
Sparse Autoencoders in Collaborative Filtering Enhanced
LLM-based Recommender Systems

Xinyu He

University of Illinois at Urbana-Champaign

Champaign, IL, USA

xhe34@illinois.edu

Jose Sepulveda

Amazon

Seattle, WA, USA

joseveda@amazon.com

Fei Wang

Amazon

Sunnyvale, CA, USA

feiww@amazon.com

Hanghang Tong

University of Illinois at Urbana-Champaign

Champaign, IL, USA

htong@illinois.edu

Abstract

Large language models (LLM) have demonstrated remarkable capa-

bility in recommendation tasks. Recently, efforts have been made to

further enhance LLM performance with collaborative knowledge

learned from traditional recommender systems. One approach is to

inject learned embeddings into LLM prompts through a trainable

projector, yet these embeddings could carry noisy or irrelevant

information. In this paper, we propose using sparse autoencoders

to improve input prompts. We show that sparse autoencoders can

learn highly interpretable embeddings and extract key collabora-

tive features in the case of recommender systems. With the help of

sparse autoencoders, we are able to extract collaborative features to

augment input prompts. By capturing TopK features of each item,

we mitigate noisy information from item embeddings, therefore

sparse autoencoders can also help with denoising embeddings in

prompts. We develop two methods that utilize sparse autoencoders

to augment or denoise input prompts. We evaluate the proposed

methods on three real-world datasets and both show promising

performance improvements.

CCS Concepts

• Information systems → Recommender systems.

Keywords

Recommender Systems; Large Language Models; Collaborative Fil-

tering; Sparse Autoencoders

ACM Reference Format:

Xinyu He, Jose Sepulveda, Fei Wang, and Hanghang Tong. 2025. Sparse Au-

toencoders in Collaborative Filtering Enhanced LLM-based Recommender

Systems. In Proceedings of the 34th ACM International Conference on Infor-
mation and Knowledge Management (CIKM ’25), November 10–14, 2025, Seoul,
Republic of Korea. ACM, New York, NY, USA, 5 pages. https://doi.org/10.

1145/3746252.3760957

1 Introduction

Collaborative filtering based recommender systems have beenwidely

explored in the past decades, including matrix factorization [6], se-

quential recommendation [9, 20], and neural graph collaborative

This work is licensed under a Creative Commons Attribution 4.0 International License.

CIKM ’25, Seoul, Republic of Korea
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2040-6/2025/11

https://doi.org/10.1145/3746252.3760957

filtering [5, 25]. Recently, inspired by the remarkable capabilities

of large language models (LLMs), researchers are exploring the

potential of LLMs in recommendation tasks, e.g., conversational

recommendation [4, 7], item recommendation [1, 13], cold-start

recommendation [19, 23], etc. Although LLMs are empowered with

extensive external world knowledge and advanced reasoning abil-

ity, they are still outperformed by traditional collaborative filtering

based recommender systems due to the lack of collaborative knowl-

edge [10]. Previous work [26] finds that those LLM-based recom-

mender systems heavily rely on textual information. Consequently,

LLM-based models might be outperformed by collaborative filter-

ing models when abundant user-item interactions are available.

To leverage advantages from both LLM and collaborative filter-

ing, more recent studies design ways to seamlessly incorporate

collaborative knowledge learned from traditional recommender

systems into LLMs. One solution that has been proved effective

involves leveraging user and item embeddings learned from collab-

orative filtering based recommender systems. These embeddings

are injected into input prompts as token embeddings through a

trainable projector [10, 12]. Fine-tuned with interaction data, train-

able projector aligns the embedding space of collaborative filtering

recommender systems with the token space of LLMs. Hence, col-

laborative knowledge encoded in these embeddings is seamlessly

incorporated into the input prompts of LLMs. As these embed-

dings identify the unique identities of users and items, they are also

referred to as ID embeddings[13].

Although ID embeddings are proved to be helpful, they fall short

of illustrating the information in a text-like format, which may

not align optimally with LLMs. Furthermore, ID embeddings of-

ten contain noisy information that stems from noisy interaction

datasets. For recommender systems that utilize text information

(or other modality information), e.g. [10], ID embeddings might

be further affected by irrelevant messages in texts. In this paper,

we delve into the prompt engineering for collaborative filtering

enhanced LLM-based recommender systems, especially focusing

on (1) augmenting prompts with extracted collaborative features

and (2) denoising ID embeddings to improve model performance.

Previous works have demonstrated the remarkable capability

of sparse autoencoders (SAEs) for interpretable feature extraction.

To name a few, [30] extracts low-dimensional features for more

efficient and effective matrix factorization, [2, 3] explain the acti-

vation patterns in LLMs with sparse autoencoders; while sparse

https://doi.org/10.1145/3746252.3760957
https://doi.org/10.1145/3746252.3760957
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3746252.3760957

CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea Xinyu He, Jose Sepulveda, Fei Wang, and Hanghang Tong

Figure 1: Examples of extracted features from Amazon Games dataset
1
with SAE and SimGCL. Each line corresponds to one

generated feature. Each line displays items that are activated in the corresponding latent.

autoencoders are also applied to fetch high quality data for surface

microseismic data [11]. For collaborative filtering, we train a sparse

autoencoder with embeddings learned from SimGCL [25] and visu-

alize the extracted features in Fig. 1. We can clearly observe that

sparse autoencoders are indeed capable of generating interpretable

features for collaborative filtering recommendation. For example,

features in the right column can be interpreted as ‘japanese anime

game’, ‘football video games’, ‘child anime games’, ‘music singing

games’. Inspired by this observation, we seek to leverage sparse

autoencoders to extract TopK collaborative features from ID embed-

dings and use such extracted features to reconstruct ID embeddings

to improve the quality of prompts.

Our main contributions are summarized as follows.

• Insights. We show that sparse autoencoders are capable of

learning highly interpretable features in the case of collabo-

rative filtering recommendation.

• Methods. We propose two methods for leveraging sparse

autoencoders to improve prompts of collaborative filtering

enhanced LLM-based recommender systems.

• Evaluations. Proposed methods are evaluated on three real-

world datasets and they both outperform state-of-the-art

collaborative filtering and LLM-based methods.

2 Related Works

LLMs for recommendation. With the superb knowledge and

reasoning ability of LLMs, researchers discover that LLMs are state-

of-the-art zero-shot recommenders. [4, 7, 24] apply the in-context

learning technique to adapt LLMs to recommendation by adding in-

teraction and task description contexts in input prompts.[1] points

out that the performance of LLMs is suboptimal due to the inad-

equate recommendation data during pretraining. Therefore, the

authors propose to fine-tune LLMs with Alpaca tuning[21] and

with LoRA[8] to fit recommendation datasets. Researchers further

explore ways to incorporate collaborative information into LLMs.

[10, 12, 29] use ID embeddings and map them into LLM token space.

Moreover, [12] applies curriculum learning strategy with LoRA and

[10] aligns ID embeddings with textual information, [29] separately

finetunes LoRA and collaborative information learning modules in

1
https://mcauleylab.ucsd.edu/public_datasets/data/amazon_2023/benchmark/5core

/rating_only/Video_Games.csv.gz

two steps. [31] expands the LLM vocabulary and designs a mutually-

regularized strategy to pretrain the new token embeddings. [28]

binarize ID embeddings to enable bitwise operations of LLMs.

Sparse autoencoders (SAEs). Sparse autoencoders serve as a

powerful tool for interpretable machine learning and dictionary

learning. Multiple types of regularizations have been studied to

ensure the sparsity of latent states, including 𝐿1 penalty [2], KL di-

vergence [15] and TopK activation [14]. Sparse dictionary learning

[17] is closely related to our work, which aims to find an over-

complete ‘atom’ feature set with SAEs, so that embeddings can

be decomposed into embeddings of ‘atoms’. Embeddings of those

‘atoms’ are also referred to as base vectors.

3 Proposed frameworks

In this section, we first introduce the sparse autoencoder for LLM-

based recommendation (SaulRec) framework in Section 3.1, then

introduce our design of sparse autoencoder in Section 3.2.

3.1 SaulRec Framework

For a collaborative filtering enhanced LLM-based recommender

system that utilizes ID embeddings (e.g., [10, 12]), we generally

formulate the model as three modules: (1) a pretrained collabo-

rative filtering model R, (2) an additional embedding processing

module F , and (3) a LLM-based recommender system which takes

ID embeddings as input.

The pretrained collaborative filtering model R is implemented

with SASRec [9] which learns user and item embeddings from

sequential interaction data. We denote embeddings of user 𝑢 and

item 𝑖 from collaborative filtering model as 𝑥𝑢 and 𝑥𝑖 respectively.

Following [10], an additional item embedding processing module

F is added to align item embeddings from collaborative filtering

with textual embedding encoded with SBERT [18]. For an item 𝑖

with item embedding 𝑥𝑖 and textual embedding of its description

𝑐𝑖 , F is implemented with 2 autoencoders, 𝑓 text (𝑐𝑖) and MLP1 =

𝑓 CF (𝑥𝑖),

𝑓 CF (𝑥𝑖) = 𝑓 CF
dec

(𝑓 CF
enc

(𝑥𝑖)) (1)

𝑐𝑖 = SBERT({textual description of item i}) (2)

𝑓 text (𝑐𝑖) = 𝑓 text
dec

(𝑓 text
enc

(𝑐𝑖)) . (3)

𝑓 CF
enc
, 𝑓 CF
dec

are the encoder and decoder of 𝑓 CF, 𝑓 text
enc

, 𝑓 text
dec

are the

encoder and decoder of 𝑓 text, which are all implemented with fully-

connected layers. To align item embeddings with textual descrip-

tion, MSE loss is applied to minimize the distance between 𝑓 CF
enc

(𝑥𝑖)

https://mcauleylab.ucsd.edu/public_datasets/data/amazon_2023/benchmark/5core/rating_only/Video_Games.csv.gz
https://mcauleylab.ucsd.edu/public_datasets/data/amazon_2023/benchmark/5core/rating_only/Video_Games.csv.gz

Sparse Autoencoders in Collaborative Filtering Enhanced LLM-based Recommender Systems CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea

[User Emb] is a user representation. This user has
watched [HISTORY (Item Titles, Reconstructed Item
Emb)] in the past. Recommend a movie for this user to
watch next from the following set of movie titles,
[CANDIDATE (Item Titles, reconstructed Item Emb)].
The recommendation is

[User Emb][User labels] is a user representation. This
user has watched [HISTORY (Item Titles, [Item
Emb][Item labels])] in the past. Recommend a movie for
this user to watch next from the following set of movie
titles, [CANDIDATE (Item Titles, [Item Emb][Item
labels])]. The recommendation is

item: i

Saul-D

Saul-A

SASRec
ℛ

SAE: 𝒮

Enc dec

MLP1
𝑓CF(·)

MLP2

LLM
Output:
Next item title

user: u

MLP3

𝑥𝑢

𝑥𝑖 ො𝑥𝑖

ℎ𝑢 ℎ𝑖

LLMRec

𝒞𝑢 𝒞𝑖
argTopK

Figure 2: Framework of SaulRec. Solid lines represent item information, dashed lines represent user information.

and 𝑓 text
enc

(𝑐𝑖). Therefore, trained with a combination of reconstruc-

tion loss ∥ 𝑓 CF (𝑥𝑖) −𝑥𝑖 ∥2
2
, alignment loss ∥ 𝑓 CF

enc
(𝑥𝑖) − 𝑓 textenc

(𝑐𝑖)∥2
2
and

cross entropy recommendation loss − log𝜎 (𝑥𝑢 , 𝑓 CF (𝑥𝑖)) + log(1 −
𝜎 (𝑥𝑢 , 𝑓 CF (𝑥𝑖))), the reconstructed item embedding from MLP1 in-

corporates textual information while retaining information from

recommendation data. These reconstructed item embeddings are

then fed into LLM-based recommender system as ID embeddings.

To project ID embeddings into the LLM token space, MLP2 and

MLP3 serve as user and item ID embedding projectors respectively.

With carefully designed input prompt 𝑝𝑢 , these two projectors are

optimized to maximize the next token probability in the LLM output

max

𝜃

∥𝑦𝑢 ∥∑︁
𝑗=1

log 𝑃𝜃,Θ (𝑦𝑢𝑗 |𝑝𝑢 , 𝑦
𝑢
< 𝑗) (4)

where 𝜃 is parameters of MLP2 and MLP3, 𝑦𝑢 is ground truth next

item title, 𝑝𝑢 is input prompt corresponding to user 𝑢, Θ is LLM

parameters, 𝑃𝜃,Θ is the output next token probability from LLM,

𝑦𝑢
𝑗
, 𝑦𝑢

< 𝑗
denote the 𝑗-th token and the tokens before the 𝑗-th token.

However, this framework might fall short in fully illuminating

collaborative knowledge in a text-like format, which may not align

optimally with LLMs. Therefore, we resort to sparse autoencoders

to extract collaborative features from R and seek to augment LLM

prompts with extracted item labels. Furthermore, as there might

be noisy and irrelevant information encoded in ID embeddings, we

leverage reconstructed embedding from SAE to help LLM focus on

the extracted user/item TopK features only.

3.2 Sparse Autoencoder

To extract the collaborative features from recommender systems,

we apply TopK activation based SAEs because this activation allows

us to control the number of active latents. Here, a latent refers to

one dimension in the embedding and the active latents denote the

dimensions that have non-zero values. TopK activation keeps only

the 𝑘 largest values in an embedding and zeros the rest. An SAE

with TopK activation is formulated as

𝑥 =
𝑥 − 𝜇
𝜎

, 𝜇, 𝜎 = 𝑥 .𝑚𝑒𝑎𝑛(), 𝑥 .𝑠𝑡𝑑 ()

ℎ = TopK(ℎ0), ℎ0 =𝑊enc (𝑥 − 𝑏pre) + 𝑏enc (5)

𝑥 = 𝜇 + 𝜎𝑥norm, 𝑥norm =𝑊
dec
ℎ + 𝑏pre

where 𝑥 ∈ R𝑑
is the input embedding and 𝑥 ∈ R𝑑

is the recon-

structed embedding. First, we normalize the input embedding 𝑥 .

Next, we subtract bias in dataset 𝑏pre ∈ R𝑑
and pass the embedding

through an encoder with the weight𝑊enc ∈ R𝑑×𝑑ℎ
and the bias

𝑏enc ∈ R𝑑ℎ
. Then TopK activation is applied to ensure the sparsity

of the hidden embedding ℎ. Lastly, the hidden embedding is passed

through a decoder with parameters 𝑊
dec

∈ R𝑑ℎ×𝑑 , 𝑏
dec

∈ R𝑑

and rescaled back with the mean and the standard deviation to

reconstruct 𝑥 . Note that SAEs for sparse dictionary learning are

over-complete autoencoders with 𝑑ℎ > 𝑑 to learn a comprehensive

feature set. However, the reconstruction error is not zero since we

have the TopK sparsity constraint on hidden embeddings.

In this structure, the latents ℎ0 before TopK activation tend to

be near zero if𝑊enc has much smaller values compared to𝑊
dec

.

This makes the training process unstable, and it is hard to tell

whether the selected TopK latents are really important because

they have close values compared to non-TopK latents. We resort

to the tied decoder [3] to resolve this issue, where𝑊
dec

= 𝑊𝑇
enc

is enforced during the whole training process. Another common

problem in TopK SAEs is dead latents, where some latents are rarely

or never activated during training. Furthermore, disentanglement

between extracted features are required, as repeated features are

meaningless. Therefore, we add a uniformity regularization [22] on

hidden embeddings ℎ for SAE training.

L𝑈 =
1

|B|2
∑︁

𝑖,𝑖′∈B
exp(−2∥ ℎ𝑖

∥ℎ𝑖 ∥2
− ℎ𝑖′

∥ℎ𝑖′ ∥2
∥2
2
) (6)

where B is a sampled item batch, ℎ𝑖 , ℎ𝑖′ are hidden embeddings of

items 𝑖 and 𝑖′ respectively. Together with the MSE reconstruction

loss, the training loss is defined by

L = L𝑀𝑆𝐸 + 𝛽L𝑈 , L𝑀𝑆𝐸 =
1

|B|
∑︁
𝑖∈B

∥𝑥𝑖 − 𝑥𝑖 ∥22 (7)

where 𝛽 is a hyperparameter.

Finally, we train the proposed SAE S with only item embeddings

from the pretrained collaborative filtering model R. Note that SAE
trainedwith only item embeddings is sufficient because base vectors

in the user space but not in the item space will not affect the result

of the dot product. Therefore, it will not affect item ranking for

recommendation. The TopK collaborative labels for each user 𝑢 and

item 𝑖 are then defined as

C𝑢 = argTopK(ℎ𝑢), C𝑖 = argTopK(ℎ𝑖) (8)

where argTopK() returns the indices of the TopK largest values in

the hidden embeddings of user 𝑢 and item 𝑖 . Note that ℎ𝑖 has only

𝐾 nonzero values, therefore 𝑥𝑖 is reconstructed based on only the

extracted TopK collaborative features in C𝑖 . Thus, noises and less

important information are removed in reconstructed embeddings.

Extracted collaborative features and reconstructed item embed-

dings are then integrated into LLM prompts to augment (Saul-A) or

CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea Xinyu He, Jose Sepulveda, Fei Wang, and Hanghang Tong

denoise (Saul-D) as illustrated in Fig. 2. To augment LLM prompts

with extracted user/item labels C𝑢/C𝑖 (Saul-A), the list of numerical

values are appended after user/item embeddings as a textual form

of user/item representations. To denoise LLM prompts (Saul-D),

reconstructed item embeddings are inserted after item titles.

4 Experiments

4.1 Experimental Setting

Datasets. To evaluate the performance of SaulRec, we follow [10]

to use three Amazon datasets [16] for experiments. Data statistics

are summarized in Table 1.

Table 1: Data Statistics

Dataset #Users #Items Avg.Len

Luxury (Luxury Beauty) 11690 6534 4.15

Toys (Toys and Games) 42597 75377 11.10

Movies (Movies and TV) 172229 64226 8.14

Baselines. We compare our proposed frameworks with three col-

laborative filtering recommender systems (SimGCL [25], NCF [6],

SASRec [9]) and two collaborative filtering enhanced LLM-based

recommender systems (LLARA[12], A-LLMRec[10]).

Metric and Evaluation Protocol. User purchase sequences are di-

vided into train, validation and test sets. For user sequence [𝑖1, 𝑖2, ..., 𝑖𝑛],
𝑖𝑛 is considered as the next item in the test set, 𝑖𝑛−1 is the next

item in the validation set, 𝑖1 ∼ 𝑖𝑛−2 are used as the training set. To

evaluate the performance of all models, 19 randomly selected items

for each user with no previous interactions are selected. Models

make the next item prediction based on the candidate set composed

of selected 19 negative candidates and the ground truth next item.

Hit@1 is applied as the evaluation metric.

Implementation. Following [10], we adopt OPT-6.7B [27] as the

backbone LLM model. We remove users and items with fewer than

4 interactions in the Luxury dataset. We remove users and items

with fewer than 5 interactions and interactions with rating less than

4 in the Movies dataset. We remove users and items with fewer

than 10 interactions and interactions with rating less than 4 in the

Toys dataset. For SaulRec, we set 𝑑 = 50, 𝑑ℎ = 2, 048, 𝐾 = 5 to train

Toys and Movies datasets, and set 𝑑 = 50, 𝑑ℎ = 256, 𝐾 = 5 to train

the Luxury dataset. For LLARA, we set number of accumulated

batches to 4 and batch size to 2 due to memory constraints given

our large datasets. Experiments are conducted with NVIDIA A100-

SXM4-80GB GPU. Our codes are available at Github.

Table 2: Experimental results (Hit@1). Best results are in

bold, second best results are underlined.

Method Luxury Toys Movies

SimGCL 0.3490 0.2690 0.4461

NCF 0.4191 0.3357 0.5577

SASRec 0.5211 0.2815 0.5990

LLARA 0.4336 0.3495 0.5705

A-LLMRec 0.5578 0.3609 0.5767

Saul-D 0.5715 0.3967 0.6055

Saul-A 0.5579 0.3736 0.5798

4.2 Overall Performance

Experimental results are shown in Table 2. Our proposed methods

outperform all baselines, including the basemodel A-LLMRec, while

Saul-D performs better than Saul-A. Collaborative filtering en-

hanced LLM-based recommender systems generally perform better

than collaborative filtering models, except for the Movies dataset

where movie titles include many non-english words that affects

the reasoning performance of LLMs. As we represent extracted

features as index numbers in Saul-A, it might lose the similarity

information between features, which is the potential reason of why

Saul-D reaches a better performance than Saul-A.

4.3 Training Efficiency

Given the long training time of many LLM-based recommender

systems, it is important to explore the learning efficiency of LLM-

based recommender systems. In this experiment, we report the

performance of our models and base model A-LLMRec after 1

epoch of training in Table 3. We can see that Saul-A reaches the

best performance when trained with limited rounds especially for

larger datasets, in contrast to the overall performance where Saul-

D reached the best. This implies that explicitly representing col-

laborative knowledge as natural languages better aligns with the

knowledge of LLM, making LLM easier to understand the input

prompts and to be tuned.

Table 3: Hit@1 after training 1 epoch.

Method Luxury Toys Movies

A-LLMRec 0.4583 0.3559 0.5519

Saul-D 0.5435 0.3499 0.5632

Saul-A 0.5320 0.3685 0.5768

4.4 Case Studies

For a user who has sequentially watched "The Lord Of The Rings:

Trilogy", "Following-Complete Series 1", "The Day the Earth Stood

Still VHS", "Nightbreed", "Your Inner Fish", "Dawn of the Planet

of the Apes"," Nature: Fabulous Frogs", "Gattaca", "Matinee VHS",

"Beyond the Myth", A-LLMRec predicted "Nightingale" as the next

item. However, the proposed SaulRec ‘knows’ that user labels

are [30, 565, 743, 48, 49], labels for "Nightingale" and "Game of

Thrones: Season 5" are [684, 562, 405, 47, 52] and [48, 442, 576, 565,
88] respectively, "Nightbreed", "Gattaca", and "Beyond the Myth" in

the watch history are also labeled as 48, and "Dawn of the Planet

of the Apes" in the watch history is also labeled 565. Therefore,
both Saul-A and Saul-D successfully predicted "Game of Thrones:

Season 5" as the next item because it has labels 48, 565 which overlap
with user labels and labels of previously watched movies, while

"Nightintgale" does not share any common labels with them.

5 Conclusion

In this paper, we propose a novel collaborative filtering enhanced

LLM-based recommender system SaulRec. The main idea is to

leverage the power of sparse autoencoders (SAEs) to improve LLM

prompts. With extracted collaborative features from SAEs, input

prompts are augmentedwith knowledge from collaborative filtering

in the form of natural language. By only retaining TopK features

of items to reconstruct item embeddings, noisy information are

mitigated and quality of input prompts are improved. Experiments

demonstrate the effectiveness and the efficiency of our methods.

Acknowledgments

This work is partially supported by NSF (2316233) and AFOSR

(FA9550-24-1-0002). The content of the information in this docu-

ment does not necessarily reflect the position or the policy of the

Government, and no official endorsement should be inferred. The

U.S. Government is authorized to reproduce and distribute reprints

for Government purposes notwithstanding any copyright notation

here on.

https://github.com/xinyuu-he/SaulRec

Sparse Autoencoders in Collaborative Filtering Enhanced LLM-based Recommender Systems CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea

6 GenAI Usage Disclosure

We know that the ACM’s Authorship Policy requires full disclosure

of all use of generative AI tools in all stages of the research (includ-

ing the code and data) and the writing. No GenAI tools were used

in any stage of the research, nor in the writing.

References

[1] Keqin Bao, Jizhi Zhang, Yang Zhang, Wenjie Wang, Fuli Feng, and Xiangnan

He. Tallrec: An effective and efficient tuning framework to align large language

model with recommendation. In Proceedings of the 17th ACM Conference on
Recommender Systems, pages 1007–1014, 2023.

[2] Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey.

Sparse autoencoders find highly interpretable features in language models. arXiv
preprint arXiv:2309.08600, 2023.

[3] Leo Gao, Tom Dupre la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Rad-

ford, Ilya Sutskever, Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse

autoencoders. In The Thirteenth International Conference on Learning Representa-
tions, 2025.

[4] Yunfan Gao, Tao Sheng, Youlin Xiang, Yun Xiong, Haofen Wang, and Jiawei

Zhang. Chat-rec: Towards interactive and explainable llms-augmented recom-

mender system. arXiv preprint arXiv:2303.14524, 2023.
[5] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng

Wang. Lightgcn: Simplifying and powering graph convolution network for

recommendation. In Proceedings of the 43rd International ACM SIGIR conference
on research and development in Information Retrieval, pages 639–648, 2020.

[6] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua.

Neural collaborative filtering. In Proceedings of the 26th International Conference
on World Wide Web, WWW ’17, page 173–182, Republic and Canton of Geneva,

CHE, 2017. International World Wide Web Conferences Steering Committee.

[7] Zhankui He, Zhouhang Xie, Rahul Jha, Harald Steck, Dawen Liang, Yesu Feng,

Bodhisattwa Prasad Majumder, Nathan Kallus, and Julian McAuley. Large lan-

guage models as zero-shot conversational recommenders. In Proceedings of the
32nd ACM international conference on information and knowledge management,
pages 720–730, 2023.

[8] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean

Wang, Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language

models. arXiv preprint arXiv:2106.09685, 2021.
[9] Wang-Cheng Kang and Julian McAuley. Self-attentive sequential recommenda-

tion. In 2018 IEEE International Conference on Data Mining (ICDM), pages 197–206,
2018.

[10] Sein Kim, Hongseok Kang, Seungyoon Choi, Donghyun Kim, Minchul Yang,

and Chanyoung Park. Large language models meet collaborative filtering: An

efficient all-round llm-based recommender system. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pages 1395–1406,
2024.

[11] Xuegui Li, Shuo Feng, Nan Hou, Ruyi Wang, Hanyang Li, Ming Gao, and Siyuan

Li. Surface microseismic data denoising based on sparse autoencoder and kalman

filter. Systems Science & Control Engineering, 10(1):616–628, 2022.
[12] Jiayi Liao, Sihang Li, Zhengyi Yang, JiancanWu, Yancheng Yuan, XiangWang, and

Xiangnan He. Llara: Large language-recommendation assistant. In Proceedings
of the 47th International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 1785–1795, 2024.

[13] Hanjia Lyu, Song Jiang, Hanqing Zeng, Yinglong Xia, Qifan Wang, Si Zhang, Ren

Chen, Christopher Leung, Jiajie Tang, and Jiebo Luo. Llm-rec: Personalized recom-

mendation via prompting large language models. arXiv preprint arXiv:2307.15780,
2023.

[14] Alireza Makhzani and Brendan Frey. K-sparse autoencoders. arXiv preprint
arXiv:1312.5663, 2013.

[15] Andrew Ng et al. Sparse autoencoder. CS294A Lecture notes, 72(2011):1–19, 2011.
[16] Jianmo Ni, Jiacheng Li, and Julian McAuley. Justifying recommendations using

distantly-labeled reviews and fine-grained aspects. In Conference on Empirical
Methods in Natural Language Processing, 2019.

[17] Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Tom Lieberum, Vikrant

Varma, János Kramár, Rohin Shah, andNeel Nanda. Improving dictionary learning

with gated sparse autoencoders. arXiv preprint arXiv:2404.16014, 2024.
[18] N Reimers. Sentence-bert: Sentence embeddings using siamese bert-networks.

arXiv preprint arXiv:1908.10084, 2019.
[19] Scott Sanner, Krisztian Balog, Filip Radlinski, Ben Wedin, and Lucas Dixon. Large

language models are competitive near cold-start recommenders for language-and

item-based preferences. In Proceedings of the 17th ACM conference on recommender
systems, pages 890–896, 2023.

[20] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.

Bert4rec: Sequential recommendation with bidirectional encoder representations

from transformer. In Proceedings of the 28th ACM International Conference on
Information and Knowledge Management, CIKM ’19, page 1441–1450, New York,

NY, USA, 2019. Association for Computing Machinery.

[21] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos

Guestrin, Percy Liang, and Tatsunori B Hashimoto. Alpaca: A strong, replicable

instruction-following model. Stanford Center for Research on Foundation Models.
https://crfm. stanford. edu/2023/03/13/alpaca. html, 3(6):7, 2023.

[22] Chenyang Wang, Yuanqing Yu, Weizhi Ma, Min Zhang, Chong Chen, Yiqun

Liu, and Shaoping Ma. Towards representation alignment and uniformity in

collaborative filtering. In Proceedings of the 28th ACM SIGKDD conference on
knowledge discovery and data mining, pages 1816–1825, 2022.

[23] Jianling Wang, Haokai Lu, James Caverlee, Ed H Chi, and Minmin Chen. Large

language models as data augmenters for cold-start item recommendation. In

Companion Proceedings of the ACM on Web Conference 2024, pages 726–729, 2024.
[24] Lei Wang and Ee-Peng Lim. Zero-shot next-item recommendation using large

pretrained language models. arXiv preprint arXiv:2304.03153, 2023.
[25] Junliang Yu, Hongzhi Yin, Xin Xia, Tong Chen, Lizhen Cui, and Quoc Viet Hung

Nguyen. Are graph augmentations necessary? simple graph contrastive learning

for recommendation. In Proceedings of the 45th international ACM SIGIR conference
on research and development in information retrieval, pages 1294–1303, 2022.

[26] Zheng Yuan, Fajie Yuan, Yu Song, Youhua Li, Junchen Fu, Fei Yang, Yunzhu Pan,

and Yongxin Ni. Where to go next for recommender systems? id-vs. modality-

based recommender models revisited. In Proceedings of the 46th International
ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 2639–2649, 2023.

[27] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui

Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open

pre-trained transformer language models. arXiv preprint arXiv:2205.01068, 2022.
[28] Yang Zhang, Keqin Bao, Ming Yan, Wenjie Wang, Fuli Feng, and Xiangnan He.

Text-like encoding of collaborative information in large language models for

recommendation. arXiv preprint arXiv:2406.03210, 2024.
[29] Yang Zhang, Fuli Feng, Jizhi Zhang, Keqin Bao, Qifan Wang, and Xiangnan He.

Collm: Integrating collaborative embeddings into large language models for

recommendation. IEEE Transactions on Knowledge and Data Engineering, 2025.
[30] Yihao Zhang, Chu Zhao, Mian Chen, and Meng Yuan. Integrating stacked sparse

auto-encoder into matrix factorization for rating prediction. IEEE Access, 9:17641–
17648, 2021.

[31] Yaochen Zhu, Liang Wu, Qi Guo, Liangjie Hong, and Jundong Li. Collaborative

large language model for recommender systems. In Proceedings of the ACM Web
Conference 2024, pages 3162–3172, 2024.

	Abstract
	1 Introduction
	2 Related Works
	3 Proposed frameworks
	3.1 SaulRec Framework
	3.2 Sparse Autoencoder

	4 Experiments
	4.1 Experimental Setting
	4.2 Overall Performance
	4.3 Training Efficiency
	4.4 Case Studies

	5 Conclusion
	Acknowledgments
	6 GenAI Usage Disclosure
	References

