorithm
for Network Alignment. InWWW ’21: The Web Conference 2021, Virtual Event
/ Ljubljana, Slovenia, April 19-23, 2021, Jure Leskovec, Marko Grobelnik, Marc
Najork, Jie Tang, and Leila Zia (Eds.). ACM / IW3C2, 3907–3917. doi:10.1145/
3442381.3450053

[73] Tianjun Yao, Yongqiang Chen, Zhenhao Chen, Kai Hu, Zhiqiang Shen, and Kun
Zhang. 2024. Empowering Graph Invariance Learning with Deep Spurious
Infomax. In Forty-first International Conference on Machine Learning, ICML 2024,
Vienna, Austria, July 21-27, 2024. OpenReview.net. https://openreview.net/forum?
id=u9oSQtujCF

[74] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He,
Yanming Shen, and Tie-Yan Liu. 2021. Do Transformers Really Perform Badly for
Graph Representation?. In Advances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021,
December 6-14, 2021, virtual, Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N.
Dauphin, Percy Liang, and Jennifer Wortman Vaughan (Eds.). 28877–28888.

[75] Hyunsik Yoo, Yeon-Chang Lee, Kijung Shin, and Sang-Wook Kim. 2022. Directed
Network Embedding with Virtual Negative Edges. InWSDM ’22: The Fifteenth
ACM International Conference on Web Search and Data Mining, Virtual Event /
Tempe, AZ, USA, February 21 - 25, 2022, K. Selcuk Candan, Huan Liu, Leman
Akoglu, Xin Luna Dong, and Jiliang Tang (Eds.). ACM, 1291–1299. doi:10.1145/
3488560.3498470

[76] Qi Yu, Zhichen Zeng, Yuchen Yan, Zhining Liu, Baoyu Jing, Ruizhong Qiu, Ariful
Azad, and Hanghang Tong. 2025. PLANETALIGN: A Comprehensive Python
Library for Benchmarking Network Alignment. CoRR abs/2505.21366 (2025).
arXiv:2505.21366 doi:10.48550/ARXIV.2505.21366

[77] Linan Yue, Qi Liu, Ye Liu, Weibo Gao, Fangzhou Yao, andWenfeng Li. 2024. Coop-
erative Classification and Rationalization for Graph Generalization. In Proceedings
of the ACM on Web Conference 2024, WWW 2024, Singapore, May 13-17, 2024,
Tat-Seng Chua, Chong-Wah Ngo, Ravi Kumar, Hady W. Lauw, and Roy Ka-Wei

Lee (Eds.). ACM, 344–352. doi:10.1145/3589334.3645332
[78] Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris

Alberti, Santiago Ontañón, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang,
and Amr Ahmed. 2020. Big Bird: Transformers for Longer Sequences. In Ad-
vances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual,
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and
Hsuan-Tien Lin (Eds.).

[79] Zhichen Zeng, Boxin Du, Si Zhang, Yinglong Xia, Zhining Liu, and Hang-
hang Tong. 2024. Hierarchical Multi-Marginal Optimal Transport for Net-
work Alignment. In Thirty-Eighth AAAI Conference on Artificial Intelligence,
AAAI 2024, Thirty-Sixth Conference on Innovative Applications of Artificial In-
telligence, IAAI 2024, Fourteenth Symposium on Educational Advances in Artifi-
cial Intelligence, EAAI 2014, February 20-27, 2024, Vancouver, Canada, Michael J.
Wooldridge, Jennifer G. Dy, and Sriraam Natarajan (Eds.). AAAI Press, 16660–
16668. doi:10.1609/AAAI.V38I15.29605

[80] Zhichen Zeng, Ruizhong Qiu, Wenxuan Bao, Tianxin Wei, Xiao Lin, Yuchen Yan,
Tarek F. Abdelzaher, Jiawei Han, and Hanghang Tong. 2025. Pave Your Own Path:
Graph Gradual Domain Adaptation on Fused Gromov-Wasserstein Geodesics.
CoRR abs/2505.12709 (2025). arXiv:2505.12709 doi:10.48550/ARXIV.2505.12709

[81] Zhichen Zeng, Ruizhong Qiu, Zhe Xu, Zhining Liu, Yuchen Yan, Tianxin Wei,
Lei Ying, Jingrui He, and Hanghang Tong. 2024. Graph Mixup on Approximate
Gromov-Wasserstein Geodesics. In Forty-first International Conference on Machine
Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net. https:
//openreview.net/forum?id=PKdege0U6Z

[82] Zhichen Zeng, Si Zhang, Yinglong Xia, and Hanghang Tong. 2023. PARROT:
Position-Aware Regularized Optimal Transport for Network Alignment. In Pro-
ceedings of the ACM Web Conference 2023, WWW 2023, Austin, TX, USA, 30
April 2023 - 4 May 2023, Ying Ding, Jie Tang, Juan F. Sequeda, Lora Aroyo, Car-
los Castillo, and Geert-Jan Houben (Eds.). ACM, 372–382. doi:10.1145/3543507.
3583357

[83] Zhichen Zeng, Ruike Zhu, Yinglong Xia, Hanqing Zeng, and Hanghang Tong.
2023. Generative Graph Dictionary Learning. In International Conference on
Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA (Proceed-
ings of Machine Learning Research, Vol. 202), Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (Eds.).
PMLR, 40749–40769. https://proceedings.mlr.press/v202/zeng23c.html

[84] Zhenning Zhang, Boxin Du, and Hanghang Tong. 2022. SuGeR: A Subgraph-
based Graph Convolutional Network Method for Bundle Recommendation. In
Proceedings of the 31st ACM International Conference on Information & Knowledge
Management, Atlanta, GA, USA, October 17-21, 2022, Mohammad Al Hasan and
Li Xiong (Eds.). ACM, 4712–4716. doi:10.1145/3511808.3557707

[85] Lecheng Zheng, Dongqi Fu, Ross Maciejewski, and Jingrui He. 2024. DrGNN:
Deep Residual Graph Neural Network with Contrastive Learning. Trans. Mach.
Learn. Res. 2024 (2024). https://openreview.net/forum?id=frb6sLbACS

[86] Lecheng Zheng, Baoyu Jing, Zihao Li, Zhichen Zeng, Tianxin Wei, Mengting Ai,
Xinrui He, Lihui Liu, Dongqi Fu, Jiaxuan You, Hanghang Tong, and Jingrui He.
2024. PyG-SSL: A Graph Self-Supervised Learning Toolkit. CoRR abs/2412.21151
(2024). arXiv:2412.21151 doi:10.48550/ARXIV.2412.21151

[87] Qinghai Zhou, Yuzhong Chen, Zhe Xu, Yuhang Wu, Menghai Pan, Mahashweta
Das, Hao Yang, and Hanghang Tong. 2024. Graph Anomaly Detection with
Adaptive Node Mixup. In Proceedings of the 33rd ACM International Conference
on Information and Knowledge Management, CIKM 2024, Boise, ID, USA, October
21-25, 2024, Edoardo Serra and Francesca Spezzano (Eds.). ACM, 3494–3504.
doi:10.1145/3627673.3679577

3719

http://papers.nips.cc/paper_files/paper/2024/hash/91813e5ddd9658b99be4c532e274b49c-Abstract-Conference.html
https://arxiv.org/abs/2412.16435
https://doi.org/10.48550/ARXIV.2412.16435
https://doi.org/10.48550/ARXIV.2412.16435
http://papers.nips.cc/paper_files/paper/2023/hash/de2d52c5cf2bea853ef39bb2e1535dde-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/de2d52c5cf2bea853ef39bb2e1535dde-Abstract-Conference.html
https://doi.org/10.1145/3589334.3645516
https://doi.org/10.1609/AAAI.V35I5.16585
https://doi.org/10.1145/3442381.3450053
https://doi.org/10.1145/3442381.3450053
https://openreview.net/forum?id=u9oSQtujCF
https://openreview.net/forum?id=u9oSQtujCF
https://doi.org/10.1145/3488560.3498470
https://doi.org/10.1145/3488560.3498470
https://arxiv.org/abs/2505.21366
https://doi.org/10.48550/ARXIV.2505.21366
https://doi.org/10.1145/3589334.3645332
https://doi.org/10.1609/AAAI.V38I15.29605
https://arxiv.org/abs/2505.12709
https://doi.org/10.48550/ARXIV.2505.12709
https://openreview.net/forum?id=PKdege0U6Z
https://openreview.net/forum?id=PKdege0U6Z
https://doi.org/10.1145/3543507.3583357
https://doi.org/10.1145/3543507.3583357
https://proceedings.mlr.press/v202/zeng23c.html
https://doi.org/10.1145/3511808.3557707
https://openreview.net/forum?id=frb6sLbACS
https://arxiv.org/abs/2412.21151
https://doi.org/10.48550/ARXIV.2412.21151
https://doi.org/10.1145/3627673.3679577

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Graph Transformer
	2.3 Invariant Rationale Discovery on Graphs

	3 Proposed Model
	3.1 Node-Level Variant: FIG-N
	3.2 Virtual Node-Level Variant: FIG-VN

	4 Experiments
	4.1 Setup
	4.2 Effectiveness Study
	4.3 Efficiency Study
	4.4 Ablation Study
	4.5 Sensitivity Study
	4.6 Training Convergence
	4.7 Attention Visualization

	5 Related Work
	6 Conclusion
	Acknowledgments
	A Hardware and Implementations.
	B Soft argtop-K Trick
	C GenAI Usage Disclosure
	References

