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Abstract

Key science questions, such as galaxy distance estimation and weather forecasting, often require
knowing the full predictive distribution of a target variable Y given complex inputs X. Despite
recent advances in machine learning and physics-based models, it remains challenging to assess
whether an initial model is calibrated for all x, and when needed, to reshape the densities of y
toward ‘instance-wise’ calibration. This paper introduces the local amortized diagnostics and
reshaping of conditional densities (LADaR) framework and proposes a new computationally effi-
cient algorithm (Cal-PIT) that produces interpretable local diagnostics and provides a mechan-
ism for adjusting conditional density estimates (CDEs). Cal-PIT learns a single interpretable local
probability—probability map from calibration data that identifies where and how the initial model
is miscalibrated across feature space, which can be used to morph CDEs such that they are well-
calibrated. We illustrate the LADaR framework on synthetic examples, including probabilistic fore-
casting from image sequences, akin to predicting storm wind speed from satellite imagery. Our
main science application involves estimating the probability density functions of galaxy distances
given photometric data, where Cal-PIT achieves better instance-wise calibration than all 11 other
literature methods in a benchmark data challenge, demonstrating its utility for next-generation
cosmological analyzes’.

1. Introduction

In recent decades, many scientific fields have progressed from computing point predictions (or a single
best guess of a quantity of interest) to developing full predictive distributions, or more specifically, con-
ditional density estimates (CDEs) and generative models of a response/‘target’ variable Y € R given covari-
ates/features X € R?. This paradigm shift is evident in various disciplines, such as in astrophysics (e.g.
Mandelbaum et al 2008, Malz and Hogg 2022), in weather forecasting (e.g. Gneiting 2008, Ravuri et al
2021, Li et al 2024), in financial risk management (e.g. Timmermann 2000), and in epidemiological pro-
jections (e.g. Alkema et al 2007).

¥ Code available as a Python package here: https://github.com/lee-group-cmu/Cal-PIT.
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The paradigm shift has been driven by two main factors. First, advances in measurement technology
across engineering, physical and biological sciences are producing data with unprecedented depth,
richness, and scope. To fully exploit these data in subsequent analyzes, we need precise estimates of
the uncertainty in a response variable Y given observable data X (see section 1.2 for two applications
from the physical sciences that motivated this work). Second, we are experiencing a rapid growth of
high-capacity machine learning algorithms that allow the quantification of uncertainty for complex,
high-dimensional inputs of different modalities. Two examples of such data sets come from (1) large
astronomical surveys that collect images and spectroscopic data for tens of millions of stars, galaxies
and other astrophysical objects (York et al 2000, Gaia Collaboration et al 2016, Dey et al 2019, DESI
Collaboration et al 2022) and (2) earth-observing satellites for environmental and climate science (see,
e.g. NASA’s Earth Observing System'’ and next-generation Earth System Observatory'!). For the latter,
the dimension d of the input space (representing, e.g. the number of image pixels or different spatial
locations) is usually several orders of magnitude larger than 10°. In addition to enabling uncertainty
quantification (UQ) for complex data, modern machine learning methods allow us to ‘amortize’ the
computation; that is, to perform the compute-intensive training process only once, which allows for very
fast inference and scaling to massive data sets.

Machine learning methods for UQ include a growing range of approaches. Explicit CDE methods
directly model f(y|x), using tools like mixture density networks (Bishop 1994), kernel mixture networks
(Ambrogioni et al 2017), normalizing flows (Papamakarios et al 2019, Kobyzev et al 2021), and other
nonparametric estimators (Izbicki and Lee 2016, 2017, Dalmasso et al 2020). Implicit CDEs and gen-
erative models—such as VAEs (Kingma and Welling 2013), conditional GANs (Mirza and Osindero
2014), diffusion models (Sohl-Dickstein et al 2015, Ho et al 2020, Dhariwal and Nichol 2021, Nichol
and Dhariwal 2021, Ho and Salimans 2022), and transformer-based generators (Vaswani et al 2017,
Radford et al 2019)—represent uncertainty through learned stochastic mappings. Other strategies include
quantile regression (QR) (Amerise 2018, Fasiolo et al 2021, Feldman et al 2021, Lim et al 2021, Chung
etal 2021a) and ensemble-based methods, such as dropout and deep ensembles (Gal and Ghahramani
2016, Lakshminarayanan et al 2017, Rahaman et al 2021).

The goal of this paper is not to add to this list, but rather to provide the scientist with a unified
interpretable framework for deciding whether an initial model of the predictive distribution is accur-
ate with respect to (conditional on) relevant features, and if not, suggest a mechanism for reshaping
CDEs. Figure 1 shows a schematic diagram of our local amortized diagnostics and Reshaping (LADaR)
approach. The starting point is an initial CDE—which could, e.g. be derived from pre-trained neural
networks on massive generic data (so-called foundation models) or physics-based models such as
numerical weather prediction models. LADaR addresses three key questions: (1) Does the initial model
need to be improved with respect to relevant features? (2) Where in the feature space might it need to
be improved? (3) How can it be improved? For the third question, we propose a reshaping step that
adjusts the initial CDEs while leveraging its existing strengths. LADaR is particularly relevant when there
are insufficient observational data to independently fit a purely ML-based CDE model, or when the sci-
entist needs to tie results to physical processes in the native feature space (defined by, e.g. individual
spectra or specific sequences of satellite imagery) to trust predictions and stated uncertainties.

1.1. Trustworthy UQ
For a conditional density estimator to be useful, its predicted distribution F(y|x) (with density function

/f(y|x)) must closely match the true F(y|x) for each value of the input x. This property, known as local or

instance-wise calibration, ensures that predicted probabilities reflect true frequencies for individual cases,
and not just on average.

Instance-wise UQ is essential in many practical applications; e.g. in astrophysical studies, for predict-
ing the physical properties of individual galaxies from measured fluxes; in weather forecasts, for predict-
ing the probability of rainfall based on current environmental conditions; and in medical research, for
estimating a drug’s efficacy for individuals of specific demographics. Instance-wise calibration also pro-
motes algorithmic fairness by avoiding systematic over- or under-prediction of risks for certain groups
(Kleinberg et al 2016, Zhao et al 2020), and enables well-calibrated prediction sets (remark 2).

Unfortunately, off-the-shelf CDE methods can be very far from calibrated. This is because they min-
imize losses that do not target calibration directly—such as KL divergence (Kullback and Leibler
1951), integral probability metrics (Papamakarios et al 2019, Dalmasso et al 2020), or the pinball loss
(Koenker and Hallock 2001). As shown by Guo et al (2017) and Chung et al (2021b), many ML methods

10 https://eospso.nasa.gov/.

1 https://science.nasa.gov/earth-science/missions/earth-system-observatory/.
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Figure 1. Schematic representation of the LADaR approach. Our approach starts with an initial (e.g. physics-based or large pre-
trained) model of the predictive distribution of a target quantity. We then assess the quality of the initial conditional density
estimates (CDEs) on an individual basis across the feature space using calibration data, and reshape the densities if deemed neces-
sary. The goal is not to replace the initial model with a different end-to-end density estimator, but rather to adjust it, ensuring
both calibration and insight into its potential failure modes (see figure 2 for how to interpret P—P plots). The LADaR approach

is particularly relevant when there are insufficient observational data to independently fit a purely machine-learning-based CDE,
or when it is important to tie predictions to the underlying physical processes (encoded by the chosen feature space) to estab-

lish trust in machine-learning methods. Our framework is fully ‘amortized” over both features x and response variable y, which
means that once we have trained LADaR to learn the map between the initial CDE model and the CDE of the calibration data, no
additional training is required for new data.

prioritize accuracy and sharpness over calibration. To address this, new loss functions have been
proposed to balance calibration and sharpness (Chung et al 2021b) or decouple coverage from sharpness
(Feldman et al 2021).

Finally, in terms of diagnostics, many common metrics for assessing calibration, like the probability
integral transform (PIT; Gan and Koehler 1990) and simulator-based calibration (SBC; Talts et al 2018),
only evaluate marginal calibration—that is, average coverage over all x’s (equation (2)). This weaker
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notion is often referred to simply as ‘calibration’ (Gneiting and Katzfuss 2014, Kuleshov et al 2018).
However, as pointed out by Schmidt et al (2020), PIT can be optimal even when the model ignores

x entirely. More generally, errors across the feature space can cancel out, leading to deceptively good
marginal results (Jitkrittum et al 2020a, Luo et al 2021, Zhao et al 2021). For instance, Theorem 1 in
Zhao et al (2021) show that even models based on F(y|g(x))—for any function g— can pass marginal
tests, despite discarding relevant features.

1.2. Well-calibrated CDE:s are essential for the physical sciences
Our trustworthy CDE work is motivated by two main applications in astronomy and weather
forecasting:

(i) Photometric redshift estimation of galaxies. Estimating galaxy distances, via a measurable proxy called
redshift, is a fundamental task for studies of astrophysics and cosmology. While spectroscopy can pre-
cisely measure redshift, this method is too resource-intensive for the billions of galaxies detected by
modern astrophysical imaging surveys, so galaxy redshifts must be predicted from imaging data alone.
In this context, the response variable y is the galaxy’s redshift (by convention denoted by z), and the pre-
dictors are photometric/imaging data x. The predictions, called photometric redshifts (photo-z’s), are
inherently probabilistic. Downstream science applications rely on an accurate estimate of the conditional
density for each galaxy’s redshift. The scientific requirements are extremely strict: to avoid biasing cos-
mological results, the errors in the moments of the redshift distributions for large ensembles of galaxies
must be within 0.1%-0.3% of the truth (The LSST Dark Energy Science Collaboration et al 2018).

Our proposed photo-z use case is to adopt a physics-based photo-z model to produce initial estim-
ates of PDFs, and then use the LADaR framework to assess the initial CDEs and reshape them if neces-
sary. Furthermore, the interpretability of the LADaR diagnostics will be valuable for helping astrophysi-
cists improve both physics and machine learning-based photo-z models.

(i1) Probabilistic forecasting of the intensity of tropical cyclones (TCs) from satellite imagery. TCs are highly
organized rotating storms that are among the most costly natural disasters in the United States.

TC intensity forecasts have improved in recent years, but these improvements have been relatively

slow during the last decade compared to improvements in track forecasts, particularly at 24 h lead
times (DeMaria et al 2014). The latest generation of geostationary satellites (GOESs), such as GOES-
16, now provides unprecedented spatio-temporal resolution of TC structure and evolution (Schmit et al
2017). A broad range of recent work involving neural networks has explored the wealth of informa-
tion from GOES imagery for TC short-term intensity prediction (e.g. Olander et al 2021, Griffin et al
2022). In this context, the response variable Y is the TC’s intensity (wind speed) at time t+ 7 for a lead
time 7 of up to 24 h, and x could represent environmental predictors and a sequence of images at the
current time f and preceding time points. In section 4.2, we present a TC-inspired synthetic example
that highlights the efficacy of our method in diagnosing and recalibrating intensity forecasts with high-
dimensional sequence data as inputs.

1.3. Our contribution
To ensure reliable UQ with CDEs, it is essential to have (i) interpretable diagnostics that can assess
instance-wise calibration and failure modes of an initial model across the entire feature space of refer-
ence data, and (ii) computationally efficient methods that can reshape CDEs so that they are approx-
imately calibrated for every x. The initial model can, for example, represent the best approximation to
the true conditional density according to a physics-motivated or a mathematical model, or from a data-
driven model limited to a set of easily accessible input features or data sources.

The goal is to morph the initial model towards the true distribution of the quantity of interest by
leveraging calibration data and machine-learning techniques, when such an adjustment is deemed to be
necessary by the scientist. This work offers two primary contributions:

e From a methodological perspective, we present a unified framework for interpretable diagnostics and
reshaping of entire CDEs through a single probability—probability (P—P) map learned from calibration
data D= {(X1,Y1),...,(Xu, Y,)}, which implicitly encodes the true distribution F(y|x). Our approach
is fully ‘amortized, which means that once a regression model is trained to learn the mapping, no
additional training is required for new data. We refer to the general framework of LADaR of CDEs
as LADaR, and call our proposed algorithm Cal-PIT. The first prototype code of Cal-PIT occurred
in Dey et al (2021); the full ready-to-use and modifiable implementation is now available as a Python
package at https://github.com/lee-group-cmu/Cal-PIT.
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e From an application perspective, Cal-PIT is uniquely positioned to provide diagnostics and ensure
that photo-z CDEs are locally calibrated (i.e. not only as a full ensemble), which will be necessary
for the astrophysics community to meet the stringent photo-z requirements for next generation-
astronomical surveys. Figure 7 and table 1 demonstrate the full potential of Cal-PIT applied to a key
benchmark photo-z data set, where Cal-PIT outperforms the current state-of-the-art for diagnostics
and estimation of photo-z CDEs. Crucially, Cal-PIT can (i) accurately reshape biased probability dis-
tributions and (ii) reshape unimodal distributions into multimodal distributions—both common fail-
ure modes for common photo-z estimation methods. Furthermore, Cal-PIT has the flexibility to be
used with high-dimensional and dependent sequence data. Section 4.2 shows Cal-PIT applied to prob-
abilistic forecasting with sequences of images as inputs, akin to predicting the wind speed of TCs from
satellite imagery.

2. Related work

Goodness-of-fit tests and calibration. Goodness-of-fit of conditional density models to observed data can
be assessed by two-sample tests (e.g. Andrews 1997, Stute and Zhu 2002, Moreira 2003, Jitkrittum et al
2020b). Such tests are useful for deciding whether a conditional density model needs to be improved,
but do not provide any means to correct discrepancies. One way to recalibrate CDEs (proposed, e.g. by
Bordoloi et al 2010) is to first assess how the marginal distribution of PIT values differs from a uniform
distribution by diagnostic tools (Cook et al 2006, Freeman et al 2017, D’Isanto and Polsterer 2018, Talts
et al 2018), and then apply corrections to bring them into agreement. However, by construction, such
recalibration schemes only improve marginal calibration. In this work, we instead build on Zhao et al
(2021), which proposes a version of PIT that is estimated throughout the entire input feature space,
allowing us to directly assess and target conditional coverage.

QR. QR intervals converge to the oracle C,(X) = [F~'(0.5a[X),F~'(1 — 0.5a|X)] (Koenker and Bassett
1978, Taylor and Bunn 1999). Even though the prediction interval C},(X) satisfies conditional validity,

PYeCo(X)|X=x)=1—q, Vxe X,

the standard pinball loss can yield highly miscalibrated UQ models for finite data sets (Feldman et al
2021, Chung et al 2021b). New loss functions have been proposed to address this problem (Feldman et al
2021, Chung et al 2021b). Our approach also provides calibrated prediction regions, but is more general,
yielding full CDEs and not only prediction intervals.

Conformal inference. Conformal prediction methods have the appealing property of producing predic-
tion sets with finite-sample marginal validity, P(Y € C(X)) > 1 — «, as long as the data are exchange-
able (Vovk et al 2005, Lei et al 2018). However, there is no guarantee that conditional validity is satis-
fied, even approximately. More recent efforts have addressed approximate conditional validity (Romano
etal 2019, Izbicki et al 2020, 2022, Chernozhukov et al 2021, Cabezas et al 2025) by designing conformal
scores with an approximately homogeneous distribution throughout X'. Unfortunately, it is difficult to
check whether these methods provide good conditional coverage in practice. Our method, on the other
hand, provides estimates of the full CDE, and not only prediction bands. Finally, calibrated CDEs imply
calibrated prediction bands, but not vice versa.

3. Methodology

Objective and notation. Our LADaR goal is to reshape an initial (often simple) cumulative distribution
E(y|x), or equivalently, its conditional density f{y|x), to achieve approximate instance-wise calibration
with respect to some implicit (often more complex but not explicitly known) target distribution F(y|x).
Instance-wise calibration is defined as

E(y|x) = F(y|x), forally,ateveryx, (1)

and is sometimes also referred to as conditional or local calibration. Instance-wise or conditional calibra-
tion implies marginal calibration

E(y)=F(y), forally, (2)
whereas the reverse implication is not true.
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To achieve instance-wise calibration, we assume the availability of i.i.d. calibration data D =
{(X,, Y1), ..., (X,,Y,)} from Fx y(x,y), the joint distribution of (X,Y), where x€ ¥ CR? and ye ) C
R. We assume that the joint distribution is a product Fx y(x,y) = F(y|x)F(x) of the target distribution
F(y|x) and some sampling distribution F(x) with support over the entire feature space X.

In this paper, we propose a solution to the problem of diagnosing and ensuring local calibration of
conditional densities based on PITs. We refer to the algorithm and the code as Cal-PIT. The details are
as follows.

3.1. Overview of the Cal-PIT algorithm

The Cal-PIT algorithm first computes interpretable diagnostics using regression that identifies the
failure modes of the initial conditional density model and pinpoints the location of poorly calibrated
instances in a potentially high-dimensional feature space. The same regression function used for dia-
gnostics is then used to continuously transform the potentially misspecified CDE into a new CDE that is
approximately calibrated for all x.

Cal-PIT builds on the observation that an estimate of a cumulative distribution function (CDF), E,
is calibrated for every instance x, if and only if its PIT value conditional on x, defined by PIT(Y;X) :=
E(Y|X), where (X,Y) is drawn from Fx y, is uniformly distributed (Zhao et al 2021, corollary 1). As a
result, if a CDE is well-calibrated, the cumulative distribution function of the PIT (hereafter PIT-CDF),
defined as the cumulative distribution of the PIT random variable evaluated at vy € (0,1),

7 (7;x) :=P(PIT(V;X) <7 | %), (3)

will be approximately « for all x € X and v € (0,1). In other words, the PIT-CDF will then correspond
to the CDF of a uniform random variable for all x. The PIT-CDF provides valuable information as to
whether F is miscalibrated, and if so, for what instances x, for what types of deviations and to what
extent. Specifically, local P-P plots—which graph the PIT-CDF value #(7;x), the empirical probabil-
ity, against v, the theoretically expected probability, for fixed x—offer valuable information on how close
the probability distribution F(Y|X) is to F(Y|X) at different locations X = x in the feature space. Figure 2
shows a schematic diagram of some P-P plots and how to interpret them.

However, in practice, because the distribution of the PIT statistic depends on the true conditional
distribution of Y|x, the PIT-CDF is unknown. Section 3.2 describes how one can estimate the PIT-
CDF across the feature space from calibration data using a regression method suitable for the prob-
lem at hand. Our proposed approach is amortized, in the sense that one can train on x and ~ jointly,
after which the function PIT-CDF can be evaluated for any new values of x and +. Finally, section 3.3
describes how the learnt PIT-CDF itself defines a push-forward map (equation (5)) that reshapes the
densities so as to achieve approximate local calibration. Algorithm 1 summarizes the details of the
Cal-PIT method.

3.2. Estimating the PIT-CDF
We observe that the PIT-CDF in equation (3) is the regression (conditional mean) of a binary random
variable WY := I(PIT(Y;X) < v) on X; that is,

7 (yix) =E[W" | x], (4)

where the expectation E[- | x] denotes an average with respect to the (unknown) target distribution
F(y|x). The above expression indicates that we can estimate the PIT-CDF across the entire feature space
X, as well as for different quantiles « € (0,1), via regression methods.

Cal-PIT is implemented as follows: first, we augment the calibration data D by drawing multiple
quantile values v 1,...,7ix ~ U(0,1) for each calibration data point (i =1,...,n) and some chosen
hyperparameter K. Next, we define the random variable

Wij =T (PIT (Y;X) < i) -

Finally, we train a suitable regression method using the augmented calibration sample D’ = {(X;,~i,
Wij)}ij to predict W;; with (Xj,7i;) as inputs, for i =1,...,nand j = 1,...,K. The computed regres-
sion function is an estimate of P (PIT(Y;X) < v | x). Since o (7;x) is a non-decreasing function of ~,
we typically choose monotonic neural networks (Wehenkel and Louppe 2019) minimizing the binary
cross-entropy loss (Good 1952) as our regression method, especially for applications with complex and
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Figure 2. Interpretable diagnostics. PP plots are commonly used to assess how well a probability density model fits actual data.
Such plots display, in a clear and interpretable way, effects like bias (left panel) and dispersion (right panel) in an estimated distri-
butionfvis—a—vis the true data-generating distribution f. Our framework yields an amortized approach to constructing local P-P
plots for comparing Bayesian posteriors f(0|x) or predictive densities f(y|x) at any location x of the feature space X'. Reproduced
from Zhao et al 2021. CC BY 4.0 . An interactive version of this figure can be found at: https://lee-group-cmu.github.io/cal-pit-
paper/fig_1_interactive/.

high-dimensional inputs of different modality. This loss function enforces P (PIT(Y;X) < | x) to be
well estimated (Dawid and Musio 2014).

3.3. Reshaping conditional densities by mapping probabilities to probabilities
Cal-PIT uses the estimated PIT-CDF to reshape the initial CDE f into a new CDE f that is approxim-
ately locally consistent across the entire feature space.

Our procedure for morphing one probability density into a new ‘recalibrated” density works as fol-
lows: Consider a fixed evaluation point x and any yo € V. Let v := E(y,|x). If the regression is perfectly
estimated (that is, 7 ¥ = rf ), then, as long as both F and F are continuous and F dominates F (see assump-
tions 1 and 2 in appendix E for details), it holds that

P (ix) =P (F(Yix) <7 [ %) =B(Y <30 [ 0) = Flo}).

In other words, the regression function i changes the initial CDE so that the probability of observing
the response variable Y below y, is now indeed F(y,|x) rather than F(y|x).
It follows directly that for fixed F,

# (EGIx)x) =P (E(¥x) < E(lx) | x) =P(Y <y | ) = F(y}x)

The above result suggests that we can use the estimated regressmn, #, which is an approximation of the
PIT-CDE, #, to transform the original distribution F with density f into a new ‘recalibrated’ conditional
distribution F with density f

Definition 1 (recalibrated CDE). The recalibrated CDE of Y given x is defined through the P-P map,
F(ylx) := 7 (F(ylx)3x), (5)

where # is the regression estimator of the PIT-CDF (equation (3)).

If the PIT-CDF is well-estimated, then the new CDE will achieve instance-wise calibration. The next
theorem shows that, under some assumptions, we can directly relate the quality of the recalibration (or
how close the ‘recalibrated’ distribution is to the target distribution in a mean-squared-error sense) to
the mean-squared-error of the regression estimator:
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Algorithm 1. Cal-PIT.

Require: initial CDE f(y|x) evaluated at y € G; calibration set D = {(X,Y1),..., (X, Y») }; oversampling factor K;
evaluation points )V C X’; nominal miscoverage level «, flag HPD (true if computlng HPD sets)
Ensure: new distribution F(y|x), Cal-PIT interval C(x), new density estimate f(y| ), forallx e V

1: // Learn PIT-CDF from augmented and upsampled calibration data D’
2:Set D’ +

3:foriin {1,...,n} do

forjin{1,...,K} do

5 Draw ~; ; ~ U(0,1)

6 Compute W;; - I(PIT(Y;;X;) < i)

7: Let D’ %D/U{(Xiy'}/i,ﬁvvi,j)}
8

9

end for
: end for

10: Use D' to learn ff(v;x) :=P(PIT(Y;x) < | x) via a regression of W on X and -, which is monotonic w.r.t. .
11:

12: // Map initial CDE into a new CDE by applying learnt PIT-CDF

13:forx € V do

14: /I Construct recalibrated CDE

15 Compute F(y|x) < cumsum(f(y|x)) fory € G

160 Let F(y|x) « ?f(ﬁ(y|x),x) forye G

17:  Apply interpolating (or smoothing) splines to obtain F(-|x) and F~(-|x)
18:  Differentiate F(y|x) to obtain new distribution f(y|x) for y € G

19:  Renormalize f(y|x) according to Izbicki and Lee (2016), section 2.2

20:

21: /I Construct Cal-PIT interval with conditional coverage 1 — «

22:  Compute C(x) + [F'(0.5a|x); F~'(1 — 0.5ax)].

23: if HPD then

24: Obtain HPD sets C(x) = {y : f(y|x) > Fx.a }» Where fy o is such that I eCa (x)?(y|x)dy =l-«
25: end if
26: end for

27: return F(y|x), C(x),;‘(y\x), forallx e V

Theorem 1 (performance of the recalibrated CDE). Under assumptions 1-3 (appendix E),

[// (ylx) - ylx)) dP(y,x ]— V/ (%) =7 (7; )) dydP (x )}

The rate of convergence of F(y|x) to the target distribution F(y|x) is given by Corollary 1.

Algorithm 1 details the Cal-PIT procedure for computing the PIT-CDF from calibration data, and
for constructing recalibrated CDEs and prediction intervals. In practice, for each x of interest, we first
evaluate F(y|x) across a grid G of y-values, and then use linear or spline-based interpolation scheme to
calculate the derivatives to finally obtain ?(y\x), our estimate of the recalibrated CDE at x.

Remark 1. If the initial model is good, then r is easy to estimate; for instance,? = fimplies a constant func-
tion #(y;x) = . However,?needs to have support on the entire range of the target variable y across the fea-
ture space X. Depending on the application, a viable initial model could, for example, be an estimate of the
marginal distribution f(y), a uniform distribution with finite support (as in Experiment 2 of appendix B,
Example 3), an initial fit of the density with a Gaussian distribution (as in the TC application in section 4.2),
or a nonparametric density estimate (as in Experiment 1 of B, Example 3). In the photo-z application in
section 5, we use a weighted sum of the marginal distribution f(y) and a Gaussian model for f{y|x). The
Gaussian model was obtained from a widely popular photo-z method (GPz; Almosallam et al 2016); the
marginal distribution was then added to expand the support of the fitted Gaussian distribution.

Remark 2 (CDEs and prediction sets). As a by-product of conditional distributions, one can derive vari-
ous quantities of interest, such as moments, kurtosis, prediction intervals, or even more general prediction
bands; such as highest predictive density (HPD) regions {y : f(y|x) > ¢}, where f is the conditional density
associated to F; see appendix D for details on how to compute HPD regions. By construction, locally calib-
rated CDEs yield prediction bands with approximately correct conditional coverage. That is, suppose that

8
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Co(X)isa (1—a)/100% prediction band derived from the CDF F. Local calibration of F then implies that
the prediction bands C, (X) have approximate nominal coverage

P(YeCo(X)|X=x)=1—a, (6)

for every instance x € X'. On the other hand, it is difficult to convert prediction bands and quantile estimates
to entire CDEs without additional assumptions. That is, calibrated CDEs imply calibrated prediction bands
but not vice versa. For example, theorem 2 in appendix E shows that a Cal-PIT prediction interval at x,
defined as

Co (%) := |[F71(0.5ax), F71 (1 —0.5a]x)|, (7)

achieves asymptotic conditional coverage, even if the initial CDE f(y|x) is not consistent.
4. Synthetic examples

4.1. Example 1: diagnostics and reshaping of CDEs via P-P maps
This example illustrates the LADaR framework with Cal-PIT: we start with an initial model fy(y|x) (in
this case, a Gaussian density with correct mean and fixed variance). Then, via a PIT-CDF regression
(equation (4)), we learn the local diagnostics which can be visualized via P—P plots similar to figure 2.
Finally, we reshape the initial densities to better fit the calibration data by applying the same learned P-P
map (that is, the PIT-CDF transformation) to the initial densities (equation (5)).

As an illustration, we create a ‘skewed’ data setting. The data are drawn from the family of sinh-
arcsinh normal distributions (Jones and Pewsey 2009, 2019), where the skewed data follow

Ya|X ~ sinh-arcsinh (u = X,0 =2 — | X|,y =X, 7 =1).
We start with an initial Gaussian model given by
VIX~N(p=X,0=2),

and we learn the PIT-CDF function 7 (v;x) from a calibration set of 7= 10000 pairs of (X, Y).

The top panel of figure 3 shows ‘Local Amortized Diagnostics’ for the skewed setting: the first row
graphs a local discrepancy score (LDS) across the feature space (see Kodra et al 2023 for an example use of
the global analog), where the LDS is defined as

D(x) ::faZ(?“(’y;X)*’y)z, (8)

YEG

for a set G C [0, 1] of v values. The LDS is a one-number summary that estimates the amount of dis-
crepancy between the initial model and the true density in terms of coverage: a large value of D(x)
indicates that f, is miscalibrated at the evaluation point x. The PIT-CDF function # then provides more
detailed information on how the initial model fy(y|x) might deviate from the true density f{y|x) at x,

as illustrated by the shape of the P-P plots in the second row. Top panel II (‘Reshaping of Densities’)
shows examples of morphing the initial density fo (blue) into an approximation f (red ) of the final
density defined by equation (5). For illustrative purposes, we show intermediate curves sf+ (1 —s)fy for
a few different values s € [0, 1].

Finally, because we know the true data-generating distribution F, we can directly assess the quality
of the reshaped densities f by first generating MC samples from the true distribution at each evaluation
point x, and then computing a local version of the continuous rank probability score (CRPS). More spe-
cifically: CRPS is a proper scoring rule commonly used to evaluate probabilistic predictions (Matheson
and Winkler 1976). The local CRPS loss at a point (x,y) is typically defined as

oo

Lcres (?a x,y) = /7

which checks whether a single draw y ~ F(Y|x) (from the unknown true distribution F) is consistent
with the estimated distribution F(y|x). However, for our synthetic examples, we can generate an entire

(ﬁ(t\x) ~I(y< t))zdt, 9)

o0
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Figure 3. Illustration of LADaR framework: example 1 skewed data. Initial CDE is Gaussian, but the true distribution is skewed.
Top panel (1): local discrepancy score across the input space (first row) and examples of diagnostic P-P plots (second row).
Cal-PIT identifies that the model is positively/negative biased relative to calibration data at X = —1/ X = 1 but well-estimated
at X = 0. The diagnostics define a family of P-P maps for reshaping the initial densities to fit the calibration data across the fea-
ture space. Top panel (II): continuous morphing of densities via Cal-PIT, illustrated at the three evaluation points, from the
initial Gaussian distributions (red; s = 0) to the final distributions (blue; s = 1). For illustrative purposes, we have included inter-
mediate values of s to show the morphing of distributions. Bottom panel: independent assessment of final results by computing a
local Monte Carlo version of the continuous ranked probability score (MC-CRPS) at fixed x before and after Cal-PIT.

z

MC sample Yi,...,Y5 ~ F(y|x) (from the known true distribution F) at any fixed evaluation point x for
some chosen large value B. We then define the local Monte Carlo CRPS (MC-CRPS) loss at fixed x as

Lyic—cres (}:, X,f) = / 1~7(t|x) — ;;I(Yb < t) dt.

B 2

(10)
=1
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Figure 4. TC satellite images. Left: a sequence of TC-centered cloud-top temperature images from GOES. Center: we represent
each GOES image with a radial profile of azimuthally-averaged cloud-top temperatures. Right: the 24 h sequence of consecutive
radial profiles, sampled every 30 minutes, defines a structural trajectory S<; or Hovmoller diagram. Reproduced with permission
from McNeely et al (2023b). © 2025 Project Euclid, Duke University Press initiative.

For large B, equation (10) is close to zero when F(-|x) is a good estimate of F(-|x). Furthermore,
equation (10) is, up to a constant that does not depend on F, approximately the same as

E {LCRps@X, Y) | x] , the conditional mean of the CRPS loss given X = x (see appendix C for more

details). The bottom panel of figure 3 shows the local MC-CRPS results before and after applying
Cal-PIT for the ‘skewed’ setting. The corresponding results for a ‘kurtotic’ setting can be found
in appendix A.

4.2. Example 2: probabilistic nowcasting with high-dimensional sequence data as inputs

Our next synthetic example is motivated by short-term forecasting of the intensities of TC with high-
resolution satellite images. This application is challenging both because of the high-dimensional nature
of spatio-temporal satellite data and because the intensities are auto-correlated in time. Figure 4, right,
shows an example of a 24 h sequence S.; of consecutive radial profiles (one-dimensional functions)
extracted from GOES infrared imagery (Janowiak et al 2017).

Infrared imagery, as observed by GOES, measures the cloud top temperature, which is a proxy for
the strength of convection (the key component of the mechanism through which TCs extract energy
from the ocean). Hence, each computed sequence S.; can be seen as a summary of the spatio-temporal
evolution of the convective structure of the TC leading up to time t, where patterns in S, signaling
strengthening/weakening convection are predictors of intensifying/weakening storms; that is, they pre-
dict changes in the intensities of the TC, I, for 7 > t.

As a proof-of-concept of our LADaR framework, we create a synthetic example with the same
format as actual TC data. The details are described in supplementary material S3'2. Figure 5 shows
an example of a simulated storm. On the left, we have a toy Hovmoller diagram of the evolution of
the ‘convective structure’ {(X;)};>0, with each row representing the radial profile X, € R'® of tem-
perature as a function of radial distance from the storm center; time evolution is top-down in hours.
On the right, we have {Y,};>0, the simulated ‘TC intensities’ at corresponding times t. The trajectory
Seri= (X—47,Xi—46, - -, X;) represents the 24 h history of the convective structure (48 radial profiles).
We simulate 8000 ‘storms’ according to a fitted TC length distribution. Sequence data {(S<,,Y;)} from
the same storm are shifted by 30 minutes; therefore, they are strongly correlated. Sequence data from
different storms, on the other hand, are independent.

Our goal is to ‘nowcast’ the conditional distribution Y;|S<;, where Y; is the intensity at time . Here
we illustrate how Cal-PIT can diagnose and improve an initial convolutional mixture density network
(ConvMDN) model. In our example, we perform training, calibration, and testing on different simulated
‘storms’: first, we fit an initial CDE (ConvMDN; D’Isanto and Polsterer 2018), which estimates f(y|s) as
a unimodal Gaussian, based on a train set with 8000 points, {(S<;,Y;)} (see supplementary material S3

for details). Next, we apply Cal-PIT to learn #(~y;s) using 8000 calibration points. (Note that the data

12 Supplementary materials: https:/lee-group-cmu.github.io/cal-pit-paper/supplementary_material.pdf.
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Figure 5. Synthetic data in Example 2. Simulated radial profiles {X;};>o and intensities {Y;}>¢ for an example TC. Left: each
row represents the radial profile X; of temperature as a function of radial distance from the storm center at time ¢ Our predictors
are 48 h overlapping sequences {S; };>o with data from the same ‘storm’ being highly dependent. Right: the target response, here
shown as a time series {Y:},> of simulated TC intensities.

within the same storm are highly dependent; hence, the effective train or calibration sample sizes are
much smaller than the nominal values.) Because we have access to the data-generating distribution, we
can assess the performance of CDEs before and after reshaping densities by MC samples at 4000 test
points.

Figure 6 summarizes the results. With the LADaR framework (top panel), we are able to identify
regions in a high-dimensional space of sequence data where our initial CDE of Y;|S., is a poor fit. In
the upper left panel, each point corresponds to a 24 h structural trajectory S.; or a sequence of radial
profiles visualized in a reduced dimensionality space using principal component analysis (PCA); the
points are color-coded by the LDS between the initial model and the true distribution of the calibration
data according to Cal-PIT. Three specific examples of input sequences are also shown. After applying
the estimated P-P map via Cal-PIT to all CDEs, we obtain near instance-wise calibration according to
an independent MC assessment (bottom panel).

4.3. Example 3: prediction sets

The novelty of our method lies in the fact that we can construct full CDEs with approximate
instance-wise coverage. Nevertheless, as a by-product, we can also construct prediction sets with approx-
imate conditional coverage. We have included an additional synthetic example in appendix B to demon-
strate that prediction sets derived from Cal-PIT are also competitive with sets from conformal inference
and QR.

5. Main application: reshaping CDEs of galaxy photometric redshifts

Many astrophysical studies depend on knowing the distances to external galaxies. Geometric distances

to galaxies are incredibly difficult to measure, so astrophysicists typically use the redshift of light emit-
ted from a galaxy as a proxy for its distance, where the spectral energy distribution (the intensity of light
as a function of wavelength) is shifted to longer (redder) wavelengths due to the cosmological expan-
sion of space. Redshifts can be precisely measured using spectroscopy to identify spectral features that
occur at known wavelengths, but obtaining spectroscopic redshifts is resource-intensive. A far more effi-
cient approach is to estimate redshifts from imaging data (i.e. photo-z’s), but even with measurements at
several wavelengths, imaging data produce a less precise localization of these features (and hence more
uncertain photo-z’s) due to a much coarser wavelength binning of photons. In particular, upcoming
multi-billion dollar imaging projects like the Rubin Observatory’s Legacy Survey of Space and Time
(LSST; Ivezi¢ et al 2019), the Nancy Grace Roman Space Telescope (Akeson ef al 2019), and the Euclid
Mission (Laureijs et al 2011) will make key cosmological measurements using weak gravitational lensing

12



10P Publishing Mach. Learn.: Sci. Technol. 6 (2025) 045058 B Dey et al

0.020 A
24

5

0.015

3

0.010

=

PCA-2

[D,] amesodway,

&

0.005

21008 KouedaIosi(] 800
Time to Response [Hrs.]
B

0
0.000 50 150 250 350 50 150 250 350 50 150 250 350
Radial Distance (km)

I: Local Amortized Diagnostics

O
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

=
=)

5
Theoretical Probability

Initial CDE — Final CDE

0.04f 1 F 1 F ]

II: Reshaping of
Densities
flylz)

L 1 A 1
50 100 150 50 100 150 50 100 150
Y Y Y

Before
10°

40

107!

SAUD-DI 8307

2

H
<

and After Reshaping Densities

Independent MC Assessment Before

PCA-1

Figure 6. Example 2: probabilistic now casting with high-dimensional sequence data as inputs. Top panel I: local amortized dia-
gnostics. First row: two-dimensional PCA map of sequence data. One point in the map represents a 24 h structural trajectory S<;
or sequence of radial profiles; the points are color-coded by the LDS between the initial model and calibration data according

to Cal-PIT. Points A—C represent three examples of inputs S <; where the initial model appears to perform the worst (i.e. high
LDS). Second row: PP plots help reveal the nature of the discrepancy; the initial model appears positively biased and overd-
ispersed at the three locations. Top panel II: reshaping of densities. The density of Y;|S<; before (red) and after (blue) applying
the P—P map. Bottom panel: independent MC assessment. For synthetic data, we can compute the CRPS locally for simulated MC
samples at fixed S<. The local MC CRPS scores are shown before (left) and after (right) reshaping the densities. After applying
the P—P map, the CDEs are well-calibrated for all inputs S. Reproduced with permission from McNeely et al (2023b). © 2025
Project Euclid, Duke University Press initiative.

13



10P Publishing

Mach. Learn.: Sci. Technol. 6 (2025) 045058 B Dey et al

(see, e.g. Mandelbaum 2018 for an overview), a method that relies on well-calibrated photo-z’s of mil-
lions of galaxies. The demands on the accuracy of photo-z CDEs for these projects are extremely strin-
gent: discrepancies in the moments of redshift distributions for samples that are instrumental in measur-
ing cosmological parameters must be less than approximately 0.1% to prevent degradation of subsequent
physical analyzes (The LSST Dark Energy Science Collaboration et al 2018).

However, calibrating photo-z CDEs remains tricky because galaxies span a wide range of intrinsic
properties and spectral energy distributions (Conroy 2013), which leads to different combinations of
redshift and intrinsic spectral energy distribution producing nearly identical observed imaging data. This
problem is further complicated by measurement errors and the coarseness of the spectral information
available from imaging data. Thus, the estimation of photo-z’s is inherently probabilistic with often non-
trivial (e.g. non-Gaussian or bimodal) distributions. These distributions cannot be accurately captured
by point estimates or prediction sets and must be quantified using full predictive distributions (Benitez
2000, Mandelbaum et al 2008, Malz and Hogg 2022), which Cal-PIT is uniquely suited to estimate.

Most photo-z estimation methods fall into two main classes: physics-inspired methods that find the
combination of redshift and spectral energy distribution that best matches the data (e.g. Arnouts et al
1999, Brammer et al 2008), and (ii) data-driven methods that learn a non-linear mapping between the
input imaging data and redshift (e.g. Beck et al 2016, Dalmasso et al 2020, Zhou et al 2021, Dey et al
2022). No class of method is clearly the best for all imaging data sets, with the physics-based methods
typically performing better when training data are sparse and the data-driven methods typically doing
better when training data densely sample parameter space. Previous studies have used global metrics to
reshape probability distributions (e.g. Euclid Collaboration et al 2021, Kodra et al 2023), including PIT-
based recalibration schemes (see, for instance, Bordoloi et al 2010, section 3). Regardless, no method
guarantees correct local calibration of uncertainty estimates, a more stringent requirement that is the
focus of Cal-PIT.

To showecase the effectiveness of our LADaR approach, we utilize the data set from Schmidt et al
(2020), which has been used as a reference for assessing photo-z CDE prediction techniques. This data
set was developed by assigning realistic spectral energy distributions to galaxies in a dark matter-only
simulation (DeRose et al 2019) to mimic their appearance in LSST imaging data. The input features con-
sist of logarithmic measurements of intensity of observed galaxy light (spatially-integrated across the
image) in a given wavelength range (corresponding to a photometric filter) called apparent magnitudes
and the differences between them called colors. Additionally, uncertainty estimates for these measure-
ments were also provided. For the Schmidt et al (2020) data challenge, the participants were given an
unbiased ‘training set’ of ~44 000 instances (galaxies) to which they applied 11 different physics-inspired
and data-driven photo-z approaches. The photo-z methods were then evaluated on an unseen ‘test set’
of ~400 000 instances (galaxies). For this exercise, the training set was perfectly representative of the test
set. Schmidt et al (2020) also evaluated the performance of a method that simply predicted the marginal
distribution of redshifts in the training set (i.e. the same prediction for every galaxy in the data set),
which they called trainZ. Although this naive estimate does not contain any meaningful information
about the redshift of any individual galaxy, Schmidt et al (2020) demonstrated that it can perform well
on many commonly used metrics that check for marginal calibration.

Reassuringly, Schmidt et al (2020) found that trainZ performed very poorly on the conditional
density estimate (CDE) loss (Izbicki and Lee 2017), a metric of conditional coverage. The CDE loss is
a proper scoring technique and the conditional analog of the root-mean-square-error for probabilistic
regression. Given an estimate f of £, it is defined as the L? distance between f and f,

us = [ [ ok -] e, (1)

where dP(x) is the marginal distribution of features x. The CDE loss cannot be evaluated directly as it
depends on the unknown true density f{y|x), but it can be estimated up to a constant (K, dependent on

flylx)) by
2(17) =B | [Fob* | - 2B, o] + &

which is sufficient for relative comparisons between methods. The CDE loss was the only conditional
metric identified and tested in the Schmidt et al (2020) challenge, so we use it as our main metric for
the assessment of Cal-PIT in the context of photo-z’s and note that Cal-PIT is independent of the
CDE loss.
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Figure 7. Photo-z application. Top panel I: local amortized diagnostics. First row: the local discrepancy score for the initial model
shown in two projections of the feature space. The first figure shows galaxy i-band magnitude and u — g color space, and the
second figure shows z — y color and r — i color space. The points labeled A-D correspond to the four galaxies for which we show
the diagnostics and reshaping. Second row: diagnostic P—P plots of the initial model (modified GPz CDEs; Almosallam et al 2016)
for four galaxies from the LSST-DESC Photo-z Data Challenge (Schmidt et al 2020) test set. Top panel 1I: reshaping of densities.
Photo-z CDEs for the corresponding galaxies before (red) and after (blue) reshaping the densities via Cal-PIT; the true (spec-
troscopic) redshift is shown as a vertical dotted black line and a cross. Cal-PIT can correct for bias and over-/under-dispersion.
Most impressively, it can recover accurate bimodal CDEs even if the initial estimate was unimodal. Botforn row: comparison of
the final reshaped CDEs (blue line) with the local ‘nearest-neighbor’ distribution (blue shaded histogram) of true redshifts of
other galaxies with similar imaging properties. Cal-PIT accurately approximates the local redshift distribution for unimodal and
multimodal redshift distributions. Further, the inferred CDEs are bimodal only when the histograms are bimodal.
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Table 1. Comparison of the CDE loss values for Cal-PIT and the methods benchmarked in the LSST-DESC Photo-z Data
Challenge (Schmidt et al 2020). In terms of the CDE loss, Cal-PIT performs better than all of the other methods tested, including
FlexZBoost, which is specifically optimized to minimize the CDE loss. Reproduced from Schmidt et al (2020). CC BY 4.0 .

Photo-z algorithm CDE loss
ANNz2 (Sadeh et al 2016) —6.88
BPZ (Benitez 2000) —7.82
Delight (Leistedt and Hogg 2017) —8.33
EAZY (Brammer et al 2008) —-7.07
FlexZBoost (Izbicki and Lee 2017) -10.60
GPz (Almosallam et al 2016) —9.93
LePhare (Arnouts et al 1999) —1.66
METAPhoR (Cavuoti et al 2017) —6.28
CMNN (Graham et al 2018) —10.43
SkyNet (Graff et al 2014) —7.89
TPZ (Carrasco Kind and Brunner 2013) —9.55
trainZ (Schmidt et al 2020) —0.83
Cal-PIT -10.80

For a fair comparison, we adopt the same training and test sets from Schmidt et al (2020) and use
the former as our calibration set to learn the local PIT-CDF . Among the methods compared by Schmidt
et al (2020), we use the density estimates from GPz (Almosallam et al 2016) as our initial model. GPz
uses sparse Gaussian processes to estimate the CDEs. Although, GPz produces Gaussian density estim-
ates, it is commonly recognized that photo-z conditional densities can have non-Gaussian characteristics
such as long tails or bimodalities. To expand the support of the initial distributions, we took a weighted
sum of the marginal distribution of redshifts in the calibration set and the GPz outputs with weights 0.1
and 0.9, respectively, as our initial CDEs. We used monotonic neural networks to learn the PIT-CDF
from an input feature set of one galaxy magnitude and five colors along with their measurement uncer-
tainties. We then use the same features to diagnose and reshape the initial densities. Finally, we assess the
quality of our reshaped CDEs with the CDE loss.

Figure 7 showcases how Cal-PIT is a powerful tool for diagnosing and reshaping photo-z CDEs.
The top row of panel I displays a subset of the test data points in two projections (left: u — g color vs.
i-band magnitude; right: » — i color vs. z— y color) of feature space with the points color-coded by the
LDS. Four individual galaxies are highlighted, and their diagnostic P-P plots are shown in the second
row of panel I. The first P-P plot shows an instance where the initial model was good and no sub-
stantial reshaping is necessary. The second P—P plot shows an instance where the initial guess is over-
dispersed, whereas the third shows an instance where the initial guess was heavily biased. The last P-P
plot demonstrates a case where the P—P plot has multiple steep sections, indicating that initial model
failed to express a bimodal density.

Panel 1T shows the initial CDE (red), the reshaped CDE (blue), and the true redshift (dotted black
line and cross). Cal-PIT leverages the information contained in the diagnostics (i.e. the P—P plots from
panel I) to reshape the initial CDEs and even recover bimodal CDEs from unimodal input CDEs (with
the true redshift being in one of the modes). Figure 7 (bottom row) provides a clear (though not stat-
istically rigorous) demonstration that the CDEs from Cal-PIT are indeed meaningful. Since we do not
know the ‘ground truth’ distributions for this data set, we have to rely on indirect methods to assess the
quality. Specifically, we use the distribution of true redshifts of other galaxies with similar imaging data.
We identify those counterparts by searching for other galaxies in the test set whose magnitudes and col-
ors (rescaled by subtracting the mean and dividing by the standard deviation (SD) for each feature) lie
within a Euclidean distance of 0.5 units of our selected galaxies. Figure 7 (bottom row) shows their red-
shift distribution as weighted histograms, where the weights are inversely proportional to the euclidean
distance to each neighbor, together with their predicted CDEs. When CDEs are unimodal, the nearest-
neighbor histograms are also unimodal with similar widths. Even more impressively, when our inferred
CDEs are bimodal, the nearest-neighbor histograms show matching bimodal distributions, indicating
that not only did Cal-PIT correctly find the mode with the true redshift, but also correctly identified
the other redshift solution with similar imaging properties.

Finally, table 1 shows that Cal-PIT achieves a lower CDE loss than any of the methods in the LSST-
DESC Photo-z data challenge (Schmidt et al 2020). The values of the CDE loss for all methods except
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Cal-PIT come from Schmidt et al (2020), whereas the value for Cal-PIT was obtained by running our
algorithm on the same train and test sets. As expected, there is a major improvement in the value of
the CDE loss (from —9.93 to —10.80) from our input distribution (i.e. GPz) to our Cal-PIT-reshaped
distributions. Moreover, Cal-PIT outperforms all other photo-z methods tested by Schmidt et al (2020),
including FlexZBoost (Izbicki and Lee 2017), which was designed to minimize the CDE loss. Although
the improvement over FlexZBoost is not dramatic, Cal-PIT guarantees proper calibration, which
FlexZBoost does not. Because Cal-PIT outperforms state-of-the-art photo-z prediction methods on
independent metrics while ensuring proper calibration, it is perhaps the most promising method for
meeting the exacting photo-z requirements of next generation imaging surveys.

6. Discussion

There has been a growing interest in conditional density and generative models (see Chen et al 2022 and
references therein)—however, there are few tools for assessing whether these methods yield trustworthy
instance-wise UQ.

Our proposed solution, LADaR with Cal-PIT, draws on the success of high-capacity predictive
algorithms, such as deep neural networks, to recalibrate CDEs in complex data settings with inter-
pretable results and a minimum of assumptions.

Cal-PIT first assesses whether an initial conditional density model /ﬁ(|X) is well calibrated for all
inputs x with respect to calibration data, and then provides a mechanism for morphing the initial dens-
ities toward the distribution F(:|x) of the reference data. Any transformation is valid as long as both
F(-|x) and F(-|x) are continuous functions and F(-|x) dominates F(-|x)-that is, F assigns positive probab-
ility to any region where F does. Under these conditions (see E for details), the recalibrated distribution
is well defined, and the conditional PIT fully characterizes the conditional CDF of the target variable.
This flexibility explains why a unimodal distribution can be transformed into a bimodal one, as seen
in the photo-z example. Individually calibrated CDEs also automatically return conditionally calibrated
prediction sets. Our method does not impose shape constraints on the recalibrated density. Cal-PIT
also does not require exchangeability. Instead, it only requires stationarity (to ensure that the regression
function remains stable over time) and a form of weak dependence (to allow the regression method to
effectively learn from new data). Therefore the method can be applied to (stationary) probabilistic time
series forecasting.

Although we focus on prediction problems, our approach also applies to Bayesian inference, where
the goal is to estimate intractable posterior distributions F(6|x). This includes Simulation-Based
Inference (SBI; Cranmer et al 2020), which approximates posteriors using simulations instead of expli-
cit likelihoods (Beaumont et al 2002, Papamakarios and Murray 2016, Lueckmann et al 2017, Greenberg
etal 2019, Izbicki et al 2019). Cal-PIT can assess and recalibrate such estimates F(#|x)—whether
obtained via MCMC or neural methods-toward the true posterior. For implicit models like MCMC, for
a fixed x € X and 0 € ©, we draw 0,,...,0; ~ F(-|x) and approximate PIT(0;x) using L™ Zle I(0; <
0). Unlike (SBC; Talts ef al 2018), which focuses on marginal validity, Cal-PIT enables instance-wise
recalibration and reveals local failure modes. Recent methods (Linhart et al 2024, Torres et al 2024,
Wehenkel et al 2024) also offer local diagnostics or data-driven calibration, but Cal-PIT uniquely com-
bines feature-space interpretability with an amortized P-P map to correct individual CDEs.

Finally, Cal-PIT can potentially be extended to multivariate output vectors Y by the decomposition
Aylx) = I [;f(yilx,y.;); thus performing Cal-PIT corrections on autoregressive components of the con-
ditional distribution. This is a particularly promising direction for deep autoregressive generative models
(Van den Oord et al 2016, van den Oord et al 2016, Vaswani et al 2017, Hoogeboom et al 2021). We are
currently investigating whether Cal-PIT can improve structural forecasts for short-term TC intensity
guidance (McNeely et al 2023a). Refer to recent work by Linhart ef al (2022) for a multivariate extension
of Cal-PIT specific to normalizing flows. Other open problems include fast sampling from recalibrated
conditional distributions to generate ensemble forecasts in real time, and extending Cal-PIT to classific-
ation tasks (Wald and Globerson 2017, Kull et al 2019).

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary
files).
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Appendix A. Example 1: synthetic example (kurtotic setting)
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Figure Al. Illustration of LADaR framework: example 1 kurtotic data. Initial CDE is Gaussian, but the true distribution is kur-
totic. Top panel I: Local discrepancy score across the input space (first row) and examples of diagnostic P-P plots (second row).
Cal-PIT identifies that the model is over-/under-dispersed relative to calibration data at X = —1/ X =1 but well-estimated at

X =0. The diagnostics define a family of P-P maps for reshaping the initial densities so as to fit the calibration data across the
feature space. Top panel II: continuous morphing of densities via Cal-PIT, illustrated at the three evaluation points, from the
initial Gaussian distributions (red; s = 0) to the final distributions (blue; s = 1). For illustrative purposes, we have included inter-
mediate values of s to show the morphing of distributions. Bottom panel: Independent assessment of final results by computing a
local MC version of the MC-CRPS at fixed x before and after Cal-PIT.

Figure A1l presents the LADaR approach and the results for the ‘kurtotic’ setting in Example 1. The
data are drawn from the sinh-arcsinh normal distribution and follow Yg|X ~ sinh-arcsinh(u = X,0 =
2,4 =0,7 =1—X/4). The initial model is Gaussian given by Y|X ~ A (u = X,0 =2), and we learn the
PIT-CDF function 7 (y;x) from a calibration set of n= 10000 pairs of (X,Y).
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Figure B1. Visualization of one random instance of the data used for Example 1. There are two covariates (X1, X>), and a target
variable Y. The analytic form of the true data distribution is defined in supplementary material S2. The data set consists of two
groups with different spreads. Y splits into two branches for X; > 0; that is, the true CDE is bimodal in this region.

Appendix B. Example 3: prediction sets

Cal-PIT’s uniqueness stems from its ability to generate complete CDEs with approximate instance-wise
coverage. Additionally, it enables the creation of prediction sets with approximate conditional cover-
age. Considering the extensive literature on prediction sets, we have included an additional example to
demonstrate that prediction sets obtained from Cal-PIT can effectively compete with those derived
using methods such as conformal inference or QR. We also include a comparison with normalizing
flows, as they have gained popularity for density estimation in the physical sciences.

In photo-z estimation, multiple widely different distances (redshifts) can be consistent with the
observed features (colors) of a galaxy. As mentioned previously, this results in conditional distributions
that are multi-modal in parts of the feature space. Motivated by the photo-z application, we have mod-
ified the two-group example of Feldman et al (2021) to have bimodal structure due to limited predictor
information. Here the target variable Y depends on three variables: Xy, X;,X,. Variable X, indicates
group membership but it is not measured; that is, X; and X, are our only predictors. The missing mem-
bership information results in the CDE f{y|x;,x;) being bimodal in the regime X; > 0 with one branch
corresponding to each class. Supplementary material S2'° details the data-generating process (DGP), and
figure B1 visualizes one random instance of data drawn from f{y|x;,x,) with the ‘majority’ and ‘minor-
ity’ groups displayed as blue versus red points.

We design two experiments for benchmarking Cal-PIT prediction sets against results from con-
formal inference, QR, and normalizing flows:

e Experiment 1 (comparison with conformal inference): for this experiment, we split a sample of total
size n in two halves: the first half is used to train an initial model, and the second half is used for cal-
ibration. The empirical coverage of the final prediction sets are computed via 1000 MC simulations
from the true DGP at each test point on a grid. Test points with coverage within two SDs of the nom-
inal coverage of 1 —a = 0.9 based on 100 random realizations are labeled as having ‘correct’ cover-
age. We report the proportion of test points in the feature space with ‘under-, ‘correct, and ‘over-’
coverage.

e Experiment 2 (comparison with QR and normalizing flows): here we use the entire sample of size n to
compute quantiles or to estimate the conditional density. As above, we use MC simulations on a grid
to assess conditional coverage.

The top row of figure B2 shows results for Experiment 1. We compare 90% prediction sets for Y using
Cal-PIT (INT) and Cal-PIT (HPD) (defined by equations (7) and (D.1), respectively) with predic-
tion sets from Reg-split (Lei et al 2018), conformalized QR (CQR; Romano ef al 2019), and distri-
butional conformal prediction (DCP; Chernozhukov et al 2021). Reg-split and CQR are trained with
XGBoost (Chen and Guestrin 2016). Our Cal-PIT methods use an initial CDE trained using FlexCode
with an XGBoost regressor (Izbicki and Lee 2017, Palmasso etal 2020) and monotonic neural net-

works (Wehenkel and Louppe 2019) for learning #(+;x) with binary cross entropy loss. DCP computes a

13 Supplementary materials: https:/lee-group-cmu.github.io/cal-pit-paper/supplementary_material.pdf.
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Figure B2. The proportion of test points with correct conditional coverage for (a) ‘Experiment 1’ with state-of-the-art conformal
inference methods, using data of total size n split into a train and a calibration set, and (b) ‘Experiment 2’ with quantile regres-
sion and normalizing flow approaches, which use all data for training. See text for details. Only Cal-PIT consistently attains the
nominal 90% coverage across the feature space with increasing sample size n.

conformal score based on PIT values derived from the same initial CDE as Cal-PIT. In terms of condi-
tional coverage, all methods improve with increasing sample size, but only Cal-PIT consistently attains
the nominal 90% coverage across the feature space for n > 2000. As the data distribution can some-
times be bimodal, the most efficient prediction sets in this feature subspace would not be single inter-
vals (INT), but rather pairs of intervals. We can create such disjoint prediction sets using HPD regions
(HPD; see appendix D for definition).

The bottom row of figure B2 shows results for Experiment 2. Cal-PIT (INT) and Cal-PIT (HPD)
reshape a uniform distribution on x € [—5,5]; hence, there is no need for a separate training set. The
Cal-PIT prediction sets are then compared to output from QR; Koenker and Bassett 1978 trained with
XGBoost and a pinball loss, orthogonal QR (0QR; Feldman et al 2021) which introduces a penalty on the
pinball loss to improve conditional coverage, and normalizing flows (NF). We use the PZFlow (Crenshaw
et al 2023) implementation of normalizing flows which has been optimized to work well out-of-the-
box with tabular data and uses neural spline flows (Dinh et al 2014, 2016, Durkan et al 2019) as the
backbone.

Figure B3, top row, shows some examples of calibrated CDEs from Cal-PIT. The estimates reveal
that the true conditional density is bimodal for X; > 0; thus, the most efficient prediction sets in this
feature subspace would be HPD regions. Indeed, Cal-PIT (HPD) yields smaller prediction sets than
Cal-PIT (INT); see figure S1 in supplementary material. Because HPD sets can capture the bimod-
ality in the data while intervals cannot, this is a case where Cal-PIT (HPD) has better efficiency. This
qualitative insight is only possible because Cal-PIT estimates the entire PDs. Normalizing flows also
provide entire CDEs (see figure B3, bottom row) but can be difficult to train. Indeed, the normalizing
flow CDEs generally deviate significantly from the oracle.
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Figure B3. CDEs at three different values of X; (X, =0) for (a) Cal-PIT and (b) Normalizing Flows for Example 3. The results
for n=1000 and n = 2000 are compared to the ‘oracle’ probability density functions. For both sample sizes, the Cal-PIT CDEs
are close to the oracle. Normalizing flow CDEs, on the other hand, are harder to train and a standard implementation can deviate
significantly from the oracle.

Appendix C. Local CRPS scores

The conditional expectation of the CRPS loss given X =x is
~ oo 2
E [LCRPS (fx y) H —E [/ (F(t\x) — F(t]x) + F(t}x) ~1(Y < t)) dtH .
—0o0

By expanding the square and by changing the order of expectation and integration, we have:

® [t (7 1) =5 [ [

oo

+2/oo (’F(ﬂx) —F(t\x))E[(F(ﬂx) —I(Y < t))dt|x]

— 00

(Feho) - F(t|x))2dt | x]

+ [ e[k -10r< o) ar

— 00
Note that:
e The first term represents the squared distance between F and F and is minimized when F(|x) =

F(-|x).
e The second term equals zero,

E [F(t}x) —T(Y < £)|[x] = F(t}x) —E[1(Y < #) [x] = F(t}x) — F([x) = 0.

e The third term is a constant that does not depend on F.
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Thus,

o0

E[LCRPS (};X,Y) ;x] :/ (’F(ﬂx)—F(t\x))zdtJrK

—00
B

z/(?(t|x)—;ZI(Yb<t)> dt+K

b=1

= Lyc—cres (ﬁ X,f) +K,
where K does not depend on F.
Appendix D. Cal-PIT (HPD) and Cal-HPD

Here we describe two approaches to deriving prediction sets (instead of prediction intervals) from an
estimate of the conditional distribution function f(y|x).

D.1.Cal-PIT (HPD)
Cal-PIT can also be used to compute HPDs regions instead of prediction intervals. The oracle (1-a)-
level HPD set is defined as

HPD,, (x) = {y : f(y[%) = txa}

where t;  is such that fy CHPD.. (x) fly|x)dy =1 — a. HPDs are the smallest prediction sets that have
coverage 1 — a, and thus they may be more precise (smaller set size) than quantile-based intervals,
while maintaining the conditional coverage at the nominal level (see appendix B for an example with
a bimodal predictive distribution).

The Cal-PIT estimate of HPD,, (x) is given by

Ca () = {y:701%) > T} (D.1)

where T ,, is such that fy flylx)dy=1— and fis the Cal-PIT calibrated CDE (algorithm 1).

€Cq (x)

D.2. Cal-HPD
Alternatively, one can directly use HPD values, defined as

Hm@;/f  fy'may,
{rfy' <ol }

to recalibrate HPD prediction sets (rather than using PIT values). The idea is to estimate the local
HPD coverage at each x, #(7;x) := P(H(Y;x) < 7|x), by regression, analogous to estimating the PIT-
CDF in Cal-PIT. Let // (7;x) be such an estimate. The recalibrated (1 — «)-level HPD set at a loca-
tion x is given by the (1 — a*(x))-level HPD set of the original density f(y|x), where o* (x) is such that
2 (a*(x);x) = . This framework however does not yield full CDEs. Moreover, although the approach
corrects HPD sets, aiming for conditional coverage, the constructed sets will not be optimal if the initial
model?is far from the true data generating process f.

In example 3 (appendix B), we only report results for Cal-PIT(INT) and Cal-PIT(HPD); we do
not report results for Cal-HPD.

Appendix E. Theoretical properties of Cal-PIT

We here describe the assumptions needed for theorem 1, and provide convergence rates. We also prove
that Cal-PIT intervals achieve asymptotic conditional validity even if the initial CDE f is not consistent.
The following results are conditional on f£; all uncertainty refers to the calibration sample. We assume in
theorem 1 that the true distribution of Y|x and its initial estimate are continuous, and that F places its
mass on a region that is at least as large as that of F:

Assumption 1 (continuity of the cumulative distribution functions). For every x € X, F(-|x) and F(-|x)
are continuous functions.

Assumption 2 (F dominates F). For every x € X, F(-|x) dominates F(-|x).
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We also assume that F(-|x) cannot place too much mass in regions where the initial estimate F(-|x)
places little mass:

Assumption 3 (bounded density). There exists K > 0 such that, for every x € X, the Radon-Nikodym
derivative of F(+|x) with respect to F(+|x) is bounded above by K.

To provide rates of convergence for the recalibrated CDE, we will in addition assume that the regres-
sion method converges at a rate O(n="):

Assumption 4 (Convergence rate of the regression method). The regression method used to estimate # is
such that its convergence rate is given by

E {// (?*’?(W;X) —T?(W;X))zdvdP(X)} =O<nln>

Many methods satisfy assumption 4 for some value x, which is typically rated to the dimension of X
and the smoothness of the true regression r (see for instance Gyorfi et al 2002).
Under these assumptions, we can derive the rate of convergence for F:

for some x > 0.

Corollary 1 (convergence rate of recalibrated CDE). Under assumptions 1—4,

E[//(’ﬁ(ﬂx)F(yx))2dp(y,x)] o(iﬂ). (E.1)

Next, we show that with an uniformly consistent regression estimator # (7;x) (see Bierens 1983,
Hardle et al 1984, Liero 1989, Girard et al 2014for some examples), Cal-PIT intervals achieve asymp-
totic conditional validity, even if the initial CDE f{y|x) is not consistent.

Assumption 5 (uniform consistency of the regression estimator). The regression estimator is such that

sup [ (yix) = (yix) | —>—0,
XEX ,v€E[0,1] n—>00

where the convergence is with respect to the calibration set D only; fis fixed.

Theorem 2 (consistency and conditional coverage of Cal-PIT intervals). Let C;,(x) = [F~'(0.5xx);
F~'(1—0.5a[x)] be the oracle prediction band, and let C",(x) denote the Cal-PIT interval. Under
assumptions 1, 2 and 5,

AMCh (X) ACE (X)) ——0, (E2)

n—o0

where A is the Lebesgue measure in R and A is the symmetric difference between two sets. It follows that C?. (X)
has asymptotic conditional coverage of 1 — « (Lei et al 2018).

See appendix F.1 for theoretical results for Cal-PIT (HPD).
Appendix F. Proofs

Lemma 1. Let G and H be two cumulative distribution functions such that G dominates H, and let ug and piy
be their associated measures over R. Then, for every fixed y € R,

pr({y €R:y <y =pu({y’ €R:G(H) <G»)})-
<G

Proof. Fixyc RandletA={y'€R:y' <y}and B={y' eR: G(y') (y)}. Because A C B,

pr (A) < pip (B). (E1)

We note that pug(BN A€) = 0. From this and the assumption that G dominates H, we conclude that
ur(BNA°) = 0. It follows that

pur (B) = pur (BNA) + g (BN A) < i (A) +0
= pn(A). (E2)

From equations (E.1) and (F.2), we conclude that py(A) = uy(B). O
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Lemma 2. Fixy € R and let oy := E(y|x). Then, under assumptions 1 and 2, F(y|x) :’r?(’y;x) and
F(ylx) = (%)
Proof. We note that v = F(y|x) implies that y = F~! (v|x). It follows then by construction,
Fybo =F (B (7)) =7 (%),
Moreover,
F(ylx) = P(Y < ylx)

=P (F(vx) <Py |x)

(Assumption 2 and Lemma 1)

P (PIT (Y:x) < F(yx) |x)

—P(PIT(¥;%) < 7}¥)

=7 (v%),

which concludes the proof. O

Proof of theorem 1. Consider the change of variables v = F(y|x), so that dvy z?(y\x)dy. Lemma 2 implies
that F(y|x) =7 (7;x) and F(y|x) = #/(;x). It follows from that and assumption 3 that

[ [ (Fom-row) et <& [ [ (Folo - Fom0) To )
& [ [ (Ftin) ~ 7)) e,

which concludes the proof. O
Proof of corollary 1. Follows directly from assumption 4 and theorem 1. O

Proof of theorem 2. From lemma 2,

sup |F(ylx) —Fylx)[ = sup  [F(yix) = (15%)| —"—0,
xeX,yeR xEX,v€[0,1] n—>00

where the last step follows from assumption 5. It then follows from assumption 1 that

sup  [F7H(y[x) = F~' (y]x) | ——0,

XEX ,v€E[0,1]
and, in particular,
sup [F~! (alx) — F~ ' (alx) | ——0,
n—0o0

xeX,ae{.5a,1—.5a}
from which the conclusion of the theorem follows. O
E1. Theory for Cal-PIT HPD sets
For every x € X, let Co(x) = {y: f(y|x) Ty} Where fy , is such that fec f(y|x)dy =1-
« be the Cal-PIT HPD-set. Similarly, let HPD,, (x) = {y : f(¥|X) = tx.a }> where tx,o is such that

nyHPD ®) fly|x)dy =1 — « be the true HPD-set. The next theorem shows that if the probabilistic clas-
sifier is well estimated, then Cal-PIT HPD sets are exactly equivalent to oracle HPD sets.

Theorem 3 (fisher consistency Cal-PIT HPD-sets). Fixx € X. If7(7y;x) = r(y;x) for every v € [0, 1],
Co(x) =HPD, (x) and P(Y€ Co(X)|x) =1 —

Proof of theorem 3. Fixy € R and let v = F(y|x), so that y = F~!(7]x). It follows that
Flyp) = F (B~ (71x) ) =7(35%) = r(7:%)
=P (F(Y}x) <FOIx) Ix,7) = P(Y < ylx,7)

=F(lx),
and therefore f(y|x) = f(y|x) for almost every y € R. It follows that C, (x) = HPD,(x). The claim about con-
ditional coverage follows from the definition of the HPD. O
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E.2. Further details on experiments

We refer the reader to the online supplementary materials for details on the training of the regression
model to learn the PIT-CDF function in our experiments, further remarks on Example 3 (prediction
sets) results, and a description of the synthetic data generation and the training of the initial ConvMDN
model in Example 2.
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