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Abstract— We present BuzzRacer, a palm-sized autonomous
vehicle platform suitable for multi-agent autonomous racing.
BuzzRacer consists of two parts. First, a software framework
with multiple racetrack environments, dynamic simulation,
visualization, and control pipelines. Second, a miniature au-
tonomous vehicle platform capable of 1g acceleration and
3.5m/s top speed. BuzzRacer is an open-source project currently
used at Georgia Tech in a project-based robotics course and re-
search projects for experimental validation and benchmarking
of novel planning and control algorithms.

I. INTRODUCTION
A. Background

Autonomous racing presents a unique challenge of con-
trolling an underactuated nonlinear system near control
saturation while operating in close proximity to the track
boundaries. In addition, algorithms must also interact with
hard-to-predict opponents and satisfy stringent real-time
constraints on solution time. The problem involves many
challenges in the area of autonomy and has therefore been
a topic of intense research in recent years [1]. In single-car
racing, domain-specific hierarchical controllers [2], various
Model Predictive Controller schemes (MPC) [3], [4], [5],
and reinforcement-learning (RL) based methods [6] have
achieved near or superhuman performance. In multi-car
racing, game-theoretic approaches such as SE-IBR [7], AL-
GAMES [8], RL methods [9] have demonstrated promising
results with interesting self-emerged dynamic behavior in
blocking and overtaking similar to those observed by human
racecar drivers.

Contrary to autonomous driving on public roads, au-
tonomous racing takes place on a dedicated racetrack, a much
more structured environment without heterogeneous traffic
participants. In addition, autonomous racing operates a vehi-
cle at its performance limit and has a much higher tolerance
for risk. Despite these differences, autonomous racing can
be a valuable validation environment to develop algorithms
that may be adapted for autonomous driving. Experience in
driving at the handling limit builds insights for controlling
the vehicle at regions of the state space rarely visited during
normal driving, making these regions available in emergency
scenarios, where aggressive maneuvering is necessary to
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maintain safety (e.g., swerving to avoid a road hazard). A
study on game theory’s application to vehicle interaction
can help future self-driving cars interact with humans more
effectively, preventing the frozen robot problem [10] that
stymies modern self-driving cars.

In spite of the recent surge in interest and the promis-
ing prospects, publications with experiments on physical
platforms in the field of autonomous car racing remain
sparse due to the high cost and effort in developing a
suitable platform and solving the perception, localization,
communication, and other problems prerequisite to on-board
planning and control. The simulations and experiments used
to validate existing game-theoretic car racing controllers are
done in vastly dissimilar environments, and fair performance
comparison is difficult. We believe the lack of a suitable plat-
form contributes to this situation. In the following section,
we categorize some existing popular autonomous vehicle
platforms and discuss why they may not be ideal as a
universal platform for testing autonomous racing algorithms.

B. Related Work

Most of the current literature makes use of scaled plat-
forms. These are built from hobby remote-control (RC) cars.
Georgia Tech’s AutoRally uses a 1/5 scale RC car outfitted
with a full desktop computer with graphics cards, stereo
cameras, and differential GPS [11]. The MIT Racecar [12]
and the Berkeley Autonomous Vehicle make use of a 1/10
scale chassis carrying a System-on-board (SOB) computer
like an NVIDIA Jetson, and sensors including 2D LIDAR,
camera, wheel-speed sensor, etc. These platforms are rela-
tively affordable and suitable for full-stack projects involving
perception, localization, planning, and control. However, they
also have some limitations.

First, computation is done onboard, which means that
researchers have to maintain a development environment for
every vehicle they use and must work under the constraint of
limited on-board computation resources. Many algorithms in
game-theoretic control are computationally heavy and may
not run on embedded hardware.

Second, the sensors, the computer, and the computer
battery are heavy, negatively affecting the vehicle’s dynamic
performance. While useful for perception and localization,
these components are redundant for control and planning
algorithms that focus elsewhere.

Third, these vehicles need a sizable room to operate at a
speed that generates interesting limit handling behavior like
understeering and oversteering. Such spaces may be hard



to secure or are accessible only temporarily, and complex
circuits may be difficult to reproduce accurately.

Observing a gap in the current autonomous vehicle plat-
forms, we developed BuzzRacer, a 1/28 scale palm-sized
vehicle platform capable of 1g lateral acceleration and 3.5m/s
top speed. It supports two-way communication via WiFi
and is equipped with a 6-axis inertial measurement unit
(IMU). BuzzRacer is intended for offboard computing and
utilizes a visual tracking system for state measurements. In
addition to the hardware platform, we developed a modular
software stack with racetrack creation, dynamic simulation,
visualization, control pipelines, and extensions for additional
functionalities. This software framework can be used for
simulation, performance evaluation, algorithm comparison,
and on-car experiments.

To the best of the authors’ knowledge, only the ORCA
platform [13] developed by ETH is analogous to the pro-
posed BuzzRacer platform . However, ORCA is a closed-
source platform and the dNano RC car that it is based on
has been discontinued. BuzzRacer is open-source [14] and
its base chassis is widely available.

Using BuzzRacer, we compared two state-of-the-art game-
theoretic racing controllers, Iterated Best Response (IBR)
and iLQGame, and their non-game-theoretic counterparts,
Model Predictive Control (MPC) and iLQR.

The primary contribution of this paper is the proposed
software and hardware platform; a secondary contribution
is the comprehensive comparison of several game-theoretic
controllers using this platform illustrating the utility of
BuzzRacer as an inexpensive simulation and experimental
platform.

The rest of the paper is organized as follows: Section II
introduces the vehicle design. Section III discusses the
software stack. Section IV details the implementation for
the four controllers. Section V discusses simulation and
experimental results, followed by an outlook of future work
on the platform in Section VI

II. VEHICLE DESIGN

Three major components work together under a local area
network (LAN) during BuzzRacer operation. An Optitrack
computer runs the proprietary visual tracking software and
streams state measurements to the control computer(s). The
control computer(s) execute the planning and control algo-
rithms, and send commands to the vehicles. The vehicles
execute actuation commands and report sensor measurements
to the control computer(s). One control computer may con-
trol multiple vehicles or a separate control computer may be
used for each vehicle if running a computationally expensive
algorithm. Figure 1 shows the topology of these components.

A. Chassis

The underlying chassis of BuzzRacer is based on the
Kyosho Mini-z RC car, a 1/28 scale rear wheel drive chassis
popular with amateur RC enthusiasts (Figure 2). The realistic
body shell attached to the chassis is retained for aesthetics
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Fig. 1. BuzzRacer system components.
Pi Group BuzzRacer | Full-sized
00T 0.47 0.45
T 0.45 0.55
Coltm ™ Tu=2 0.33 0.17
L.m~ 102 0.24 0.25
TABLE I

P1 GROUP DIMENSION ANALYSIS

and crash protection. Spherical visual tracking markers are
affixed to the body shell. The BuzzRacer has dimensions
of 165x80x40 mm and weighs 170 grams, just 4 grams
heavier than the base chassis, allowing the vehicle to keep
its original high-performance vehicle dynamics.

Fig. 2.

A pair of BuzzRacer platforms.

B. Dimension Analysis

To evaluate the similarity between our scaled system and
a full-sized vehicle, we compare the nondimensional Pi
Group in Table I [15], where ¢; denotes distance between
CG and front axle, ¢ denotes wheelbase, ¢ denotes track
width, m denotes mass, C,, denotes tire stiffness, I, . denotes
rotational inertia in the vertical axis, and u denotes operating
speed. The parameters are determined experimentally, with
C, measured with a banked slope experiment, and I,
measured with a suspended trifilar torsion pendulum.

In our investigation of dimensional analysis, it is observed
that all nondimensional Pi Group parameters exhibit proxim-
ity within one order of magnitude to each other. This align-
ment signifies that the proposed platform is kinematically
and dynamically similar to its full-sized counterpart.



C. Embedded System

To enable communication over WiFi and control of the
low-level actuator dynamics, the proprietary onboard elec-
tronics are replaced with a custom PCB. The replacement
PCB consists of an Arduino Nano 33 IoT and two H-bridge
ICs, one for drive motor control and another for steering
servo motor control. Figure 3 shows a close-up of the PCB.
For most RC platforms, steering is controlled via a standard
servo. A PWM-encoded target angle is conveyed to the servo
input and the servo control board uses a black-box closed-
loop controller to track the commanded angle. A typical
servo can take about 0.10 seconds to move 60 degrees,
thus for high-performance applications, the steering servo
dynamics is not trivial. In the BuzzRacer, the servo control
circuitry is integrated into the main PCB, thus our firmware
has access to measured steering angle and control over the
low-level actuator dynamics. This improves the accuracy of
our vehicle model.

The Arduino Nano 33 IoT is equipped with a SAMD21
Cortex-MO 32bit MCU at 48MHz, a u-blox NINA radio mod-
ule providing WiFi and Bluetooth communication, and a 6-
axis IMU. To control the drive motor and the steering motor,
two 15kHz PWM signal pairs are generated using SAMD 21
IC’s CMSIS function. The servo motor is controlled by a PID
controller at 5S00Hz, and the duty cycle of the drive motor
is mapped directly to the throttle command from upper-level
software.

Fig. 3. Left: Replacement PCB. Right: BuzzRacer without body shell.

D. Communication

The SAMD MCU connects to a LAN via WiFi on startup.
It then listens for incoming packets, and streams sensor
measurements from the servo potentiometer, battery voltage,
motor current, and IMU. This information is communicated
via a lightweight protocol over UDP. The protocol con-
tains fields for the sequence number, timestamp, destination
address, source address, packet type, and payload. The
payload field is padded for a fixed packet length of 64
bytes, padding length varies depending on package types,
for instance, quality of service inquiries, actuator commands,
sensor updates, and parameter settings. The communication
frequency between the control computer and the onboard
MCU is 100Hz, which is the maximum control frequency of
the BuzzRacer platform.

III. SOFTWARE DESIGN

The BuzzRacer software stack consists of modules for
various roles including simulation, planning, control, visual-
ization, logging, etc. In order to run an experiment, the user
creates a config file specifying the module to be loaded for
each role and the parameters to be set for each module. This
versatile design allows users to create different experiments
easily without editing any source code. For example, a user
may develop a controller in simulation, and simply change
the experiment type from simulation to real world in the
config file to run a physical experiment.

In this section, we introduce the core modules of our
software stack. Figure 4 illustrates the relationship between
the modules at runtime.
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Fig. 4. BuzzRacer software stack.

A. Track

The main BuzzRacer track is assembled from straight and
turn grids. We designed the track representation following the
semantics of the physical race track layout. By specifying the
sequence of each element, it is possible to create any track
layout with a single line of source code. Figure 5 shows
several tracks of varying complexity.

In addition to the grid-style track, users may also create
arbitrary tracks by specifying track centerline and track
width.

B. State Update

State updates come from two sources. In simulation, new
state updates are calculated using a simulation model, which
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Fig. 5.

Example grid-style tracks with reference trajectory.



is a single-track dynamic bicycle model with parameters
from Unscented Kalman Filter (UKF) estimation [16]. In
the actual experiments, the vehicle position and orientation
are provided by a visual tracking system, and an Extended
Kalman Filter (EKF) is used to estimate state derivatives.
The BuzzRacer codebase supports both Optitrack and Vicon
visual tracking systems. It is possible to add artificial noise
to state updates to test the robustness of the controller.

C. Extensions

In addition to the basic control pipeline, extensions can
be loaded at runtime to provide enhanced functionalities. For
example, logging vehicle states and controls, visualizing cars
on track in real-time, and recording lap times.

A configuration file written in xml syntax specifies which
extensions are to be loaded at runtime.

IV. CONTROLLER DESIGN

In this section, we describe the formulation of the four
controllers benchmarked in our experiments.

A. Problem Formulation

Given a track defined by its reference path r(s) = (r4,7y)
and boundaries pr,(s), pr(s), we use a discrete-time kine-
matic bicycle model described in Frenet coordinates [17] for
the system dynamics.

Let z = [s,v,n,¢,B]T be the agent state, with s the
progress along the reference curve, v the speed, n the lateral
deviation,¢ the heading deviation from the reference curve,
and 3 the angle between the velocity vector and vehicle
orientation. To simplify the constraints on vehicle acceler-

ation, we select u = [ay,a,], the lateral and longitudinal
acceleration of an agent as control variables.
5o v cos(¢) 7 (1a)
1 —nk(s)
0 = ag cos(B) + ay sin(fB), (1b)
n = vsin(¢g), (Ic)
Ss U v cos(p)k(s)
=B+ 2 _ UOORPImE) 1d

B = (—ag sin(B) + ay cos(B)) /v, (le)

where x(s) is the signed curvature of the reference curve at
progress s. We discretized the model with Euler approxima-
tion.

For a non-game-theoretic agent, the control objective is
to maximize progress over the horizon k € {0, ..., K}. For
a game-theoretic agent, the game objective is to maximize
the ego agent’s lead over its opponents over the specified
horizon. We use a coefficient « (Eq. (3a)) to tune the agent
behavior, where a larger a corresponds to a more aggressive
agent less sensitive to collision. When o > 0, the agents
play a competitive game, and when o < 0, the agents play
a coordination game.

The controllers need to keep the agents within the track
boundaries and respect vehicle dynamics limits. The maxi-
mum longitudinal acceleration is bounded by the available

motor torque as a function of the current vehicle speed, and
the maximum overall acceleration is bounded by an elliptical
traction circle. Finally, the agents should avoid collision with
each other. These constraints are summarized in Eq. (2a)-(2d)
below

Track boundary n < pr(s), —n < pr(s), (2a)
Motor capacity a, < M (v), (2b)
Traction circle (——)2 4+ (—¥ )2 < 1, (2¢)

Omax,y Omax,y

Collision |n* — n?| > numin, |s° — 87| > Smin, (2d)

where M (v), Gmax,y, Gmax,z are determined by system iden-
tification.

We encode these constraints as quadratic barrier costs in
the agent cost function as follows

Ji(xg,u) =
K .

Z{—SZ_H + Z o's) o+ Th o Q g +ul Ry}

k=0 i

+ JCO1($+, Ozi) + dery(x+) + Jcm(ui), (3a)
Jeot(z, 0%) = Z 1{|AsY| < spin & |ANY | < N}

i

Coa(@) (18] = stmin)? + (A7) = e,

As? =s' —s7 AnY =n' —nJ, (3b)
Joary () = 1{n; > pr(s)}Coary(ni — pr(s))*+

1{—n; > pr(s)}Coary(—ni — pr(s))?, (3c)

Jew (i) = Wi & Ui} Cu Inf lu; — al3, (3d)

where 1{-} evaluates to unity when the condition is true,
otherwise it is zero.

B. Model Predictive Path Integral (MPPI)

Model Predictive Path Integral [18] is a sampling-based
model predictive control method that can solve optimal con-
trol problems with nonlinear dynamics and cost functions.
The original MPPI and its derivatives have been tested on
the AutoRally vehicle platform [11] as a capable controller
for single-vehicle racing.

C. Iterated Best Response (MPPI-IBR)

We combine MPPI with iterated best response (IBR)[7] to
create a game-theoretic version of MPPI. IBR converts the
multi-agent game to multiple single agent optimal control
problems by iteratively solving the optimal control problem
for each agent while modeling other agents as unreactive.
While there is no guarantee of convergence, if IBR con-
verges for a specific problem, the solution furnishes a Nash
equilibrium.

D. Iterated Linear Quadratic Regulator (iLQOR)

iLQR approximates a nonlinear problem around a refer-
ence trajectory with linear dynamics and linear quadratic cost
function. The approximated problem can be solved backward
in time by maintaining a linear quadratic value function. The



solution can be used to update the reference trajectory until
convergence.

E. iLQGame

iLQGame [19] is a game-theoretic version of iLQR. In
the backward pass, iLQGame solves the Nash policy of a
linear quadratic game [20]in each stage. iLQGame can find
an open or closed loop local Nash policy [21] for all agents
for the approximated game.

V. RESULTS

We demonstrate the BuzzRacer platform and evaluate the
performance of the MPPI, MPPI-IBR, iLQR, and iLQGame
in a series of simulations and experiments. The simulations
are run on a computer equipped with an Intel i9-10920X
CPU operating at 3.5GHz and NVIDIA RTX3090 GPU.
The sampling procedure for MPPI and MPPI-IBR is run in
parallel on GPU with CUDA.

A. Simulation

For comparing two controllers, two identical simulation
vehicles are spawned in random positions on the race track,
each controlled by a candidate controller. To promote over-
taking behavior, the two agents start close to each other and
the vehicle in the rear is given an initial speed advantage.
The experiment concludes when either vehicle finishes two
complete laps. Then, the initial states of the two vehicles are
swapped and the experiment is repeated. This removes any
potential bias in the randomness of initial starting states. Due
to the tight radius and narrow width of the grid-style tracks,
overtaking in identical cars is challenging, and we designed
three wider, smoother tracks (Figure 6) that enable the agents
to better interact. The benchmark experiments are conducted
with two iterations (when applicable) with a horizon of 20
time steps at 0.02s per step with aggressiveness o = 1.
MPPI, MPPI-IBR uses 1024 samples in rollout.

Fig. 6.

Tracks used in simulation.

MPPI and MPPI-IBR utilize the GPU for rollout of
sampled control sequences while iLQR and iLQGame run
purely on the CPU. Figure 7 shows the maximum controller
frequency achieved for MPPI-IBR and iLQGame. These
results are achieved on a desktop computer equipped with
an Intel 19-10920X 3.5GHz CPU and an Nvidia RTX3090
GPU. All controllers can run in real-time with satisfactory
performance in some configurations.

Table II shows the comparison between the two base
controllers, namely, MPPI and iLQR, with MPPI showing
an advantage in all tracks. MPPI admits nonlinear dynamics

I
3 3

Frequency(Hz)

Iy
5

—e— iter=1

iter=2
—e— iter=3
—e— iter=4

Frequency(Hz)
s oo
I~
&

10 15 20 25 30 10 15
Horizon(steps)

20 25 30
Horizon(steps)

Time Performance of iLQGame and MPPI-IBR.

Fig. 7.

without the need for approximation like iLQR, and the con-
trol noise sampling reduces its sensitivity to initial guesses.
These benefits likely contributed to the performance edge.

TABLE I
MPPI vs ILQR*

Track Win Ratio Win Ratio | Win Ratio
(as follower) | (as leader) (overall)
nascar 0.55 0.66 0.61
triangle 0.50 0.70 0.60
sine 0.78 0.62 0.70

*The win ratio indicates the winning ratio of the first controller.
*xResults averaged over 100 simulations

TABLE III
MPPI-IBR vs MPPI

Track Win Ratio Win Ratio | Win Ratio
(as follower) | (as leader) (overall)
nascar 0.54 0.54 0.54
triangle 0.52 0.74 0.63
sine 0.46 0.54 0.50
TABLE IV
ILQGAME Vs ILQR
Track Win Ratio Win Ratio | Win Ratio
(as follower) | (as leader) (overall)
nascar 0.54 0.86 0.70
triangle 0.64 0.86 0.75
sine 0.39 0.80 0.60

Tables III and IV show the benchmark result of MPPI-IBR
and iLQGame against their non-game-theoretic counterparts.
While they both performed better than their respective base-
line, iLQGame demonstrates a clear advantage. iLQGame
models the game dynamics in an LQGame in each step,
while MPPI-IBR is ignorant of agent interaction. Agent
interaction manifests only as updates to the predictions of
opponent agents. The benchmark experiments of MPPI-IBR
and iLQGame shown in Table V indicate a more formal treat-
ment of the dynamic game as in iLQGame pays dividends
in performance in a two-car racing game.

B. Experiment

We tested BuzzRacer as a platform for multi-agent racing
and validated the real-life performance of the tested con-
trollers in a series of two-car races on our grid-style track.

To further improve real-time performance, we used the
planned trajectory from each controller as a reference tra-
jectory for a Stanley tracking controller [22]. This allows



TABLE V
MPPI-IBR vs ILQGAME

Track Win Ratio Win Ratio | Win Ratio
(as follower) | (as leader) (overall)
nascar 0.44 0.30 0.37
triangle 0.24 0.08 0.16
sine 0.10 0.17 0.14

us to run the tracking controller asynchronously at a higher
frequency and reduces latency in the control pipeline.

Since BuzzRacer cars are identical, the controllers achieve
very close lap times, and rarely build enough speed differ-
ential for overtaking. In simulations, we manually imposed
an initial speed differential to promote overtaking. In experi-
ments, we restricted the performance of one agent to achieve
similar results.

We found that the tested controllers were able to navigate
the track without collision, and utilized tactics similar to
faking and pushing as seen in human drivers. Figure 8 shows
snapshots of an overtake. Videos of the experiments are
available on the BuzzRacer project website [14].

Fig. 8.

Snapshots of an overtake

VI. CONCLUSIONS

In this work, we demonstrated a novel miniature au-
tonomous racing platform BuzzRacer that costs less than
$200 for a single unit. It is suitable for developing and testing
multi-agent planning and control algorithms. The modular
software stack minimizes the overhead of transitioning from
simulation to experiment. With this platform, we proposed a
formulation of the two-car racing game and compared the
performance of two state-of-art game-theoretic controllers
and their non-game theoretic base versions in a series of
simulation and on-car experiments. Current work focuses
on the elimination of the rather expensive Optitrack system
using on-board time-of-flight sensors for relative localization
and collision avoidance.
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