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Abstract
Climate science studies the structure and dynamics of Earth’s cli-
mate system and seeks to understand how climate changes over
time, where the data is usually stored in the format of time se-
ries, recording the climate features, geolocation, time attributes,
etc. Recently, much research attention has been paid to the cli-
mate benchmarks. In addition to the most common task of weather
forecasting, several pioneering benchmark works are proposed
for extending the modality, such as domain-specific applications
like tropical cyclone intensity prediction and flash flood damage
estimation, or climate statement and confidence level in the for-
mat of natural language. To further motivate the artificial intel-
ligence development for climate science, in this paper, we first
contribute a multi-modal climate benchmark, i.e., ClimateBench-
M, which aligns (1) the time series climate data from ERA5, (2)
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extreme weather events data from NOAA, and (3) satellite im-
age data from NASA HLS based on a unified spatial-temporal
granularity. Second, under each data modality, we also propose
a simple but strong generative method that could produce com-
petitive performance in weather forecasting, thunderstorm alerts,
and crop segmentation tasks in the proposed ClimateBench-M.
The data and code of ClimateBench-M are publicly available at
https://github.com/iDEA-iSAIL-Lab-UIUC/ClimateBench-M.
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1 Introduction
Climate science investigates the structure and dynamics of earth’s
climate system and seeks to understand how global, regional, and
local climates are maintained as well as the processes by which they
change over time,1 In general, climate data is usually represented
by a time series numerical format that covers climate features (e.g.,
temperature, wind, and atmospheric water content), geolocation
information (e.g., longitude, latitude, and geocode), and time (e.g.,
hours and days). Recently, to develop artificial intelligence tech-
niques for climate science, many interesting climate benchmarks
have been proposed. For example, WeatherBench [14] provides a
common data set and evaluation metrics to enable direct compar-
ison between different data-driven approaches to medium-range
weather forecasting (3-5 days lead time). In addition to the weather
forecasting climate benchmarks, some task-specific and domain-
specific benchmarks are proposed. For example, the authors in [13]
present a large-scale climate dataset called ExtremeWeather, which
is designed to encourage machine learning research in the detec-
tion, localization, and understanding of extreme weather events, to
further address the problem that the existing labeled data for cli-
mate patterns like hurricanes, extra-tropical cyclones, and weather
fronts can be incomplete.

Those aforementioned benchmarks pave the way for developing
possible artificial intelligence techniques for climate science from
one single aspect. Then, a natural question arises: can we provide
a comprehensive climate benchmark that has multiple data
modalities for chasing the artificial intelligence [1] for climate
applications? To speed up the AI development for climate science,
in this paper, we first propose a multi-modal climate benchmark
named ClimateBench-M, which aligns the ERA5 [7]2 time series
data for weather forecasting, NOAA 3 extreme weather events
records for extreme weather alerts, and HLS [8] 4 satellite image
data for the crop segmentation, based on a unified spatial-temporal
granularity. Moreover, we also propose a simple generative model,
called SGM, for each task in the proposed ClimateBench-M. SGM
is based on the encoder-decoder framework, and the choices of
encoders and decoders vary for different tasks. Overall, in each
task of ClimateBench-M, SGM produces a competitive performance
with different baseline methods.

2 ClimateBench-M
Datasets. ClimateBench-M benchmark aligns three datasets from
different modalities based on the spatial and temporal granularity.
The raw data originates from public datasets ERA5 [7]5, NOAA 6

and NASA HLS [8] 7.
• ERA5 provides hourly estimates for a large number of atmo-
spheric, ocean-wave and land-surface quantities. The data is
available from 1940 onwards.

1https://plato.stanford.edu/entries/climate-science/
2https://cds.climate.copernicus.eu/cdsapp#!/home
3https://www.ncdc.noaa.gov/stormevents/ftp.jsp
4https://huggingface.co/datasets/ibm-nasa-geospatial/multi-temporal-crop-
classification
5https://cds.climate.copernicus.eu/cdsapp#!/home
6https://www.ncdc.noaa.gov/stormevents/ftp.jsp
7https://huggingface.co/datasets/ibm-nasa-geospatial/multi-temporal-crop-
classification

• NOAA is National Oceanic and Atmospheric Administration that
has the National Centers for Environmental Information (NCEI),
which center published the Storm Events Database, currently
recording the data from January 1950 to February 2024, as entered
by NOAA’s National Weather Service (NWS).

• The NASAHLS (Harmonized Landsat and Sentinel-2) v2.0 dataset
integrates high-resolution, multi-spectral satellite images from
Landsat and Sentinel-2 missions, spanning from 2013 to present.

Task 1: Weather Forecasting. We denote the weather time
series data stored in X ∈ R𝑁×𝐷×𝑇 . Note that a slice of X, i.e., X(𝑖, :
, :) ∈ R𝐷×𝑇 , 𝑖 ∈ {1, . . . , 𝑁 }, is typically denoted as the common
multivariate time series data [18, 20]. For example, in each element
X(𝑖, 𝑑, 𝑡) of the nationwide weather data X, 𝑖 ∈ {1 . . . , 𝑁 } can be
the number of spatial locations (e.g., counties), 𝑑 ∈ {1 . . . , 𝐷} can be
the dimension of weather features (e.g., temperature and humidity),
and 𝑡 ∈ {1 . . . ,𝑇 } can be the timestamp (e.g., hour). Throughout
the paper, we use the calligraphic letter to denote a 3D tensor (e.g.,
X) and the bold capital letter to denote a 2D matrix (e.g., 𝑿 ). Given
the time series data X ∈ R𝑁×𝐷×𝑇 , we aim to forecast the future
data X′ ∈ R𝑁×𝐷×𝜏 , where 𝜏 is a forecasting window.

Task 2: Thunderstorm Alerts. Recall that, in the forecasting
task, we aim to forecast the future data X′ ∈ R𝑁×𝐷×𝜏 from the
history data X ∈ R𝑁×𝐷×𝑇 . For achieving the thunderstorm alert
task, we also aim to find the anomaly in the forecast, i.e., with the
forecast X′, we aim to detect if X′ contains abnormal values, i.e.,
whether thunderstorms happens in a certain location on a certain
future hour based on the forecasting window.

Task 3: Crop Segmentation. For the crop segmentation task,
we collect a series of satellite images at different times but at the
same place, aiming to distinguish the crop types in various regions
within those images. Specifically, we denote the satellite images as
X ∈ R𝑁×𝐷×𝑇 , where 𝑁 represents the number of pixels within the
images,𝐷 represents the number of channels (e.g., RGB brand, near-
infrared, and shortwave infrared), and 𝑇 represents the number
of images at the same place. We also denote the crop types as
y ∈ R𝑁 , and y(𝑖), 𝑖 ∈ {1, . . . , 𝑁 } represents the type of crop grown
in the area corresponding to the 𝑖-th pixel. Given the image data
X ∈ R𝑁×𝐷×𝑇 , we aim to predict the crop type of each pixel y ∈ R𝑁 ,
as shown in Figure 2.

3 Simple Generative Model (SGM)
We first give an overview of SGM and then induce the details of
applying it to different tasks of ClimateBench-M benchmark.

Overview of ClimateBench-M. As shown in Figure 3, SGM
is based on an encoder-decoder framework and has two pipelines.
The upper pipeline is for time series forecasting (targeting the
weather forecasting task) and anomaly detection (targeting the
thunderstorm alerts). The lower pipeline is for image segmentation
(targeting the temporal crop segmentation).

Deployment of SGMforTime Series Forecasting andAnom-
aly Detection. Here, we briefly introduce how the upper pipeline
of SGM achieves time series forecasting and anomaly detection. The
detailed information can also be found in our previous paper [5].
We design a simple but effective module in SGM to achieve anom-
aly detection along with the forecasting, i.e., an encoder-decoder
model that tries to explore the distribution of normal features in X

https://plato.stanford.edu/entries/climate-science/
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https://www.ncdc.noaa.gov/stormevents/ftp.jsp
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https://huggingface.co/datasets/ibm-nasa-geospatial/multi-temporal-crop-classification


ClimateBench-M: A Multi-Modal Climate Data Benchmark
with a Simple Generative Method CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea

Figure 1: Left: Geographic Distribution of Covered Counties in ClimateBench-M (The number in the circle stands for the
aggregation of nearby counties) Right: A Specific Example of Jefferson, Alabama U.S. on 9:00-10:00, 01/05/2017, UTC Time

Table 1: (Part of) Features with Instance Values Sampled from Jefferson, Alabama U.S. on 9:00-10:00, 01/05/2017, UTC.

Feature Unit Description Value

10-meter wind gust
(maximum)

m s−1 Maximum 3-second wind at 10 m height as defined
by WMO. Parametrization represents turbulence only
before 01102008; thereafter effects of convection are
included. The 3 s gust is computed every time step, and
the maximum is kept since the last postprocessing.

3.620435

Atmospheric water
content

kg m−2 This parameter is the sum of water vapor, liquid water,
cloud ice, rain, and snow in a column extending from
the surface of the Earth to the top of the atmosphere. In
old versions of the ECMWF model (IFS), rain and snow
were not accounted for.

9.287734

Table 2: Statistics of ThunderstormRecords in ClimateBench-
M over 238 Selected Counties in the US from 2017 to 2021

Year 2017 2018 2019 2020 2021
Jan 26 3 2 41 7
Feb 53 6 9 50 8
Mar 85 16 26 63 62
Apr 93 44 140 170 60
May 245 207 263 175 218
Jun 770 302 348 331 452
Jul 306 291 457 453 701
Aug 294 269 415 354 435
Sep 61 80 122 29 123
Oct 32 32 82 60 55
Nov 20 22 9 114 11
Dec 5 15 11 8 58

Figure 2: Example of the crop type segmentation task based
on NASA HLS and USDA CDL.

as shown in Figure 3. As long as this encoder-decoder model can

Figure 3: Simple Generative Model (SGM). Upper level of the
figure is the time series forecasting pipeline, and the lower
level of the figure is the image segmentation pipeline. Two
pipelines have different choices of encoders and decoders.

capture the latent distribution for normal events, then the gener-
ation probability of a piece of time series data can be utilized as
the condition for detecting anomaly patterns. This is because the
extreme values are identified with a remarkably low generation
probability. To be specific, after the forecast 𝑯 (𝑡 ) is output, the
generation probability of 𝑯 (𝑡 ) into 𝑿 (𝑡 ) can be used as the evi-
dence to detect the anomalies at 𝑡 . The transformation from𝑿 (𝑡 ) to
𝑯 (𝑡 ) can be realized by a model-agnostic pre-trained autoencoder.
Moreover, we use the mean absolute error (MAE) loss on the pre-
diction and the ground truth, which is effective and widely applied
to time-series forecasting tasks [11, 17].

min
Θ𝑖 ,𝑨(𝑡−1) ,...,𝑨(𝑡−𝑙 )

L𝑝𝑟𝑒𝑑 =
∑︁
𝑖

∑︁
𝑡

|𝐻 (𝑖, :) (𝑡 ) − 𝐻̂ (𝑖, :) (𝑡 ) | (1)
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where Θ𝑖 ,𝑨(𝑡−1) , . . . ,𝑨(𝑡−𝑙 ) are all learnable parameters for the
prediction 𝐻̂ (𝑖, :) (𝑡 ) of variable 𝑖 at time 𝑡 . Note that 𝑨(𝑡−1) is a
learnable parameter denoting the causal effects among all locations
at time 𝑡 for better forecasting performance, and the learning simply
relies on the Structural Equation Model (SEM) [21].

Deployment of SGM for Image Segmentation. In the task of
crop classification, we use mmsegmentation [19], an OpenMMLab
Semantic Segmentation Toolbox, to segment the satellite images,
following [9]. To handle the crop satellite image, we choose vision
transformer [4] as the backbone of the encoder-decoder pairs for our
proposed SGM. We use random crop and random flip to augment
the training data.

Table 3: Forecasting Error (MAE, 10−2)
ERA5-2017 (↓) ERA5-2018 (↓) ERA5-2019 (↓) ERA5-2020 (↓)

GRU 1.8834 ± 0.0126 1.9764 ± 0.1466 1.6194 ± 0.2645 1.7859 ± 0.2324
DCRNN 0.0819 ± 0.0025 0.0797 ± 0.0049 0.0799 ± 0.0035 0.0826 ± 0.0033
GTS 0.0777 ± 0.0054 0.0766 ± 0.0029 0.0760 ± 0.0031 0.0742 ± 0.0021
SGM 0.0496 ± 0.0017 0.0499 ± 0.0017 0.0502 ± 0.0016 0.0488 ± 0.0019
ST-SSL 0.0345 ± 0.0051 0.0330 ± 0.0018 0.0361 ± 0.0021 0.0348 ± 0.0020
SGM++ 0.0271 ± 0.0004 0.0276 ± 0.0004 0.0282 ± 0.0003 0.0265 ± 0.0004

4 Experiments
Evaluation Metrics. We measure the performance of the base-
lines on the ClimateBench-M with respect to the following met-
rics: Accuracy (Acc), Mean Absolute Error (MAE), Intersection of
Union (IoU) 8, and Area Under the Receiver Operating Characteris-
tic Curve (AUC-ROC).

Baselines. The first category is for tensor time series forecasting:
(1) GRU [3], (2) DCRNN [11], (3) GTS [17], and (4) ST-SSL [10]. The
second category is for anomaly detection on tensor time series:
(1) DeepSAD [16], (2) DeepSVDD [15], and (3) DROCC [6]. Since
these three methods have no forecast abilities, we let them use
the ground-truth observations, and our SGM utilizes the forecast
features during anomaly detection experiments. The third category
is for image segmentation: (1) DeepLabV3 [2] and (2) Swin [12].
Since the aforementioned baselines do not inherently incorporate
temporal dependencies, we concatenate all images at the same
location along the channel dimension and utilize the combined
image for segmentation.

Weather Forecasting. In Table 3, we can observe a general
pattern that our SGM outperforms the baselines with GTS perform-
ing better than DCGNN. An explanation is that the temporally
fine-grained causal relationships can contribute more to the fore-
casting accuracy than non-causal directed graphs. Moreover, ST-SSL
achieves competitive forecasting performance via contrastive learn-
ing on time series. Motivated by a contrastive manner, SGM++ is
proposed by persistence forecast constraints. That is, the current
forecast of SGM is further calibrated by its nearest past timewindow
(i.e., the last 24 hours in our setting).

Anomaly Detection. After forecasting, we can have the hourly
forecast of weather features at certain locations, denoted as X′.
Then, we use the encoder-decoder model in Figure 3 to calculate
the feature-wise generation probability using mean squared error
(MSE) between X′ and its generation X̄′. Thus, we can calculate
the average of feature-wise generation probability as the condition
of anomalies to identify if an anomaly weather pattern (e.g., a thun-
derstorm) happens in an hour in a particular location. In Table 4, we
8It measures the ratio of the intersection of two sets over the union of two sets

use the Area Under the ROC Curve (i.e., AUC-ROC) as the metric,
repeat the experiments four times, and report the performance of
ClimateBench-M with baselines.

Table 4: Anomaly Detection Performance (AUC-ROC)
NOAA-2017 (↑) NOAA-2018 (↑) NOAA-2019 (↑) NOAA-2020 (↑)

DeepSAD 0.5305 ± 0.0481 0.5267 ± 0.0406 0.5563 ± 0.0460 0.6420 ± 0.0054
DeepSVDD 0.5201 ± 0.0045 0.5603 ± 0.0111 0.6784 ± 0.0112 0.5820 ± 0.0205
DROCC 0.5319 ± 0.0661 0.5103 ± 0.0147 0.6236 ± 0.0992 0.5630 ± 0.1082
SGM 0.5556 ± 0.0010 0.5685 ± 0.0011 0.6298 ± 0.0184 0.6745 ± 0.0185

Crop Classification. In addition to the first two tasks, we also
assess the quality of ClimateBench-M in the crop classification
task. Table 5 presents the results of baseline methods. We have the
following observations: (1) All methods achieve good performance
on some class, such as Open Water, Soybeans, Corn, Forest, etc,
indicating the high quality of our benchmark. (2) These methods
tend to perform worse in other classes, such as Sorghum, Other,
Alfalfa. By investigation, we attribute this observation to the limited
samples for these classes, comparing with the rich samples for the
classes with good performance. (3) Our proposed method SGM
outperforms baseline methods, demonstrating the effectiveness.

Table 5: Crop Classification

Baselines SGM Swin DeepLabV3
Classes IoU (↑) Acc (↑) IoU (↑) Acc (↑) IoU (↑) Acc (↑)

Natural Vegetation 39.23 46.86 45.66 71.80 47.31 64.28
Forest 42.44 61.07 34.47 41.63 46.50 77.10
Corn 53.30 63.56 52.00 62.53 52.30 72.81

Soybeans 54.35 69.76 56.53 72.78 47.96 72.54
Wetlands 40.17 59.55 42.15 69.57 35.42 43.62

Developed/Barren 34.88 52.25 40.19 56.08 44.04 58.88
Open Water 69.49 91.89 76.09 57.81 76.39 88.85
Winter Wheat 55.54 75.96 48.21 86.41 47.75 54.32

Alfalfa 24.78 55.51 20.99 54.64 29.39 34.84
Fallow/ Idle Cropland 38.32 61.75 37.14 23.23 17.55 19.45

Cotton 33.53 66.66 24.38 65.86 35.80 66.38
Sorghum 33.48 68.93 33.95 28.85 23.40 24.85
Other 28.27 42.81 28.72 45.56 27.14 41.58
Average 42.14 62.81 41.57 55.67 40.84 55.34

5 Conclusion
In conclusion, we provide a multi-modal climate benchmark named
ClimateBench-M, integrating diverse datasets and assessing the
quality of this benchmark by conducting experiments with various
tasks. Our experimental results demonstrate the high quality of
ClimateBench-M. Additionally, we propose SGM, a simple encoder-
decoder-based generative model, which demonstrates competitive
performance across various tasks.
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