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Abstract

Large-scale seismic structural tests are crucial to validating both structural

design methodologies and the effectiveness of seismic isolation devices. How-

ever, considering the significant costs of such tests, it is essential to leverage

data from completed tests by taking advantage of numerical models of the

tested structures, updated using data collected from the experiments, to com-

plete additional studies that may be difficult, unsafe or impossible to physi-

cally test. However, updating complex numerical models poses its own chal-

lenges. The first contribution of this paper is to develop a multi-stage model
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updating method suitable for high-order models of base-isolated structures,

which is motivated and evaluated through modeling and model updating of a

full-scale four-story base-isolated reinforced-concrete frame building that was

tested in 2013 at the NIED E-Defense laboratory in Japan. In most stud-

ies involving model updating, all to-be-updated parameters are typically up-

dated simultaneously; however, given the observation that the superstructure

in this study predominantly moves as a rigid body in low-frequency modes

and the isolation layer plays a minor role in all other modes, this study pro-

poses updating parameters in stages: first, the linear superstructure parame-

ters are updated so that its natural frequencies and mode shapes match those

identified via a subspace system identification of the experimental building

responses to low-level random excitations; then, the isolation-layer device

linear parameters are updated so that the natural frequencies, damping ra-

tios and mode shapes of the three isolation modes match. These two stages

break a large-scale linear model updating problem into two smaller problems,

thereby reducing the search space for the to-be-updated parameters, which

generally reduces computational costs regardless of what optimization algo-

rithm is adopted. Due to the limited instrumentation, the identified modes

constitute only a subset of all the modes; to match each identified mode

with a FEM mode, a procedure is proposed to compare each identified mode

with a candidate set of FEM modes and to select the best match, which is

a second contribution. Further, nonlinear isolation-layer device models are

proposed, updated and validated with experimental data. Finally, combining
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the isolation-layer devices’ nonlinear models with the updated superstructure

linear FEM, the final result is a data-calibrated nonlinear numerical model

that will be used for further studies of controllable damping and valida-

tion of new design methodologies, and is being made available for use by

the research community, alleviating the dearth of experimentally-calibrated

numerical models of full-scale base-isolated buildings with lateral-torsional

coupling effects.

Keywords: Base isolation, finite element model, model updating, system

identification

1. Introduction

In many countries around the world, including the United States, earth-

quakes have caused severe damage to buildings and infrastructure and are one

of the major concerns in the field of civil engineering. Many protective mea-

sures have been taken to minimize the seismic responses of structures; among

these measures, base isolation has been widely adopted in recent decades

(Constantinou et al., 1990; Mokha et al., 1993; Sato et al., 2013). Although

the behaviors of base-isolated buildings have been extensively analyzed in

previous research, full-scale seismic tests of these buildings are limited in

quantity due to the high costs of such experiments (Brewick et al., 2018).

However, such tests, like the series of tests investigated in this study, are vital

to understanding the true performance of structures and for validating and

innovating new base isolation techniques. Although some conclusions drawn
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from the analysis of a particular base-isolated building may be unique to that

building, other conclusions can deepen our knowledge of general base-isolated

building behavior.

Given the high costs of full-size seismic tests, it is essential to leverage

data from completed tests by utilizing a test structure’s numerical models,

that have been subsequently calibrated from the experimental data, to pur-

sue additional studies that could not be tested in the laboratory or in the

field. Such studies may include responses to additional earthquake records

— including those too severe to safely test or even beyond laboratory ca-

pability — as well as damage detection technique validations, novel seismic

control strategies, retrofit effects, and new design methodology verification.

In these scenarios, finite element models (FEMs) of the experimental struc-

ture can be formulated and become powerful tools for researchers to evaluate

the structural performance in subsequent studies. However, before ensuring

that the model’s key features (natural frequencies, mode shapes, energy dis-

sipation pattern, etc.) are sufficiently close to those of the tested building,

the trustworthiness of model results is indeterminate. Thus, however chal-

lenging it may be, model updating is a vital step between the experiments

and subsequent model use in future studies.

Model updating methods may be characterized into four categories of

methods: modal (Moaveni et al., 2009; Bakir et al., 2007, 2008; Friswell and

Mottershead, 2013), frequency response function (FRF) (Lin and Ewins,

1994; Imregun et al., 1995; Lin and Zhu, 2006; Lin, 2011; Shadan et al.,
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2016), modal strain energy (MSE) (Wang and Xu, 2019; Stubbs et al., 1995;

Shi et al., 1998; Yang et al., 2020; Cornwell et al., 1999), and probabilistic

(Bayesian) (Beck and Arnold, 1977; Beck and Katafygiotis, 1998a,b; Vanik

et al., 2000; Beck et al., 2001; Jang and Smyth, 2017a). In modal meth-

ods, the model parameters are updated so that the FEM’s modal properties

(natural frequencies, damping ratios and mode shapes) match those of the

experimental structure. FRF methods — proposed in Lin and Ewins (1994)

for analytical models and in Imregun et al. (1995) for numerical models, and

utilized in other studies (Lin and Zhu, 2006; Lin, 2011; Shadan et al., 2016)

— update the model parameters so that the FEM transfer functions repro-

duce those computed from the experiment’s input and output measurements;

thus, modal property estimation, through system identification from the ex-

perimental data is not required (as it is for modal methods). MSE methods

explore the differences in modal strain energy between the FEM and the

experimental structure to update the model parameters; since proposed in

1995 (Stubbs et al., 1995), MSE methods have been successfully applied to

model updating of beam structures (Yang et al., 2020) and plate structures

(Cornwell et al., 1999), and a variant called the cross-MSE method (Hu et al.,

2007, 2006; Wang et al., 2015) was successfully applied to three-dimensional

truss structures. It is believed that the modal strain energy is more sensitive

to model parameter changes, though it is also sensitive to noise, which limits

its effectiveness in tests with noisy experimental data. Bayesian methods, the

most common stochastic model updating methods, utilizes Bayes’ inference
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theorem to provide the probability distribution of (instead of just the best)

model parameters, making it robust to uncertainties. For example, Ierimonti

et al. (2020) used a continuous Bayesian model updating method to update

the bilinear isolation-layer device models of a base-isolated RC building with

the superstructure surrogate model constructed by the quadratic response

surface method, achieving long-term monitoring of the isolation-layer de-

vices.However, the significant computational cost to update the model of a

complicated structure can be a challenge; for example, updating the 22 pa-

rameters of a bridge structure FEM, constructed with 19,632 beam elements

and 1,464 truss elements, took three months to generate enough posterior

samples (Jang and Smyth, 2017a). Although these applications of the afore-

mentioned methods used linear model updating, some studies (e.g., Song

et al., 2009a,b, 2012) have also incorporated nonlinearities (e.g., nonlinear

material models), but are often applied only to laboratory-scale data.

In this study, several approaches are proposed for updating a partially

nonlinear, high-order FEM of a base-isolated structure, motivated by and

applied to updating a detailed model of a full-scale base-isolated structure

using response data from the specimen’s 2013 shake table tests at Japan’s

NIED “E-Defense” facility (Nakashima et al., 2018). The FEM involves ap-

proximately 85,000 degrees of freedom (DOFs); this level of model complexity

effectively precludes capitalizing on Bayesian probabilistic methods because

of computational cost. The MSE-based total least square cross-model cross-

mode linear updating (Li et al., 2020) was attempted but resulted in a poor
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match of the FEM and experimentally measured modal properties, likely due

to MSE’s sensitivity to the the sensor noise in this series of experiments. This

leaves FRF and modal methods to consider.

One aspect that is particular to this structure is its base-isolated, not

fixed-base, design that results in the superstructure moving approximately as

a rigid body in the first three modes (isolation modes) and the deformations

in all other modes (superstructure modes) mostly a result of superstructure

behavior. For a base-isolated building like this, the superstructure model

parameters can be updated first, and the isolation-layer parameters can be

updated subsequently. As a direct result, one larger optimization problem is

broken into two smaller problems (fewer modes to match and a smaller pa-

rameter space) that are easier and less time-consuming to solve (a previous

study trying to update all parameters together took much longer and resulted

in a sub-optimal match to the experimental results). Because modal meth-

ods treat each mode separately, and naturally separate the isolation modes

from the superstructure modes, they are better choices than the FRF-based

methods for the model updating of the base-isolated building in this study.

Nevertheless, there are several challenges in applying two proposed stages

of modal-based model updating method; these hurdles and the approaches

proposed herein to address them are:

1. The rationale for separating the linear update into two stages is studied

inYu (2022), which uses a simple 3DOF example with a stiffness distri-

bution similar to that of the experimental building herein, and empiri-
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cally demonstrates that: (a) isolation-layer linear stiffness changes have

minor, and typically negligible, effects on the superstructure modes’

natural frequencies and mode shapes; (b) superstructure linear stiff-

ness changes have only marginal effect on the isolation modes’ natural

frequencies and mode shapes; and (c) superstructure damping changes

have negligible influence on the isolation modes’ damping ratios.

2. While the isolation modes are likely non-classically damped, due to the

significant differences in stiffness and damping in the isolation layer

relative to the superstructure, the superstructure modes are assumed to

be proportionally damped. An analysis of the experimentally-identified

mode shapes demonstrates that this assumption is reasonable.

3. Successful modal-based model updating reduces the error between each

experimentally-identified mode and its corresponding FEM mode, which

is often not the same mode number (when modes are sorted by increas-

ing frequency) because: the unupdated FEM model’s modes may be

in a different order due to uncalibrated model parameters; identifica-

tion from a limited sensor set may not be able to detect some modes;

and measurement noise can result in spurious non-physical “identified”

modes. While previous studies have successfully matched experimental

and model modes for relatively simple structures based on frequency

differences, different definitions of modal assurance criteria (Allemang

and Brown, 1982; Lieven and Ewins, 1988), mass matrix compatibilities

(Avitabile and O’Callahan, 1988; O’Callahan, 1995), comparisons of
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modal energies (Bugeat and Lallement, 1976) and comparison of FRFs

(Ibrahim, 1993), or for ones in which the mode matching is straight-

forward (e.g., Jang and Smyth, 2017b), this specimen’s limited sensor

coverage and the high-order FEM poses a significant mode-matching

challenge. To address this difficulty, a new efficient and effective mode-

matching procedure is proposed.

4. Modal approaches are inherently based on linear system characteris-

tics, but this structure’s isolation layer is highly nonlinear, as is typical

of most isolated buildings; thus, it must be determined whether su-

perstructure nonlinearity is a factor. Herein, it is demonstrated for

this structure that the identified natural frequencies of the correspond-

ing superstructure modes, based on the random and the earthquake

excitation test data, are nearly identical, which is consistent with base-

isolation design intent for superstructure deformation; thus, this su-

perstructure’s nonlinearity is negligible during significant earthquake

excitation, even with peak horizontal accelerations as much as 0.5g.

Finally, to simulate the building’s nonlinear responses, the calibrated

superstructure model is combined with isolation-layer device models

— some bi-directional hysteretic parameter-calibrated (Brewick et al.,

2020) Bouc-Wen models (Park et al., 1986; Wen, 1980) and some bi-

linear stiffness models. The result is a locally nonlinear FEM that

can faithfully reproduce the building’s responses to earthquake ground

motions.
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In summary, the model updating is conducted through the following

steps. (a) Perform system identification using experimental input-output

(accelerometer) measurements to estimate the modal properties of the build-

ing. (b) Update the superstructure linear stiffnesses so that the natural

frequencies and mode shapes of the FEM superstructure modes match those

identified. (c) Update the linear stiffnesses and damping coefficients of the

isolation-layer devices so that the natural frequencies, mode shapes and

damping ratios of the FEM isolation modes match those identified. (d) Per-

form time-history analyses and compare the simulated responses with the ex-

perimental data to evaluate and demonstrate the success of model updating.

(e) Calibrate nonlinear models of the isolation-layer devices, combine them

with the superstructure model, and evaluate the resulting partially nonlin-

ear FEM through its time-history responses to demonstrate model calibration

success.

The remainder of this paper is organized as follows. Section 2 provides

a brief review of the experiments with a focus on the experimental set-up

used in this study. Section 3 summarizes the relevant system identifications

that were partially reported in Brewick et al. (2018) as well as those new

in this study. Sections 4–6 detail the linear model updating, including an

introduction to the FEM, the formulation of the optimization algorithm, a

summary of the updated FEM and a time-history analysis using the updated

model. Section 7 focuses on the construction of the partially nonlinear FEM,

including the isolation-layer devices’ modeling and comparisons of the model-
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predicted and measured earthquake responses, followed by the conclusions

and the future work in Section 8.

2. Experimental Set-up

A 686-ton full-scale four-story base-isolated reinforced-concrete frame

building (Figure 1) was tested in 2013 (Sato et al., 2013) on Japan’s NIED

(National Research Institute for Earth Science and Disaster Resilience) 6DOF

shake table at the Hyogo Earthquake Engineering Research Center, best

known as “E-Defense” (Ogawa et al., 2001). The geometric asymmetry and

the corner stairway-core walls create significant lateral-torsional coupling in

the superstructure responses. For the 8 August 2013 experiments concerned

in this study, the isolation layer consisted of two rubber bearings (RBs),

two elastic sliding bearings (ESBs) and two passive U-shaped steel yielding

damper pairs (SDPs) (Figures 3 and 4). A series of experiments were con-

Figure 1: Experimental specimen
(photo E.A. Johnson)
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Figure 2: Accelerometer configuration on floors 0–3
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ducted in August 2013 with excitations including low-intensity filtered white

noise as well as scaled versions of both historical and synthetic earthquake

records.

Various types of sensors — including displacement sensors, accelerometers

and force transducers — were mounted on the superstructure and the shake

table to monitor the time-history responses of the entire system. Specifically,
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Figure 3: Isolation-layer layout
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Figure 4: Isolation-layer devices (photos E.A. Johnson & T. Sasaki)
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tri-directional accelerometers were placed at three corners on floors 0–3 (Fig-

ure 2) — where floor 0 is the superstructure base — and at two corners on

the roof (floor 4), for a total of 14 locations and 42 (14 × 3) superstructure

acceleration channels (x, y and z directions). Further, the shake table was

instrumented with four tri-directional accelerometers, for a total of 12 (4×3)

shake table acceleration channels, from which the 6 × 1 table-center accel-

eration vector ẍg(t) — composed of three translational and three rotational

accelerations — is computed in a least squares sense, assuming that the table

is rigid, using a transformation matrix determined from the sensor location

geometry (Brewick et al., 2018). Force transducers were mounted under each

isolation-layer device to measure the restoring forces. Unless otherwise noted,

all signals were collected at a 1 kHz sampling rate and then low-pass filtered

with a 35 Hz cutoff frequency (below the 60 Hz electrical frequency used at

the testing facility).

This study focuses on the series of tests conducted on 8 August 2013

— including Tests 010–012 (different realizations of a random excitation)

and Tests 013–016 (scaled versions of the March 2011 Mw9.0 Tohoku-Oki

earthquake record from the KNET Furukawa station). Figure 5 shows the

horizontal table-center accelerations in random excitation Test 010 and earth-

quake excitation Test 016 (the most intensive, as ranked by root-mean-square

ground acceleration, of the Tohoku-Oki earthquake tests). The excitation

records’ peak accelerations and durations are provided in Table 1.

When subjected to the random excitation, both the superstructure and
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Figure 5: Shake table center accelerations, in the x and y directions, in Test 010 (random)
and Test 016 (scaled March 2011 Tohoku-Oki earthquake)

Table 1: Descriptions of excitations

Peak Acceleration (cm/s2)

Test No. Excitation x y z Duration (s)

010 6DOF Random 52.08 57.98 68.41 172.06

013 243.89 300.32 170.10 314.90

014 415.81 432.98 363.74 314.91

015
Tohoku-Oki EQ

347.66 480.95 224.81 314.93

016 356.21 398.14 222.99 314.95

the isolation-layer devices remain linear so that the isolation-layer devices

can be reasonably modeled with a linear stiffness and a constant damping

coefficient in each horizontal direction. The earthquake excitations, however,
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Figure 6: Representative linear and nonlinear force-displacement relationships in Tests 010
and 013, respectively (note that the scales differ)

as discussed in Section 3.2, induce mild nonlinearity in the rubber bearings

and strong nonlinearity in the elastic sliding bearings and the U-shaped steel

damper pairs (Figure 6), though the superstructure remains essentially linear.

3. System Identification

To estimate the modal properties from the experimental data — so that

the FEM can be updated in Section 5 to match those properties — identifi-

cation is performed based on the experimental data from Test 010, in which

the building was subjected to low-level random excitations in all six shake

table DOFs and remained primarily linear in both superstructure and iso-

lation layer. Further, given that calibrated energy dissipation is crucial for
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reproducing time-history responses and that the damping ratios in low-level

motion might be different from the effective damping in large earthquake re-

sponse, system identification is also performed based on data from Test 013,

in which the input is a scaled March 2011 Tohoku-Oki earthquake record

(Table 1), to determine effective natural frequencies and effective damping

ratios.

3.1. Test 010

The primarily linear responses to the low-level random excitations were

used, in a previous study (Brewick et al., 2018), to estimate modal prop-

erties (natural frequencies, damping ratios and mode shapes) through the

N4SID (Subspace State Space System Identification) system identification

method (Van Overschee and De Moor, 1994), which is a data-driven system

identification method for combined deterministic-stochastic inputs. The 12

table acceleration responses were used as inputs to the building model and

the 42 base and superstructure acceleration responses were the outputs. The

table and structure accelerations were detrended, additionally low-pass fil-

tered at 28.6 Hz (8th-order Chebyshev Type I filtered, first forward and then

backward) and downsampled from 1 kHz to 71.4 Hz. When implementing the

N4SID method, selecting the order of the model is always a challenge: too low

and some physically important modes may fail to be identified; too high and

spurious or redundant modes may also be “identified.” Thus, the stabiliza-

tion diagram strategy (Peeters, 2000) was used to choose the order and iden-

tify “stable” modes, which are defined to be modes identified at the optimal
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model order that remain, at the next higher model order, within 1% frequency

deviation and 5% damping ratio deviation, and have modal assurance crite-

rion (MAC) values larger than 0.95 (stabilization diagrams for Test 010 are

shown in Brewick et al., 2018). The MAC(φi,φj) = |φH
i φj|/(φH

i φiφ
H
j φj)

1/2

(superscript H denotes conjugate transpose) ranges from 0 to 1, where 0 in-

dicates no similarity (orthogonal vectors) and 1 indicates a perfect match

(parallel vectors) (Peeters, 2000; Vacher et al., 2010).

Table 2: Identified natural frequencies and
damping ratios (Test 010) (adapted from
Brewick et al., 2018)

Mode Frequency [Hz]
Damping

Ratio [%]

Is
o
la

ti
o
n


1 0.6853 7.63

2 0.6975 8.62

3 0.7095 7.92

S
u

p
er

st
ru

ct
u

re



4 4.7812 3.21

5 5.1749 3.41

6.1199 76.13

6 7.2931 3.17

10.0301 86.06

7 10.8364 3.50

11.5684 13.19

14.5622 63.46

8 15.3463 3.26

bold indicates fully stable identified mode

Table 3: Identified effective natural fre-
quencies and damping ratios (Test 013)

Mode Frequency [Hz]
Damping

Ratio [%]

Is
o
la

ti
o
n


1 0.6079 19.95

2 0.6182 16.65

3 0.7682 25.68

S
u

p
er

st
ru

ct
u

re



4 4.6415 4.60

5 5.0268 3.59

5.4095 98.95

6 7.1137 3.40

7.4211 98.99

7.7266 68.17

8.3521 81.80

9.0055 91.56

9.5116 57.01

7 10.6261 4.14

11.3949 32.37

8 11.4646 4.57

13.6537 41.00

14.5471 29.69

9 14.9861 3.54

bold indicates fully stable identified mode
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The identified frequencies and damping ratios with model order 66 are

shown in Table 2. The first three modes have comparatively lower natural

frequencies as intended, and are labeled “isolation modes.” The remaining

modes are labeled “superstructure modes.” Because there are 42 output

channels, each identified mode shape is a vector with 42 complex-valued en-

tries; Figure 7 shows the directions of the mode shape’s elements in the com-

plex plane for each of the first eight identified modes. The mode shapes for

identified modes 4–6, which move primarily in the horizontal directions, all

have approximately one dominant direction, indicating that they are near-

monophase and can be well approximated by their real parts; modes 7–8,

which move primarily vertically, are less monophase but still much more so

than isolation modes 1–3 — also indicated by the collinearity values (Juang

and Pappa, 1985) shown in the figure. Thus, it is fair to assume that the

superstructure modes are proportionally damped; as a result, the damping

matrix need not be incorporated when updating the superstructure FEM to

achieve a mode shape match. On the contrary, matching the nonclassically

damped isolation modes must update the damping and stiffness simultane-

ously to achieve a mode shape match. This finding can also be demonstrated

by evaluating the MAC values of the identified mode shapes against them-

selves (each mode has two complex-valued mode shapes that are complex

conjugates of each other), as shown in Figure 8 (a larger square indicates a

larger MAC value and a better match of two mode shapes). When a mode

shape is near-monophase (modes 4–8), its conjugate is close to the original
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Figure 8: MAC values of the identified mode shapes against themselves (each natural
frequency corresponds to two mode shapes that are complex conjugates of each other)

mode shape, and their MAC value will be near unity; this is not the case for

nonmonophase mode shapes (modes 2–3).

3.2. Test 013

A similar methodology for system identification is applied to the experi-

mental data from Test 013; this earthquake excitation, unlike the bandlimited

white noise in Test 010, is quite non-Gaussian, though this is no difficulty for

the N4SID identification since the shake table accelerations are the known

input to the method. In this case, the input (table) and output (structure)

accelerations were additionally low-pass filtered with a 30 Hz low-pass filter

(FIR filter with no more than 0.1 dB variation below 30 Hz, and at least two

orders of magnitude reduction above 35 Hz) and then downsampled (from

1 kHz to 333.3 Hz). With model order set to 66, the identified effective fre-

quencies and damping ratios are shown in Table 3. Comparing Tables 2 and 3,
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the natural frequencies of identified modes 4–8 do not change much, indicat-

ing at most a very mild nonlinearity in the superstructure during Test 013;

indeed, most of the small changes are likely due to the strongly nonlinear

isolation-layer devices.

4. Introduction to the Finite Element Model

The nominal FEM, shown in Figure 9, was developed based on the struc-

tural design drawings. The beams, columns, and shear walls were modeled

by solid concrete elements and embedded reinforcing steel bars were modeled

with truss elements; the floor slabs and the nonstructural walls (autoclaved

lightweight concrete [ALC] panels) were modeled with shell elements; and

the isolation-layer devices were modeled with spring elements. Approxima-

tions typically must be made when constructing FEMs, either because some

details have little influence on the behavior of the building or because of

floor 4
(roof)

floor 3

floor 2

floor 1

floor 0
(base)

Figure 9: Finite element model
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the vast effort required to include every minute detail; for example, it is as-

sumed here that each structural member is internally homogenous (constant

density, Young’s modulus, etc.), floor slab loading from nonstructural com-

ponents are ignored, and each nonstructural wall with window(s) is modeled

as one homogeneous shell element.

To conveniently update the FEM, the global mass matrix M, the nom-

inal global stiffness matrix K0, and the global element stiffness matrices

Ki induced by unit changes to the ith to-be-updated parameter θi, i = 1,

..., nθ, are extracted for the model updating analysis. Then, the stiff-

ness matrix K given a specific parameter vector θ can be written as K =

K0 +
∑nθ

i=1 Ki(θi − θnominal
i ), where θnominal is the vector of nominal initial

parameter values that correspond to nominal initial stiffness K0. The first

six mode shapes of this nominal FEM are shown in Figure 10.

A preliminary study explored three choices for the set of FEM parameters

to be updated.

• In Case I, the to-be-updated parameters θ included the Young’s moduli

of the x- and y-direction beams under floors 0–4 (10 parameters), the

columns in each story (4 parameters), the shear walls in each story (4

parameters), the floor slabs on each floor (5 parameters), the stairs in

each story 1–3 (3 parameters; the stairs end at floor 3), and the stiff-

nesses and damping coefficients of the isolation-layer devices in both x

and y directions (24 parameters; note that the low-level motion used to

determine the modal parameters for the linear updating induces small
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(a) Mode 1 (b) Mode 2 (c) Mode 3

(d) Mode 4 (e) Mode 5 (f) Mode 6

Figure 10: Mode shapes of the nominal FEM

enough motion that the forces from these devices are well-modeled as

directionally-uncoupled).

• A simpler Case II groups superstructure elements composed of concrete

with the same characteristic compressive strength (Table 4), each with a

to-be-updated Young’s modulus (3 parameters), and the same isolation-

layer coefficients as in Case I (24 parameters).

• A more methodological Case III seeks to group parameters with similar
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Table 4: Nominal compressive strength f ′ck and Young’s modulus Ec, as well as the corre-
sponding post-update Young’s modulus Ec, for each superstructure concrete material

Nominal

Compressive

Strength

f ′ck [GPa]

Nominal

Young’s

Modulus

Ec [GPa]

Updated

Young’s

Modulus

Ec [GPa]

Superstructure Components

36 32.78 34.42 elements in and below floor 0 (base)

27 29.15 30.61
elements above floor 0 and

no higher than floor 3

21 25.85 27.14 elements above floor 3

(algebraically parallel) effects on the modal properties. The sensitiv-

ities of relative changes in the natural frequencies to relative changes

in the parameters are first calculated. Then, parameters with negligi-

ble impact on the frequencies (those with sensitivity-matrix columns

with two-norms less than 0.4%) are ignored. The remaining param-

eters are clustered together with others with cosine distance (Everitt

et al., 2001) less than 0.05 via the “unweighted pair group parameter

clustering method with arithmetic mean” (Shahverdi et al., 2009; Jang

and Smyth, 2017a). Each of the resulting 31 groups of to-be-updated

parameters was found to only include members from a single physically-

motivated category used in Case II though not every group is from the

same category (i.e., Case III subdivides the groups in Case II).

Case I was found to lead to an easier match of modal properties, as expected,

because it has a greater number of free parameters, but promotes excessive

parameter changes that violate some clear underlying physical properties

of the building; though the Case II–updated FEM slightly better predicted
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time-history responses than Case I. Case II and Case III time-history re-

sponses were almost identical; thus, the simpler and physically-motivated

clustering of Case II is used in the remainder of this paper.

The nominal superstructure concrete Young’s moduli are chosen through

interpolation of the relationship between concrete compressive strength f ′ck

and the corresponding Young’s modulus Ec provided by the Japanese con-

crete design code (Ueda, 2007) summarized in Table 5. This design code

notes that, “in the case of repeated loading or when the applied stress level

is low, the values in [Table 5] may be preferably increased by 10%” – thus,

the concrete Young’s moduli in Table 4 are interpolated from the compres-

sive strength in the design drawings using the design code Table 5 and then

multiplied by 110%. These moduli will be allowed to change by ±5% from

their nominal values in the updating optimization.

Although the ALC panels have a Young’s modulus of about 2 GPa, al-

ready much smaller than the other concrete elements, the installation allows

some in-plane sliding between adjacent panels as well as out-of-plane rotation

where connected to the main structure (beams and columns), so the effective

stiffnesses of ALC panels are negligible compared with other concrete ele-

ments (in fact, a preliminary model updating that included the ALC panels’

Table 5: Relationship between characteristic compressive strength f ′ck and Young’s mod-
ulus Ec in the Japanese concrete design code (Ueda, 2007)

f ′ck [GPa] 18 24 30 40

Ec [GPa] 22 25 28 31
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effective Young’s modulus resulted in an updated ALC Young’s modulus that

was more than three orders of magnitude smaller than those of the concrete

elements — again, indicating the ALC plate effective moduli are negligible).

Thus, while the panels are included in the modeling as placeholders in the

event that future studies on ALC plates or other exterior wall panels — both

deemed beyond the scope of this study — are needed, their stiffnesses herein

are set to zero and their masses are applied to the adjacent main structural

components.

In each horizontal direction, each isolation-layer device is modeled in low-

level linear motion with a spring with a constant stiffness k and a viscous

damper with a constant damping coefficient c (vertical flexibility is ignored).

Thus, the restoring force at time tl is approximated by

f(tl) = kx(tl) + cẋ(tl) (1)

where x(tl) and ẋ(tl) are the displacement and velocity at time tl, respectively,

across the device. Combining (1) evaluated at N time points, l = 1, 2, . . . , N ,

into a matrix equation results in

f(1∆t)

f(2∆t)

...

f(N∆t)

︸ ︷︷ ︸
f

=



x(1∆t) ẋ(1∆t)

x(2∆t) ẋ(2∆t)

...
...

x(N∆t) ẋ(N∆t)


︸ ︷︷ ︸

A = [ak ac]

kc
 (2)
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Then, the least squares fit (k̂, ĉ) for device parameters (k, c) can be cal-

culated using the Moore-Penrose pseudoinverse of matrix A; the result-

ing values [k̂ ĉ]T = A†f , shown in Table 6, are used as the nominal de-

vice stiffness and damping coefficient. The restoring force prediction er-

ror, or residue, is r = A[k̂ ĉ]T − f . The average relative prediction error

errkc = ‖r‖2/‖f‖2, where ‖·‖2 denotes the vector two-norm, is also shown

in Table 6. To determine how much the subsequent model updating will

allow k and c to vary from their nominal initial values, define the residual

r′ = A[k̂ + ∆k ĉ+ ∆c]T − f = r + ak∆k + ac∆c that results from stiffness

∆k and damping ∆c changes from nominal. The bounds on k are chosen to

be the tightest range for which ‖r′‖2 = 1.5‖r‖ when ∆c is zero, resulting in

∆k = {−rTak ± [(rTak)
2 + (1.52 − 1)‖ak‖2

2‖r‖2
2]1/2}/‖ak‖2

2; if these two so-

lutions are denoted ∆k+ and ∆k−, then the lower bound (LB) and upper

bound (UB) are max{0, k̂ + ∆k−} (constrained so that the stiffness is never

negative) and k̂ + ∆k+, respectively. The corresponding expression for ∆c

Table 6: Nominal and updated stiffnesses and damping coefficients of isolation-layer de-
vices

RB1 RB2 ESB1 ESB2 SDP1 SDP2
x y x y x y x y x y x y

k̂ [kN/m] 1128 1104 1077 1115 1539 1413 1495 1453 3936 4070 4004 3772
LB 1062 1026 1016 1044 1367 1225 1022 1096 3634 3689 3634 3387
UB 1195 1182 1138 1187 1711 1602 1969 1810 4239 4452 4373 4157

updated k 1173 1044 1130 1165 1587 1571 1595 1349 3793 3709 3881 3995

ĉ [Mg/s] 16.74 17.35 15.55 17.84 26.23 29.84 60.06 55.55 101.75 106.65 108.67 119.25
LB 15.88 0.00 1.36 1.17 0.00 0.00 0.00 0.00 30.84 19.15 22.08 30.06
UB 31.90 35.25 29.73 34.51 65.35 73.53 170.20 137.53 172.66 194.15 195.26 208.45

updated c 24.83 20.47 26.90 24.20 45.42 45.64 82.06 60.85 159.20 134.68 182.22 180.45

errkc [%] 5.26 6.29 5.05 5.74 9.92 11.79 26.87 21.19 6.81 8.30 8.16 9.00
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is identical except replacing “k” with “c” throughout. As will be seen in

Section 6, constraining the isolation-layer coefficients within the resulting

bounds, reported in Table 6, provides a high fidelity match.

5. Linear Updating and Mode Matching

Most model updating procedures result in optimization problems that

minimize some cost (or objective) functions. Here, the error metric J(θ) is

defined to be the sum of the error of each identified mode with the “matched”

corresponding FEM mode:

J(θ) =
∑
i∈IID

Ji′ii(θ) (3a)

where IID is a set of experimentally identified mode numbers used in the

optimization, i′i is the FEM mode number matched to experimentally identi-

fied mode i, and Ji′ii(θ) is a weighted sum of the relative differences between

FEM mode i′i and identified mode i:

Ji′ii(θ) =
∣∣∣f̂i′i(θ)− fi

∣∣∣ /fi
+ λMAC

i

∣∣∣1−MAC
(
φ̂i′i

(θ),φi

)∣∣∣ (3b)

+ λζi

∣∣∣ζ̂i′i(θ)− ζi
∣∣∣ /ζi

where fi, φi and ζi are the ith experimentally identified natural frequency,

mode shape and damping ratio, whereas f̂i′i(θ), φ̂i′i
(θ) and ζ̂i′i(θ) are the

corresponding values for the FEM’s i′i
th mode. The FEM mode number i′i

may be the same as the identified mode number i, but this is often not the
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case because of FEM modes that remain unidentified from the experimental

data (further discussed in the following section). This cost function uses

the relative frequency and damping ratio differences so that all modes are

evaluated on the same scale. 1−MAC(φ̂i′i
(θ),φi) quantifies the differences

between the identified mode shape φi and the FEM mode shape φ̂i′i
(θ).

λMAC
i and λζi are weights that adjust the contribution to cost function

(3) by errors from mode shapes and damping ratios, relative to those from

the frequencies. Reducing relative frequency error and mode shape error

are considered approximately of equal importance to ensure reproduction of

structure time-history responses, so the mode shape weight λMAC
i is chosen

to be unity for each mode i. The superstructure modes’ damping ratios,

which are sufficiently small to generate primarily monophase mode shapes,

are of relatively little utility for matching those modes’ frequencies and mode

shapes; thus, the damping relative error weight λζi is set to zero for super-

structure modes i ≥ 4. In contrast, because the isolation mode damping is

much larger, with nonproportional complex mode shapes, accurate damping

modeling in the isolation modes is essential for accurate response prediction,

so λζi = 1 for modes i = 1, 2, 3; it should be noted that this could affect model

updating accuracy if the identified damping ratios are poorly characterized,

but including them here is essential since the modes 1–3 damping ratios —

particularly modes 2–3 are complex and very nonproportional, so ignoring

their damping and the complex nature of their mode shapes are more likely

to lead to poor characterization of the isolation-layer behavior. Finally, the
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superstructure modes are first updated using IID
str = {4, 5, . . . , 8}, and then

the isolation modes using IID
iso = {1, 2, 3}.

5.1. Mode Matching

With the cost functions defined, the next challenge is to find the FEM

mode i′i that corresponds to identified mode i. In other words, although

there are 8 identified stable modes in Table 2, one must determine, for each

identified mode, the FEM mode that corresponds: i.e., similar frequency and

mode shape. For example, stable identified mode 8 is found in Section 6 to

not correspond to FEM mode 8, but rather FEM mode 9. This mismatch

is expected: due to the limited number of measurement directions and/or

locations, it is possible (perhaps even likely) that some modes of the ex-

perimental building cannot be identified; further, sensor noise can result in

spurious non-physical modes appearing in the identification results.

When updating the parameters of the isolation-layer devices, mode match-

ing is typically not a challenge because the number of identified modes and

the number of FEM modes that can possibly be matched to them are both

very small (three each), so there are only six possible match permutations,

as shown in Figure 11. A cost function can be computed for each of the six

scenarios, the smallest of which not only provides the updated parameters θ,

but also indicates the best mode match.

In contrast, in the general case of nID identified modes, each to be matched

to one of nFEM modes (which likely does not constitute all FEM modes but

rather those within a frequency range reasonably close to those of the iden-
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Figure 11: Possible mode matchings for the isolation-layer device parameter updating

tified modes), the number of permutations is nFEM!/(nFEM − nID)!, which

is typically far too large for a tractable exhaustive search. For a particular

choice of parameter vector θ, a modal analysis will provide a set of nFEM

candidate modal frequencies f̂j(θ) and corresponding mode shapes φ̂j(θ) for

j ∈ IFEM; for identifying the superstructure modes of the example herein,

IFEM = {j | f̂j(θ) ∈ [2, 17] Hz} because the modes below 2 Hz are the isola-

tion modes, and the experimentally-identified modes only range up to about

17 Hz. Let U ID ⊂ IID and UFEM ⊂ IFEM be the sets of yet unmatched

experimentally-identified and FEM modes, respectively; when the mode-

matching algorithm begins, these are identically IID and IFEM, respectively.

Assume that the modes are numbered by increasing frequency; i.e., fi < fi+1

and f̂j(θ) < f̂j+1(θ) for any positive i or j.
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FEM θ

Modal
Analysis

i = arg min
m∈UID

fm

l = arg min
m∈UFEM

f̂m(θ)

i′i = 0, J0i = ∞

f̂l(θ)
?
∈ fi(1± rf ) and

1−MAC(φ̂l(θ),φi)
?
< rMAC

Jli(θ) =

|(f̂l(θ)/fi) − 1| +∣∣∣1−MAC(φ̂l(θ),φi)
∣∣∣

Jli(θ)
?
< Ji′ii(θ)

i′i = l

l
?
= arg max

m∈UFEM
f̂m(θ)

l =
arg min

m∈UFEM

f̂m(θ)>f̂l(θ)

f̂m(θ)

Remove i from U ID.
Remove i′i (or all { j | j∈UFEM, j <i′i } if simplified) from UFEM.

U ID is empty?
J(θ) =

∑
i∈IID

Ji′ii(θ)

End

f̂j(θ), φ̂j(θ)

j ∈ IFEM

Yes

No

Yes

No

No

Yes

Yes No

Figure 12: Flowchart for computing superstructure mode-matching cost function values
(the damping ratio could be included but is omitted because λζi is set to zero herein;
elements drawn assuming λMAC

i is unity)

32



With these definitions, the mode-matching algorithm, depicted in Fig-

ure 12, proceeds as follows. First, choose the next identified mode yet to be

matched; i = minm∈U ID m. Of all yet-unmatched FEM mode numbers UFEM,

find those that have natural frequencies within a range around the identified

modal frequency fi and with mode shapes sufficiently similar, and set the ith

mode’s contribution to the cost function J(θ) to be the minimum of the cost

of each of those FEM modes; i.e., let

UFEM
i =

{
l | l ∈ UFEM,

∣∣∣∣∣ f̂l(θ)

fi
− 1

∣∣∣∣∣ < rf , λ
ζ
i

∣∣∣∣∣ ζ̂l(θ)

ζi
− 1

∣∣∣∣∣ < rζ ,

λMAC
i

[
1−MAC(φ̂l(θ),φi)

]
< rMAC

} (4)

be the FEM mode numbers that potentially match identified mode i, where

rf , rζ and rMAC denote the allowable levels of relative frequency deviation,

relative damping ratio deviation times λζi , and λMAC
i times the MAC metric

deviation from a perfect mode shape match, respectively; herein, rf = 10%,

rζ is not needed because λζi is zero for superstructure mode matching, and

rMAC = 15%. If UFEM
i is an empty set, then Ji′ii(θ) = ∞; otherwise, let

i′i ∈ UFEM
i be the FEM mode number that provides the smallest cost and

Ji′ii(θ) be that smallest cost:

i′i = arg min
l∈UFEM

i (θ)
Jli(θ) (5)

Finally, remove FEM mode number i′i from the unmatched UFEM, and re-

move identified mode number i from the unmatched U ID. Clearly, there is
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no need to continue the algorithm if, at any stage, an identified mode’s con-

tribution Ji′ii(θ) to the cost is infinite; otherwise, the cost J(θ) is calculated

by summing the per-mode Ji′ii(θ), i ∈ IID.

Further, an optional simplification may be exploited if the modes are

sufficiently spaced and the mode number matching is monotonic (which was

found to be the case for the structure and experimental data herein); then, the

algorithm can take a shortcut by restricting the search only to FEM modes

with frequencies larger than those matched thus far; i.e., at each stage (both

initially and after each FEM mode is chosen to match an identified mode),

UFEM = { l | l ∈ IFEM, f̂l(θ) > maxi∈IID,i/∈U ID f̂i′i(θ) }.

5.2. Optimization

To minimize the error metric J(θ), two optimization algorithms were eval-

uated: the Genetic Algorithm (GA) in the Matlab® Global Optimization

Toolbox and a Nelder Mead Simplex method via the fminsearch function

in Matlab® (a traditional hill climbing optimizer). For this optimization,

the GA uses a population of 400 for 40 generations, with defaults for other

parameters (5% elite rate, 80% crossover fraction, 1% mutation rate). When

updating the superstructure parameters, no further tuning of the algorithm

was needed. However, updating the isolation-layer parameters by directly

minimizing J(θ) in (3) results in no value of θ that is within the permissible

range [θLB,θUB] and also provides a “close” match, defined as satisfying all
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of the following ∣∣∣f̂i′i(θ)− fi
∣∣∣ /fi < 5% (6a)∣∣∣ζ̂i′i(θ)− ζi
∣∣∣ /ζi < 5% (6b)∣∣∣1−MAC

(
φ̂i′i

(θ),φi

)∣∣∣ < 5% (6c)

for every i ∈ IID
iso (if λζi or λMAC

i were zero, which they are not herein for the

isolation modes, the corresponding criterion would be ignored for a “close”

match). To overcome this difficulty, the first 20 GA generations are devoted

to finding a permissible θ population that gives a “close” match; this is

accomplished by instead minimizing a somewhat relaxed cost function

J̃(θ) =
∑
i∈IID

iso

max
{

0, 0.05−
∣∣∣f̂i′i(θ)− fi

∣∣∣ /fi}
+
∑
i∈IID

iso

λMAC
i max

{
0, 0.05−

[
1−MAC

(
φ̂i′i

(θ),φi

)]}
+
∑
i∈IID

iso

λζi max
{

0, 0.05−
∣∣∣ζ̂i′i(θ)− ζi

∣∣∣ /ζi}
(7)

that eventually converged to J̃(θ) = 0, indicating that the “close” criteria (6)

were met. The remaining 20 generations, starting from the 20th generation’s

population, minimized J(θ) to seek an even closer match.

The hill-climber failed to outperform the GA in the following respects.

(a) As is typical, this hill-climber tended to get stuck at local minima and

failed to search some key parts of the parameter space. (b) Hill-climbing

optimizers, in general, offer only one solution to the problem; however, the
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GA usually produces a population of solutions with extremely similar cost

function values. In preliminary studies, one (or more) of the competing GA

solutions outperformed the only solution obtained through the hill-climbing

optimizer. (c) The GA is gradient-free and can minimize discontinuous cost

functions. In this study, although cost function (3) seems to be smooth,

it is indeed piecewise discontinuous due to the incorporation of the mode-

matching decision process (Figure 11 or 12). Thus, J(θ) does not have

finite gradients everywhere, which poses a problem for most hill-climbers.

Thus, while preliminary studies evaluated the fminsearch hill-climber, it

is subsequently omitted due to its inferior performance relative to the GA.

6. Results of Linear Model Updating

Figure 13 shows comparisons of the natural frequencies and mode shapes

between the experimental building and the FEM before and after linear

model updating; the natural frequencies of the identified and FEM modes

are shown on the horizontal and vertical axes, respectively, as well as listed

in Table 7. For most modes, the natural frequency errors have been re-

duced, especially for those with initially relatively large errors: the relative

frequency differences for modes 4–6 reduce from 18%–29% to less than 1.5%.

Further, after model updating, the identified mode shapes of modes 1–3 and

mode 8 achieve much better matches with the corresponding FEM mode

shapes. Since modes 1–3 (either identified or FEM) are the dominant modes

for the horizontal motions, it should be expected that the dynamic behavior

36



0
.6

7
6

0
.6

8
8

0
.7

0
3

5
.6

2
6

6
.6

6
6

9
.1

4
9

1
0
.7

2
8

1
5
.5

0
4

1
5
.7

6
3

0.685

0.698

0.710

4.781

5.175

7.293

10.836

15.346

0

0.2

0.4

0.6

0.8

1

MAC

(a) Before linear model updating

0
.6

8
8

0
.6

9
8

0
.7

0
6

4
.7

6
7

5
.2

3
9

7
.2

9
7

1
0
.7

2
4

1
2
.2

9
1

1
5
.2

4
7

0.685

0.698

0.710

4.781

5.175

7.293

10.836

15.346

0

0.2

0.4

0.6

0.8

1

MAC

(b) After linear model updating

Figure 13: Comparisons of frequencies and mode shapes (MAC values) between experi-
mentally identified modes and those from the (a) unupdated and (b) updated FEM models

Table 7: Frequency comparisons of the experimental building, and the original and up-
dated FEMs

N4SID Identified Original FEM Updated FEM

Mode # Freq. [Hz] Mode # Freq. [Hz] (Err. [%]) Mode # Freq. [Hz] (Err. [%])

1 0.685 1 0.676 (–1.352) 1 0.686 ( 0.174)

2 0.698 2 0.688 (–1.355) 2 0.700 (–0.376)

3 0.710 3 0.703 (–0.912) 3 0.702 (–1.051)

4 4.781 4 5.626 (17.668) 4 4.767 (–0.292)

5 5.175 5 6.666 (28.813) 5 5.240 ( 1.248)

6 7.293 6 9.149 (25.447) 6 7.296 ( 0.041)

7 10.836 7 10.728 (–1.000) 7 10.724 (–1.041)

8 15.504 n/a 8 12.292 n/a

8 15.346 9 15.763 ( 2.540) 9 15.247 (–0.645)

of the updated FEM in the horizontal directions matches much more closely

with those of the experimental building.

The effective masses (and moments of inertia) of the updated FEM’s

modes, computed by means of modal analysis, are listed in Table 8, where
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Table 8: Effective mass and moment of inertia ratios of the FEM modes matched to
identified modes 1–8

Identified

Mode # (i)

Matched FEM

Mode # (i′i)

Mx
i

Mtotal

My
i

Mtotal

Mz
i

Mtotal

Ixi
Ix

Iyi
Iy

Izi
Iz

1 1 0.097 0.744 0.000 0.067 0.039 0.123
2 2 0.902 0.082 0.000 0.007 0.315 0.725
3 3 0.000 0.173 0.000 0.013 0.000 0.152
4 4 0.000 0.000 0.000 0.008 0.337 0.001
5 5 0.000 0.000 0.011 0.152 0.076 0.000
6 6 0.000 0.000 0.002 0.010 0.015 0.000
7 7 0.000 0.000 0.871 0.562 0.135 0.000
8 9 0.000 0.000 0.004 0.033 0.011 0.000∑8

i=1: 1.000 1.000 0.889 0.854 0.928 1.000

Mx
i , My

i and M z
i are the effective masses of the ith mode in the x, y, and

z directions, respectively, and Ixi , Iyi and Izi are the effective moments of

inertia of the ith mode about the x, y, and z axes, respectively. The total

mass Mtotal and the total moments of inertia of the FEM are readily available

after constructing the FEM. For the x- and y-direction translations, as well

as the rotation around the z axis, the sum of the effective masses (or mo-

ments of inertia) from the 8 listed modes are almost 100% of the total. For

the z-direction translation, the FEM mode corresponding to the identified

mode 7 has an effective mass as large as 87% of the total mass, making it the

dominant mode for vertical motion. Further, the moments of inertia around

the x and y axes, together, exceed 0.85 and 0.90, respectively. In sum, the

FEM modes that are matched with the identified modes can capture the

dominant dynamic behaviors of the experimental building.

The (updated) isolation-layer device damping coefficients provide some

damping in both isolation and superstructure modes. The three isolation-
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mode damping ratios are are now 0.0761, 0.0842 and 0.0788, which are only

0.29%, 2.34% and 0.45%, respectively, below those identified and reported in

Table 2; since these errors are quite small, no additional modal damping is

needed for isolation modes 1–3. However, the superstructure-mode damping

ratios induced by the isolation-layer device linear viscous damping coefficients

are quite small: 0.0079, 0.0066 and 0.0037 in modes 4–6 and effectively zero in

all other superstructure modes. Thus, additional modal damping in modes 4–

6 is added so that their total damping ratios match those reported in Table 2;

i.e., 0.0321−0.0079 = 0.0242, 0.0341−0.0066 = 0.0275 and 0.0317−0.0037 =

0.0280, respectively. For mode 7, the updated model uses damping ratio

0.0414, taken from the Test 013 vertical mode identification in Table 3, which

was found to well reproduce (and better than using Test 010’s 0.0350 from

Table 2) vertical motion in both the low-level random excitation and the

stronger earthquake excitations. For modes 8 and up, the damping ratios

are set to 0.0331, which is the average identified Test 010 superstructure

mode damping ratio (i.e., average of the damping ratios of modes 4–8 in

Table 2).

To evaluate the effect of model updating on the time-history responses,

the updated FEM is subjected to the random excitation in Test 010. While

various implicit or explicit time integration algorithms could be used, a modal

approach is used here, simulating the response of each of the first 36 modes

(those less than 35 Hz) to a piecewise linear form of the 1 kHz-sampled table-

center acceleration ẍg(t); the modal responses are then combined with the
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mode shapes to provide the global response. For a measured experimental

response w(t) and the corresponding FEM prediction ŵ(t;θ), one metric of

time-history relative prediction error is

ErrRMS
w (θ) =

|RMS[ŵ(t;θ)]− RMS[w(t)]|
RMS[w(t)]

× 100% (8)

where RMS[w(t)] = [t−1
f

∫ tf
0
w2(t)dt]1/2, or discrete time [n−1

t

∑nt−1
k=0 w2(k∆t)]1/2,

is the root-mean-square response (RMS) over time [0, tf ].

Table 9 shows that the relative errors — using error metric (8) — in

RMS acceleration responses in the x and y directions drop significantly, by

about two thirds, after updating: from as much as 34.5% to at most 12.9%

in the x direction, and from 26.9% to at most 8.0% in the y direction; the

z-direction change is not as significant, but the vertical accelerations from

the unupdated FEM were already more accurate than those in the x and y

directions. Further, most of the relative errors in RMS forces in the x and

y directions drop significantly after updating, with the largest among them

Table 9: Percentage errors, using metric (8), in acceleration response and isolation-layer
device force RMSs using the linear FEM before (after) updating

Direc. Status Errors* [%] in
Acceleration RMS

Errors [%] in Isolation-Layer Device Force RMS

RB1 RB2 ESB1 ESB2 SDP1 SDP2

x before 7.3 – 34.5 13.8 31.0 13.3 26.7 16.9 16.7

x (after) (0.2 – 12.9) (2.9) (6.1) (6.4) (1.4) (10.5) (9.8)

y before 9.2 – 26.9 9.9 14.8 14.1 7.8 9.8 14.5

y (after) (0.3 – 8.0) (4.4) (2.3) (8.2) (7.8) (7.7) (4.0)

z before 0.0 – 8.5 n/a n/a n/a n/a n/a n/a

z (after) (1.0 – 7.5) (n/a) (n/a) (n/a) (n/a) (n/a) (n/a)

* minimum and maximum errors across the 14 structure accelerometers
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(a) x-direction acceleration

FEM
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(b) Zoomed-in version

Figure 14: Measured and calibrated-FEM-predicted accelerations, both downsampled to
100 Hz, from the accelerometer near grid 1A at floor 0 (base) in random excitation Test 010:
(a) full time duration; (b) narrower time window to show detailed comparison

FEM

Experiment

Figure 15: Measured force-displacement loops, and those predicted by the entire updated
linear FEM, of the SDP1 in the x direction in random excitation Test 010

also dropping by more than two thirds.

The acceleration response with the largest relative error in RMS, the x-

direction acceleration at the base-level sensor near grid 1A on Figure 2, is

shown in Figure 14, both as measured (and downsampled to 100 Hz) and

as predicted with the updated FEM (similar graphs for the responses with

smaller prediction errors, omitted for brevity, exhibit FEM predicted accel-

erations that look almost exactly the same as those measured). Even for this
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worst case, the acceleration time history from the experiment is still fairly

well reproduced.

Figure 15 shows a comparison of the simulated and the measured force-

displacement loops for the SDP1 in the x direction; even though this force

exhibits the largest prediction error among all restoring forces, visual inspec-

tion shows that the equivalent linear stiffness and damping of the measured

restoring force are sufficiently represented by the linear simulation.

7. Formulation of the Partially Nonlinear FEM

The rubber bearings exhibited slight stiffness reductions during large

earthquake-induced displacements, so linear models are close but not perfect

for modeling their behavior; a directionally uncoupled bilinear model is uti-

lized herein. Models of the two elastic sliding bearings and the two metallic-

yielding steel damper pairs were developed in a previous study (Brewick

et al., 2020) based on the responses during Test 016 (Tohoku) and are mildly

suboptimal during random excitations, primarily due to insufficient damping.

Thus, slightly different ESB and SDP models are developed in this section.

Then, the methodology for coupling the nonlinear isolator models with the

updated linear superstructure model is provided, followed by an evaluation

of the time-history predictions of the combined building model.

7.1. Modeling the Isolation-Layer Devices

As exemplified in Figure 6, the RBs behaved linearly in each of the x and y

directions under random excitations (Tests 010–012); linear regression of the
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Figure 16: RB1 x-direction force-
displacement loops in Test 016

ūRBi

−ūRBi

force

drift1

kRBi

1
k̄RBi

Figure 17: Rubber bearing bilinear elastic
stiffness model

force-displacement data estimates stiffnesses of approximately 1100 kN/m.

During the earthquake excitations (Tests 013–016), the RBs also appear quite

linear, but a linear regression of Test 016 force-displacement data (Figure 16)

estimates stiffnesses of approximately 950 kN/m, indicating some stiffness

reduction when the displacement is large. Thus, RBi (i ∈ {1, 2}) is modeled

herein with two uncoupled identical bilinear elastic stiffness elements — as

depicted in Figure 17 with initial stiffnesses kRBi = kRBi
xx = kRBi

yy , postyield

stiffnesses k̄RBi = k̄RBi
xx = k̄RBi

yy , and yield displacement ūRBi = ūRBi
x = ūRBi

y

— in parallel with the linear viscous damping coefficients cRBi
xx and cRBi

yy found

in the previous section and reported in Table 6. Thus, RBi’s force in the x

direction is given by

f̂RBi
x = kRBiuRBi

x + cRBi
xx u̇

RBi
x

+ (kRBi − k̄RBi)(uRBi
x + ūRBi)[1−H(uRBi

x + ūRBi)]

+ (kRBi − k̄RBi)(uRBi
x − ūRBi)H(uRBi

x − ūRBi)

(9)
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where H(·) is the Heaviside unit step function; the formula for the y-direction

force is identical by replacing every x with y.

The ESBs and SDPs, which exhibit clear hysteretic behavior in all of

the tests, are each modeled using a bidirectionally coupled (unlike in the

linear model calibrated based on motion sufficiently small that no directional

coupling is needed) Bouc-Wen hysteretic behavior of the form (Park et al.,

1986)

Żx = Au̇x − β |u̇xZx|Zx − γu̇xZ2
x − β |u̇yZy|Zx − γu̇yZxZy (10a)

Ży = Au̇y − β |u̇yZy|Zy − γu̇yZ2
y − β |u̇xZx|Zy − γu̇xZxZy (10b)

where ux and uy are the relative displacements across the device in the x and

y directions, respectively, and A, β and γ control the shape of the hysteresis.

The two SDPs have nearly identical behavior but the two ESBs act somewhat

differently from each other (Brewick et al., 2020); thus, the SDPs are assumed

to have identical parameters, but the ESB1 and ESB2 parameters are allowed

to differ. The resulting ESB and SDP model forces are then provided byf̂
ESBi
x

f̂ESBi
y

 = µESBi(t)WESBi(t)

Z
ESBi
x

ZESBi
y

+

c
ESBi
xx u̇ESBi

x

cESBi
yy u̇ESBi

y

 (11a)

f̂
SDPi
x

f̂SDPi
y

 = KSDP

α
u

SDPi
x

uSDPi
y

+ (1− α)

Z
SDPi
x

ZSDPi
y


+

c
SDPi
xx u̇SDPi

x

cSDPi
yy u̇SDPi

y

 (11b)

µESBi(t) = µ0[S−1WESBi(t) ·(mm2/N)]µ1 [V ESBi(t) ·(s/mm)]µ2 is the coefficient

of friction, where S = 0.1018 m2 is the slider’s effective surface area, WESBi(t)
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is the weight carried by ESBi at time t, V ESBi(t) = ‖[u̇ESBi
x (t) u̇ESBi

y (t)]‖2

is the sliding velocity, and the friction formula coefficients are µ0 = 0.0606,

µ1 = −0.5883 and µ2 = 0.1148 as determined in Brewick et al. (2020);

KSDP =
[
[kSDP
xx kSDP

xy ]T [kSDP
xy kSDP

yy ]T
]

is a symmetric SDP stiffness matrix;

α defines the SDP postyield-to-preyield stiffness ratio; and c
(·)
xx and c

(·)
yy are

damping coefficients in x and y directions, respectively (which are not fixed

at the linear model’s values in Table 6 but rather subsequently optimized).

Several metrics M(·) can be used to evaluate the fidelity of a single

isolation-layer device model or of a set of device models. Metric Mf̂(t,u(t)):

The model error for a single device can be quantified by the mean square error

between the measured device forces’ time histories and those predicted using

the device model in (9) or (10)–(11) driven by the measured cross-device

drifts and drift velocities; this metric is defined mathematically in (A.1) in

Appendix A. Metric Mf̂(t;θ,ẍg): The force response errors for a candidate

set of models for the devices are computed by simulating the response of a

partially nonlinear FEM (linear FEM coupled with candidate models of the

isolation-layer devices) to the measured shake table accelerations, extracting

the resulting device force time histories, and quantifying the relative errors

in the forces’ RMS using (8). Metric Mζ̂ : Modal damping evaluation is

determined for a candidate set of models for the devices by comparing the

measured responses’ identified modal damping in Section 3 with the effec-

tive model damping estimated, using the same system identification strategy,

from the 42 acceleration time-history responses of a partially nonlinear FEM
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at the 14 accelerometer locations.

Preliminary studies showed that omitting the linear viscous terms in (11)

leads to isolation-mode damping ratios computed from time-history responses

to low-level random excitations such as Test 010 (Mζ̂) that are up to about

a quarter smaller than those identified and reported in Table 2. Further,

straightforward optimization of the ESB and SDP parameters in (10)–(11) to

match the experimental force-displacement relationships in Tests 010 and 016

(i.e., minimizingMf̂(t,u(t))) still does not lead to sufficient levels of damping

(Mζ̂). Finally, the RB parameters in (9) that minimize the mean square RB

force prediction error (Mf̂(t,u(t))) do not consistently lead to smaller errors

in simulated RB force RMS (Mf̂(t;θ,ẍg)); rather, slightly different RB pa-

rameters that are very mildly suboptimal in reducing mean square RB force

error (Mf̂(t,u(t))) can provide smaller simulated RB force RMS (Mf̂(t;θ,ẍg)).

To address these trade offs, a two-level hierarchical optimization strategy —

detailed in Appendix A — is used to introduce sufficient damping in low-level

response and balance trade offs between local device-specific model fidelity

and that of the overall partially nonlinear FEM. The resulting isolation-layer

device parameters are listed in Table 10.

It may be noted that the optimal parameters for the two ESBs are quite

different from each other, and the damping coefficients for ESB1 in the two

horizontal directions differ significantly as well. This is not surprising given

that ESB1 was seen to exhibit a strong stick-slip behavior that was quite

different from ESB2 (Brewick et al., 2020). Further, the SDP Bouc-Wen
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Table 10: Parameters in the RB, ESB and SDP models

Parameter RB1 RB2 ESB1 ESB2 SDP
kxx 1.075 MN/m 1.025 MN/m 3.975 MN/m
kyy 1.075 MN/m 1.025 MN/m 3.779 MN/m
kxy 0 0 0
k̄ 0.786 MN/m 0.772 MN/m
ū 0.0258 m 0.0309 m
cxx 24.83 Mg/s 26.90 Mg/s 3.79 Mg/s 30.00 Mg/s 90.00 Mg/s
cyy 20.47 Mg/s 24.20 Mg/s 50.04 Mg/s 20.00 Mg/s 90.00 Mg/s
A 47.13m–1 54.10m–1 1
β 10.41 m–1 25.41 m–1 635 m–2

γ 36.72 m–1 28.69 m–1 1102 m–2

α 0.1225

Bold indicates optimized parameters; italic indicates parameters computed from optimized param-
eters; other parameters are fixed.

parameters here differ mildly from those reported in Brewick et al. (2020),

which optimized solely for local device behavior in Test 016; the parameters

here generalize better to the random excitation response in Test 010 as well

as the lower-level earthquake response in Test 013 (which exhibited larger

postyield SDP stiffnesses, possibly because of smaller motion than in Test 016

or because the SDP stiffnesses degraded in Tests 013–015).

7.2. Time-History Analysis

The linear superstructure is combined with the nonlinear isolation-layer

device models to simulate the time-history responses of the building; the

resulting equation of motion is:

Mẍ + Cẋ + Kx = −MPẍg + Knom
iso xiso −Biso fiso(xiso, ẋiso) (12)

where M, C and K are the n × n (n is the number of DOFs) global mass,

damping and stiffness matrices of the updated linear FEM, in which M re-

mains unchanged throughout this study, C represents the damping in the
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superstructure (computed from the added modal damping discussed in Sec-

tion 6) and the linear viscous damping in the isolation layer, and K is the up-

dated linear stiffness matrix; P is an n×6 influence matrix for the 6×1 ground

(shake table center) excitation vector ẍg; x is a vector of nodal displacements

relative to the shake table; xiso = Gisox is a vector of isolation-layer device

drifts relative to the shake table (Giso is a transformation matrix extracting

these drifts from the vector of all displacements); Knom
iso is a stiffness matrix

that cancels out the nominal linear isolation-layer restoring forces (from the

updated linear FEM) so that the actual nonlinear restoring forces can be in-

cluded as −Biso fiso(xiso, ẋiso), where fiso(xiso, ẋiso) is a vector of isolation-layer

device restoring forces that depend on xiso and ẋiso and Biso is an influence

matrix that reintroduces fiso(xiso, ẋiso) back into the global force vector.

The advantages of this formulation are three-folded. First, the left-hand

side of (12) remains linear, so the modal superposition method remains appli-

cable. Since the experimental data is low-pass filtered at 35 Hz, modes with

frequencies above 35 Hz can be neglected, reducing the 84,669 DOFs down

to 36 modal DOFs. Second, regardless of the excitation, the eigenvalues and

eigenvectors of the dynamic system remain unchanged, so modal decompo-

sition need be performed only once. Third, since the restoring forces of the

rubber bearings, elastic sliding bearings and the U-shape steel damper pairs

are introduced as external forces in this formulation, different models of the

isolation-layer devices can be easily incorporated into this formulation only

by changing the form of fiso(xiso, ẋiso) on the right-hand side, instead of mak-

48



ing extensive changes to the structural system (the left-hand side), which is

a benefit in the subsequent studies.

Utilizing (12), the partially nonlinear model’s time-history responses to

the earthquake excitation from Test 013 are computed and compared with

the experimentally measured responses (note that Test 013 is intentionally

chosen here as it was not used in calibrating the isolation-layer devices); rel-

ative errors in RMS are shown in Table 11. The z-direction accelerations

are very well reproduced, indicating that the superstructure FEM is well

constructed and updated; the small discrepancies are likely due to approx-

imations in constructing the FEM. The slightly lower fidelity of the x- and

y-direction predicted accelerations could result from the limitations of the

bidirectional Bouc-Wen model of the isolation layer that cannot model the

stick-slip behavior of the ESB1 (especially in the x direction) observed in

this study (Brewick et al., 2020), as exhibited by the larger error in RMS

x-direction ESB1 restoring forces. The unmodeled stick-slip behavior also

affects the y-direction restoring forces due to the rotation of the building.

The rubber bearing restoring forces are better reproduced than those of the

Table 11: Percentage errors, using metric (8), in acceleration response and isolation-layer
device force RMSs using the partially nonlinear system model

Direction Errors* [%] in
Acceleration RMS

Errors [%] in Isolation-Layer Device Force RMS

RB1 RB2 ESB1 ESB2 SDP1 SDP2

x 1.4 – 11.4 11.2 5.4 23.8 9.6 2.1 0.2

y 3.6 – 9.7 9.9 8.0 7.3 11.7 2.1 5.5

z 2.5 – 6.8 n/a n/a n/a n/a n/a n/a

* minimum and maximum errors across the 14 structure accelerometers
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ESBs due to accurate estimation of the stiffnesses; the SDP restoring forces

are reproduced very accurately, with errors in RMS at most a few percent.

Figure 18 shows comparisons of the accelerations on floor 0 at the sensor

FEM

Experiment

FEM

Experiment

FEM

Experiment

FEM

Experiment

FEM

Experiment

FEM

Experiment

Figure 18: Measured and calibrated-FEM-predicted accelerations from the accelerometer
near grid 1A on floor 0 in Test 013 (scaled Tohoku-Oki earthquake): the left graphs show
the full time duration; the right graphs show a narrower time window to show detailed
comparison (note: the right z-direction graph uses a narrower time window to show the
detail for the higher-frequency vertical motion)

50



near grid 1A on Figure 2: the x-direction response measured by this sensor

had the largest relative errors in RMS prediction (11.4% as shown in Ta-

ble 11). In the x and y directions, the large responses (e.g., around 50 and

100 sec) are reproduced well, with a very good match in terms of magni-

tudes and frequencies. Visual inspection shows that the y-direction response

is reproduced slightly better than the x-direction response. The z-direction

response is simulated very well, which is typical for all responses in this di-

rection, and the slight differences may be due to small differences in damping

for modes with vertical motion. Further, the good matches of accelerations

in all three directions indicate that a linear superstructure model is sufficient,

which is consistent with the intent of typical base-isolation design.

As observed in Figure 19, the stiffnesses of the RB bilinear model match

those from the experimental tests in both directions. For the elastic sliding

bearings and the steel damper pairs, the restoring forces generated by the

modified Bouc-Wen models match well the experimental data in terms of

slopes and outer loop excursions (perfect matches cannot be obtained due

to the irregular stick-slip behavior of ESB1, which poses greater modeling

challenges beyond the scope of this study).

8. Conclusions and Future Work

To leverage the data from the expensive full-scale seismic tests conducted

on 8 August 2013 at Japan’s E-Defense facility to be used for future in-

vestigations on new seismic protective designs, controllable damping strate-
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Figure 19: Measured and calibrated-FEM-predicted force-displacement loops during the
scaled Tohoku-Oki Test 013

gies, retrofit procedures, and so forth, FEMs were assembled based on the

structural design drawings, updated to have approximately the same modal

properties as the experimental building, and combined with optimal nonlin-

ear models of the isolation-layer devices to reproduce the responses of the
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building under earthquake excitations. Insights gained through this study

are listed as follows.

1. For a generic type of base-isolated structures resembling the one in this

study, the modes can be separated into isolation modes and superstruc-

ture modes. Superstructure linear stiffness changes have minor effects

on the frequencies and mode shapes of the isolation modes, and vice

versa. Further, the superstructure damping has a negligible effect on

the damping ratios of the isolation modes. Finally, the superstructure

modes are approximately proportionally damped, while the isolation

modes are not.

2. A mode-matching algorithm was proposed to efficiently match the ex-

perimental modes with the corresponding FEM modes, by searching

for FEM modes with modal properties resembling those of the to-be-

matched experimental mode and choosing the one leading to the small-

est deviation in modal characteristics.

3. To reduce the computational burden of base-isolated building model

updating and based on the insight gained in #1, two stages for lin-

ear model updating are proposed, in which the superstructure linear

stiffnesses are first updated so that the superstructure modes’ natu-

ral frequencies and mode shapes of the experimental building match

those of the FEM; then, the isolation-layer stiffnesses and damping

coefficients are updated so that the isolation modes’ natural frequen-

cies, damping ratios and mode shapes match. The modal properties of
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the unupdated and updated FEMs were compared with those from the

experiment; better agreement after model updating demonstrated the

proposed approach successful. The matched modes’ effective masses

(moments of inertia), relative to the total mass (total moments of in-

ertia), indicated that the matched modes capture the major dynamic

properties of the building in all six DOFs. This conclusion was echoed

by the good match between the simulated time-history responses using

the updated FEM and those from the experimental data.

4. A final partially nonlinear FEM is determined by combining the up-

dated superstructure FEM, rubber bearings modeled with directionally

uncoupled bilinear stiffness models with a constant damping coeffi-

cient in each horizontal direction, and elastic sliding bearings and steel

damper pairs modeled with bidirectionally coupled Bouc-Wen models

with constant damping coefficients in each horizontal direction. Up-

dating the models of the isolation-layer devices required: (a) adding

viscous damping to better capture their behavior, and the resulting

energy dissipation, in low-level excitation; (b) the linear stiffnesses of

the steel damper pairs, when calibrated from the larger seismic re-

sponses alone, are a bit too small to be faithful to the response in

the low-level motion, so optimizing using both excitations is necessary

for a generic model that spans the excitation levels. This combined

model satisfactorily reproduced the nonlinear time-history responses of

the experimental building, thereby validating the practical applicability
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of proposed isolation-layer device models and alleviating the research

community’s dearth of numerical experimentally-calibrated models for

full-scale base-isolated buildings with lateral-torsional coupling effects.

Future work that is beyond the scope of this study includes: quantify-

ing the uncertainty in parameter estimates (natural frequencies, damping

ratios and mode shapes) identified from N4SID method and their propaga-

tion into the FEM parameter updating; model updating using only acceler-

ation responses (and possibly limited sensing of isolation-layer drift) as in

a real structure and exploring a fully-coupled model updating; developing

nonlinear models of the superstructure for use in simulating extreme seis-

mic events; testing novel control strategies, e.g., neural network accelerated

hybrid model predictive control (Yu and Johnson, 2022b); and validation of

novel model updating approaches, e.g., CTLS-based CMCM model updating

method (Yu and Johnson, 2022a). The updated partially nonlinear FEM will

be made open source and, together with an accompanying documentation,

will be posted on the Natural Hazards Engineering Research Infrastructure

(NHERI) repository (see Appendix B).
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Appendix A. Two-Level Strategy for Optimizing Isolation-Layer
Device Parameters

To optimize the isolation-layer device parameters for the locally nonlinear

FEM, a two-level hierarchical strategy is used. For each isolation-layer device

D, the first level of the strategy selects a set of candidate values for a subset of

the device parameters (or their bounds) and then, for each candidate subset,

optimizes the other device parameters using a cost metric ED:

ED(θD) = E
(Test 010)
D (θD) + E

(Test 016)
D (θD) (A.1a)

E
(T )
D (θD) =

[∑nt−1
k=0 [f̂Dx (k∆t;θD)− fDx (k∆t)]2 + [f̂Dy (k∆t;θD)− fDy (k∆t)]2∑nt−1

k=0 [fDx (k∆t)]2 +
[
fDy (k∆t)

]2
]
T

(A.1b)

where θD is a vector of the parameters of device D, and the device force

predictions f̂Dx (t;θD) and f̂Dy (t;θD) are computed from the device model in

(9) or (10)–(11) driven by the drifts and corresponding drift velocities across

device D measured during test T . The steps of the first level are:

1a. RBs: For a candidate RBi preyield stiffness kRBi = kRBi
xx = kRBi

yy ,

taken from a set of nRBi (which is 7 herein) candidate values evenly

spanning the range [1025,1175] kN/m (approximately the LB and UB

of RB stiffnesses in Table 6), determine the postyield stiffness k̄RBi and
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yield displacement ūRBi that minimize ERBi([k
RBi k̄RBi ūRBi]T) using

(A.1) for RBi.

1b. ESB1: For a pair of lower bounds on ESB1 damping coefficients cESB1
xx

and cESB1
yy — each taken from a set of nESB1 (which is 6 herein) bounds

evenly spanning [0, 50] Mg/s, thus forming a grid of n2
ESB1 pairs — find

the ESB1 parameter vector θESB1 = [cESB1
xx cESB1

yy βESB1 γESB1]T that

minimize EESB1(θESB1). (Note: AESBi ≡ βESBi + γESBi.)

1c. ESB2: Identical to ESB1 except the damping coefficient lower bounds

span [0, 30] Mg/s (and nESB2 is taken to be 4 herein).

1d. SDPs: For a candidate lower bound on cSDP
xx and cSDP

yy (the same

lower bound for both directions and both SDPs) — taken from a set

of nSDP (which is 11 herein) SDP damping coefficient lower bounds

evenly spanning [0, 100] Mg/s — determine the set of SDP parameters

θSDP = [kSDP
xx kSDP

yy cSDP
xx cSDP

yy αSDP βSDP γSDP]T that minimizes the

sum ESDP(θSDP) = ESDP1(θSDP) + ESDP2(θSDP).

Lower bounds on the ESB and SDP damping coefficients are needed to ensure

that the effective modal damping ratios identified from the predicted partially

nonlinear FEM responses to the low-level random excitations rise to the level

reported in Table 2; the upper end of the ranges for the sets of lower bounds

are chosen to limit the increases in corresponding optimal device force cost

metric — i.e., EESB1(θESB1), EESB2(θESB2) or ESDP(θSDP) — to no more than

15% above the optimal metric when the lower bound is zero.

The second level of the optimization strategy then chooses from among
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the first level’s set of ncombos = nRB1 ·nRB2 ·n2
ESB1 ·n2

ESB2 ·nSDP combinations of

RB1, RB2, ESB1, ESB2 and SDP optimal parameters, which may be denoted

θ1, . . . ,θncombos
. For each of the ncombos combinations, the partially nonlinear

FEM time-history responses to low-level random excitation in Test 010 are

computed; the relative errors in the predicted RMS of each of the twelve (six

devices, each with two directions) isolation-layer device horizontal force time

histories are computed. The second level then chooses the combination of

parameters that provides the smallest of the largest device force errors. In

other words, choose the combination

arg min
k∈{1,2,...,ncombos}

max
i∈{1,2}

D∈{RB,ESB,SDP}

max
w∈{fDix ,fDiy }

ErrRMS
w (θk) (A.2)

The resulting combination of optimal parameters is then listed in Table 10;

this optimal combination indeed results in relative errors in Test 010 RMS

forces only marginally larger than those reported in Table 9 for the purely

linear FEM (to force them the same would mean less faithful reproduction

of the earthquake responses such as in Test 016).

Note that, in some of the first level’s combinations, some optimal damping

coefficients do converge to their corresponding lower bounds; indeed, the

optimal parameters chosen in the second level is such a case, resulting in the

damping coefficients for ESB2 and the SDPs to be at their corresponding

discrete lower bound values, as shown in Table 10.
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Appendix B. Data and Code Availability

To facilitate future simulation studies on this full-scale based-isolated

building, the following data and Matlab® codes will be made available

in the DesignSafe-CI “Data Depot”: (a) table-center acceleration records

computed from the shake table acceleration measurements during random

excitation and earthquake ground motion tests; (b) system matrices M and

K of the unupdated and updated superstructure linear FEMs; (c) codes for

finding the node closest to any given 3D coordinates; (d) codes for time-

history analyses using different isolation-layer device models; and (e) codes

to simulate the response of the partially nonlinear FEM.
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