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Abstract

Recent advances in machine learning and deep learning have presented new opportunities for learning to localize the
origin of ventricular activation from 12-lead electrocardiograms (ECGs), an important step in guiding ablation therapies
for ventricular tachycardia. Passively learning from population data is faced with challenges due to significant variations
among subjects, and building a patient-specific model raises the open question of where to select pace-mapping data
for training. This work introduces BOATMAP, a novel active learning approach designed to provide clinicians with
interpretable guidance that progressively assists in locating the origin of ventricular activation from 12-lead ECGs.
BOATMAP inverts the input-output relationship in traditional machine learning solutions to this problem and learns the
similarity between a target ECG and a paced ECG as a function of the pacing site coordinates. Using Gaussian processes
(GP) as a surrogate model, BOATMAP iteratively refines the estimated similarity landscape while providing suggestions
to clinicians regarding the next optimal pacing site. Furthermore, it can incorporate constraints to avoid suggesting
pacing in non-viable regions such as the core of the myocardial scar. Tested in a realistic simulation environment in
various heart geometries and tissue properties, BOATMAP demonstrated the ability to accurately localize the origin of
activation, achieving an average localization accuracy of 3.9+ 3.6 mm with only 8.0 +4.0 pacing sites. BOATMAP offers
real-time interpretable guidance for accurate localization and enhancing clinical decision-making.
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of scar-related reentrant circuits, the site at which the VT
reentrant circuit exits the central isthmus protected by the
myocardial scar [1].

1. Introduction

Monomorphic ventricular tachycardia (VT) is an ar-
rhythmia in which abnormal electrical activity causes the
lower chambers of the heart (i.e., ventricles) to beat
rapidly in a uniform pattern. Sustained VT can be a life-
threatening condition, as it can lead to decreased blood
flow to the rest of the body and can progress to ventricu-
lar fibrillation with a high risk of sudden cardiac death. To
terminate and prevent future VT events, treatment may
include catheter ablation to destroy the electrical pathway
producing the abnormal pulses. A common target is the
origin of ventricular activation that can be detected on the
12-lead electrocardiogram (ECG) — this may be the foci of
premature ventricular contractions (PVC) or, in the case

The QRS complex is a part of an ECG that represents
rapid depolarization of the right and left ventricles. Since
the morphology of the QRS complex varies with the origin
of ventricular activation, it plays an important role in the
localization of VT origin in clinical practice [2]. Specifi-
cally, pace-mapping is a common clinical procedure that
involves the iterative process of stimulating different loca-
tions on the heart (i.e., pacing) and then comparing the re-
sulting ECG with that of a previously observed VT event.
When the reference VT morphology is matched on the
majority of the ECG leads (e.g., 12 out of 12 match), the
corresponding pacing site is considered the target of VT
ablation [3]. However, the current pace-mapping practice
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is of a “trial-and-error” nature that requires rapid quali-
tative interpretations of the ECG by clinicians, which can
be inefficient and prone to errors. To address this gap, an
increasing number of studies have investigated the use of
machine learning (ML) and deep learning to localize the
origin of ventricular activation using 12-lead ECGs [4].

Related Works: Existing works can be loosely divided
into two categories: population-based learning [5, 6, 7, 8,
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9, 10], and patient-specific learning [11, 4, 12, 13]. These
include popular machine learning techniques such as lin-
ear regression [12] and support vector regression (SVR)
[11], as well as deep learning architectures such as multi-
layer perceptions (MLP) [6], convolution neural networks
(CNN) [14], and variational autoencoders (VAE) [15].

Population-based models utilize pre-existing pace-
mapping data in a cohort of patients to predict the origin
of ventricular activation from 12-lead ECGs. When there
is a large amount of data, advanced deep neural networks
can be used to extract hidden patterns from the QRS mor-
phology [16], and the resulting model can be directly ap-
plied to a new patient to predict the origin of ventricu-
lar activation. However, inter-subject variability in ECGs
still remains a key challenge in population-based learning.
Although ECGs may originate from the same anatomical
location in the heart among individuals, the QRS morphol-
ogy can vary significantly due to factors such as heart and
thorax geometry, as well as other patient-specific physio-
logical and pathological conditions. [15]. As a result, the
localization error of population-based learning has been
limited to the order of more than 10 mm on clinical data
[16]. This falls short of meeting a clinically relevant ac-
curacy of 5 mm, the diameter of a typical single ablation
lesion.

Patient-specific learning provides an attractive alterna-
tive to address the issue of inter-subject variability by in-
corporating pace-mapping data collected directly from the
patient for whom localization is needed. These patient-
specific approaches have shown the ability to obtain an
average localization error close to 5 mm if the pacing sites
are well-collected [11]. Unfortunately, this performance is
highly dependent on the location of the pacing sites se-
lected for training. Without knowledge of the location
of the ablation targets, collecting such training sites re-
mains an open challenge due to the need to balance mul-
tiple competing objectives: pacing sites must be carefully
selected not only to pinpoint the potential target, but also
to provide sufficient information about the landscape of
the paced ECGs across the heart. These challenges are
further increased due to the variability among individuals
in their arrhythmogenic substrates. How to efficiently ex-
plore the heart to identify regions of interest while avoiding
unnecessary pacing is crucial, as it reduces the risk of com-
plications during this invasive procedure. If a large num-
ber of such training sites becomes necessary, it defeats the
purpose of the ML model compared to the trial-and-error
status quo.

Instead of an ML model passively trained on predefined
data samples, a model that can actively query for needed
data to improve training can be desirable in facilitating
the clinical workflow of pace-mapping. It would provide
an ML-driven tool that can suggest to clinicians where to
pace and collect ECG data to progressively narrow down
the ablation target. This concept was demonstrated by
training an SVR model to produce the origin of ventricu-
lar activation from an input of a 12-lead ECG [11]. The

SVR was trained with an initial small number of randomly
selected pacing sites before entering an iterative process.
In each iteration, the predicted SVR site was suggested
as the next pacing site, and the obtained ECG data was
added to the training data to retrain the model. This it-
eration continues until a termination criterion is reached,
such as the match of a QRS morphology on 12/12 ECG
leads from the suggested pacing site [11].

Although impressive performance has been demon-
strated [11], there are two key limitations. First, pace-
mapping at regions with myocardial scars can be chal-
lenging and noninformative, and is often avoided in pace-
mapping procedures. However, such information cannot
be incorporated into the model described in [11] to avoid
nonviable pacing regions. Second, since the model guid-
ance on where to pace is provided only as a predicted lo-
cation, there is limited interpretable information to help
clinicians better decide how to maneuver the heart during
the pace-mapping procedure.

Contributions: To overcome these challenges, we
present a mnovel active learning approach, BOATMAP
(Bayesian Optimization Active Targeting for Monomor-
phic Arrhythmia Pace-mapping), to provide interpretable
guidance to the clinician to progressively narrow down the
ablation target while avoiding non-viable pacing regions
during pace-mapping. To achieve this, we reverse the com-
monly used input-output relation in existing ML models
for this problem and instead model the similarity S be-
tween a target ECG and a paced ECG as a function of the
coordinate r of the pacing site. Using Bayesian optimiza-
tion, we approximate this similarity S(QRS¢gt, QRS(r)),
with a Gaussian process (GP) [17] based on available train-
ing data. The GP’s mean and uncertainty guide the bal-
ancing of exploitation and exploration within the pacing
space, informing the selection of optimal pace-mapping
sites for improved training.

Compared to earlier work [11], this approach provides
a theoretically rigorous formulation to use minimal train-
ing data to locate the site whose ECG would best match
the target ECG in QRS morphology. More importantly,
non-viable pacing regions can be simply incorporated as
constraints on the input coordinate space. In addition to
suggesting the next pacing site, the progressively refined
GP provides an estimate of the similarity landscape be-
tween the target ECG and the pacing ECG throughout
the heart: as illustrated in Fig. 1, this approximation is
iteratively updated and improved as training progresses
(A), along with an uncertainty map indicating the confi-
dence of the current approximation (B). Not only do these
maps provide clinicians with an explanation of the model’s
decision-making process (by showing why a location is pre-
dicted as a target as estimated by the GP to have the
highest similarity to the target ECG, or why a new pac-
ing site is suggested according to the acquisition criterion
(C)), they also provide interpretable information that can
inform clinicians to use/add their own decisions to collect
pace-mapping data and with which to improve the training
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Figure 1: Overview of the BOATMAP procedure in localizing an unknown target origin of ventricular activation with 5 guided pace-mapping
sites. (A): The GP mean is iteratively updated as new pace-mapping data are acquired, presenting a landscape of the expected similarity
between the target QRS and QRS arising from all other potential pacing sites across the left endocardium. (B): The corresponding GP
variance map indicates the uncertainty in the current estimate of the similarity map. (C): Maps of the upper confidence bound (UCB) that
is used as an acquisition function to select sites to collect pacing data from, considering a balance between exploring high-uncertainty (i.e.,
high variance) areas and exploiting most likely targets exhibiting high-similarity (i.e., high mean) with the target QRS.

and prediction of the patient-specific model.

We develop BOATMAP with three alternative GP func-
tions based on different spatial representations of the in-
put coordinate space: a GP defined over the Cartesian 3D
x —y — z space, a GP defined over a 2D polar projection
of the z —y — 2z space, and a manifold-GP defined over the
triangular mesh of the heart surface following [18].

Due to its active learning nature, the experimental eval-
uation of BOATMARP inherently requires a prospective set-
ting where the heart is paced as suggested by the ML
model. This presents significant challenges for in-vivo set-
tings, as a result of which existing work has resorted to
retrospective emulation of pace-mapping procedures using
previously existing clinical data [11]: while a location is
suggested as the next pace-mapping site, the pre-existing
ECG from the nearest location is chosen as the actual lo-
cation for updating the ML model. The spatial resolu-
tion of pre-existing pace-mapping data — which is limited
in clinical data, thus constitutes the major bottleneck to
how closely the prospective setting can be retrospectively
emulated.

In this work, we leverage a rapid high-fidelity ECG sim-
ulation pipeline to provide an in-silico quasi-prospective

testbed for BOATMAP. While an in-silico testbed in the-
ory allows us to acquire ECG data wherever needed (by
executing the simulation at the suggested pace-mapping
site), in practice for computation and logistic ease, we
pre-generate a dense grid of ECG simulations at an av-
erage resolution of 14 pace-mapping sites per square cm:
as illustrated in Fig. 2, this provides a resolution not pos-
sible to achieve in either clinical or experimental settings,
providing a setting closely emulating prospective active
guidance.

We evaluated BOATMARP in this quasi-prospective in-
silico environment on two different heart geometries, each
considering six different configurations of tissue property
(one healthy and five myocardial scars with varying sizes
and locations), as illustrated in Fig. 2. In each setting,
we evaluated BOATMAP for targeting 1,561 origins of
ventricular activation, compared to the SVR-based active
guidance model described in [11], as well as passive learn-
ing while varying the amount of training data and also
varying the proximity of training data collected in rela-
tion to the target site.

We considered evaluation metrics that include the lo-
calization accuracy of the target site, the number of pac-
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Figure 2: Two ventricular geometry (one per row) and their tissue property settings (1: healthy; 2-6: five different myocardial infarctions)
used in the virtual test bed for this study. Purple represents the scar core, and gray represents the scar border. Dots indicate the origins of

ventricular activation at which 12-ECGs are simulated.

ing sites needed to reach the target site, and the conver-
gence rate described by the reduction of localization error
achieved by each added pacing site. We considered a most
common pace-mapping setting that considered searching
the space of the left ventricular (LV) endocardium, al-
though the presented methodology is generally applicable
to the entire 3D space of the heart. Experimental results
demonstrated that, while BOATMAP is comparable to ac-
tive guidance based on SVR in a healthy myocardium, the
latter cannot be performed in the presence of myocardial
scars, whereas BOATMAP is able to locate the origin of
activation — including those within the border zone — with
an accuracy of 3.9 + 3.6 mm using only 8.0 &+ 4.0 pacing
sites.

We have made the code for
available, and it can be
https://github.com/caseymeiz/boatmap.

BOATMAP
accessed at

2. Methodology

Localizing the origin of ventricular activation, which
manifests in the QRS complex, can be reformulated into
a mathematical problem of finding the spatial location r
where the paced QRS complex QRS(r) will have the max-
imum similarity with a target QRS complex, QQRSig¢, as:

1t = arg max{S(QRSse, QRS(r))},r € Q. (1)

Here, r represents the spatial location within a chosen co-
ordinate system and €2;, denotes the domain of the heart
where the search is carried out. As mentioned above, in
this study, we consider € to be the endocardial surface
of the heart, while the presented methodology is gener-
ally applicable to a broader definition of €, (e.g., the 3D
volume of the myocardium).

Using this reformulation, Bayesian optimization facili-
tates a sequential search over ), to effectively approxi-
mate S(QRSg, QRS(r)) and locate the optimal position
T using a minimal number of M carefully selected pacing
sites P = {(r;, QRS(r;))} M.

To achieve this, starting with the initialization set P, =
{(r1,QRS(r1))}, which is a location on the heart paired
with the corresponding ECG, we build a GP surrogate to
approximate S(QRSigt, QRS(r)) with the available data
pairs. This process generates an approximated landscape
that illustrates the expected similarity score and the confi-
dence level between the target QRS complex and any other
location in €2;,. In an iterative fashion, based on this cur-
rent landscape, an acquisition function, a, is then used to
suggest the next location to collect ECG data,

Iyl = argmax{a(r)},r € w (2)

and the new pair of data is added to the training set
Py = P, U{(rys1,QRS(ry4+1))}. Each additional
training pair refines the surrogate GP model, allowing for a
more informed collection of additional pace-mapping data.
The search is terminated when a QRS complex obtained
from a pacing site meets or exceeds a predefined similarity
criterion in comparison with the target QRS complex.
Known locations of infarct tissues (or any non-viable
regions not suitable for pace-mapping), Qe.c, can be ex-
cluded from the search space defined by w = Qp — Qegpe.
This is a key advantage of BOATMAP over existing for-
mulations that define the target ECG in the input space
and the activation origin in the output space, as it is much
more difficult to incorporate prior knowledge to constrain
the search over the space of ECGs. By swapping the in-
put and output variables in the function being learned,
BOATMAP elegantly enables the incorporation of clini-



cal knowledge about the viable pace-mapping space in the
heart.

This iterative process of BOATMAP as described above
not only provides online guidance to the pace-mapping
procedure but also a progressively refined probabilistic
landscape that clinicians can interpret and inform their
actions.

Figure 1 outlines this process in which the BOATMAP-
guided pace-mapping (in selected snapshots) is shown
overlaid with the landscape of the predicted similarity
scores (A), along with confidence maps (B) and visuals of
the acquisition functions that lead to the suggested pacing
sites in the corresponding snapshots (C). In the following,
we describe each key component of BOATMAP.

2.1. QRS Complex Similarity Measure

The Pearson correlation coefficient (PCC) is a strong
candidate for the QRS complex similarity measure S in
Equation (1), as it is clinically used as a criterion to de-
termine the sites matched during pace-mapping [19]. As a
statistical measure, PCC can be calculated as follows:

S (9i—g)(hi — h)
S(g.h) = < =
V(g — )20 (b — b2

where g and h represent the amplitude vectors of the tar-
get and paced QRS complexes, respectively, each contain-
ing all 12 ECG leads. Here, g; and h; denote the amplitude
at each time index 4, while g and h denote the mean am-
plitude of the target ECG and paced ECG, respectively.
The PCC value ranges from —1 to 1, with higher values
indicating greater similarity. The use of PCC, recognized
for its clinical applicability, significantly enhances the in-
terpretability of BOATMAP in clinical settings.

(3)

2.2. Learning Similarity Functions as a Gaussian Process

BOATMAP is built on learning to approximate the ob-
jective function S(QRSigt, QRS(r)) with a GP surrogate.
A GP models a set of random variables, each represent-
ing the similarity between a target QRS complex and one
from a pacing site in €2, such that any subset of these
variables has a joint Gaussian distribution [17]. The GP
is thus characterized by a mean similarity function u(r),
such that any location on the heart has a predicted ex-
pected similarity with the target, and a covariance func-
tion or kernel k(r,r’) that determines how correlated two
QRS complexes should be based on the distance between
two pacing sites:

S(QRSige, QRS(r)) ~ GP(u(r), k(r,1')). (4)

Given a set of training pairs consisting of R =

[vf5 el T and s = [s1, S2, ..., Sim], Where each pacing

site r; has an observed similarity measure s; such that
s;i = S(QRSiet, QRS(r;)). For simplicity, we assume a
zero-mean function in our GP. This is done by finding the

average similarity score across the training set and sub-
tracting this value from each sample. In this case, we
adopt the commonly used Matérn kernel function for the
GP:

2
k) = (14 Y00 500 VP

312 l

where [ is the length-scale hyperparameter, and d;; is the
distance between to pacing sites r; and r;. The Matérn
kernel includes a smoothness parameter which, in Equa-
tion (5), has been substituted with 5/2 and reduced, sim-
plifying the formulation [17]. This Matérn kernel describes
a class of smooth functions that is twice differentiable,
which makes it a good choice for approximating the sim-
ilarity function between the QRS¢s: and other QRS com-
plexes which is expected to gradually change based on
proximity to the target pacing site.

The length-scale hyperparameter is optimized by max-
imizing the log marginal likelihood during the iterative
active learning process. This separate optimization pro-
cess adjusts the length-scale hyperparameter to optimally
fit the observed data while maintaining model correctness
and minimizing complexity.

To make similarity predictions S(QRSigt, QRS(ry)) at
unobserved pacing sites r, we can use the predictive pos-
terior mean pu(r.) and the predictive posterior variance
o?(r.):

u(r.)  KT(K + 1)~ (6)

o?(ry) s k(re,re) — kT (K + 1) 'k (7)

such that k = [k(rs,r1); k(rs, r2);...k(ry, rm)], k encodes
the amount of influence the existing pacing sites should
have on the unobserved locations, K is the covariance ma-
trix of the observed pacing sites, K; ; = k(r;,r;). The
observation of the similarity may have noise €, assuming
it is normally distributed, e = N(0,¢?)

These provide probabilistic predictions on how ECGs
arising from unexplored areas over the space of {2 may
resemble the target ECG, which can help make informed
decisions about where to collect training data to narrow
down the target site. As illustrated in Figure 1, as ECG
training data is collected from a location, the predictive
uncertainty around that location, in general, is reduced.
Therefore, a high level of uncertainty in the model pre-
dictions signals a potential gap in our understanding of
the target function in that region, suggesting the need for
further exploration to gather more data. Conversely, low
uncertainty indicates that the model has a high degree of
confidence in its predictions based on the existing data,
suggesting that additional data points in this region may
not significantly improve the model’s accuracy.

We consider three different formulations of the GP based
on different representations of the input domain 2, to cap-
ture the spatial characteristics of the heart. The primary
distinction between the three formulations lies in how the
kernel function k£ within the GP framework utilizes dis-
tance metrics between points r; and r; on 2.



2.2.1. 3D Fuclidean space

First, we consider a simple Euclidean space where €2}, is
defined by the 3D (z,y, z) Cartesian coordinates. This rep-
resentation is simple and can be directly interface with the
clinical pace-mapping practice, where the electroanatomic
mapping system used to support pace-mapping is already
equipped with abilities to define the r = (x,y, z) coordi-
nates of any mapping sites.

To incorporate the 3D model as a surrogate, we need to
provide the distance metric for the kernel, d;; is the Eu-
clidean distance between two pacing sites r; = {x;, yi, 2}
and r; = {z;,y;,2;} as:

dij = \/(xj —x)2 (Y — i)+ (5 —2)? (8)

Although this formulation is straightforward, the my-
ocardium 2, of interest occupies only a small portion of
the 3D (z,y, z) grid. Therefore, the GP may be defined
with a greater degree of freedom than is necessary.

2.2.2. 2D FEuclidean space

Second, when j represents only the LV endocardial
surface, we consider a 2-dimensional input space by pro-
jecting the endocardium into a polar plane using Uni-
versal Ventricular Coordinates (UVC) [20]. Each pacing
site is described with 4 dimensions (¢, p,6,v): apicobasal,
transmural, rotational, and transventricular, respectively.
Specifically, we used the apicobasal coordinate ¢ to mea-
sure the distance from the center of the polar plot and
used the rotational coordinate 6 to represent the angle.
This can be represented in a polar form, w = (c + €)e??,
w € C. We then place the complex number w into a
2D Cartesian plane by extracting the real and imaginary
components. An € is added to prevent coordinates from
collapsing to (0,0). For example, two pace-mapping sites
may have apicobasal distances of ¢ = 0 and different rota-
tional 6 values.

In this case, we use the same Matérn kernel function
as defined in Equation (5), but with the distance between
pacing sites defined by the Euclidean distance in the 2D
polar coordinate space.

This approach offers a condensed yet geometrically
meaningful representation of €, although it is less gen-
erally applicable when €}, is beyond the LV endocardial
surface. Furthermore, while the projection forces pacing
sites that are neighbors on the 3D surface to be neighbors
to each other in the 2D representation, their distances be-
tween each other are not preserved.

2.2.8. Manifold space

Lastly, we explore the use of a manifold representation
of the endocardial surface to describe the non-Euclidean
spatial relationships between pacing sites, incorporating
local and global spatial characteristics into the model. Al-
though the earlier two GPs eventually rely on Euclidean
distances in the kernel function to calculate the covari-
ance between pacing sites, we explore the notion that a

QRS complex may have a high similarity to a pacing site
that is closer along the geodesic surface of the heart as
opposed to a direct 3D Euclidean distance. Replacing the
Euclidean distance directly with the geodesic distance de-
fined by the mesh, however, is not feasible because the
resulting covariance matrix may not be positive-definite.

We consider the manifold defined by the vertices Qp,
edges VU, and faces F}, of the surface mesh of the LV en-
docardium. Following [18, 21], we use the kernel spectral
density and eigen solutions of the Cotangent Laplacian on
Qp to express the stationary kernel in the surface mani-
fold. Extracting the Laplacian from the mesh, we are left
with a sparse weighted adjacency matrix with Neumann
boundary conditions at the mesh edges. The Laplacian
operator of an arbitrary scalar field f at a vertex ¢ can be
approximated as follows:

2114 Z (COt Qi + cot bij)(fi — fJ)

' JEN()

(V2f)i = 9)

The Laplacian is then encoded into a matrix £ as follows,

%Ejezva) cot a;j + cot b; if ij € ¥, j € N(i),
_ZkEN(i) Lik

0 otherwise

Lij = ifi=j,

(10)
where N (i) defines the neighbors of a vertex 4 in the man-
ifold, and the angles a;; and b;; represent the angles oppo-
site to the edge ij [18]. We solve for the eigenvectors and
eigenvalues of the Laplacian matrix as Lo = AA¢, where
A is a diagonal matrix with A; capturing the area of a
Voronoi cell centered at vertex i defined by the vertices
N(i) [18].

The covariance between pacing sites can be approxi-
mated by utilizing the eigenvectors and the spectral den-
sity function D from the Matérn family [21] as follows:

E

k(ri,r;) & Y D(v/Xe)bw(r:)pr(r;),

k=1

(11)

where E denotes the number of the smallest eigenvalues
and their corresponding eigenvectors, and the spectral den-
sity function D (by the Wiener—Khinchin theorem) is:

~(+1)
2
<112/ + 47r272) . (12)

2.8. Active Guidance to Learn the Gaussian Process

_ 4rT(v + 1)(2v)

D) T(v)12v

Instead of passively learning a patient-specific GP from
given data pairs, our goal is to minimize the number of
pacing sites required to build the GP in order to accu-
rately localize the site that can best explain the target
QRS complex. Intelligently choosing the pacing sites that
explore the heart surface (reducing the uncertainty of GP
predictions) and simultaneously localizing the target site
(maximizing similarity) is achieved by optimizing an ac-
quisition function.



2.8.1. Initialization

To initialize the GP, a small number of pacing sites can
be chosen at random while there is no prior knowledge
of where the origin of activation may be, or these sites
can be selected by expert knowledge depending on their
hypothesis about potential target sites.

2.8.2. Acquisition Function

The acquisition function plays a crucial role in guiding
BOATMAP to select the most informative next pacing lo-
cations. When QRS complexes are collected at a particular
site, the mean value of the GP at that site is fitted to the
measured PCC between the paced QRS complex and the
target QRS complex, and the standard deviation nears 0
(i.e., low uncertainty given observed data). For regions
where QRS complexes have not yet been collected, often
a higher standard deviation can be expected, as seen in
Figure 1 B. To balance the search for high PCC regions
with the exploration of unknown regions, we consider the
commonly used upper confidence bound (UCB), which is
defined as:

a(r) = p(r) + Ao(r) (13)

where A is a tunable parameter that controls the explo-
ration and exploitation trade-off. A higher value of A en-
courages more exploration, while a lower value promotes
more exploitation.

2.83.3. Guidance Strategy

The optimal pacing site r,, 1 can be obtained by finding
r that maximizes the UCB function defined in Equation
(2). This can be done by another optimization procedure
on the space of Qj — Qepe. Alternatively, to simplify the
process, we create a dense discretization of €2, and find
the node with the maximum value of the acquisition func-
tion. To exclude non-viable pacing areas from the search
space, we can simply eliminate grid points that overlap
with these non-viable areas based on expert knowledge or
other clinical data obtained prior to pace-mapping proce-
dures.

2.8.4. Convergence Criteria

Each time a pacing site is gathered, it presents a chance
to examine and determine whether the target QRS com-
plex has been localized. We develop two quantitative cri-
teria based on the PCC values. The ECG has 12 leads that
each report a QRS complex representing different perspec-
tives of the heart. We consider two possible termination
criteria: 1) we ensure that all leads attain a similarity
threshold ¢:

Ti(r,t) =Vl € QRS12(r), S(QRStgt—1cad, 1) >t (14)

or 2) we evaluate the similarity with all leads concatenated
and ensure it attains a similarity threshold of t.

7::(I'7t) =le QRSlg(r)7S(QRStgt7 (ll, ...,112)) >t (15)

Algorithm 1 Localization Algorithm

Require: QRS;q: O Qezciude tnit_size
1: // Restrict the search space to viable regions on the
heart surface
W Qh - Qe:rclude
R + init_size random samples from w
S < initialize empty vector to hold similarity values
for ¢ from 1 to |[rows(R)| do
S[i] — S(QRStgt, QRS(R[%]))
end for
// Continue the search until a pace-mapping site sat-
isfies the termination criterion
9: while Vr € rows(R), T.(r,t) is False do
10:  // Estimate the mean and variance on the dense
grid
1: p(r,) kT(K+¢C?I)71s
12: o%(ry) : k(r., 1) — kT(K+ )~k
13:  // Suggest the highest utility pace-mapping site
14:  r <+ argmaxa(r,),r. € w
15: m <« |rows(R)|
16: R[m+171] —r
17: // Collect and store the similarity between the tar-
get and the pace-mapping site

18: Sim+1] < S(QRStgt, QRS(I‘))
19: end while
20: return r

As outlined in Algorithm 1, when a pacing site which was
suggested by BOATMAP reaches a criterion 7T, then the
suggested pacing site is returned as the predicted target.

3. Experiments and Data

3.1. Virtual ECG Simulation Pipeline

As explained earlier, to allow the generation of ECG
data at any pacing site suggested by BOATMAP, we
leveraged a high-fidelity ECG simulation pipeline [22] as
a quasi-prospective in-silico test environment. We con-
sidered two human bi-ventricular models made available
through the Experimental Data and Geometric Analysis
Repository (EDGAR) [23]. On each heart, we considered
a setting of healthy myocardium, and five settings of my-
ocardial scars of various locations of the LV and sizes rang-
ing between 1 cm? and 29 cm?, as illustrated in Fig. 2.

For computational efficiency, instead of online execu-
tion of the ECG simulation pipeline at any BOATMAP-
suggested location, we precomputed a collection of 12-lead
ECGs density distributed over the LV-endocardium at an
average resolution of 14 pacing sites per cm?, where the
average PCC between ECGs generated from pacing sites
within 5 mm is greater than 0.96 PCC. This means that,
although the ECGs are precomputed offline, a selected
pacing site will always be less than 14.6 mm from what is
suggested by BOATMAP and, on average, 1.5 mm away.



Simulations were performed in two ventricular-torso ge-
ometries built as described in [24]. To prepare for simu-
lation, each bi-ventricular geometry was up-sampled to a
target resolution 1200 pm and then equipped with rule-
based fibers [25] and UVCs [20, 22]. UVCs facilitated
the insertion of a physiologically detailed His-Purkinje sys-
tem representing the cardiac conduction system [26] and
of five different transmural myocardial infarcts within the
LV with various sizes and locations [27]. Within the in-
farct, the border zone was modeled as 10% of the outer
edge. To facilitate the calculation of 12 lead ECGs, each
bi-ventricular geometry was registered using the go-ICP
algorithm [28] and meshed into a torso. The geometry of
the torso had previously been created from MRI of the
torso obtained for a single male patient using an auto-
mated model generation pipeline [22].

For each geometry, 12-lead ECGs were computed for
1,000 pacing sites under healthy conditions and 7,790 pac-
ing sites in the five configurations of myocardial infarction.
Simulations were carried out within the openCARP frame-
work [29]. A simulation grid was created by sampling loca-
tions in the LV endocardium. The sampling was performed
using UVCs implemented in meshtool. Under healthy con-
ditions, the cellular dynamics within the heart was mod-
eled using the Mitchell-Schaeffer ionic model with param-
eter settings of Vyate = 0.13, Vipin = —86.2, Vipee = 40.0,
Tin = 0.3, Tout = 5.4, Topen = 80.0, and 7yps¢ = 150 [30].
Heart conductivities were assigned according to [31] and
the torso conductivity was assigned a value of 0.22Sm™!
[32]. Conduction velocities within the healthy myocardium
were assigned 0.6ms~! with an off-axis ratio of 4:2:1. A
general conduction velocity of 2.0ms~! was prescribed
within the His-Purkinje system, with slight deviations as-
signed to the fascicular branches. An anterograde and ret-
rograde delay of 8 ms and 3 ms was assigned, respectively.
Within the infarct, the core was considered electrically in-
active. The border zone was assigned an isotropic con-
duction velocity of 0.15ms~! [33]. The Mitchell-Schaeffer
model in these regions was prescribed with resting mem-
brane parameter settings of Vi = —73.1, Vipae = 12.5,
Tin = 0.45, Tour = 3.6, Topen = 44.0, and T¢1ose = 100. Sim-
ulations of transmembrane voltages were performed using
a reaction-eikonal model in monodomain formulation with-
out diffusion using CARPentry [34, 35]. 12-lead ECGs
were computed from electrode potentials on the torso sur-
face simulated using lead-field projection [36]. Lead-field
matrices were calculated for each infarction configuration,
as well as under healthy conditions, because of altered con-
ductivity regions.

3.2. Emulation of BOATMAP

To simulate BOATMAP’s assistance in pace-mapping,
as outlined in Algorithm 1, we initiated the Gaussian pro-
cess with two pacing sites and their corresponding 12-lead
ECGs. The coordinates of the pacing sites were centered at
the origin and normalized relative to the largest dimension

Table 1: Experiment Setting Summary

Parameter Value
Heart Models 2

MI Settings Per Heart Model 5

No MI Settings Per Heart Model 1
Total Targets 1,561
No MI Targets 18.1%
MI Border Zone Tissue Targets — 3.3%
MI Normal Tissue Targets 78.6%

in Q. The regions that are not suitable for pacing, iden-
tified by Qezeiude, were omitted. We cropped the ECGs to
isolate the QRS complex, which was then normalized to
its maximum amplitude. We evaluated three BOATMAP
surrogate models: 3D GP, 2D GP, and manifold GP, as
detailed in Section 2.2. Each model used the Matérn ker-
nel with a smoothness parameter of 2.5; length scales were
optimized by minimizing the negative log marginal likeli-
hood using the L-BFGS algorithm. The hyperparameter
A for the UCB acquisition function (Eq. 13) was set at 1,
balancing exploration and exploitation. The 3D and 2D
models used scikit-learn [37], while the GP manifold was
implemented using the quLATi package [38].

When the acquisition function suggested a pacing site,
we selected the nearest corresponding site from the sim-
ulation grid along with its 12-lead ECG for updating the
GP. If the nearest site in the simulation grid was more
than 3 mm away from the suggested site, the search was
terminated and removed from the experiments as it would
bias the prospective evaluation where ECG data should be
available whenever asked. The convergence criterion was
set to be when a collected 12-lead ECG has a similarity to
the target ECG greater than 0.97, with all leads concate-
nated together.

Emulation was performed in a variety of scenarios, lo-
calizing targets near and far from myocardial infarction
(MI). In total, 1561 unique targets were included, 18.1%
in healthy hearts, 78.6% in healthy tissue of hearts with
MI, and 3.3% in tissue of the border zone of hearts with
MI. The available data broken down by configuration are
summarized in Table 1.

4. Results

4.1. Baselines

We evaluated BOATMAP against two categories of
baseline models to locate the origin of ventricular activa-
tion: passive and active models. For active baselines, we
considered the existing active-SVR model as described in
[11]: it is based on an SVR model that independently pre-
dicted the z, y, and z coordinates using a radial basis func-
tion (RBF) kernel, with a regularization parameter C; the
input ECG features include QRS complex time-integrals
on each of the 12-lead ECGs; the prediction of the current
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Figure 3: A: Localization error as a function of the number of training sites across various models. The columns represent different sampling
settings: the first column is for targets sampled from a heart with no myocardial infarction (No MI), the second column is for targets sampled
from healthy regions of a heart with myocardial infarction (Healthy MI), and the third column for targets sampled from the border zone of
MI (Border MI). B: Localization error as a function of the radius size from the actual target for passive models using 11 training sites.

SVR model is used directly to suggest the next pacing site
and to select training data to improve the SVR model. To
evaluate the SVR model, we preprocessed the ECGs as
described in [11] including down-sampling, cropping, and
normalizing the amplitudes.

By passive baselines, we refer to machine learning or
deep learning models trained on randomly selected train-
ing data. We included the following passive models as
baselines:

e Passive GP Model: Serves as the non-active counter-
part to the BOATMAP model. It shares the same
3D GP architecture. Fitting the model to the ran-
domly selected pacing sites and then predicting the
location with the highest expected similarity to the
target ECG.

e Passive SVR Model: Is a non-active version of the
active-SVR model.

e Passive MLP Model: A simple neural network base-
line was constructed with three fully connected lay-
ers, each utilizing rectified linear unit (ReLU) acti-

vation functions. The model was trained using mean
squared error loss and optimized with the Adam op-
timizer over a fixed number of epochs. This model

serves as a more expressive baseline compared to the
simpler SVR and GP models.

e Passive VAE Model: A combination between a VAE

and a MLP classifier, such that the VAE learned gen-
erative features for recreating ECG signals driven by
maximizing the evidence lower bound (ELBO) and
minimizing the error in the predictions made by the
MLP network, inspired by [15].

e Passive CNN Model: The architecture includes 4 con-

volutional layers followed by two fully connected lay-
ers, similar to [11]. This model aims to capture tem-
poral features within the ECG signals.

4.2. FEvaluation Metrics

We considered the following evaluation metrics:



Table 2: Summary of performance by BOATMAP vs. active-SVR methods.

Condition Model N Overall Error > 5 Error < 5
Training Sites Error (mm) Training Sites Error (mm) Percentage()) Training Sites Error (mm) Percentage(?)
No MI BOATMAP 282 8.7 + 4.0 3.9 + 3.6 6.8 + 2.9 8.7 + 3.1 28% 9.5 £ 4.2 20+ 14 72%
No MI SVR 282 8.8 + 5.6 4.5 + 3.8 7.6 + 4.7 8.9 + 3.2 34% 9.4 + 6.0 224+ 14 66%
Border MI BOATMAP 52 8.0 + 4.5 4.2 £ 5.0 8.9 + 4.9 9.2 £ 6.4 31% 7.6 £44 2.0 £ 1.7 69%
Border MI  SVR 52 9.5 £ 7.2 7.6 £ 9.5 6.3 + 4.8 16.4 + 10.3 38% 11.5 £ 7.8 2.0+ 1.6 62%
Healthy MI BOATMAP 1227 79 £4.1 3.9 + 3.6 6.5 + 3.4 8.6 + 3.4 27% 8.4 + 4.2 22+15 73%
Healthy MI SVR 1227 7.2 +£52 9.6 £ 11.7 5.8 + 4.4 17.6 + 12.8 48% 8.4+ 5.6 244+ 14 52%
3
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Figure 4: Examples with problematic (A-C) and successful (D-F) localization by BOATMAP. (A): The predicted target is outside the 5 mm
goal with an error of 11 mm. (B): A false negative on the 2nd pacing site collected, the pacing site is within 5 mm of the target but continues
because the QRS similarity did not reach the convergence threshold. (C): The search took more than the average number of pacing sites to
converge. (D-F): Examples of successful localization using 7 pacing sites to converge.

1. Localization error: The Euclidean distance between
the target and the prediction. A smaller distance er-
ror indicates a more accurate localization of the QRS
complex’s origin.

2. Pace-mapping sites: The number of pacing sites
needed to reach a prediction that satisfied the ter-
mination criterion. A lower number of pacing sites
indicates a more efficient search.

4.8. BOATMAP vs. passive prediction models:

Experiments in this section were carried out in a total
of 1561 unique origins of ventricular activation in healthy
hearts (n = 282), healthy myocardium in infarcted hearts
(n = 1227), and border zone in infarcted hearts (n = 52).
For passive models, we examined 1) how many randomly
selected pacing sites are needed, or 2) using a similar num-
ber of pacing sites needed by BOATMAP, how close the
randomly selected training sites need to be to the target
(in terms of a radius to the target), in order to achieve
similar accuracy as BOATMAP.

Fig. 3A shows the drop in localization error as the
number of training sites increased between the two active
models and the three passive models. In healthy hearts,
BOATMAP was able to achieve the clinical target of a
5-mm localization error with a smaller number of train-
ing sites ( 11). Both active and passive SVR models need
approximately double the number of training data. The
passive neural networks MLP, CNN, and VAE need nearly
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four times the training data in order to achieve similar ac-
curacy, while the passive GP struggles to reach the target
accuracy even with 50 training sites.

This trend generally holds in infarcted hearts, with ven-
tricular activation origins in the healthy myocardium or
border zones, with two notable differences. First, the gap
between BOATMAP and passive baselines in general in-
creased, suggesting increased benefits of BOATMAP when
used on infarcted hearts and especially for the origin of ac-
tivation in the border zone. Second, interestingly, a larger
gap between the two active models was also induced, with
the active-SVR model not able to achieve the clinical tar-
get accuracy on infarcted hearts. We will delve into the
possible causes in Section 4.4

Across all conditions, as shown, BOATMAP was able to
consistently achieve an average target accuracy of 5-mm
localization error with 11 training sites, significantly im-
proving over its passive baselines. Fig. 3B then shows, if
the passive models used only 11 training sites, how their
localization accuracy will increase as a function of the ra-
dius within which the training sites are sampled from the
target ECG. As shown, for passive GP and MLP, in or-
der to achieve a localization error of 5 mm using the same
number of BOATMAP training sites needed, their train-
ing sites must be selected within, respectively, 13 or 16 mm
of the target on healthy hearts, and increasingly closer to
the healthy myocardium of the infarcted heart (10 and 18
mm, respectively) or the border zone (7 and 6 mm, re-
spectively). For passive CNN and VAE, the training sites
need to be within roughly 20 mm of targets throughtout



Table 3: Summary of performance by BOATMAP with different GP-variants.

Condition Model N Overall Error > 5 Error < 5
Training Sites Error (mm) Training Sites Error (mm) Percentage()) Training Sites Error (mm) Percentage(?)

No MI BO 3D 1063 8.9 + 4.3 3.8 £ 3.6 7.4+ 34 8.6 + 3.1 27% 9.5 + 4.4 2.0+ 1.5 73%
No MI BO 2D 490 9.4 + 6.4 5.1 + 4.0 8.0 +£4.9 8.8 £ 3.3 42% 10.5 £ 7.1 24+ 1.5 58%
No MI BO Manifold 529 8.7 £ 5.1 4.1 £ 3.6 7.0 + 3.9 8.7 + 3.3 28% 9.4 + 5.4 2.2+ 1.5 72%
Border MI  BO 3D 152 8.8 £ 6.0 3.9 45 7.9 4.2 8.9 + 4.6 32% 9.2 + 6.6 1.6 £ 1.6 68%
Border MI  BO 2D 83 7.4+ 54 5.8 + 4.9 7.5 £ 5.7 9.9 + 3.3 51% 7.2 +51 1.7 £ 1.7 49%
Border MI  BO Manifold 98 8.7 + 6.3 4.4 + 438 89 + 6.9 9.5 + 4.9 34% 8.6 + 6.1 1.8 +£ 1.7 66%
Healthy MI BO 3D 3285 7.8 £ 4.1 4.1 £ 3.7 6.4 £ 3.6 8.7 £ 34 30% 8.4 + 4.2 2.2+ 15 70%
Healthy MI BO 2D 1432 8.0 + 6.0 52+ 4.1 6.8 £ 4.9 89 + 3.5 43% 8.9 + 6.5 24+ 1.5 57%
Healthy MI BO Manifold 1932 7.3+ 4.6 4.5 + 4.0 6.2 + 3.8 8.9 £ 3.5 34% 7.9+ 4.9 2.2+1.5 66%

all cases. For passive SVR, training sites must be selected
within 41 mm of targets in the healthy myocardium and
34 mm of the border zone of infarcted hearts. Since the ac-
tual location of the target is unknown in prospective use,
the need to obtain pacing sites within such distances to
the target is practically not possible.

This set of experiments provided strong evidence for the
advantage of BOATMAP in guiding pace-mapping toward
the unknown target with a small number of pacing sites.

4.4. BOATMAP vs. alternative active models:

As Fig. 3A suggests that a larger performance gap was
induced between BOATMAP and active-SVR on infarcted
hearts, Table 2 provides a more detailed breakdown of the
performance of the two models in the three conditions
considered in Fig. 3. As shown, while the two models
demonstrated comparable performance in localizing tar-
gets in healthy hearts, a significant difference was found
for infarcted hearts, with BOATMAP showing better ac-
curacy than active-SVR. This was confirmed by a paired
t-test on 1279 paired samples, resulting in a significant p-
value of less than 0.001. More specifically, on infarcted
hearts, active-SVR was not able to achieve the 5-mm lo-
calization accuracy in a larger number of targets, increas-
ing from 34% of targets in healthy hearts to 38% within
the border zone in infarcted hearts. A closer investigation
revealed that because active SVR suggests its current pre-
diction as the next site to pace, it would have to terminate
when the predicted site ended up in the infarcted region
— this happened in 9% of the targets in the healthy my-
ocardium and 22% of the targets in the border zone of the
infarcted hearts. This demonstrated the key motivation
for BOATMAP: the ability to exclude non-viable pace-
mapping regions — available from other clinical data such
as scar imaging/mapping — from the active guidance, and
the importance of this ability for effective use on infarcted
hearts. Fig. 4 provides several examples of successful and
problematic pace-mapping guided by BOATMAP.

Overall, compared to both passive and alternative ac-
tive baselines, experiments in Sections 4.3-4.4 showed
that BOATMAP is able to achieve the clinical target of
less than 5mm localization accuracy with a significantly
smaller number of pace-mapping sites needed, and this
benefit is especially strong on the hearts with scars where
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mechanisms are needed to steer the actively-suggested pac-
ing sites away from non-viable pacing areas.

4.5. BOATMAP with 38D-, 2D-, and Manifold-GPs:

Table 3 compares the three alternative GP formulations
described in Section 2.2, with the breakdown of metrics
based on the location of the target in the infarcted heart
border zone, the healthy myocardium of the infarcted
heart, and the healthy heart.

The targets were randomly selected from the LV endo-
cardium, in total 8807 searches were initiated for all three
heart conditions. If the search terminated due to sparsity
in the simulations (a suggested pacing site was more than
3 mm from a simulated pacing site), then those targets
were dropped.

Using the 3D input domain, BOATMAP was able to
consistently localize the target within a 5-mm radius, the
most often compared to the 2D and manifold input do-
mains. On average, it incurred the least error for all three
heart conditions while using a similar number of pacing
sites to perform the search. The 2D input domain ex-
celled in the case where the targets resided in the border
zone of the infarcted hearts, on average 7.4£5.4 training
sites to localize. The manifold input domain performed
well in cases where the target resided in healthy hearts,
using 8.7+5.1 pacing sites.

4.6. Ablation studies

We evaluated the effect of initial conditions and conver-
gence criteria on BOATMAP using the 3D-GP. All abla-
tion studies were conducted on a subset of 1,500 targets,
500 each originating from the three distinct conditions: the
border zone of infarcted hearts, the healthy myocardium
of infarcted hearts, and healthy hearts.

BOATMAP was initialized by a set of randomly selected
pacing sites to build the initial GP. Intuitively, a larger
initialization would require fewer iterative acquisitions of
guided pacing sites to localize the target, although at the
expense of a large number of initial pacing sites. We in-
vestigated how the size of the initial random sample af-
fected the total number of pacing sites needed to local-
ize the origin of activation. Results in Fig. 5A showed
that BOATMAP can work well with minimal initializa-
tion, requiring fewer initialization pacing sites than the
SVR model to yield similar results.
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Figure 5: (A) The number of pacing sites to initialize the model (x-axis) versus the total number of pacing sites used (y-axis) to localize the
target. (B) The effect of varying the correlation coefficient thresholds on the accuracy of localization. (C) The effect of varying the correlation
coefficient thresholds on the total number of pacing sites needed to localize the target.

The convergence criterion indicates when the search
should stop, which is determined by the similarity of the
12-lead ECGs. We tested how the change in the conver-
gence criterion affected the final localization accuracy of
BOATMAP. As shown in Fig. 5B-C, to be within 5-mm
of the target using lead agreement, all leads need to reach
a correlation coefficient of 0.87, which would require 8.36
total pacing sites on average. Concatenating the leads and
then applying the correlation coefficient required a thresh-
old of 0.97, which corresponds to 8.55 pacing sites used on
average.

5. Discussion

5.1. Bound Constraints on GP Output

Since the GP learns the PCC function between two
ECGs, we know that its output values should be bounded
between -1 and 1. In the current study, no special strate-
gies were used to incorporate this bound on the GP being
learned: as observed in our experiments (Fig. 6), it is not
uncommon for the learned GP to make predictions out-
side this range during the process of active guidance. Con-
straining the GP predictions into a bounded range may im-
prove the GP fitting, alter the search, and thereby reduce
the number of pacing sites needed to locate the target.
Future works will explore approaches to limit the range of
GP predictions, such as using splines as described in [39].

5.2. Relationship between ECG similarity and distance
from target

A fundamental assumption underpinning this work (or
any works that aim to infer the origin of ventricular ac-
tivation from ECG) is that the similarity — as measured
by PCC — between two ECGs decreases as a smooth func-
tion over the distance between the two sites of origins over
the myocardium. During some exploratory analysis of our
data, we found that this relationship may change along
different spatial directions. Fig. 6 shows examples of the
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Figure 6: Examples of GP fit to all available training data to show
the regions where the similarity threshold would be evaluated to be
converged (the darkest two red contours). (A) Target located near
the base, (B) target between base and apex, (C) target near the
apex.

region of pace-mapping sites that would give rise to ECGs
meeting a given PCC threshold with a target ECG: as
shown, this region is sometimes elongated or irregular in
shape, indicating the similarity between two ECGs may
change differently along different spatial dimensions.

Furthermore, this similarity as a function of spatial dis-
tance also varies substantially with the location of the tar-
get origin producing the target QRS complex. For ex-
ample, as shown in Fig. 6, in a healthy heart within the
apical area of the LV, we observe a tighter region of pac-
ing sites matching the PCC threshold to a target versus a
much broader region in the base region of the LV, suggest-
ing that the similarity between two ECGs decreases much
more rapidly at the apex, whereas it decreases more slowly
in the basal region.

This suggests that to meet the same localization accu-
racy for a target origin, different PCC thresholds may be
needed for different regions of the heart: for instance,
stricter criteria (i.e., a higher PCC threshold) may be
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Figure 7: Heatmap visualization of the average F-Measure values
obtained by varying correlation coefficient thresholds and apicobasal
distances. Color intensity within each cell indicates the F-Measure
value, with red markers highlighting the configurations that yield
the highest F-Measure for each apicobasal distance. These optimal
settings reflect the balance between precision and recall, considering
true positives as those instances meeting the similarity threshold and
lying within a 5 mm radius from the target site.

needed for the basal region of the heart where ECGs
change less rapidly versus a lower PCC threshold can be
used in the apical region where ECGs change more rapidly
over space.

Determining a criterion in individual heart models can
be done by finding the best balance between true positives
and false negatives characterized by the f-measure. This is
exemplified in Fig. 7. To generate these graphs, however,
we used full knowledge of where the activation origin is.
This method would not be viable for personalized pace-
mapping, but it may be possible to learn a relationship
from population-based models.

In our evaluation, we chose PCC as a similarity mea-
surement because of its clinical use in localizing the origin
of ventricular activation. It is feasible to explore alterna-
tive similarity measures, including Dynamic Time Warp-
ing (DTW). DTW, known for its ability to account for
variations in time sequences, might offer a robust alter-
native for analyzing cases where the timing of ventricular
activation varies.

5.3. Other areas of limitations and future works

5.8.1. Methodological limitations and future works

The proposed BOATMAP builds on the GP as an emu-
lator — while equipped with advantages such as analytical
and efficient computation as well as inherent uncertainty
measure, the use of the GP has a disadvantage in that the
similarity function being approximated has to be re-learnt
from scratch each time the target ECG changes, even if we
are trying to locate the targets for multiple ECGs on the
same patient. An interesting future work is to investigate
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the use of alternative surrogates, such as a neural network
that is able to generate 12-lead ECG given an input pac-
ing site within the BOATMAP framework, such that this
surrogate can be continually learned and can be used to
accelerate active learning for new targets by re-using the
knowledge already learned in the surrogate.

5.8.2. Experimental limitations and future works

General evaluation setup and future works:. In this study,
we restricted the BOATMAP method to the left ventricu-
lar endocardium to gather initial results. Its core method-
ology however can be directly extended to the entire heart
surface or volumetric mesh by expanding the input do-
main. The 2D version of BOATMAP does not extend
naturally outside the LV endocardium, while the manifold
variant does not directly extend outside surface meshes.
The 3D BOATMAP, however, can be extended without
modification to methodology. Furthermore, while this
work focuses on the use of BOATMAP in pace-mapping
for localizing the target of the earliest ventricular activa-
tion site, the general concept underlying BOATMAP can
be extended to a wider variety of clinical applications such
as ablation of the Wolff-Parkinson-White (WPW) condi-
tion and atrial fibrillation, where active learning can be
used to steer the acquisition of data during the procedure
and progressively improve the localization of interventional
targets.

BOATMAP faces a unique challenge of in-vivo valida-
tion due to its nature of active learning. Because the
method is designed to actively select and therefore influ-
ence the collection of training data, its use will directly in-
fluence the standard of care (regarding how pace-mapping
will be performed to arrive at the intervention target) if
used in actual clinical settings. Similarly, such prospec-
tive testing in animal models will require challenging se-
tups to allow BOATMAP’s output to steer the actual
pace-mapping process. Alternatively, retrospective test-
ing of BOATMAP on existing in-vivo data — as shown in
our previous work [11] — faces the challenge that exist-
ing pacemapped ECG data are often too sparse to make
sure a paced-ECG is always available in locations near
where BOATMAP suggests the collection of training data.
This creates a gap between the performance we see dur-
ing retrospective evaluation and what we can expect in
prospective deployment. To overcome this limitation, we
move to an in-silico setting which provides an opportu-
nity to ensure training data is available in the locations
where BOATMAP suggests the collection of ECG data:
in other words, the in-silico test bed provides a setting
that is the closest emulation of a prospective setting where
12-lead ECG data can be collected wherever as suggested
by BOATMAP. It thus serves as an important step in the
evaluation of BOATMAP before we can move it to an ex-
pensive prospective evaluation on animal or clinical set-
tings where BOATMAP can influence pace-mapping pro-
cedures.

In the particular in-silico

implementation of this



testbed, we used a dense grid of pre-computed simulations
of pace-mapping ECGs to mimic the availability of ECGs
wherever BOATMAP suggests. The potential impact is
that, if the distance between a BOATMAP-suggested site
and the nearest site of pre-computed ECG data is large,
the experiment will not reflect the actual performance of
BOATMAP. In this work, we mitigated this issue by two
strategies. First, we used a dense simulation grid with
an average resolution of 1.45 + 0.66 mm on which the
average CC between ECGs simulated on the two closest
sites is 0.99 + 0.03, ensuring that the available ECGs cap-
ture the spatial variability of the ECGs and that there is
a sufficient density of training ECGs available to be se-
lected by BOATMAP to model such variability. Second,
during BOATMAP experimentation, we simply terminate
and discard experiments when the distance between a
BOATMAP-suggested site and the nearest site of pre-
computed ECG data is larger than 3mm. This ensures that
the included experimental results closely emulate what can
be expected if BOATMAP is tested in a setting where
ECG data are available wherever suggested. Because of
the large number of test targets available, this simple mit-
igation plan also has minimal effects on the sample size of
our test data (n = 1561 after excluding these cases). A nat-
ural next step is to replace pre-computed ECGs with on-
the-fly ECG simulations integrated into the BOATMAP
workflow. In this setting, BOATMAP can suggest pacing
sites and generate 12-lead ECGs at that location, which
can be obtained by executing a computer simulation using
that site as the earliest activation, emulating the collec-
tion of pace-mapped ECGs as suggested by BOATMAP
in in-vivo settings. Once completed, we will have accu-
mulated evidence to support the logistic investment and
alleviate the safety concerns associated with in-vivo ani-
mal and clinical studies to use BOATMAP to prospectively
guide and thus influence the pace-mapping procedure to
localize interventional targets for V. These future stud-
ies would require us to integrate 3D BOATMAP within the
3D coordinate system used in standard electroanatomical
mapping systems such as CARTO (Biosense Webster) and
NAVIX (EnSite NavX system by Abbott).

Specific modeling assumptions and future works:. The
study utilized two heart geometries; using additional ge-
ometries originating from more patients could provide
more insight into how BOATMAP performs in a more di-
verse setting. Additionally, the border zones were con-
structed to be 10% of the scar volume. However, the bor-
der zone morphology is known to vary greatly across the
literature, and it contributes to ECG morphology and also
potential re-entry genesis. In the future, to overcome this
modeling assumption, we plan to consider realistic geome-
tries with realistic scar morphology segmented from im-
ages such as late gadolinium-enhanced magnetic resonance
imaging.

Variations in the His-Purkinje system (HPS) were not
explored within the current work of this study, which may
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be a limitation. The largest influence on the robustness of
BOATMP may be pacing near or far from the HPS that
facilitates retrograde activation and potential differences
in the ECG morphology over a smaller spatial resolution.
In the future, additional investigations can be carried out
to test BOATMAP in a model with 1) a different config-
uration of the HPS and 2) a fast-conducting endocardial
layer but no physiological HPS.

6. Conclusion

In this work we present a robust, accurate, and inter-
pretable method for localizing the origin of QRS complex’s
in the presence of scar tissue. The presented BOATMAP
is able to provide real-time guidance to pace-mapping
such that the target origin of ventricular activation can
be localized with a small number of pace-mapping data.
BOATMAP further allows the constraints on non-viable
regions for pacing, such as infarct core, to be incorporated
into the suggestion while delivering an interpretable sim-
ilarity map that can inform the clinicians in their pace-
mapping decisions.
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