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What we know is a drop, what we don’t know is an ocean.
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SUMMARY

Homomorphic Encryption is a relatively new cryptographic method which, unlike tra-
ditional encryption, allows computations to be preformed on encrypted data. Robotic con-
trollers can take advantage of these new techniques to increase system security by en-
crypting the entire motion control scheme including: sensor signals, model parameters,
feedback gains, and perform computation in the ciphertext space to generate motion com-
mands without a security hole. However, numerous challenges exist which have limited
the wide spread adoption of homomorphically encrypted control systems. The following
thesis address several of these pressing issues—cryptographic overflow and heterogenous
deployment.

Cryptographic overflow is a phenomenon intrinsic to homomorphic ciphers. As en-
crypted data is computed on the level of ‘noise’ inside the ciphertext increases, until it
becomes too great making decryption impossible, this is known as ‘overflow’. The pri-
mary contributor to noise growth is multiplication. Thus, this thesis explores topological
sorting methods to find semantically equivalent but syntactically simpler control expres-
sions. This allows an encrypted control scheme to preform the same calculation but with
fewer multiplications, thus reducing the total amount of noise injected into the system.

Furthermore, encrypted calculations impose a hefty computational burden as compared
to its unencrypted counterparts. As such, heterogeneous mix of different computing tech-
nologies (i.e. CPU, GPU, FPGA) are needed to achieve real-time signal processing. As
such, this thesis explores which aspects of an encrypted control system is best suited for
which computing technology and describes a deployment strategy to take advantage of

these differences.

XVi



CHAPTER 1
INTRODUCTION

1.1 Background

In our modern society, virtually all devices are connected to network. Industry 4.0 [1]
will revolutionize factory automation by taking advantage of today’s information technol-
ogy, transforming the conventional automation systems to efficient cyber-physical systems
(CPS). Many modern automation systems are CPS which connect to network and tightly
interact with remote devices. While the benefits are many, such a network configuration
with frequent information exchange introduces security concerns [2, 3]. Cybersecurity of
networked industrial automation systems is an emerging field [3, 4, 5].

While protection of CPS at the communication level has been extensively studied and
implemented [6, 7], there is a void in the study of protection at a lower level, such as at
the motion control level [8]. Motion control systems of interest in this project are a system
consisting of force-generating components (actuators), measurement devices (sensors), a
power electronic circuit (or driver), and an embedded microprocessor (motion controller)
that receives commands from higher-level controllers and regulates actuator efforts based
on implemented control algorithms.

It should be noted that while general low-level controllers must be designed carefully
to ensure stability and required performance, the size of motion control software is usually
small enough to be embedded in a microprocessor. This, in turn, indicates that motion con-
trol software is vulnerable to malicious system identification attacks if not appropriately
protected. Allowing cyberattacks to a motion controller would result in: a) leaking of con-
troller architecture, gains, and models, b) interception of motor commands and monitoring

signals, and ¢) system disruption due to falsification of the controller. Minimal falsification



of a simple control scheme could easily modify its physical behavior. For example, power
transmission equipment was infected with the malware, resulting in large-scale blackout
in the capital Kiev of Ukraine in 2015 and 2016 [9]. The same malware also damaged a
nuclear facility by falsifying control parameters in the supervisory control and data acqui-
sition systems.

From the motion control standpoint, a lack of established cybersecurity measures may
lead to critical incidents. Unsecured motion controllers may serve as an attractive target for
adversaries.

Recent work has shown hopeful statistical based attack detection [10, 11], where the
authors injected known statistical noise in the so called “watermarking” processes, which
is than compared with the received control signal to detect malicious signal disturbances.
Using this method it was shown possible to detect both replay and deception attacks [12,
13]. While these are impressive accomplishments, they do nothing to stop information
leaks and thus surveillance attacks.

Encryption is an effective technique to secure data by encapsulating sensitive infor-
mation at the communication level. When encryption techniques are applied to security
enhancement of motion control devices, special treatment is needed according to specific
system configurations and control schemes [14, 15, 16]. In particular, encrypted control is
an emerging concept that encrypts not only signals on communication lines, but also con-
trol schemes and controller gains by applying homomorphic encryption algorithms [17, 18,
19, 20].

The goal of the work presented in this thesis is to establish theoretic controls meth-
ods to enhance cyber security for networked motion control systems utilizing somewhat
homomorphic encryption [9, 17, 21, 22]. The proposed approach encrypts motion con-
trol algorithms, sensor signals, model parameters, feedback and feedforward gains, and
performs necessary computation in the ciphertext space to generate motion commands to

servo systems without a security hole. The concept of encrypted control is shown in Fig-



ure 1.1. This method ensures that sensitive system information is always encrypted except
at the plant, where information decryption and control signal calculation are performed and
executed.

Among existing homomorphic encryption algorithms, fully homomorphic encryption
(FHE) can perform both addition and multiplication on the ciphertext an unlimited number
of times. On the other hand, partially homomorphic encryption (PHE) performs either ad-
dition or multiplication an unlimited number of times. Where real-time control of robotic
systems is concerned, practically usable FHE has not yet been realized due to high compu-
tational load. PHE however has been used in the majority of the existing encrypted control
studies for practical reasons; most of these studies are limited to linear and relatively-low
dimensional controllers [17, 22, 23, 5]. In some cases, nonlinear plant dynamics must be
evaluated in real-time for model-based compensation, which increases the complexity of
the control scheme. Due to this, expansion of encrypted control methodologies to gen-
eral nonlinear and/or time-varying control has not been well studied. Furthermore, even
“text-level” transformation between coordinates—a simple kinematics problem in robotics—
involves matrix multiplications, which cannot be performed by PHE.

A “somewhat homomorphic encryption” (SHE) algorithm proposed by Dyer et al. [24]
has shown promise of online encryption upon which this study will develop new realization
procedures. The SHE family of cryptographic algorithms can perform both additive and
multiplicative homomorphic encryption with a limited number of operations. Teranishi
et al. showed it possible to use this SHE algorithm for real-time control [21]. Note that
inappropriate selections of security parameters and signal quantization levels in SHE will
cause overflow and system instability.

The authors’ group has applied that particular SHE algorithm to dynamic controllers
with nonlinear expressions [21, 25, 26]. Known limitations of SHE require the users to
choose appropriate security parameters and quantization levels to balance between the per-

formance and numerical computation stability (i.e., overflow). The original message can-



not be recovered in case of overflow, and is a critical issue in leveraging SHE algorithms in
systems.

While the use of a long key is in general preferred to improve the cybersecurity of
encrypted control systems, the increased computational overhead due to homomorphic en-
cryption would degrade the real-time control performance. To resolve this trade-off, a
concept of key switching has been studied in which relatively low-length keys are gener-
ated and switched at a certain frequency, fast enough before a single key is theoretically
identified by the adversary via a brute-force attack [27]. Since the computational burden to
continuously generate keys is high, the use of a dedicated high-performance circuit, such as
Field Programmable Gate Arrays (FPGAs), is favorable rather than a fully software-based

(e.g., CPU) approach.

1.2 Cryptographic Methods

1.2.1 Homomorphic encryption

A cryptosystem is represented by the tuple £ = (Gen, Enc, Dec), where Gen : S — K
is a key generation algorithm, Enc : L x M — C is an encryption algorithm, and Dec :
I x C — M is a decryption algorithm. The set S contains security parameters such as
key lengths. K is a key space, C is a ciphertext space, and M is a plaintext space. The
cryptosystem & is said to be homomorphic if Enc(k,m) o Enc(k,m') = Enc(k,m xm’),
VYm,m' € M is met, where o and x are binary operations in the ciphertext and plaintext
space, respectively. A key £ is a pair of a public key pk and a secret key sk in asymmetric
encryption. pk and sk are used for encryption and decryption.

As an example, the Van Dijk [28] family of ciphers is defined over the integers. So the
plaintextspace M is the integers, the cipherspace C is a subset of the integers, the key space
IC is the set of primes or a list of primes. Within the cipherspace the notion of “addition” or
“multiplication” may be defined, which we will notate as @ and & respectively. The exact

nature of all these spaces as well as which operations are available, will depend heavily on

4



the chosen cipher.

Homomorphic encryption allows certain types of arithmetic operation in ciphertext.
Multiplicative homomorphic encryption, such as RSA [29] and ElGamal [30] algorithms,
can perform multiplication in ciphertext: Enc(k,m) ® Enc(k,m’) = Enc(k,m x m’).
Similarly, additive homomorphic encryption, such as Paillier, can perform addition in ci-
phertext: Enc(k, m) @ Enc(k,m’) = Enc(k,m + m'). Note that operations ® and & are
not necessarily limited to traditional multiplication and addition between ciphertexts. For
example, in the ElGamal algorithm, & is the Hadamard product. In the following, we omit

the key & in the notation of encryption and decryption if appropriate for simplicity.

1.2.2  Somewhat Homomorphic Encryption

Somewhat homomorphic encryption (SHE) is a family of algorithms that can perform both
additive and multiplicative homomorphic encryption with a limited number of operations—
if operations are allowed for an arbitrary time, such an algorithm is called fully homomor-
phic encryption (FHE). The limiting factor is the divergence of noise introduced into the
ciphertext, primarily by multiplication.

Depending on the SHE scheme used, the exact nature of noise introduction varies; how-
ever, an overarching pattern of these methods is that of multiplicative depth. Each time a
ciphertext message participates in an encrypted multiplication, the depth of the resulting
product increases by one. Once the depth has grown too large, the scheme is said to “over-
flow” and the homomorphic property is lost. In other words, the ciphertext can no longer
be decrypted back to plaintext.

Thus, it is critical to minimize the net multiplicative depth, which could be done by
appropriately factoring or expanding the arithmetic expression of interest. In addition, it
is desirable to develop algorithms to automate the depth analysis and modification to be
applicable to general complex expressions. The next section will show that sophisticated

associative grouping can drastically reduce the net depth.



1.2.3 Homomorphic encryption of motion controllers

Encrypted control is an emerging field of control theory [31]. Currently, several interna-
tional research groups are jointly or independently working on related topics [32, 33, 34,
35, 36, 37, 38, 39, 40]. As one of the earliest attempts, Kogiso and Fujita proposed an
approach to secured realization of a linear motion controller in the cloud [17]. As opposed
to the conventional approach of encrypting only signals on the communication line, this
concept is to encrypt both controller gains and signals by homomorphic public-key en-
cryption as shown in Figure 1.1. This method ensures that sensitive system information
is always encrypted, except at the plant where information decryption and control signal
execution is performed. One important feature of this scheme is that the secret key for
decrypting signals does not need to be shared with the cloud controller, a frequent target
of attack. Only the end device (the plant in Figure 1.1) possesses the secret key, which
is considered a safer configuration. Encrypted signals and feedback gains in the control
scheme are then used to directly compute motion commands in ciphertext being sent to the
actuator. Because the signals and gains inside the motion controller are in ciphertext, not
plaintext, this encryption approach is suitable as proactive measures for unauthorized login

and falsification.

1.3 Contributions

Homomorphic Encryption is a relatively new cryptographic method which, unlike tradi-
tional encryption, allows computations to be preformed on encrypted data. Robotic con-
trollers can take advantage of these new techniques to increase system security by en-
crypting the entire motion control scheme including: sensor signals, model parameters,
feedback gains, and perform computation in the ciphertext space to generate motion com-
mands without a security hole. However, numerous challenges exist which have limited

the wide spread adoption of homomorphically encrypted control systems. The following
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Figure 1.1: Security-enhanced networked control. A. Conventional encrypted communi-
cation (control scheme computation in plaintext), B. Encrypted control (control scheme
computation in ciphertext).

thesis address several of these pressing issues—cryptographic overflow and heterogenous
deployment. Cryptographic overflow is a phenomenon intrinsic to homomorphic ciphers.
As encrypted data is computed on the level of ‘noise’ inside the ciphertext increases, until it
becomes too great making decryption impossible, this is known as ‘overflow’. The primary
contributor to noise growth is multiplication. Thus, this thesis explores topological sorting
methods to find semantically equivalent but syntactically simpler control expressions. This
allows an encrypted control scheme to preform the same calculation but with fewer multi-
plications, thus reducing the total amount of noise injected into the system. Furthermore,
encrypted calculations impose a hefty computational burden as compared to its unencrypted
counterparts. As such, heterogeneous mix of different computing technologies (i.e. CPU,
GPU, FPGA) are needed to achieve real-time signal processing. As such, this thesis ex-
plores which aspects of an encrypted control system is best suited for which computing

technology and describes a deployment strategy to take advantage of these differences.



CHAPTER 2
CRYPTOSYTEM COMPARISON

The goal of this research is to establish control theoretic methods to enhance cyber secu-
rity of networked motion control systems by utilizing somewhat homomorphic encryption.
The proposed approach will encrypt the entire motion control schemes including: sensor
signals, model parameters, feedback gains, and performs computation in the ciphertext
space to generate motion commands to servo systems without a security hole. The thesis
will discuss implementation of encrypted bilateral teleoperation control schemes with non-
linear friction compensation. The thesis will present (1) encrypted teleoperation control

realization with somewhat homomorphic encryption and (2) simulation results.

2.1 Encrypted Control Concept

2.1.1 PHE for linear systems and limitations

One of the biggest challenges of homomorphic computation, is the significantly limited
arithmetic operation capability in ciphertext. Early attempts such as [41] tried to implement
a fully-homomorphic encryption (FHE) algorithm to perform all arithmetic operations in
the ciphertext space. Note that control commands need to be updated, typically, on the order
of 10 to 100 milliseconds for closed-loop dynamic control of industrial motion systems.
However, computation time and finite lifespan (bootstrapping) of encrypted variables were
reported to be impractical with FHE [41]. The current state-of-the-art regarding real-time
encrypted motion control, adopts multiplicative partial homomorphic encryption (PHE)
schemes such as RSA [29, 42] and ElGamal [30]. This method has been applied to realizing
a class of linear controllers, including: PID controllers, two-degree-of-freedom controllers,

disturbance observers, and model-predictive controllers (with single iteration per sampling



period) [9, 17, 22, 23]. Figure 2.1 shows an example of such implementation of state-
feedback with a linear observer applied to a second order inertial system (e.g., a DC motor)
[22]. Recall that only either addition or multiplication can be performed in ciphertext with

PHE. As shown in Figure 2.1A, the control scheme is represented by a state-space equation,

x[k + 1] A B\ |z[k]
= = D[k (2.1)
ulk] C D| |ylk]
= [(®,&[K]) = f*of" 2.2)
where & = [-1)1 P, .. } is a state matrix represented by column vectors and £[k] =

{51 & .. } ' is a state variable vector. To apply the multiplicative PHE algorithm El-
Gamal, multiplications and additions are separated into an expanded form of matrix-vector
products: ®E[k] = &P + &P + ... = [\1}1 U, .. ] = > W,. Where multiplica-
tive operations f* occurred in ciphertext, and additive operations f* occurred in plaintext,
where: f* (Enc(®), Enc(¢[k])) = [Enc(a) © Enc(®,) Enc(&) ® Enc(®,) ...| = Enc(¥)
and fT(¥) = > Dec(Enc(®;)) as show in Figure 2.1 B. Since addition is preformed in
plaintext after decoding, this realization leaves a potential security hole in the system as
shown in Figure 2.1C.

An extension from single-controller-single-plant linear systems to nonlinear systems or
multi-plant systems is not trivial. Successful realization depends highly on the choice of an

encryption algorithm and the structure of the control scheme.

2.1.2 Proposed Approach

PHE algorithms such as RSA (multiplicative), ElGamal (multiplicative), Paillier (additive)
have been used for encryption of linear time-invariant (LTI) controllers [8] including the
authors’ previous work considering security holes resulting from arithmetic operations on

plaintext, as mentioned above. Research to expand homomorphic encryption methodolo-
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Figure 2.1: Encryption of multivariable linear controller. A.) Controller B.) Realization
with PHE C.) Implementation with a potential security hole at the plant.

gies to generalized, or nonlinear time-varying, control has not been performed almost at
all [5]. The main technical barrier has been a lack of an encryption algorithm capable of
handling increased arithmetic operations required for realization of nonlinear controllers.
In some cases, nonlinear plant dynamics must be evaluated in real time for model-based
compensation, which increases the complexity of the control scheme, however Teranishi
and Kogiso showed it feasible to use SHE for real time control [21]. This paper will utilize
emerging somewhat homomorphic encryption (SHE) [23] to realize encrypted nonlinear
controllers. SHE allows for a limited number of both multiplication and addition in cipher-
text before operations overflow or lose precision. Note that SHE in general is also known to
be computationally expensive and its application to real-time control is considered to be in-
feasible. However, a recent SHE algorithm proposed by Dyer et al. [24] has shown promise
of online encryption upon which this study will develop new realization procedures.
System parameters to be protected should not be stored or operated in plaintext to avoid
potential data breach. Recall that PHE-based approach [32, 30, 22] was to manipulate a
linear control scheme and sort additions and multiplications separated into a product of a

constant matrix and a state variable vector (i.e., LTI state-space representation). For SHE,
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care must be taken regarding algebraic manipulation of high-order polynomial expressions.
Not only the amount of arithmetic operations, but also the order of the operations signifi-

cantly impacts the risk of overflow and loss of precision.

2.1.3 Problem formulation

We propose to manipulate the algebraic expressions including the nonlinear terms and ob-
tain an executable form in ciphertext as shown in (Equation 2.3). The concept is to eval-
uate some of the products between state variables (i.e., sensor readings), given as ¢[k| in
the sensing device in advance and perform encryption together with other linear variables.
Nonlinear functions, such as sin and cos, cannot be evaluated in ciphertext, which are also
evaluated and encrypted in the sensing device. Based on this concept, the realization prob-

lem of encrypted nonlinear control schemes is formulated as follows:

Problem: Determine constant matrices ®, ¥ and nonlinear state vector ¢[k] for the non-

linear control scheme represented by:

ulk] = PE[K] + We[k] := fSHE (D, E[k], ¥, g[k]) (2.3)

such that (Equation A.3) and (Equation A.4) are simultaneously satisfied for given « and p.

Equation A.3 and Equation A.4 are restated below:

k> (n+1)*M? (2.4)

p> (n+ D4M + k)4 (2.5)

where x and p are cryptographic constants of the Dyer’s cypher dictated by the choice of

security parameters, M is the maximum value any intermediary encrypted computation
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Figure 2.2: Bilateral teleoperation

can be, and n is the dimensionality of the encrypted calculation (i.e. how many variables
the encrypted calculation takes as input). These two equations serve as constraints relating
choice of security parameters with size of cypherspace. To summarize, if the security
parameters are too weak, then the cypherspace will be too small to accommodate large
encrypted values.

This thesis will, amoungst other things, address issues mentioned above and demon-

strate the applicability of SHE to bilateral control of two telemanipulators.

2.2 Encrypted teleoperation

2.2.1 Representative Teleoperation Control Scheme

This section will extend the SHE approach to an encrypted teleoperation system where two
control loops of the local and remote plants are intertwined.

Let the coefficients m, b, u, 7, and f denote system mass, damping, friction coefficient,
actuator force, and external force; furthermore, let the subscript m and s denote the local

and remote system. Then the system is modeled by:

msis + bsi's + s Sign(is) =Ts — fs (27)

Evaluation of ®£[k] (linear) and W¢[k| (nonlinear) must be performed in an increased

12



number of encoding blocks. Figure 2.2 shows a possible configuration of an encrypted
teleoperation system. The main concept is to encrypt shared information using a private
encryption key known only to the plants. Both the local and remote plants are responsible
for system output measurement and encryption by using the public keys. The networked
controller stores encrypted system parameters, as well as encrypted output measurements
received from both plants.

The general linear terms may be represented by:

T,
Qmém Kamm Kdmm Kpmm
Qsés Kasm dem Kpsm
L
— -— is
Kams Kdms Kpms (28)
+ &,
Kass des Kpss
L m T,

Kfmm Kfms fm
Kfsm Kfss fs

using accelerations, velocities, displacements, forces, as well as gains, to introduce in-
tervening impedance (i.e., virtual spring and damper) between two motion plants [43].
Nonlinear terms (¥,,s,,) and (¥,q;) that compensate for friction, time-delay, and other
nonlinearities in the system, will be decomposed into ¥ and ¢, .

While there are a variety of control schemes to realize bilateral teleportation, a repre-
sentative symmetric control scheme utilizing PD feedback with inertial and friction com-

pensation is considered in this paper:
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Tm = (M — Mus)Em + kp(Ts — Tm) +

ka(s — dm) + 0.9t Sign(dm) (2.9)
Ts = (Mg — Mps)Ts + kp(Tm — xs) +
ka(Em — i) + 0.9, sign (i) (2.10)
where ¥ = diag[0.9/1,,,0.9u,],6 = [sign(i,,),sign(i,)]T. Other linear terms are ex-

pressed in PE.

2.3 Realization of Encrypted Teleoperation

2.3.1 Choice of Security Parameters

BFV parameters:

Primarily, we focused on the computation time for poly modulus about the BFV cryp-
tosystem. poly modulus affects the range of signals that are encryptable. Increasing the

value of poly_modulus makes encryption of a wider range of signals possible.

Dyer’s parameters:

Dyer’s SHE method requires very large integers to represent ciphertext. The bit-width of
these ciphertexts are determined by the security parameters A\, 1 (Equation A.2). These
parameters determine the size of primes p, ¢ which define the public modulus V. Since all

homomorphic operations are performed modulo the public modulus, a bit-width of

7= Lloga(N)] +1 @11

is required to represent all of cipherspace.
We refer to v as the bit requirement of the cipherspace. If an integer’s bit requirement

exceeds the system’s word size w, then the integer will have to be processed piece-wise in
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segments of length w. This results in v/w additional operations being required to operate
on big integers.

The x64 architecture is a popular choice today, and has a w = 64. Virtually all choices
of security parameters result in v > 64. Given that the C++ standard library cannot repre-
sent integers larger than the system’s w, a large integer library is required. Performance of

large integer arithmetic is implementation dependent.

2.3.2 Implementation Used

BFV:

BFV Encryption was realized via Microsoft’s Simple Encrypted Arithmetic Library (SEAL).
SEAL is a highly optimized library which can provide hardware specific speedups when
using supported processor architecture [44].

SEAL allows users to set plaintext, ciphertext, and rng parameters, however typically
only the poly modulus, coeff modulus are changed, as they directly dictate security

level. We will restrict our attention to only these aspects of the BFV cryptosystem.

Dyer’s:

Dyer’s encryption was implemented in-house against C++17 feature set, using MSVC ver-
sion19.29.30140 targeting x64 architecture. [45] was used for large integer arithmetic.

The minimal residue

b, b<|b—m|,
a Mod m = (2.12)
b —m, otherwise,

was employed for correct decryption of negative integers as described by [46].

2.3.3 Encrypted Arithmetic Comparison

An encrypted controller is constructed by relegating the evaluation of all special functions

(e.g. sin, exp, etc.) to the plant such that only additive and multiplicative operations
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remain. These operations are performed homomorphically in cipherspace, therefore the
speed at which a cryptographic can evaluate these operations has a direct impact on the
feasibility of real-time control.

This section analyzes execution time of homommorphic arithmetic parameterized by
the systems’ security parameters. To do this we measured the time to compute the polyno-
mial ax + by, where a, b, z,y < {0,---,9}, 1000 times on these cryptosystems for each
security parameter, described in the following sections. The range of variables is chosen
not to violate homomorphic operation on the ciphertext. The specification of the CPU is

Intel Core 15-8250U at 1.6 GHz.

BFV cryptosystem:

poly-modulus and coeff modulus are key parameters that determine computational
load. Figure 2.3 shows the execution time to compute a polynomial azx + by. Figure 2.3
(a) shows the mean + standard deviation (SD) calculated from 1000 samples for each bar.
Figure 2.3 (b) shows a log-log breakdown of average computation time for homomorphic
operations of the BFV scheme. In Figure 2.3 (a), the mean for each polynomial modulus
is significantly larger than that of the bar on the left at a 0.1 % significance level. It was
confirmed using a pairwise t-test. The figure shows a polynomial growth of the computa-
tion time with respect to poly_modulus. This trend held for the other operations in the
cryptosystem.

coeff modulus determines the security Level in Microsoft SEAL. 128, 192, and
256 bit security levels are defined in the library (the default is 128 bit). Parameters of
coeff modulus associated with the security level are given as default values. Higher
security requires a smaller coef f_modulus. Figure 2.3 (c) shows that the execution time
for each security level. The average is significantly less than that of the bar on the left at a

0.1 % significance level.
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in BFV scheme for plain.modulus =
1024. The mean and standard deviation de-
rived from 1000 samples. No horizontal bar
between neighboring bars indicate that the
left-side bar is not statistically larger than the
right at a 5% significance level.

Il Sample average

*kk

Sample average + SD

128 192 256
Security level (bit)
(b) Comparison of security level be-
tween polymodulus = 16384 and

plainmodulus. No horizontal bar be-
tween neighboring bars indicates that the
left-side bar is not statistically small than the
right at a 5% significance level.

Time (s)
=
[}

1024 2048

I Enc [ Multi

4096

[0 Add [ Dec

8192 16384

Polynomial modulus

(c) Breakdown of average computation times.
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Figure 2.3: Computation time analysis of BFV. P-values are indicated as ***, p < 0.001;

# < 0.01; %, p < 0.05.
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Figure 2.4: Computation time analysis of Dyer’s SHE. P-values are indicated as stars de-
scribed in Figure 2.3.

Dyer’s cryptosystem:

Dyer’s cryptosystem has several security parameters: key length \ bit, p, and p'. In this
cryptosystem, the key length has a significant impact on the computational load. Figure 2.4
shows the execution time to compute a simple polynomial: ax+by. Figure 2.4 (a) shows the
mean =+ standard deviation (SD) calculated from 1000 samples for each bar. Figure 2.4 (b)
shows the breakdown of average computation times of homomorphic operations in a log-
log plot. All of the mean values shown in Figure 2.4 (a) are larger than that of the left at a
0.1% significance level. While in general the computation time increases as the key length
increases, especially ,that of homomorphic multiplication on cipher texts grow up faster
than the other element. On the other hand, the computation time for additions is negligibly
small in this cryptosystem.

While BFV and Dyer’s SHE schemes exhibit different characteristics in terms of key
generation, encryption, addition, multiplication, and decryption, overall, Dyer’s scheme
completes a simple polynomial approximately two orders of magnitude faster than BFV.

Dyer’s cryptosystem may be more suitable for real-time motion control applications than
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Figure 2.5: Computation time of key generation. P-values are indicated as stars described
in Figure 2.3. No horizontal bar between neighboring bars indicate that the left-side bar is
not statistically larger than the right at the 5% significance level.

BFV. On the other hand, it should be mentioned that the computation load is high for
generating a key in Dyer’s encryption.

On the other hand, it should be noted that Dyer’s scheme has a notable computational
load for key generation. The computational load for key generation becomes a problem
when we consider improving the security level of controllers such as dynamic key schemes.
Dynamic key generation is one of the approaches to improve security by switching between
multiple keys to increase the cost of attacks. Since this method requires constant key gen-
eration, the computational cost of key generation should be reduced. Figure 2.5 shows the
time required to generate keys for the Dyer and BFV.

The computation times for a simple polynomial are close for the BFV withpoly modulus
= 1024 (6.668 ms) and the Dyer with A = 1024 (1.3 ms). In Figure 2.5, the key generation
times in each scheme are 10.9 ms for the BFV and 32.5 s for the Dyer. The BFV computa-
tion time to generate a key is less than the Dyer. This suggests that the BFV cipher is more

suitable for building a more secure control system using dynamic keys.
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Figure 2.6: Simulink control signals

2.4 Simulation

2.4.1 Simulink/C++ Interoperations

Simulink (Mathworks, Natick, MA) is a graphical programming environment designed to
model dynamic systems by wiring together computational blocks. The system dynamics,
and control loop were implemented in this fashion. The controller was implemented in
C++17 via matlab’s mex-api. The mex toolchain works by invoking the system’s compiler
on C++ source written against the mex interface; then linking with MATLAB provided
static libraries, which provide the interface’s definitions. The result is either a .mexa64,
.mexmacio64, or .mexwb64 file for linux, mac, or windows systems respectively.

These mex files are essentially metadata bundled with a shared object which the MAT-
LAB interpreter loads at runtime. This architecture provides several benefits. First, it
allows different implementations of the controller to be used in a “plug-and-play” fashion.
Second, lower-level languages such as C++ gives more precise control over the resources
used and representation of encrypted data. Three different implementations of the teleop-
erated controller describes by (Equation 2.9) and (Equation 2.10) were tested: plaintext-

control, bfv-control, and dyer-control.
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2.4.2 Simulation Results

Plaintext-control:

The plaintext controller does not incur any of the computational overhead that the encrypted
methods do. Therefore, it serves as a good baseline with which to compare the other
methods. Simulations were run on an AMD Ryzen 9 4900HS 3.00 GHz processor running
Windows 11. Using this system, the plaintext implementation was able to achieve a 16.3
kHz refresh rate. This will serve as a baseline to compare the encrypted implementation

against.

BFV-control:

While BFV does provide homomorphic operations, its execution time is far too slow for
real time operation. We varied the poly modulus, and found that the BFV encrypted
controller refresh rate remained relatively constant see Table 2.2. This is far bellow what is

required for real time operations, generally considered to be >1kHz.

Dyer-control:

Dyer’s encryption was faster than BFV for all security parameters tested. Results show
that as the security parameters of the encryption increases the performance decreases, See
Table 2.1.

Encrypted controllers may be used in real-time systems if an appropriate encryption
scheme is used. Furthermore, improper choice of security parameters can result in unstable

behavior, as shown in Figure 2.6b.
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A | f (Hz)
500 | 485
400 | 666
300 | 956
200 | 1206
100 | 1539

Table 2.1: Dyer’s encryption controller performance.

Poly Modulus Degree | f (Hz)
4000 2.80
6000 2.80
8000 2.53
10000 3.02
12000 2.71

Table 2.2: BFV encryption controller performance.
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CHAPTER 3
TOPOLOGICAL EXPRESSION SORTING

This thesis presents topological sorting methods to minimize the multiplicative depth of en-
crypted arithmetic expressions. The research aims to increase compatibility between non-
linear dynamic control schemes and homomorphic encryption methods, which are known
to be limited by the quantity of multiplicative operations. The proposed method adapts
rewrite rules originally developed for encrypted binary circuits to depth manipulation of
arithmetic circuits. The thesis further introduces methods to normalize circuit paths that
have incompatible depth. Finally, the thesis provides benchmarks demonstrating the im-
proved depth in encrypted computed torque control of a dynamic manipulator and discusses

how achieved improvements translate to increased cybersecurity.

3.1 Expression Manipulations

3.1.1 Tree Representation

To analyze an arithmetic expression in a convenient manner, the binary-tree data structure
is adopted where each operation is represented by an internal node with its children as the
operands. SHE methods are often limited to additive and multiplicative operations only
[46]. As such, the paper imposes the same limitation on an operation-limited syntax tree
called an arithmetic circuit [47, 48]. It is observed that the leafs are always variables of
the expression, while interior nodes are allowed binary operations. By disallowing unary
operations (e.g., sin, exp, etc.), any arithmetic circuit can be represented as a full binary

tree at all times.
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(a) Original (b) Rewritten

Figure 3.1: The left expression has a node of greater depth, a, deeper in the tree. By
swapping with a shallower node, ¢, we lift node a up thus reducing total depth by one.

3.1.2 Rewrite Rules

The arithmetic circuit representation is convenient when attempting to analyze and opti-
mize the depth of the circuit. Two perturbations, adapted from [48], are introduced to be
compatible with arithmetic circuits. These perturbations are presented as “rewrite rules,”
whereby certain detectable patterns are replaced with syntactically different, but semanti-

cally equivalent representations.

Associative Rewrite

represents a regrouping of parameters as in (a - b) - ¢ = a - (b- ¢), and is only applicable to

two adjacent MUL gates. For example, if a has a greater depth than both b and ¢, i.e.,

depth(b), depth(c) < depth(a). (3.1)

then, a rewrite will decrease the overall depth of the circuit, If the above expression holds,
then the algorithm can associatively rewrite the expression by swapping node a with node

c as shown in Figure 3.1 and described in Algorithm 1.

24



- = - -

(a) Original Expression (b) Rewritten Expression

Figure 3.2: The original expression on the left. On the right is the output of the associative
rewrite. Note the circled regions have been swapped with each other in the rewritten circuit.

Since depth(a) is the greatest of all nodes considered, it is counterproductive to have
node a deep in the graph. By swapping node a and ¢, we reduce the number of future MUL
gates that a will have to pass through by one. Furthermore, because of (Equation 3.1), a
has the greatest depth, and it follows that a’s depth would dominate this subcircuit. Thus,
by reducing future gates a must pass through, the total depth contributed by this subcircuit
can be reduced. As a result, this rewrite rule, when applied to sub-expressions satisfying
(Equation 3.1), reduces the depth by one. Another example is shown in Figure 3.2 where
the associative rewrite has the tendency of convert graph depth to graph width, thus steering
the graph towards a more balanced configuration. The path shown in orange is the “critical

path” that results in the maximum depth of the circuit.

Distributive Rewrite

is not able to lower circuit depth, unlike the associative rewrite, and in fact adds an addi-
tional MUL gate into the circuit. In spite of this, the distributive rewrite is advantageous by
moving a MUL gates higher up in the circuit to be adjacent to a different MUL gate. When
these newly neighbored gates satisfy the pattern described by (Equation 3.1), the distribu-

tive rewrite will facilitate a future associative rewrite with depth reducing ability at the cost
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(a) Original Expression (b) Rewritten Expression

Figure 3.3: The circled regions show sub-graphs that were rearranged, while the uncircled
represent newly created gates.

of net one additional MUL gate as shown in Figure 3.3.

A larger number of MUL gates negatively impacts the execution time of the resulting
circuit; however, if the distributive rewrite is able to facilitate a future associative rewrite—
and thus facilitate future depth reduction—then it is worth the few additional MUL gates for
the depth reduction gained. The process is depicted in Figure 3.4.

The distributive rewrite represents the distribution of an outside factor to a term in a
sum, such as (((z + y1) + ...) + yx) - 2. The naive approch would be to distribute the z
to every addend, such as: (zz) + (y12) + ... + (yx2z). This however, will add a MUL gate
for every ADD gate on the path, which is often more than is necessary. Instead, one can

selectively distribute z in a form such as: (z - 2) + (y1 + ... + yx) - 2.

3.2 Depth analyzer software

The proposed depth analysis and rewrite rules have been implemented in a CPython based
application. The application revolves around a binary tree class called ExpressionTree,
which holds references to the encompassing ExpressionNode objects. Sympy, a popu-

lar computer algebra system in the python ecosystem, was used to parse expressions-string
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Figure 3.4: Outcome of first apply distributive-rewrite, followed by associative-rewrite.
Net depth decreases.

input into MUL and ADD nodes respectively. After parsing, the critical path is calculated by
recursively crawling the ExpressionTree from the top-down. Once the critical-path(s)

is known, the algorithm iteratively checks for possible rewrite.

3.2.1 Associative Rewrite Procedure

The associative rewrite looks for any adjacent MUL gates on the critical path. If found the
adjacent gates are checked against (Equation 3.1), to determine if a rewrite will produce a
more optimal depth. This check is carried out by Algorithm 3, which checks if the depth of
either of ¢’s children is greater than p. If the condition (Equation 3.1) is met, the associative

rewrite is processed.
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Algorithm 1 Associative Rewrite Attempt

Input Let 7 be the critical path

procedure ASSOCIATIVEREWRITE(7)
¢ 4= pop (m)
while 7 # () do

> ”Cycling through pairs (a,b) — (b, c) —

p<—cC
¢ < pop ()
if ISMUL(p) and ISMUL(c) then
s < GETSIBLING(p, ¢)
switch CHECKCHILDREN(s, ¢) do
case LEFT
SWAP(s, ¢;)
return True
case RIGHT
SWAP(s, ¢,)
return True
case NONE
continue
end if
end while
return False
end procedure

>pop removes and returns next node

(c,d)”

>No swaps were possible
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3.2.2 Distributive Rewrite Procedure

The distributive rewrite viability check is similar to that of the associative check. The
main difference is that where the associative rewrite acts on two adjacent MUL gates, the
distributive rewrite acts on MUL gates separated by an arbitrary amount of ADD gates, which
we call quasi-adjacent.

The distributive rewrite iterates over every pair of quasi-adjacent MUL gates in the crit-
ical path, if any exist. If two quasi-adjacent MUL gates are found, Algorithm 3 checks
if the associative rewrite on said quasi-adjacent gates would be beneficial. While the as-
sociative rewrite is by itself not possible for quasi-adjacent gates, the distributive rewrite
will rearrange the tree such that the quasi-adjacent MUL gates are now next to each other.

Algorithm 2 implements this procedure.

Algorithm 2 Distributive Rewrite Attempt
Input Let 7 be the critical path

procedure DISTRIBUTIVEREWRITE(7)
¢+ nextMul(m) >remove and return next Mul gate
while 7 # () do
> Cycling through pairs (a,b) — (b, c) — (¢, d)
p<4c
¢+ nextMul(m)
u < getUncle(p,c)
if CHECKCHILDREN(u, ¢) then
s < GETSIBLING(p, ¢)
ORPHAN(c)
REPLACEPARENT(S)
overwrite(p, ¢-u+ p)
break
end if
end while
end procedure

29



3.2.3 Helpers

The rewrite procedures depend on a handful of trivial as well as non-trivial subroutines.

Some non-trivial routines are defined as shown bellow.

Check Children

The CheckChildren procedure is used to see if an associative rewrite will yield a net
reduction in depth. It does this by comparing the depths of children c against the depth of

node s, where node s is either the sibling or uncle of c.

Algorithm 3 Check if swapping children will reduce depth

procedure CHECKCHILDREN(s, ¢) >We compare children of c against s
if getDepth (¢;) > getDepth (s) then
return LEF'T
else if getDepth (¢,.) > getDepth (s) then
return RIGHT
else
return NONE
end if
end procedure

Get Sibling

In order to assess the viability of an associative rewrite, we need to run CheckChildren
against the child of ¢’s parent that is not ¢, i.e., ¢’s sibling. Algorithm 4 will compute c’s

sibling for us.

Algorithm 4 Return child of p that is not ¢

procedure GETSIBLING(p, ¢)
if c = p, then
return p,
else
return p,
end if
end procedure
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Get Uncle

The objective of the distributive rewrite is to move two MUL gates next to each other so they
can participate in a future associative rewrite. A criterion is needed to judge if a distributive
rewrite is beneficial.

This criterion centers around the future associative rewrite that this distributive rewrite
facilitates, which is called the would be associative rewrite. If the would be associative
rewrite can reduce the depth of the critical path, satisfying (Equation 3.1), it is beneficial to
bring this rewrite to fruition. This can be done by performing the said distributive rewrite.
Therefore, the merit of a distributive rewrite can be judged by that of the depth reducing
ability of the corresponding would be associative rewrite.

To achieve the evaluation mentioned above, a comparison of the depth of ¢’s children
against the sibling of ¢ using CheckChildren must be performed. However, since there
could be arbitrarily many Add gates between c and its ancestor p, it is not possible to simply
identify c’s sibling for this comparison. Instead, the generalized notion of sibling, namely
c’s uncle, must be used. Here, the uncle of c is defined to be the child of p that is not a
direct ancestor of ¢, i.e., the node that would be the sibling of c if p were ¢’s parent. The

procedure to find the uncle of c relative to p is given by Algorithm 5.
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Algorithm S Return child of p that is not a direct ancestor of ¢

procedure GETUNCLE(p, ¢)
a’ < GETPARENT(c) >a’ is equal to p at this time
while True do
a < a
a' < GETPARENT(a)
if a’ = p then
> We have traced ancestry from c to p
if a = p, then >c is a left ancestor of p
return p, >Uncle is p,
else >c is a right ancestor of p
return p,
end if
end if
end while
end procedure
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3.3 Illustrative Example

Consider computed torque control (or feedback linearization) of a planar RP manipulator
shown in Figure 3.5. Encrypted control of the same system was considered to reduce the
number of multiplications by inspection [21]. Note that in the SHE scheme, the net depth
is the direct metric related to overflow, not necessarily the number of multiplications. In
contrast, this paper will minimize the depth of the expression by applying the rewrite rules.

Nonlinear actuator effort to linearize the dynamics of the manipulator is given by:

T mi 2+ I+ mady® + 1, 0 .
— (K,e+ K,é)
f2 0 Mo
2m2d2d291 (mlllg -+ mgdgg)COS 91
+ |+ (3.2)
—madyb? Megsin Oy

where K ,= diag(K;, K,2) is a proportional gain, K, = diag(K,;, /{,2) is a differential
gain, e = [ey, eo]T = [r1,72]T — [0, dy]7 is the error between a reference vector r and the
output. #; is the angle of Joint 1, ds is the displacement of Joint 2, m is the mass, [ is the
inertia, g is the gravitational acceleration, and [ is the location of the center of mass, where
the subscripts indicate link numbers.

Define & = 2¢,4/(2 + Tsgpa), B = (2 — Tsgpa)/ (2 + Tsgpa) Where T is the sampling
period and g, is the bandwidth. Equation (Equation 3.2) is discretized by using bilinear
transformation: e;[k] = ri[k] — 01[k], é1[k] = alei[k] — e1[k — 1]) + Bé1[k — 1],e2[k] =
rolk] — dolk], é2[k] = a(ea[k] — ealk — 1]) + Béa[k — 1] where k the time step.

33



Gravity
g=m/s?

Figure 3.5: Planar RP Manipulator

nlk] = (Ml + I + L) (Kp + aKyi)ri[K]
— (M2 + I + L) (Kp + aKy )01 [k]
— (M 4 I + L)aK e[k — 1]
+ (M2 4+ I 4+ L) K 161k — 1]
+ mo(Kp 4 aKy)ry [k]d3 (k]
— my (K + a0, [k]d3[E] (3.3)
— myaK e[k — 1)d2[k]
+ moBKyé1[k — 1)d5]k]
+ 2mada[k]6; [k]da[k]
+ malig cos 01 [K]

+ mag cos 61 [k]da[k]

This expression of 7 [k| has a total depth of 6, and is represented by the arithmetic circuit

in Figure 3.6. The proposed rewrite methods rearrange (Equation 3.3) so as to be of the
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form:

Ta[k] = da[k](cos 01 [k]mag)
+ cos 0[] (glym )
+ (2da[klms) (d2 (K]0 [k])
+ (Ko fma)(éx[k — 1](da[]dz2[k]))
— (Kuiams)((da[kldz[k]) (i [k — 1] = 6:[k —1]))
= (ma(Kp + Kona)) (01 [F](da[k]da[])) (3.4)
+ (ma(Kp1 + Kina)) (m[k](da[k]ds[K]))
+ (B(Eunér[k — 1)) (L + L + Li(lima))
— (K (ri[k — 1] = 01 [k — 1)) (T2 + I + 11 (lima)))
+ 11 k] (Kp1 + Kone) (L + I + L (limy))

— 01k (Kp + K)o + I + 11 (limy))

which has a depth of 4 as shown in Figure 3.7. Note that this rewrite was done fully
automatically by applying the proposed algorithms described in the previous section.

Similarly, the other input f is also discretized as:

f2 []C] = mg(Kpl + OéKvl)’f‘g[k‘] — mg(Kpl + OéKvl)dg []C]
— mgoszleg[k — 1] + mgﬂKvlég[lﬂ — 1] (35)

— mydy[k]62[k] + mag sin 6y [k]

and is rewritten reducing the depth from 4 in the unsorted expression to 3 in the sorted

expression. Tree expressions of f, are omitted.
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Figure 3.6: Arithmetic Circuit of (Equation 3.3). There are two problematic paths shown
as the long orange legs with a depth of 6.
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Figure 3.7: Arithmetic Circuit of (Equation 3.4) after successful rewrites. The longest paths
with a depth of 4 are seen in orange.
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CHAPTER 4
ENCRYPTED DYNAMICS SIMULATION PLATFORM

The research presented in this thesis aims to establish functional mockup units (FMU) co-
simulation methods to simulate and evaluate encrypted dynamic systems using somewhat
homomorphic encryption (SHE). The proposed approach encrypts the entire dynamic sys-
tem expressions, including: model parameters, state variables, feedback gains, and sensor
signals, and perform computation in the ciphertext space to simulate dynamic behaviors
or generate motion commands to servo systems. The developed FMU co-simulation helps
analyze the relationship between security parameters and performance. Two illustrative
examples are presented and analyzed: 1) encrypted Duffing oscillator and 2) encrypted
teleoperation. How the time delay due to FMU co-simulation affects the refresh rate is also

reported.

4.1 Simulation Environment

4.1.1 Functional Mock-up Interface

Functional Mock-up Interface (FM]) is a tool independent standard for the Model Exchange
(ME) and for Co-Simulation (CS) between different tools in a standardized format [49]. In
the FMI nomenclature, a Functional Mock-up Unit (FMU) model implements one or two of
FMIs. FMU is a promising candidate to become the industry standard and cross-company
collaboration as it allows co-simulation of various FMUs components generated from dif-
ferent tools to develop complex cyber-physical systems [50]. Compared to Simulink (MAT-
LAB, Mathworks) that is designed to model dynamic systems, FMU has the advantage of
supporting more data types and language features. FMI also addresses the disadvantage

of the Simulink S-function as it is easier to integrate with other simulators and takes less
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memory overhead [51].

FMU is essentially an archive (i.e. a.zip file), containing amodelDescription.xml
file in the root, and either binary or source files. In model exchange, FMU does not come
with its numerical solver. FMU only provides functions to set the states and inputs and
compute the state derivatives. It requires the solver in the host environment/import tool
to query the derivatives and update the states of the FMU. In co-simulation, a specialized
numerical solver is embedded in the FMU. The host environment only sets the inputs and
time steps, and reads the outputs [52].

Since encrypted control usually requires a complex model, the authors adopted the co-
simulation option. FMU can be run with FMPy, a free Python library, to execute FMUs
that support Co-Simulation and Model Exchange and run on Windows and Linux [53].

Interested readers can visit the authors’ GitHub to find relevant implementations [54].

4.1.2 FMU/Cypher Interface

Cypher Independent Interface

A system has been created by which critical parts of the FMU’s calculations can be en-
crypted via external codes. To achieve this, we defined an interface to access cryptographic
methods. FMUs can be created from vendor tools such as Simulink. Co-simulation stan-
dalone FMUs can be exported from Simulink after setting the system target file and fixed-
step. By using the S—-Function block, we can insert calls to our interface methods via
function pointers and system functions (LoadLibrary on Windows, d1open on Linux).

By separating the cryptographic routines into a standalone .d11, the implementation
of the interface is isolated from the FMU’s internal operation. This architecture enables the
user to exchange a particular cypher.d11 fora cypher.dl1 that implements the same
interface for testing different cryptographic systems. The interface serves as a convenient

test bed for evaluating the feasibility of different encrypted cyber-physical systems.
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FMU plug-and-play setup

The modular structure of FMU may be used in conjunction with the aforementioned cypher-
interface to create an encrypted cyber-physical test-bed. A particular FMU system is paired
with different implementations of cypher.d11 to test which cypher/security-parameters
are best compatible with the particular system. An example of this workflow can be seen

in Figure 4.1.

Data type constraints

FMI was designed to be widely compatible with as many hardware architectures and op-
erating systems as possible; as such, data is constrained to be “standard C types” [55].
This poses challenges when trying to pass encrypted values to FMUs, as cipher-text val-
ues usually cannot be represented by standard types alone. To work around these con-
straints, in the following case studies, all cryptographic methods have been moved into
controller. fmu. It is usually not ideal to allow encryption and decryption to occur
in a single controller. This particular configuration has been chosen to be acceptable as
the same computations are being performed, just by different owning processes. As such,

timing results are unlikely to be noticeably affected.

4.2 Case Studies

4.2.1 Limiting Equation

The primary limiting factor of Dyer’s SHE is the divergence of noise introduced into the
ciphertext, primarily by homomorphic multiplication. As shown in Appendix section B.2,
the largest possible value among all encrypted signals, parameters, and products should be

smaller than:

o S Ve P,
M(n,d,\,v) := {mm{n%—l’n%—l H}J 4.1)
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Select Security

(a) Testbed Flow: Evaluation scheme to find
successful security parameters, where ¢ is the
measured error, e the error tolerance, T the
measured simulation-cycle time, and T the
simulation-cycle time tolerance.

(Cypher Repo.) ( Staging ) FMU Repo.

(b) Testbed staging: Construct system
from FMU composition, and select the
cypher to be tested. Here the “Test Bed”
block refers to Figure 4.1a.

Figure 4.1: FMU/Cypher test-bed: System simulation is constructed by linking FMUs
chosen from a remote repository. A cypher is then selected to be tested for compatibility
with the given FMU system.

where d is the degrees of polynomial, p is the A-bit prime, & is the v-bit prime—the scheme’s

security parameters [46, 21]. Note the left-handed (£) and right-handed (R) arguments of

Ve p_ P _ 2

(Equation B.3) are given by: £ = .'5, Y

4.2.2 Objectives

By running the simulations in FMUs, this study simulates the systems presented in the
case studies similar to a real-world scenario. The simulations will validate the relationship
of the security parameters in (Equation B.3) for different systems. Also, the simulation
will investigate the quantization and overflow patterns as well as the choices of security

parameters when £ or R of (Equation B.3) dominates.

4.2.3 Duffing Oscillator

This paper will apply the SHE approach to the Duffing oscillator that includes a third degree

of polynomials term. The Duffing equation is regarded as one of the prototypes for systems
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Figure 4.2: All parameters in the duffing equations were encrypted and ran in FMU, where
F = cos(wt) is the forcing function, and zy, = (k7).

of nonlinear dynamics. In mechanics, it represents a class of single-degree-of-freedom

systems with nonlinear stiffness.

Let the coefficients 6, «, 3, v, w denote system damping, linear stiffness, amount of non-

linearity in the restoring force, amplitude of the driving force, and angular frequency of the

force:

&+ 0% + ax + Br’ =y cos(wt).

4.2)

Equation (Equation 4.2) is discretized with a step time 7; for the current time ¢ =

kTs(k = 0,1,2,---) and encrypted by using SHE, as shown in Figure 4.2. The main

purpose of the encryption is to treat the parameters, «, (3,7, d, as well as Z, in ciphertext.

On the other hand, we assume that the state variables, x and z, are of interest of the user
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and observed in plaintext.

Enc(Zx) = Enc(vy) ® Enc(cos(wt))

@ Enc(—J) ® Enc(y)

4.3)

® Enc(—a) ® Enc(zy,)

® Enc(—f) ® Enc(z})
Enc(Zg11) = Enc(Ts) ® Enc(Zx) @ Enc(iy) (4.4
Enc(zy+1) = Enc(Ts) ® Enc(&y) & Enc(zy) 4.5)

The simulation model will then be exported into FMU and run in FMPy by setting the
time step and initial conditions. Note that if the hardware resources permit in terms of

multiplicative depth [25], Enc(z3) may be replaced with Enc(z;) ® Enc(zy) ® Enc(zy).

4.2.4 Teleoperation System

The SHE approach is also applied to an encrypted teleoperation system [26] where two
control loops of the local and remote plants are intertwined. Let the coefficients m, b, u,
7, and f denote system mass, damping, friction coefficient, actuator force, and external
force; furthermore, let the subscript m and s denote the local and remote system. The plant

dynamics is modeled as:

msis + bsis + s Sign(is) =Ts — fs (47)

Evaluation of both linear and nonlinear terms must be performed in an increased num-
ber of encoding blocks. Figure 4.3 shows a possible configuration of an encrypted teleoper-

ation system. The main concept is to encrypt shared information using a private encryption
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key known only to the plants. Both the local and remote plants are responsible for system
output measurements and encryption by using the keys. The networked controller stores
encrypted system parameters, as well as encrypted output measurements received from
both plants.

While there are a variety of control schemes to realize bilateral teleportation, a repre-
sentative symmetric control scheme utilizing PD feedback with inertial and friction com-

pensation is considered in this case study:

T = (M — Mups) L + kp(Ts — Tm) +

ka(Zs — ) + 0.9, sign(z,,) (4.8)
Ts = (Mg — Myps)Ts + kp(zm — z5) +

kq(Zy, — Ts) + 0.9u, sign(z) 4.9)

Inside the controller, the SHE algorithm encrypts the dynamics outputs from the local and
remote plants including: accelerations, velocities, displacements, as well as gains. Then,
the controller will do the computation in encryption and output the decrypted forces back
to the plants.

The teleoperation system consists of three separate FMUs: local plant, controller, and
remote plant. Each component is exported from the Simulink model and run in FMPy.
During the FMU simulation, the components in the co-simulation establish communica-
tions with each other. A component publishes a specific output variable that is subscribed
by other components as input. Two cycles exist in the simulations: feedback from the con-
troller to the local plant and from the remote plant to the controller. Therefore, both plants

and controllers have the same priority but cannot run in parallel.

43



Cypher.dll

Compute
Dynamics

Compute

Y

Compute
Dynamics

Figure 4.3: The teleoperation system consists of three separate FMU: local plant, controller,
and remote plant. The controller makes calls to cypher.dl11 to perform cryptographic
operations.

4.3 Results and Discussion

4.3.1 Duffing Oscillator

The nonlinear phenomenon is evident in hysteresis, which is induced by x? in the Duffing
equation. When « and 3 have the same signs, the stiffness characteristic is hardening. For
a hardening spring oscillator, the frequency response overhangs to the high-frequency side,
as shown in Figure 4.4.

For encrypted signals, the time step (7%) could not be smaller than 10 ms since quanti-
zation with a higher resolution is needed for a smaller 7. Therefore, there was a balance
between A and 7 to capture accurate data while not overflowing. When 7y is too large, the
system fails to capture accurate data points. When 7} is too small, A needs to be smaller,

resulting in numerical overflow. As shown in Figure 4.5, encryption impacted the perfor-
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10

Figure 4.4: Duffing’s parameter (a« = 6 = 1,7 = 0.1, = 0.04). Dyer’s encrypted
signal (A = 256,p = 1,v = 35, A = 0.005). Frequency response overhangs to the high-
frequency side in a hardening spring oscillator.

mance compared to the plaintext equation due to the resolution of the Duffing equation.
The percentage of error by comparing the L2-norm of the variables was 6.93%. v = 32
where A = 192 was the minimum security parameter to prevent numerical overflow, as
shown in Figure 4.5c, which had a maximum velocity threshold of 0.45.

The success of the simulation result is determined by the largest encrypted number M.
To investigate the R argument of (Equation B.3), the system was parameterised by the
security parameter A and v. Pass/fail analysis was performed by comparing the L2-norm
of the encrypted data. As shown in Figure 4.6, the £ argument dominates and R = M.
As for a constant ), increasing v results in numerical overflow and failure. d, the degree of
polynomial, equals to 3 because of the cubic power term results from quantization. At the
boundary of pass/fail, there is a positive linear relationship between the two parameters,

and ) is about as six times as large as v.

4.3.2 Teleoperation System

Figure 4.7 shows simulated displacements of the teleoperation system. Compared to the

plaintext simulation shown in Figure 4.7a, oscillations in displacements were observed in
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(c) SHE trajectory with security parameters:
(A=256,p=1,v =35,A =0.004). Failure
phase plot (T = 10 ms).

Figure 4.5: FMU trajectory of duffing oscillator (unencrypted, encrypted-success,
encrypted-fail).
the encrypted simulation due to the encoder as shown in Figure 4.7b. v = 31 and A = 125
are the smallest security parameters to prevent numerical overflow as shown in Figure 4.7c.
Compared to the plaintext Simulink simulation that could run at a maximum time step
of 20 ms for this particular system, running in FMU required a time step of at most 5 ms
(Figure 4.7b). This is primarily caused by the delay in the co-simulation architecture. The
local solver takes one extra time step to transfer the output of one FMU to the input of the
other FMU. For example, FMU A transfers data to FMU B. FMU B takes the output from
FMU A in the last time step as its input, which represents a unit of time delay between them.

There is a communication delay equivalent to four time steps between the local plant’s input
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Figure 4.6: Pass/fail results of Duffing system simulations using Dyer’s SHE. The system
was parameterised by the security parameter \ and the encoder resolution ». Remaining
security parameters well held constant at p = 1, A = 0.005. The system starts working
from v = 32 and A = 192.

and output for the signals through the remote plant. The time delays include: one from the
local plan to the controller, from the controller to the remote plant, from the remote plant
back to the controller, and from the controller back to the local plant. Nevertheless, Dyer’s
SHE scheme has much faster refresh rate than 200 Hz to realize real-time control system.

Figure 4.8 depicts that the £ argument dominates and R = M. Compared to the duffing
system, d decreases from 3 to 2 in the teleoperation system. The minimum start value of
v = 32 is decreased by one, and the minimum value of A = 125 is decreased by about
33%. So, the decrease of v is due to the increase of A and the decrease of ) is mainly due
to the decrease of d. There is a linear relationship between A and v. A is about four times
as large as v, which is the product of the number of multiplication and d.

To investigate the £ argument of (Equation B.3), the system was parameterised by
the security parameter \ and the encoder resolution A, as shown in Figure 4.9. When A
becomes smaller, the size of the encoded number and M increases. As shown in Figure 4.9,
increases v can increase M while v is smaller than 36. Increasing v can increase the £

argument of (Equation B.3) while significantly decreasing R. Therefore, for A = 256, the
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(c) SHE control (A = 128,p = 1,p/ =
32, A = 0.005,Ts = 20 ms). The step size
is not small enough to permit correct computa-
tions.

Figure 4.7: FMU teleoperation results (unencrypted, encrypted-success, encrypted-fail).

‘R argument dominates and £ = M while v is smaller than 36. Otherwise, the £ argument

dominates and R = M.

To sum up, the FMU simulations find the quantization and overflow pattern of encrypted

control using Dyer’s SHE scheme: if v > %, the system fails; if :%d <v < %, the £

argument dominates and R = M ;if v < 3—’\d, then the R argument dominates and £ = M.

These inequality relationships are observed patterns found from the simulations and may

not hold in general.

48



[ JPass

55 - [ JFail
/

50 - ,,,,/’/

N 45 e /
/ﬂ/”
40 _
35 ) .

130 140 150 160 170 180 190 200 210 220 230

Figure 4.8: Pass/fail results of teleoperated control simulations using Dyer’s SHE. The
system was parameterised by the security parameter A and the encoder resolution v. Re-
maining security parameters well held constant at p = 1, § = 0.01. The system starts
working from v = 31 and A = 125.
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Figure 4.9: Pass/fail results of teleoperated control simulations using Dyer’s SHE. The
system was parameterised by the security parameter v and the encoder resolution A. Re-
maining security parameters well held constant at p = 1, A = 256.
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CHAPTER 5
HARDWARE ACCELERATED CRYPTOGRAPHIC ARCHITECTURE

This thesis presents an investigation into the improvement of security and operation time in
homomorphically encrypted systems using Field Programmable Gate Array (FPGA) tech-
nology. The primary objective is to generate keys efficiently, minimizing key sizes while
maintaining security. By leveraging FPGA capabilities for key generation and key switch-
ing, smaller ciphertext sizes can be achieved, ultimately improving operation time. The
thesis focuses on the development of a sensor data encryption system implemented on an
FPGA board. The proposed approach enables simultaneous key generation and encryption
of incoming sensor data using generated keys. The developed system implemented fixed-
size random number generation and prime number checking in hardware, subsequently

expanding these capabilities to produce arbitrarily sized prime numbers.

5.1 Proposed FPGA transducer node with fast key generation

The system consists of a dedicated encryption circuit Enc attached to sensor equipment
which immediately encrypts the sensor signal and exposes only the encrypted signal. The
augmented sensor module is equipped with a communication channel (e.g. a pin) over
which the module recieves the key with which it is to use to preform encryption. The
encrypted signal can then be sent to the controller for encrypted calculation of the control
signal. A dedicated decryption circuit Dec is embedded into the actuator node with a
communication channel in the same way as the sensor node. The decryption circuit then
decrypts the control signal, using the key it received externally.

Both the sensor and actuator nodes receive their key from the same key register. This
register is periodically overwritten by the output of a dedicated key-generation circuit

KeyGen. Once the register is updated the Enc, Dec modules will use this updated value
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Figure 5.1: Key switching motivation: By using small keys we get faster computation time,
but they can be “hacked” easier, so we need to switch keys frequently.

as their keys. This design layout can be seen in Figure 5.2

By adjusting the period T4, of key generation we can compensate for weaker keys.
Some care is needed during the transition from one key to the next, since the signal still in
the controller will become stale when the key register is overwritten. Metrics for how often
a key should be switched to ensure security of a real-time encrypted control system have
been explored by [56].

Homomorphic cyphers over the integers rely on strong primes to produce secure keys
[57], [58]. Therefore in order to generate a key a PrimeGen circuit must be constructed.
Primes are generated by combination of a Random Number Generator (RNG) and a Pri-
mality Test. There are several different techniques to achieve RNG in hardware [59], [60],
the presented work uses a collection of Linear Feedback Shift Registers (LFSR) which each
contribute a different bit to the output and are independently seeded. The RNG output is
constructed by concatenation of sufficient LFSR outputs to achieve the desired bit-length.

Prime generation can be done in one of two ways, either a computationally expen-
sive but deterministic operation can be dispatched to produce a provable prime, or a more
computationally feasible but probabilistic method can be dispatched to produce a probable
prime [61]. Deterministic primality tests require significant resources, in the case of prime
sieves a list of all integers up to some limit is constructed and composite numbers are subse-

quently removed [62]. For large primes, such as those suitable for cryptographic purposes,

51



Cloud Controller

P | d nt Decrypt Circuit Encrypt Circuit
O\ [NNENN] [NRENN
of m—{EE- 1ElE
e ITrrri ITrrri
Actuators 4 Key Read 4 Sensors

[ ] — Ciphertext O"' e

Plaintext
[ | — KeySignal

KeyGen Circuit

Figure 5.2: Autonomous system employing dedicated cryptographic circuits with periodic
key re-generation. By embedding a Enc circuit into the sensor node, the system can con-
ceal the sensor signal from the cloud. The embedded Dec circuit in the actuator node then
retrieves the control signal calculated by the cloud. The KeyGen circuit creates a new
active key periodically replacing the key used by the other circuits.

the memory requirement of such methods become infeasible. Because of the difficulties
in obtaining a provable prime, we instead use probable primes with a design parameter
which can be adjusted to control the primality probability tolerance.

The probable primes are generated by a “guess and check” method where random num-
bers of appropriate bit-length are constructed from the RNG module, which is sent to the
Probabilistic Primality Test (PPT) module. The PPT evaluates the candidate prime p, and
if it concludes p- is prime than successive iterations of the PPT are applied to p- until

primality confidence can be brought within tolerance.
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5.2 RNG using Feedback Shift Register

While true randomness is not achievable within deterministic devices such as Field Pro-
grammable Gate Arrays (FPGAs), pseudorandom number generators can be implemented
utilizing a starting seed to produce random numbers. One such example is the Linear Feed-

back Shift Register (LFSR).

1/0/1/1{1/0]0/|1

A 4

1
0
Figure 5.3: Linear Feedback Shift Register with taps at its Oth, 1st, 3rd, and 5th bits

An LFSR consists of a clocked shift register with feedback from its constituent bits,
often referred to as “taps”. By applying the exclusive or (XOR) operation between bits
within the shift register, a new pseudorandom bit value can be introduced into the register
at every clock cycle. This feedback loop is depicted in Figure 5.3.

LFSRs were chosen as the source of random numbers due to their low resource uti-
lization and ease of implementation in hardware—as they consist of only a few gates and
registers. However, they are completely deterministic designs—if an attacker knew the start-
ing seed and the design, they would be able to predict future random number outputs, which
would undermine the security of the system. Multiple instances of LFSRs (See Figure 5.4)
may be employed to make this attack difficult, with only specific bits from each LFSR se-
lected for the output random numbers. Furthermore, nondeterminism could be introduced
by artificially introducing race conditions in the insertion of new bits into the LFSR.

Initially, a 128-bit LFSR generating 16-bit random numbers was chosen. For larger
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random number generation requirements, multiple instances of the LFSR module (with
distinct seeds) can be combined to produce arbitrarily sized pseudorandom numbers in

hardware. The resulting signal through a LFSR can be seen in Figure 5.5.

clock_in

—_

reset_in rand_out[15:0]

seed_in[127:1]

state_in[3:0]

rand127

Figure 5.4: Linear Feedback Shift Register Inputs and Outputs

-11342745564031282115445820

Figure 5.5: Simulated Linear Feedback Shift Register random number output signal.

5.3 Miller-Rabin Primality Check

The Miller-Rabin primality test is a probabilistic primality test based on Fermat’s Little
Theorem. It “checks” the primality of a number n by attempting to prove it to be composite.
As opposed to deterministic method such as the Sieve of Eratosthenes, the Miller-Rabin
test is much faster with significantly less memory consumption [62]. This is evidenced by
their respective runtime complexities—O(sqrt(n)) for the Sieve of Eratosthenes and O(k

log®(n)) for the Miller-Rabin test, where & is the number of tests run [63].
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Algorithm 6 Miller-Rabin Test

1: procedure MR(n, s)

2 for j « 1tosdo

3 a < RandomInteger(l,n —1)
4: if Witness(a,n) then

5: return COMPOSITE

6 else if

7 thenreturn PRIME

8 end if

9: end for

10: end procedure

The Witness procedure of Algorithm 6 can be described as follows. Let a be a

random number which is said to be a witness of n being composite, if

a"t # 1 mod n 5.1)

These relations are precisely the negation of the equivalence relations of Fermat’s Little
Theorem, giving strong evidence that n is composite [64]. However, even if n passes the
above test, there is a chance that it is a strong pseudoprime, for which the corresponding
value of a would be a strong liar. To remedy this, the Miller-Rabin test is performed several
times on a potential prime, reducing the chances that it is a strong pseudoprime with so
many strong liars [65], [66].

Let ¢ be the probability that n is a strong pseudoprime after k£ checks. Then, an upper

bound can be placed on the probability that n is a strong pseudoprime as follows [63]:

k
€< (i) . (5.2)

Therefore, a corresponding lower bound can be placed on the probability that n is prime
after k checks

1\
P(n is prime after k£ checks) ~ 1 — (Z) . (5.3)
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5.3.1 State Machine

The FPGA based Miller-Rabin circuit is implemented as a finite state machine with 6 states
that systematically checks an input 32-bit prime number up to a specified number of checks
(k, determined by setting system parameter €) and determines whether it is prime or not.

The state machine begins with the transition to the start state, which takes in a potential
prime n and a number of checks to do k, and resets other intermediate registers. It then
transitions to the get exp stage, which prepares the exponent that will go into the miller
rabin check. Next, in the get random state the random number a is retrieved. The modular
exponentiation step then follows, finding the value of the base to the prepared exponent,
and either continuing, or going to the finish state if n is composite. Next the exponent
is continually squared and reduced in the squaring step - going to the finish state if n is
composite, and only going to the check state if the congruence holds. The check state
keeps track of the number of loops (new values of a) that have been checked, and if it is
under the specified £ value, the number of checks is incremented and the loop is restarted.
If the number of checks is equal to k, n has gone through enough Miller Rabin checks to
be deemed prime, and the transition to the finish state is made.

A modular exponentiation module was designed to compute a” mod p for arbitrary
a,n,p € Z. The authors identified some similar projects conducted in research labs; how-
ever, to our best knowledge, there is a limited number of this type of system integration
work reported in the literature.

It repeatedly bit shifts n to the right (divides by 2) while squaring a and taking its
modulus (e, = a?, mod p) — storing any additional a terms in an intermediate register
(intermediate,e,, = ayq X intermediate,y mod p if n is odd). This process is repeated
until n is 0 or 1, after which the result is calculated directly from the values of a and
intermediate. With this modular exponentiation module, 32-bit primes could be tested —
but to generate arbitrary size prime numbers, further modification was required to ensure

the functionality of all steps of the module for arbitrary input sizes. To allow for this, the
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module registers and wires were parametrized to a desired prime size (size of n), and the
logic for getting random numbers (a in the above equations) for each iteration of Miller
Rabin was changed from being fixed (to 16 bits) to building a random number from 16-bit
random numbers up to the specified prime size. This logic was kept clocked/sequential —
to limit the resource utilization of the miller rabin modules — as the speed increase would
not have been worth the extra utilization.

The Miller-Rabin circuit behavior can be seen in Figure 5.6

2.000000 us 4.000000 us 6.000000 us

> W'accuracy[63:0]

> Wpotential_prime([31:0]

4 clk

4 prime_reset

4 prime

@ finish

M\ R
> Wistate[3:0] 222 Q242
LT

Figure 5.6: Simulated Miller Rabin primality outputs

5.4 Constructing Prime Generation Module From RNG and Miller-Rabin Modules

With these building blocks, higher level modules for the generation of keys could be gen-
erated for Dyer’s HEIN scheme. The random number generation and miller rabin modules
were next combined to create a prime gen module — again parametrized to allow for ar-
bitrary prime size generation. For this module, a potential prime number is built up from
16-bit prime numbers similar to how values for a were generated in the miller rabin mod-
ule. These potential primes are then fed into the miller rabin module, where the number
is checked. This continues until a prime number is found, after which the module holds

until it is reset. Tricks can be used to speed up the rate of prime number generation - for
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example, ensuring that no potential primes are even (which can be easily implemented by

ensuring that their LSB is not 0).

5.5 Cryptographic key generation

Using the prime gen module, a key gen module was then created — which syncs up 3 prime
gen modules to generate a key and public modulus (%, p, and q). This is where the strengths
of the FPGA show — as while a CPU based design would have to generate «, p, and ¢ in
series, an FPGA generates them in parallel, and is only limited by the largest prime among

them (See Figure 5.7).
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Figure 5.7: Key Gen Inputs and Outputs - including 3 Prime Gen modules

5.6 Encrypt module

An encrypt module was created to take keys from the key gen module and generate appro-
priately sized noise terms for r and s (See Figure 5.8). For this module, speed was crucial
— much more so than everything involved with the key gen — as new data to encrypt will

be coming in each clock cycle, so if the encryption process takes multiple clock cycles,
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incoming data will be missed, and the analog signal will have more discretization error.
To prevent this, this module was designed to be completely combinatorial — so the encryp-
tion process for a given plaintext value only takes 1 clock cycle and no data is missed.
This was a time/space trade off done by instantiating as many LFSRs were needed based
on the desired noise term size rather than building up the noise terms (which would take
multiple clock cycles). This entails the random numbers being generated combinatorically
using multiple rand modules as opposed to using a single rand module and building ran-
dom numbers over multiple clock cycles as was done in the prime gen and miller rabin
modules. Furthermore, to ensure the appropriate size of the generated noise terms without
bit shifting that would take multiple clock cycles, a bitwise and is taken between the keys

and rand module outputs to ensure that the noise terms are smaller than the keys.

Figure 5.8: Encrypt module inputs and outputs — the random number generation modules
are instantiated parametrically — using a Verilog generate block

]~

5.7 Final Block Design

The final experimental setup consisted of an the Zyng-7000 development board with a func-
tion generator plugged to its analog input, see Figure 5.10. The Internal Logic Analyzer
(ILA) IP was used to view outputs connected to internal wires in the FPGA. Keys were
continuously generated, and information continuously flowed to the analog input to the en-
cryption module, and was encrypted in real time by it. The final block design can be seen
in Figure 5.9. Though a decryption module was not designed yet, using the ILA to view

the values of the keys and ciphertext showed that the FPGA was correctly encrypting the
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Figure 5.9: Final block diagram with all of the top level modules — security parameters are
A=n=32,v=16

input discretized numbers.

5.8 Results

Using these modules, an experiment was conducted to compare the prime generation time
between a CPU and an FPGA. Keys from 16 bits to 2048 bits were generated on an FPGA
and a CPU. Initially, only time to the first prime is recorded, which resulted in a much larger
spread of results due to randomness in prime number distribution. To better characterize
steady state performance of both implementations, multiple samples were taken for each
bit size (5 for CPU, 30-60 for FPGA — CPU tests took very long, so more than 5 samples
for each size would have significantly increased experiment time).

The times were then averaged and plotted, with their standard deviations being used
for error bars. A log-log scale was used to show the trends of bit size and time over larger
magnitudes. These performance behaviors can be seen in Figure 5.11. The FPGA based
architecture is shown to have a consistently lower key generation time in all tested key size
ranges—with key generation times between 10-100x faster—allowing for much stronger key

production for the same amount of time.
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Figure 5.10: Experimental setup with function generator emulating sensor data
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Figure 5.11: Key Generation Time on a CPU and FPGA — FPGA performance is approxi-
mately 2 orders of magnitude better at minimum
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CHAPTER 6
REALIZED REAL-TIME ENCRYPTED CONTROL

This thesis seeks to understand the viability of encrypted robot control. Controllers are
susceptible to malicious attacks unless controller parameters are encrypted; however, ho-
momorphic encryption is necessary in order to allow controller mathematical operations
on encrypted text, but is limited due to heavy computational overhead. Encrypted con-
trol is accomplished via the implementation of Dyer’s somewhat homomorphic encryption
scheme on multi and single threaded matrix transformations in order to telecommunicate
movement commands between a virtual-reality joystick and a robot arm. Results find that
encrypted teleoperation via the user interface is a viable encrypted controller technique,

and is optimally produced on multi-threaded systems.

6.1 Methodology

6.1.1 Geometric representation and its encryption

The positions of the user control device (a hand-held virtual reality (VR) interface) and
the robot end-point are represented by the coordinate frames shown in Figure 6.2. For a
discretized time t = kA, where A, is a sampling time and & is a counter (k = 0,1,---),
the transformation matrix “T} transforming the initial user interface state T to the
current user interface state °T¢(k) is given as “°T¢ (k) =° Ty, *To(k). Frames CO and
RO represent the initial states of the user interface and robot, respectively, and C' and R
are the current states. This transformation is applied to the initial robot state to move the

robot’s end-point as the desired state, i.e.,

OTR(k) =° Tro “°Te(k) =° Tk °Tg "Te (k). 6.1)
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Figure 6.1: Encrypted teleoperation of a robot manipulator.

A mathematical representation to evaluate the matrix multiplicative depth (mmd) is in-
troduced. Reducing multiplicative depth optimizes matrix multiplication time and prevents
overflow of the encryption scheme. A multiplicative depth of a square n x n matrix is given

by the maximum among all element-wise multiplicative depth, ["%*(x):

mmd(Enc(T)) := max ["*(Enc(T};)) (6.2)

1<i,j<n

For example, multiplication between two encrypted matrices in ciphertext results in a mul-

tiplicative depth of one:

mmd(Enc(*Ty) ® Enc('Ty)) =1 (6.3)
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R: Robot end-point current frame

Xo

CO: User controller initial frame
C: User controller current frame \w

Xo

(b)

Figure 6.2: Coordinate frames; (a) Initial and current robot position, (b) Initial and current
input position.

Consider the encryption of (Equation 6.1) with SHE, Enc(*Tz,(k)). Note that only the
relative displacement from the VR interface’s initial state to the current state is used for
robot control. The initial states of the robot and VR interface are fixed and stored in the
system as constants. For improved security, ideally, the constant matrices, “T¢q and °Tgy,
are encrypted at the beginning (on the robot side and on the user side, respectively) and

stored as in ciphertext, not in plaintext:

Enc(*Tr(k)) = Enc(*Tro) ® Enc(°T;y) ® Enc(*To(k)) (6.4)

65



As a result, mmd(Enc(°Tr(k)) = 2. If a user wishes to reduce the multiplicative depth
by one, bootstrapping can be applied on the robot side to replace the first two terms with
Enc(Dec(Enc(°Txo) ® Enc(°T;,))) without risking revealing either T, or °T} as it is

performed only once.

6.1.2 Encrypted matrix multiplication with threads

Consider the matrices

o
B |4 65)

I' =AB = [O& X ﬂ:|
To calculate I', a3 calculations of the form:

Enc(AB),; = f‘ij =
. . . . . . (6.6)
(Ail ® le) > (Ai2 ® ng) ®..0 (Aiv ® BjAY)
must be performed, where & = Enc(x). Each calculation considers 7 encrypted multipli-
cations with average time p, and 7 — 1 encrypted additions with average time o. Then
the computation time for a single entry I';; is given by &, = yu + (7 — 1)o. However, in
general, homomorphic multiplicative operations take significantly longer than homomor-
phic additive operations, i.e., i > o. As such we will make the following simplification
& = .
Using &, we can construct the time complexity for a single-threaded and multi-threaded
implementation of the matrix product. For a single threaded implementation, each I';; must
be sequentially processed, thus O (a/5¢,). While it is not typical to consider the runtime

of “elementary operations,” in big O analysis, it is justified in this setting as homomorphic
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Figure 6.3: Computation time histogram for Method 1 (series), showing distribution of
computation times for for security parameter \ of varying bit lengths with semi log scale.
Each set is represented with 10 bins across its range.

multiplication significantly impact performance [67].

Speedup can be achieved by delegating the computation of each I';; to its own thread.
In the limit that the number of system cores /N, approaches the number of elements to
compute i.e. N — af, then the complexity reduces to O (&,).

The effectiveness of parallelism is tested by implementing two methods, each tested
separately and analyzed for efficiency in timing. Figure 6.6 shows the following methods:
Method 1 (series) executes on a single thread, carrying out standard matrix multiplication
in which each dot product awaits a preceding operation to complete before performing its
operation. Method 2 (parallel) separates each dot product of a matrix multiplication into its

own thread, allowing each dot product to be calculated in parallel with the others.
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Figure 6.4: Computation time histogram for Method 2 (parallel), showing distribution of
computation times for security parameter A\ of varying bit lengths with semi log scale. Each
set is represented with 10 bins across its range.

The performance of each method was evaluated during system operation with a timer.
A total of 500 samples were taken from each operation, and its distribution was plotted
as a histogram for varying A\ between 128 to 1024. The histogram in Figure 6.4 shows
that across an increasing range of ), the average computation time only increased to 1.8
ms. In contrast the histogram of Method 1 in Figure 6.3 shows the computation time
without parallelism. Here we see clearly that the distribution increases exponentially with

increasing .
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6.2 Encrypted Teleoperation System

6.2.1 Implementation

Point-To-Point (PTP) direct control of a robot manipulator (FANUC LR Mate 200iD/7L)
requires homogeneous matrix transformations. These transformations are implemented
with SHE and threading at various levels to enhance performance.

A virtual reality (VR) headset (Meta Quest 2) is the user input device in this system.
The VR joystick was attached to a controllable Universal Robots 6R Manipulator in order
to repeat the experimental path consistently as shown in Figure 6.5. The position of the
controller was acquired on the local computer. OpenVR API (Valve Corporation) was used
in this implementation. The current pose of the user interface *T (k) is acquired, and
the homogeneous transformation matrix “°T, from the initial pose of the controller to the
current pose is processed, and then encrypted to be processed in the operator module. This
portion of the system is considered local, with full access to all keys as in Figure 6.7.

The operator module was implemented with C#, The first part is the cipher, which im-
plements the Dyer’s SHE algorithm. The second part of the operator module implemented
matrix multiplication in cipherspace. This part is representative of a “cloud” controller
shown in Figure 6.7 , and will not access any information needed for encryption and de-
cryption. To that end, the two matrices *Try and “°T¢ (k) are encrypted when it is received
by the thread on which operation are being carried out. A client on the remote side will
receive the encrypted message from the cloud. The final command is decrypted and sent
to the robot controller (RoboDK). Once RoboDK receives this command, a trajectory is
sent to the FANUC Manipulator, resulting in a translation and rotation to the desired robot
pose as shown in Figure 6.7. It is noted that this implementation uses threads in favor of
processes for homomorphic operations. An inter-process model would be a closer represen-
tation of an ideal teleoperation system, as there is extra communication overhead. While

there is no inter-process communication, threads are being executed in an asynchronous
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manner as would be expected of a multi-process system. For the purposes of this study,
a multi-threaded architecture can sufficiently represent a successful physical system that

only operates on encrypted information.

6.2.2 Threading

As established in subsection 6.1.2, encrypted matrix operations can be sped up by distribut-
ing computational overhead across multiple processors. Multi-threading has been chosen
to implement the parallelism proposed in Method 2 in Figure 6.6. Performance of a multi-
threaded program is dependent on the size and scheduling of the tasks put on each thread.
The size of the task should not be smaller than the overhead to start threads. If this oc-
curs, implementing parallelism could lead to performance degradation. Computation time
of homomorphic operations has been evaluated in detail in [26], including that of Dyer’s
SHE algorithm. Based on these findings, it is expected that for low security messages
with lighter computational load, gains from parallelism will be comparable to the thread-
ing scheduling overhead. However, with increase in message length, parallel computing

gains as discussed in will dominate as discussed in subsection 6.1.2.

6.2.3 Simulation

To motivate our choice of security parameters we ran simulation of single-threaded vs
multi-threaded execution. To simplify this choice we define all security parameters to be in
terms of one parameter A by p = 10log,(\)

and p’ = 2p. This parameterization ensures that the cypher has sufficient entropy to prevent
a cyphertext attack [68]. Furthermore, by parameterizing p and p’ by A, we have collapsed
the parameter space to a single dimension, thus making a sweep of parameter space far
less computationally burdensome. Ultimately, the security of the cyphertext against brute
force attacks will be determined by the bitlength of the encrypted values. With the above

parameterization we can see that bitlength is related to A as shown in Figure 6.8. The
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computation time to complete one matrix multiplication with and without threading was
simulated on a 11th Gen Intel(R) Core(TM) i7-1165G7 CPU. Computation was averaged
over 10 runs for each choice of \. The results of this simulation can be seen in Figure 6.9.
Notice in Figure 6.9 that for low security parameters the series method performs better
than the multi-threaded method. This is due to the overhead of creating and managing
multiple threads, and indicates the threaded tasks require so little computational effort that
the threading overhead is actually detrimental. Typically, we want our security parameters

to be as large as possible, so such a situation is unlikely to occur in a production system.

6.3 Experimental Results & Analysis

In order to verify encrypted operation, experimental data was collected with security pa-
rameter A chosen from the set {128, 256, 512, 1024 }. Figure 6.10 presents translation data
of the end effector for a test case with A = 1024. These results show that the robot ma-
nipulator closely tracked the VR remote while command calculations were performed in
cipherspace. For example, at the lower left corner, the robot tracked better with Method 2
(parallel) since the reference command was generated faster than Method 1 (series). This
observation is expected to hold for complex path tracking.

Table 6.1 shows the median deviation of the robot end effector from the ideal path in
millimeters at varying security parameters. The deviation showed non-normal distribution
for all trials tested with the Shapiro-Wilks normality test with 95% confidence. One tailed
Mann Whitney U test was performed at the significance level of 0.0125 to determine if
deviation of the system was significantly smaller when method 2 is used over method 1.
Results showed that there was a significant difference in deviation between methods for
cases A = 512 and 1024.

All A values show similar results, confirming the viability of encrypted robot control
through the VR system. Additionally tested was computation time again with varying A

chosen from the same set {128,256,512,1024}. Results of this test can be seen in Ta-
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Table 6.1: Median Robot - VR path deviation in mm at varying security parameter \ for
Method 1 and Method 2, and Mann Whitney U test score U by A (*U < 0.0125)

A Method 1: Series Method 2: Parallel U
128 16.41 16.16 .342
256 21.64 23.26 .953
512 31.60 18.48 < .001*
1024 42.27 18.87 < .001*

ble 6.2. Observe that Method 2 gains benefit as the A parameter increases, approximately

seven times faster than that of the series implementation in the A = 1024 case.

One tailed Mann Whitney U test was performed to determine if the positive shift in

the overall distribution was statistically significant. It was found that reduction in compu-

tational time is significant from A = 256 and above. Although there is significant time

increase for A = 256 case, amount of reduction is suspected to be too small to result in per-

formance increase. For A\ = 512 and 1024 case, time reduction and performance increase

were consistent.

Table 6.2: Median and standard deviation, computation time of reference command gener-
ation (ms), and Mann Whitney U test score U by A (*U < 0.0125) .

A Method 1: Series Method 2: Parallel U
Mdn o Mdn o
128 0.204  0.001 0.252 0.023 1
256 0.574  0.026 0.285 0.042 < .001*
512 2.098 0.193 0.441 0.056 < .001*
1024 7.661 0.383 1.068 0.236 < .001*
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UR Experimental Path VR Remote Moves on UR Path

Figure 6.5: VR experimental path for UR-VR Mount.
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Figure 6.6: Threading methods
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CHAPTER 7
CONCLUSION

With the ever-expanding integration of networked autonomous systems, our society be-
comes increasingly dependent on digital asset. While there is no question the positive
impact this has had, such dependency presents a new threat of cyber-attacks crippling these
systems.

This thesis presented expression rewrite rules for encrypted dynamic control schemes
to reduce the depth of somewhat homomorphic encryption and to improve numerical sta-
bility. Algorithms to automate the associative and distributive rewrite rules have been im-
plemented into depth analyzer software. An illustrative numerical example was presented
to demonstrate the usefulness of the proposed approach. Note that further depth reduction
may be possible if specific plant information is known. For example, operations between
link parameters may be grouped as a combined parameter if they are known to be time-
invariant. Grouping of operations between state variables before encryption is also concep-
tually possible. Further improvements including experimental demonstration will will be
reported in our future publications.

This thesis also presented a physical system implementing a somewhat homomorphic
encryption algorithm to secure communication between distinct systems in the form of a
VR hand-held remote controller and a 6DOF manipulator. Messages between the local
and remote systems were in the form of a homogeneous transformation matrix. A method
to accelerate computationally heavy, encrypted calculations exploiting the parallel nature
of matrices was devised and evaluated for algorithmic complexity. The new method was
shown to significantly reduce update times once security parameters were large enough to
offset communication overhead inherent in parallel computing. Among the tested security

parameters the median computation time was 7.22 times faster compared to when paral-
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lel computation was not applied. This improvement in computational time was shown to
meaningfully decrease positional deviation of the robot end effector from the ideal path up
to 2.25 times. Usage of a larger security parameter will result in even larger performance
gains. Further research would implement filtering in cipherspace in the form of an extended
Kalman filter and model predictive controllers leveraging improved performance of matrix
operations.

This thesis also proposed a concept to enhance cyber security for networked motion
controllers via somewhat homomorphic encryption. We have demonstrated the feasibility
of encrypting the entire motion control scheme of a teleoperated system, such that real time
performance is still possible. This thesis has identified large integer arithmetic as the main
source of computational burden. Specialized hardware and algorithms could mitigate these
issues.

Note that the algorithm proposed by [46] is a symmetric-key encryption system, though
not as secure as an asymmetric-key system, does allow both homomorphic addition ad
multiplication. This improves security, by removing holes in the system at the controller.
Dyer’s encryption is not stable for all security and encoding parameters. If (Equation A.3)
and (Equation A.4) are not satisfied, the scheme ceases to be homomorphic.

This thesis also presented a FMU co-simulation environment for various components
in an encrypted dynamic system using SHE. The architecture consists of external codes
that implement the encrypted calculations and FMU’s dynamic systems. The feasibility of
performing the co-simulation in FMU was demonstrated in two case studies. The FMU co-
simulation presented the success/fail scenarios for both systems and showed the choices of
security parameters when £ or R of (Equation B.3) dominates. This thesis discussed how
the relationship among the security parameters and time delay in co-simulation impacts the
simulation performance. The developed interface may serve as a convenient test bed for
evaluating the numerical stability of different cryptographic systems.

This thesis also presented a realization of fast cryptographic key generation on a FPGA
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board. Both random number generation with feedback shift registers and the Miller-Rabin
primality check were implemented. The realized FPGA key generation was confirmed to be
2 orders of magnitude faster than that with a CPU. Future work includes the management

of key switching and further performance validation.
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Appendix A

Dyer’s Cryptosystem

This study adopts the SHE algorithm proposed in [68] that can be summarized as follows:

Gen: Set security parameters A, p, p. Let:

v=yp —p (A.1)
2

77:)\—/—)\ (A2)
P

Randomly choose a \-bit prime p, a v-bit prime ~, and an 7-bit prime q. Generate
akey k = (k,p) and publish N = pq. In range of plaintext integer numbers: M =
{0,1,2,..., M — 1}, to compute any polynomial expression: P(my,ms, ..., m,,) and
P(my + s1k,ma + Sk, ..., m,, + s,k) up to the degree of d, key lengths  and p are

lower-bounded by the power of d given by:

k> (n+1)4M? (A.3)

p> (n+ DM + r?)? (A.4)

where s; € {0,1,...,k — 1}( = 1, ..., n) are random integers.
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Enc:

Dec:

Add:

Plaintext m € M is encrypted by:

c=m+sk+rp mod N (A.5)

where s € {0,1,...,s — 1} andr € {0, 1, ..., ¢ — 1} are random noise.

Ciphertext c € C is decrypted by:

m = (¢ modp) mod K (A.6)

Additive homomorphism Enc(m)@Enc(m’) mod N = Enc(m+m'),Vm,m' € M

is realized if:

m+m' <k (A7)

(m+m')+(s+s)k<p (A.8)

where s’ is random noise corresponding to m’.

Mult: Multiplicative homomorphism Enc(m)®Enc(m’) mod N = Enc(mm/),Vm,m’ €

M is realized if:

mm' < K (A.9)

mm’ + (ms' +m's + ss'k)k < p (A.10)

Equations (Equation A.3), (Equation A.4), (Equation A.7), (Equation A.8), (Equation A.9),

and (Equation A.10) are conditions that must be satisfied at all times.



Appendix B

Quantization

B.1 Quantization Error

Any encryption algorithms can treat only plaintext integer numbers m € M. Real numbers
used in control schemes must be mapped onto M, which is equivalent to quantization of

parameters and signals using an encoder and decoder:

T 1
Dcda : Z - R:m+— Am (B.2)

where A € (0, 1) is a sensitivity factor. Consider () := Dcda o Ecda that functions as a
quantizer. Then, the quantization error of () is bounded by A /2, namely |z —Q(x)| < A/2.

Note that A cannot be arbitrarily small due to the risk of overflow.
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B.2 Quantization to prevent overflow in SHE

From (Equation A.3) and (Equation A.4) it follows:

N I B
M(n,d,\,v) := {mm{n%—l’n%—l_ﬂ}J (B.3)

The factor A should satisfy Ecda(Tmax) < M where y,y is the largest possible value
among all signals, parameters, and products between them, achieving

Dcda(Dec(Enc(Ecda(z)))) ~ 2. Note that A’s depth is accumulated by each multiplica-
tion, for example, Enc(Ecda (x)) ® Enc(Ecda(z’)) = Enc(Ecdaz(zz")), where the depth of

each term on the left-hand side is one, but that on the right-hand side is two.
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