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Abstract

Large language models (LLM) have demonstrated remarkable capa-
bility in recommendation tasks. Recently, efforts have been made to
further enhance LLM performance with collaborative knowledge
learned from traditional recommender systems. One approach is to
inject learned embeddings into LLM prompts through a trainable
projector, yet these embeddings could carry noisy or irrelevant
information. In this paper, we propose using sparse autoencoders
to improve input prompts. We show that sparse autoencoders can
learn highly interpretable embeddings and extract key collabora-
tive features in the case of recommender systems. With the help of
sparse autoencoders, we are able to extract collaborative features to
augment input prompts. By capturing TopK features of each item,
we mitigate noisy information from item embeddings, therefore
sparse autoencoders can also help with denoising embeddings in
prompts. We develop two methods that utilize sparse autoencoders
to augment or denoise input prompts. We evaluate the proposed
methods on three real-world datasets and both show promising
performance improvements.
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1 Introduction

Collaborative filtering based recommender systems have been widely
explored in the past decades, including matrix factorization [6], se-
quential recommendation [9, 20], and neural graph collaborative
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filtering [5, 25]. Recently, inspired by the remarkable capabilities
of large language models (LLMs), researchers are exploring the
potential of LLMs in recommendation tasks, e.g., conversational
recommendation [4, 7], item recommendation [1, 13], cold-start
recommendation [19, 23], etc. Although LLMs are empowered with
extensive external world knowledge and advanced reasoning abil-
ity, they are still outperformed by traditional collaborative filtering
based recommender systems due to the lack of collaborative knowl-
edge [10]. Previous work [26] finds that those LLM-based recom-
mender systems heavily rely on textual information. Consequently,
LLM-based models might be outperformed by collaborative filter-
ing models when abundant user-item interactions are available.
To leverage advantages from both LLM and collaborative filter-
ing, more recent studies design ways to seamlessly incorporate
collaborative knowledge learned from traditional recommender
systems into LLMs. One solution that has been proved effective
involves leveraging user and item embeddings learned from collab-
orative filtering based recommender systems. These embeddings
are injected into input prompts as token embeddings through a
trainable projector [10, 12]. Fine-tuned with interaction data, train-
able projector aligns the embedding space of collaborative filtering
recommender systems with the token space of LLMs. Hence, col-
laborative knowledge encoded in these embeddings is seamlessly
incorporated into the input prompts of LLMs. As these embed-
dings identify the unique identities of users and items, they are also
referred to as ID embeddings[13].

Although ID embeddings are proved to be helpful, they fall short
of illustrating the information in a text-like format, which may
not align optimally with LLMs. Furthermore, ID embeddings of-
ten contain noisy information that stems from noisy interaction
datasets. For recommender systems that utilize text information
(or other modality information), e.g. [10], ID embeddings might
be further affected by irrelevant messages in texts. In this paper,
we delve into the prompt engineering for collaborative filtering
enhanced LLM-based recommender systems, especially focusing
on (1) augmenting prompts with extracted collaborative features
and (2) denoising ID embeddings to improve model performance.

Previous works have demonstrated the remarkable capability
of sparse autoencoders (SAEs) for interpretable feature extraction.
To name a few, [30] extracts low-dimensional features for more
efficient and effective matrix factorization, [2, 3] explain the acti-
vation patterns in LLMs with sparse autoencoders; while sparse
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Figure 1: Examples of extracted features from Amazon Games datasetl with SAE and SimGCL. Each line corresponds to one
generated feature. Each line displays items that are activated in the corresponding latent.

autoencoders are also applied to fetch high quality data for surface
microseismic data [11]. For collaborative filtering, we train a sparse
autoencoder with embeddings learned from SimGCL [25] and visu-
alize the extracted features in Fig. 1. We can clearly observe that
sparse autoencoders are indeed capable of generating interpretable
features for collaborative filtering recommendation. For example,
features in the right column can be interpreted as ‘japanese anime
game’, ‘football video games’, ‘child anime games’, ‘music singing
games’. Inspired by this observation, we seek to leverage sparse
autoencoders to extract TopK collaborative features from ID embed-
dings and use such extracted features to reconstruct ID embeddings
to improve the quality of prompts.
Our main contributions are summarized as follows.

e Insights. We show that sparse autoencoders are capable of
learning highly interpretable features in the case of collabo-
rative filtering recommendation.

e Methods. We propose two methods for leveraging sparse
autoencoders to improve prompts of collaborative filtering
enhanced LLM-based recommender systems.

e Evaluations. Proposed methods are evaluated on three real-
world datasets and they both outperform state-of-the-art
collaborative filtering and LLM-based methods.

2 Related Works

LLMs for recommendation. With the superb knowledge and
reasoning ability of LLMs, researchers discover that LLMs are state-
of-the-art zero-shot recommenders. [4, 7, 24] apply the in-context
learning technique to adapt LLMs to recommendation by adding in-
teraction and task description contexts in input prompts.[1] points
out that the performance of LLMs is suboptimal due to the inad-
equate recommendation data during pretraining. Therefore, the
authors propose to fine-tune LLMs with Alpaca tuning[21] and
with LoRA[8] to fit recommendation datasets. Researchers further
explore ways to incorporate collaborative information into LLMs.
[10, 12, 29] use ID embeddings and map them into LLM token space.
Moreover, [12] applies curriculum learning strategy with LoRA and
[10] aligns ID embeddings with textual information, [29] separately
finetunes LoRA and collaborative information learning modules in

!https://mcauleylab.ucsd.edu/public_datasets/data/amazon_2023/benchmark/5core
/rating_only/Video_Games.csv.gz

two steps. [31] expands the LLM vocabulary and designs a mutually-
regularized strategy to pretrain the new token embeddings. [28]
binarize ID embeddings to enable bitwise operations of LLMs.
Sparse autoencoders (SAEs). Sparse autoencoders serve as a
powerful tool for interpretable machine learning and dictionary
learning. Multiple types of regularizations have been studied to
ensure the sparsity of latent states, including L; penalty [2], KL di-
vergence [15] and TopK activation [14]. Sparse dictionary learning
[17] is closely related to our work, which aims to find an over-
complete ‘atom’ feature set with SAEs, so that embeddings can
be decomposed into embeddings of ‘atoms’. Embeddings of those
‘atoms’ are also referred to as base vectors.

3 Proposed frameworks

In this section, we first introduce the sparse autoencoder for LLM-
based recommendation (SAULREC) framework in Section 3.1, then
introduce our design of sparse autoencoder in Section 3.2.

3.1 SaurLREc Framework

For a collaborative filtering enhanced LLM-based recommender
system that utilizes ID embeddings (e.g., [10, 12]), we generally
formulate the model as three modules: (1) a pretrained collabo-
rative filtering model R, (2) an additional embedding processing
module ¥, and (3) a LLM-based recommender system which takes
ID embeddings as input.

The pretrained collaborative filtering model R is implemented
with SASRec [9] which learns user and item embeddings from
sequential interaction data. We denote embeddings of user u and
item i from collaborative filtering model as x;, and x; respectively.

Following [10], an additional item embedding processing module
¥ is added to align item embeddings from collaborative filtering
with textual embedding encoded with SBERT [18]. For an item i
with item embedding x; and textual embedding of its description
ci, F is implemented with 2 autoencoders, f t‘”‘t(ci) and MLP1 =

(),

FEG) = fioefene(x1)) (1)
c¢; = SBERT({textual description of item i}) (2)
T ) = fiS fame (i) ®3)

1SE, fdec are the encoder and decoder of fCF, fiext j:itgi‘t are the
encoder and decoder of f**!, which are all 1mplemented with fully-
connected layers. To align item embeddings with textual descrip-
tion, MSE loss is applied to minimize the distance between fSF (x;)
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SASRec
R

(" [User Emb] is a user representation. This user has
watched [HISTORY (Item Titles, Reconstructed ltem
Emb)] in the past. Recommend a movie for this user to
watch next from the following set of movie titles,
[CANDIDATE (ltem Titles, reconstructed ltem Emb)].

\_The recommendation is J

Output:
Next item titles

Saul-A
(" [User Emb][User labels] is a user representation. This "\
user has watched [HISTORY (Item Titles, [Item
Emb][ltem labels])] in the past. Recommend a movie for
this user to watch next from the following set of movie
titles, [CANDIDATE (ltem Titles, [Item Emb][ltem

labels])]. The recommendation is ﬂ: ;

== CargTopK™>
Figure 2: Framework of SAULREC. Solid lines represent

and f1Xt(¢;). Therefore, trained with a combination of reconstruc-
tion loss || f<F (x;) — xi 12, alignment loss || £ (x;) — £35(c;) || and
cross entropy recommendation loss — log o(xy, fF (x;)) + log(1 —
o(xy, f CF(x;))), the reconstructed item embedding from MLP1 in-
corporates textual information while retaining information from
recommendation data. These reconstructed item embeddings are
then fed into LLM-based recommender system as ID embeddings.

To project ID embeddings into the LLM token space, MLP2 and
MLP3 serve as user and item ID embedding projectors respectively.
With carefully designed input prompt p,,, these two projectors are
optimized to maximize the next token probability in the LLM output

g™l
max Zl log P.e (4% 1pu- 4 ) @
i=
where 6 is parameters of MLP2 and MLP3, y* is ground truth next
item title, p,, is input prompt corresponding to user u, ® is LLM
parameters, Pg g is the output next token probability from LLM,
y}‘, y4 j denote the j-th token and the tokens before the j-th token.
However, this framework might fall short in fully illuminating
collaborative knowledge in a text-like format, which may not align
optimally with LLMs. Therefore, we resort to sparse autoencoders
to extract collaborative features from R and seek to augment LLM
prompts with extracted item labels. Furthermore, as there might
be noisy and irrelevant information encoded in ID embeddings, we
leverage reconstructed embedding from SAE to help LLM focus on
the extracted user/item TopK features only.

3.2 Sparse Autoencoder

To extract the collaborative features from recommender systems,
we apply TopK activation based SAEs because this activation allows
us to control the number of active latents. Here, a latent refers to
one dimension in the embedding and the active latents denote the
dimensions that have non-zero values. TopK activation keeps only
the k largest values in an embedding and zeros the rest. An SAE
with TopK activation is formulated as

x=X" ,u, u, 0 = x.mean(), x.std()
o

h = TopK(ho), ho = Wenc (x — bpre) + benc (5

X = H + 0Xnorm,> Xnorm = Wdech + bpre

where x € R? is the input embedding and X € R4 is the recon-
structed embedding. First, we normalize the input embedding x.
Next, we subtract bias in dataset bpre € R4 and pass the embedding
through an encoder with the weight Wep € R4%dn and the bias
bene € R% . Then TopK activation is applied to ensure the sparsity

item information, dashed lines represent user information.

of the hidden embedding h. Lastly, the hidden embedding is passed
through a decoder with parameters Wy, € Rnxd, bgec € R4
and rescaled back with the mean and the standard deviation to
reconstruct x. Note that SAEs for sparse dictionary learning are
over-complete autoencoders with dj, > d to learn a comprehensive
feature set. However, the reconstruction error is not zero since we
have the TopK sparsity constraint on hidden embeddings.

In this structure, the latents hy before TopK activation tend to
be near zero if Wep has much smaller values compared to Wyec.
This makes the training process unstable, and it is hard to tell
whether the selected TopK latents are really important because
they have close values compared to non-TopK latents. We resort
to the tied decoder [3] to resolve this issue, where Wy, = W .
is enforced during the whole training process. Another common
problem in TopK SAEs is dead latents, where some latents are rarely
or never activated during training. Furthermore, disentanglement
between extracted features are required, as repeated features are
meaningless. Therefore, we add a uniformity regularization [22] on
hidden embeddings h for SAE training.

hi hir o

1
Ly=—5 Y ep-2lo - =) @)
|B|2i;8 Pl Tl

where 8 is a sampled item batch, h;, h» are hidden embeddings of

items i and i’ respectively. Together with the MSE reconstruction
loss, the training loss is defined by

L=Lysg+BLyu, Lmse= é Z llxi — %13 (7)
i€eB
where f is a hyperparameter.

Finally, we train the proposed SAE S with only item embeddings
from the pretrained collaborative filtering model R. Note that SAE
trained with only item embeddings is sufficient because base vectors
in the user space but not in the item space will not affect the result
of the dot product. Therefore, it will not affect item ranking for
recommendation. The TopK collaborative labels for each user u and
item i are then defined as

Cy = argTopK(hy), C; = argTopK(h;) )

where argTopK() returns the indices of the TopK largest values in
the hidden embeddings of user u and item i. Note that h; has only
K nonzero values, therefore %; is reconstructed based on only the
extracted TopK collaborative features in C;. Thus, noises and less
important information are removed in reconstructed embeddings.

Extracted collaborative features and reconstructed item embed-
dings are then integrated into LLM prompts to augment (SAUL-A) or
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denoise (SauLr-D) as illustrated in Fig. 2. To augment LLM prompts
with extracted user/item labels C, /C; (SauL-A), the list of numerical
values are appended after user/item embeddings as a textual form
of user/item representations. To denoise LLM prompts (SAUL-D),
reconstructed item embeddings are inserted after item titles.

4 Experiments

4.1 Experimental Setting
Datasets. To evaluate the performance of SAULREC, we follow [10]
to use three Amazon datasets [16] for experiments. Data statistics
are summarized in Table 1.
Table 1: Data Statistics
Dataset #Users | #Items | Avg.Len
Luxury (Luxury Beauty) | 11690 | 6534 4.15

Toys (Toys and Games) | 42597 | 75377 11.10
Movies (Movies and TV) | 172229 | 64226 8.14

Baselines. We compare our proposed frameworks with three col-
laborative filtering recommender systems (SimGCL [25], NCF [6],
SASRec [9]) and two collaborative filtering enhanced LLM-based
recommender systems (LLARA[12], A-LLMRec[10]).

Metric and Evaluation Protocol. User purchase sequences are di-

vided into train, validation and test sets. For user sequence [iy, i2, ..., in],

i is considered as the next item in the test set, i1 is the next
item in the validation set, i1 ~ i,—2 are used as the training set. To
evaluate the performance of all models, 19 randomly selected items
for each user with no previous interactions are selected. Models
make the next item prediction based on the candidate set composed
of selected 19 negative candidates and the ground truth next item.
Hit@1 is applied as the evaluation metric.

Implementation. Following [10], we adopt OPT-6.7B [27] as the
backbone LLM model. We remove users and items with fewer than
4 interactions in the Luxury dataset. We remove users and items
with fewer than 5 interactions and interactions with rating less than
4 in the Movies dataset. We remove users and items with fewer
than 10 interactions and interactions with rating less than 4 in the
Toys dataset. For SAULREC, we set d = 50,d, = 2,048, K =5 to train
Toys and Movies datasets, and set d = 50, dy, = 256,K =5 to train
the Luxury dataset. For LLARA, we set number of accumulated
batches to 4 and batch size to 2 due to memory constraints given
our large datasets. Experiments are conducted with NVIDIA A100-
SXM4-80GB GPU. Our codes are available at Github.

Table 2: Experimental results (Hit@1). Best results are in

bold, second best results are underlined.

Method | Luxury | Toys | Movies

SimGCL | 0.3490 | 0.2690 | 0.4461

NCF 0.4191 0.3357 | 0.5577

SASRec | 05211 | 0.2815 | 0.5990

LLARA 0.4336 | 0.3495 | 0.5705

A-LLMRec | 0.5578 | 0.3609 | 0.5767

SauL-D 0.5715 | 0.3967 | 0.6055

SAuL-A 0.5579 | 0.3736 | 0.5798

4.2 Overall Performance

Experimental results are shown in Table 2. Our proposed methods
outperform all baselines, including the base model A-LLMRec, while
SauL-D performs better than Saur-A. Collaborative filtering en-
hanced LLM-based recommender systems generally perform better
than collaborative filtering models, except for the Movies dataset

Xinyu He, Jose Sepulveda, Fei Wang, and Hanghang Tong

where movie titles include many non-english words that affects
the reasoning performance of LLMs. As we represent extracted
features as index numbers in SAUL-A, it might lose the similarity
information between features, which is the potential reason of why
SAUL-D reaches a better performance than SAuL-A.

4.3 Training Efficiency

Given the long training time of many LLM-based recommender
systems, it is important to explore the learning efficiency of LLM-
based recommender systems. In this experiment, we report the
performance of our models and base model A-LLMRec after 1
epoch of training in Table 3. We can see that SAUL-A reaches the
best performance when trained with limited rounds especially for
larger datasets, in contrast to the overall performance where SauL-
D reached the best. This implies that explicitly representing col-
laborative knowledge as natural languages better aligns with the
knowledge of LLM, making LLM easier to understand the input
prompts and to be tuned.

Table 3: Hit@1 after training 1 epoch.
Method | Luxury | Toys | Movies
A-LLMRec | 0.4583 | 0.3559 | 0.5519
Saur-D 0.5435 | 0.3499 | 0.5632
SAuL-A 0.5320 | 0.3685 | 0.5768

4.4 Case Studies

For a user who has sequentially watched "The Lord Of The Rings:
Trilogy", "Following-Complete Series 1", "The Day the Earth Stood
Still VHS", "Nightbreed", "Your Inner Fish", "Dawn of the Planet
of the Apes", Nature: Fabulous Frogs", "Gattaca", "Matinee VHS",
"Beyond the Myth", A-LLMRec predicted "Nightingale" as the next
item. However, the proposed SAULREC ‘knows’ that user labels
are [30, 565, 743, 48, 49], labels for "Nightingale" and "Game of
Thrones: Season 5" are [684, 562, 405, 47, 52] and [48, 442, 576, 565,
88] respectively, "Nightbreed", "Gattaca", and "Beyond the Myth" in
the watch history are also labeled as 48, and "Dawn of the Planet
of the Apes" in the watch history is also labeled 565. Therefore,
both Saur-A and SAuL-D successfully predicted "Game of Thrones:
Season 5" as the next item because it has labels 48, 565 which overlap
with user labels and labels of previously watched movies, while
"Nightintgale" does not share any common labels with them.

5 Conclusion

In this paper, we propose a novel collaborative filtering enhanced
LLM-based recommender system SAULREC. The main idea is to
leverage the power of sparse autoencoders (SAEs) to improve LLM
prompts. With extracted collaborative features from SAEs, input
prompts are augmented with knowledge from collaborative filtering
in the form of natural language. By only retaining TopK features
of items to reconstruct item embeddings, noisy information are
mitigated and quality of input prompts are improved. Experiments
demonstrate the effectiveness and the efficiency of our methods.
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