

# Paradoxes and Paradigms: Are Maleimides Antiaromatic, Aromatic, or Neither?

Marcin Ptaszek<sup>1</sup> and Joel Fredric Liebman<sup>1, 2</sup>

1 Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA

2 Corresponding author.

E-mail: [mptaszek@umbc.edu](mailto:mptaszek@umbc.edu), [jliebman@umbc.edu](mailto:jliebman@umbc.edu)

## Orcid - e-mail

M. Ptaszek #0000-0001-6468-6900 [mptaszek@umbc.edu](mailto:mptaszek@umbc.edu)

J. F. Liebman #0000-0002-6109-7753 [jliebman@umbc.edu](mailto:jliebman@umbc.edu)

**Abstract:** The maleimide moiety is present in numerous species of commercial or theoretical interest. The resemblance of maleimide to aromatic pyrrole raise the question of the aromaticity of the former. Are maleimides aromatic or antiaromatic, or neither? Should they be described as N-substituted derivatives of (2,5-dihydro)pyrrole-2,5-dione or as pyrrole-2,5-dioxy biradical? Through an analysis of the energetics of neutral and ionic species alike, the former description is to be preferred with only minimal antiaromaticity associated with its 4  $\pi$  electrons.

**Keywords:** Antiaromaticity, aromaticity; enthalpy of formation; maleimides; N-substituted (2,5-dihydro)pyrrole-2,5-dione; pyrrole-2,5-dioxy biradical

The maleimide (pyrrole-2,5-dione) moiety (**1**) is present in numerous molecules of commercial or theoretical interest, including pharmaceuticals [1-4], fluorescent probes [5-8], fluorophores [9-14] and photoswitches [15-17]. Maleimide is also employed as bioconjugatable reactive group, due to the great reactivity of its C=C bond towards nucleophiles. [18]. Maleimide derivatives are useful building blocks and structural motifs utilized in, for example, helicenes [19,20] and multichromophoric arrays [21, 22]. In addition, maleimide is a powerful dienophile in Diels-Alder reaction, which is justified by

the presence of olefin substituted by two electron-withdrawing carbonyl groups [for selected examples of applications of maleimide in the Diels-Alder reaction, see [23-28].

The resemblance of maleimide to aromatic pyrrole raise the question on the aromaticity of the former. Particularly intriguing is the question on extent in which aromatic pyrrole-2,5-dioxy biradical (**2**) contributes to the structure of maleimide. In this regard, maleimide can be considered as an analog of quinone. The biradical character has been postulated for more elaborated quinoidal pyrrole derivatives. [29,30] We, thus analyzed here the maleimide, as a simplest quinoidal pyrrole derivative. Note, that simple quinodimethane pyrrole derivatives (**3**) received only limited attention [31], although this motif is present in porphyrins, [32] and the related chlorins, [33] corrins, [34, 35] and other cyclic [36] and acyclic [37,38] oligopyrrolic compounds. **We thereby will ignore all quinodimethane derivatives. [39, 40].** We limit **our analyses** to maleimide derivatives, and therefore exclude the analogous five membered dicarbonyl compound (i.e., maleic anhydride), as well as phthalimide, due to the importance and the prevalence of the maleimide, discussed above, and due to the potential importance of our discussion to the chemistry of porphyrins and related species.

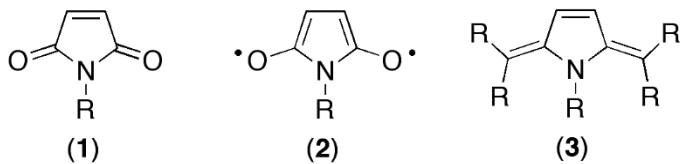



Figure 1. Structures of maleimide (**1**), pyrrole-2,5-dioxy biradical (**2**), and quinodimethane pyrrole derivative (**3**).

In the current study we briefly discuss the electronic description and energetics of maleimides. Should they be understood as N-substituted 2,5-dihydropyrrole-2,5-diones, **1**, and hence antiaromatic and therefore destabilized because of  $4\pi$  electrons in the heterocyclic ring? Or should these species be understood as pyrrole-2,5-dioxy biradicals, **2**, and therefore stabilized because of  $6\pi$  electrons in its ring? Let us start with our discussion with a brief return to the measurement of the enthalpy of formation of a particularly simple maleimide, the N-methyl derivative **4** (Figure 2) [41]. We now acknowledge that species is the sole maleimide for which there is a measured enthalpy

of combustion and accompanying enthalpy of formation. We also note that our thermochemical discussion emphasizes gas phase species. While this is rarely the phase that most organic chemists consider, absent are any intermolecular interactions that characterize the condensed phase, whether it be a solution or the pure liquid or solid. More precisely, we now give the enthalpies of formation of gaseous N-methylmaleimide, the species of interest as a solid, and for the enthalpy of sublimation that connects these two quantities:  $-329.3 \pm 1.4$ ,  $-256.0 \pm 1.5$  and  $73.3 \pm 0.5 \text{ kJ mol}^{-1}$  respectively. [41] (These values, and all others in the current paper, are in  $\text{kJ mol}^{-1}$ , where by definition  $1 \text{ kJ mol}^{-1} = 1/4.184 \text{ kcal mol}^{-1}$ . Furthermore, we will always implicitly refer to the gaseous species of interest at the “standard conditions” of  $25^\circ\text{C}$  and  $1 \text{ atm}$ .) In ref. [41] we find considerations of the hydrogenation of N-methylmaleimide resulting in N-methylsuccinimide **5** (Figure 2). Comparison was explicitly made with the nonaromatic cyclopentene and the resultant cyclopentane. In that the value of the hydrogenation enthalpy of N-methylmaleimide ( $137 \text{ kJ mol}^{-1}$ ) is  $27 \text{ kJ mol}^{-1}$  larger than the nonaromatic cyclopentene **6** ( $110 \text{ kJ mol}^{-1}$ ), suggests that N-methylmaleimide is antiaromatic by  $137 - 110 = 27 \text{ kJ mol}^{-1}$ .

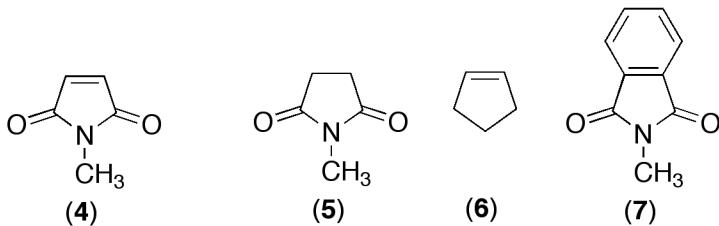



Figure 2. Structures of *N*-methyl maleimide (**4**), *N*-methylsuccinimide (**5**), cyclopentene (**6**), and *N*-methylphthalimide (**7**).

Alternatively, from the enthalpy of formation values in ref. [39] we find that the formal benzo-annelation of N-methylmaleimide to form N-methylphthalimide **7** is accompanied by an almost zero change. By contrast, the increase from cyclopentadiene to its benzo-analog indene is ca.  $27 \text{ kJ mol}^{-1}$  endothermic. The enthalpy of formation change associated with the unequivocally aromatic benzene to form naphthalene is endothermic by ca.  $70 \text{ kJ mol}^{-1}$ . The aforementioned ca. 30  $\text{kJ mol}^{-1}$  difference of cyclopentene and N-methylmaleimide may be ascribed to the

antiaromaticity of the latter species, in encouraging agreement with that suggested by our benzo-annulation logic. (For general discussions of aromaticity within the context of the energetics associated with benzo-annulation, see [42, 43])

It is tempting to compare N-methyl-2,5-dihydropyrrole-2,5-dione, **1**, and N-methyl-2,5-pyrrole-2,5-dioxy biradical, **2**, with **cyclo-1,4-hexadiene-2,5-dione 8** (Joel, is this a correct name? Do you mean **1,4-hexadiene3,6-dione**?) and benzene-1,3-dioxy biradical **9** (Figure 3). More precisely, the first entry for both pairs of compounds is a dione affixed to a nonaromatic backbone, while the second entry shows an aromatic backbone with two affixed oxy radicals. Let us now use more common names for cyclo-1,4-hexadiene-2,5-dione and benzene-1,3-dioxy biradical, species better known as p-benzoquinone and m-benzoquinone. Let us adopt the findings of ref. [44] or both species. The former isomer is considerably more stable than the latter, the recommended enthalpies of formation are  $-116 \pm 13$  and  $28 \pm 17 \text{ kJ mol}^{-1}$ , a difference of  $144 \pm 20 \text{ kJ mol}^{-1}$ . Relatedly, the enthalpy of hydrogenation to the corresponding p- and m-benzenediols (hydroquinone and resorcinol respectively) are  $160 \pm 13$  and  $313 \pm 17 \text{ kJ mol}^{-1}$ . This results in a difference of  $153 \pm 21 \text{ kJ mol}^{-1}$ , that of m-benzoquinone that much higher. For the reader who is much more comfortable with results from classical calorimetric measurements than those using the analysis of ion-molecule reactions, and thereby deprived of all information about m-benzoquinone, the recommended enthalpies of formation of (gas phase) p-benzoquinone [43] and hydroquinone [44] are  $-119 \pm 1$  and  $-261 \pm 1 \text{ kJ mol}^{-1}$  respectively. This corresponds to a hydrogenation enthalpy of p-benzoquinone of  $142 \pm 2 \text{ kJ mol}^{-1}$ . It is thus found that the values of the enthalpies of formation and hydrogenation of p-benzoquinone found by two methodologically independent studies are consistent within recommended error bars.

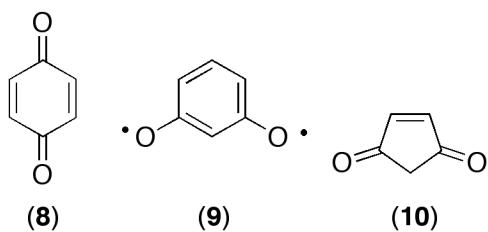



Figure 3. Structures of *p*-benzoquinone (**8**), benzene-1,3-dioxy biradical (**9**), and cyclopentene-3,5-dione (**10**).

This encourages us to trust the corresponding values for *m*-benzoquinone. As such, we trust the values for *N*-methyl-2,5-dihydropyrrole-2,5-dione and *N*-methyl-2,5-pyrrole-2,5-dioxy biradical and the derived conclusion that the former is much more stable. In other words, the description of maleimide as the classical 4  $\pi$  and so possibly antiaromatic species **1** is more correct than the plausible 6  $\pi$  and so possible aromatic diradical **2**. Gaining the conventionally high degree of aromaticity of benzene, and the lessened aromaticity of pyrrole, upon diradical formation are insufficient to overcome the loss of two carbonyl  $\pi$  bonds upon “conversion” of **1** into **2**.

Another study of the energetics of quinones involved gas phase electron affinity measurements. Perhaps not surprisingly the electron affinity of the *m*-isomer is found to be greater than that of the *p*-isomer by ca 95 kJ mol<sup>-1</sup> [43, 47]. Upon formation of the isomeric semiquinone, less carbon-oxygen  $\pi$  bonding is lost for the *m*- than its *p*-isomer. This discussion of electron affinities returns us to the electron affinity of *N*-methylmaleimide. The aforementioned high dienophilicity of maleimides in [4 + 2] cycloaddition reactions suggests a high electron affinity. The electron affinity of a variety of *N*-substituted maleimides have been studied [48] and the value is ca. 110 kJ mol<sup>-1</sup> regardless of the group on nitrogen. This invariance is quite surprising. Even more so is that roughly the same value is found for the isoelectronic carbocycle cyclopentene-3,5-dione **10** (Figure 3) in which  $>\text{CH}_2$  has replaced the various  $>\text{NR}$  groups. These findings would be hard to reconcile if the maleimides were, in fact, pyrrole-2,5-dioxy radicals.

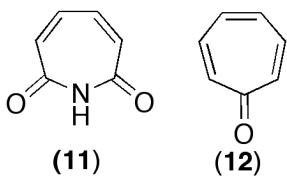



Figure 4. Structures of azepine-2,7-dione (**11**) and tropone (**12**).

Now, should maleimides have only minimal antiaromaticity, then the related ring-expanded species with 6  $\pi$  electrons, alternatively named azepine-2,7-dione and muconimides **11** (Figure 4), would be expected to be but weakly aromatic. Indeed, the

N-methyl derivative muconimide has been suggested [49] to have less aromatic character than the  $\pi$ -isoelectronic tropone **12** (Figure 4), a carbocyclic species long documented to be but weakly aromatic [50, 51, 52]. We would relatedly suggest that maleimides should be less antiaromatic than the  $\pi$ -isoelectronic tropone and muconimide are aromatic. In turn, the aromaticity of tropone would be expected to be less than the antiaromaticity of cyclopentadienone [52]. Using methodologies analogous to that earlier employed for the isomeric benzoquinones, cyclopentadienone has been suggested to have negligible antiaromaticity [53]. Once again, we conclude that maleimides enjoy little antiaromatic character.

Yet another probe of the aromaticity/antiaromaticity of maleimides is shown by reactions with diversely substituted benzhydrylium ions **13** and quinone methides **14** (in aprotic solvents, Figure 5) the nucleophilicity of a large variety of N-based anions has been determined [54]. These studies showed that the anions of maleimide and succinimide, as their potassium salts, have very nearly the same nucleophilicity, the former slightly higher suggested therein to be due to “the higher electronegativity of  $sp^2$  - compared to  $sp^3$  -hybridized carbon atoms.”. No effect arising from any difference in the aromaticity/antiaromaticity of the two anions was suggested.

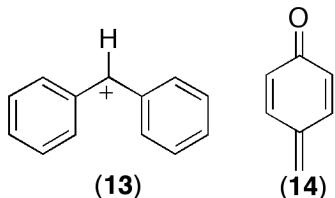



Figure 5. Structures of benzhydrylium ions (**13**), and quinone methide (**14**).

We thus conclude that N-maleimides exhibit only a small degree of aromaticity or antiaromaticity, and that these species are not to be understood as pyrrole-2,5-dioxy biradical derivatives.

## Acknowledgment

We also wish to thank Prof. Paul Smith for helpful comments on our study. Both authors are likewise grateful to the UMBC library science reference staff for supporting our extensive use of SciFinder<sup>n</sup>.

## Author contribution

J. F. L. designed the study and wrote the manuscript, M. P. wrote the introduction and contributed to the study design.

## Funding

M. P. gratefully acknowledges National Science Foundation (grant CHE-1955318)

## ***Code applicability***

Not applicable

## ***Data availability***

Not applicable.

## Declarations

## ***Ethical approval***

We did not perform any experiments when preparing this article, so neither ethics review nor informed consent was necessary.

## ***Consent to participate***

Both authors agreed with participation in research and publication of the results.

## ***Consent to publish***

Both authors have approved the manuscript before submission, including the names and order of authors.

***Competing interests***

The authors declare no competing interests

## References

[1] Gaisina IN, Gallier F, Ougolkov AV, Kim KH, Kurome T, Guo, S.; Holzle D, Luchini DN, Blond SY, Billadeau DD, Kozikowski AP (2009) From a natural product lead to the identification of potent and selective benzofuran-3-yl-(indol-3-yl)maleimides as glycogen synthase kinase 3b inhibitors that suppress proliferation and survival of pancreatic cancer cells. *J Med Chem* 52: 1853-1863. <https://doi.org/10.1021/jm801317h>

[2] Wagner J, von Matt SR, Albert R, Cooke N, Ehrhardt C, Geiser M, Rummel G, Stark W, Strauss A, Cowan-Jacob SW, Beerli C, Weckbecker G, Evanou JP, Zenke G, Cottens S (2009) Discovery of 3-(1H-indol-3-yl)-4-[2-(4-methylpiperazin-1-yl)quinazolin-4-yl]-pyrrole-2,5-dione (AEB071), a potent and selective inhibitor of protein kinase C isotypes. *J Med Chem* 52: 6193-6196. <https://doi.org/10.1021/jm901108b>

[3] Gunosewuyo H, Midzak A, Gaisina IN, Sabath EV, Fedolak A, Hanania T, Brunner D, Papadopoulos V, Kozikowski AP (2013) Characterization of maleimide-based glycogen synthase kinase-3(GSK-3) inhibitors as stimulators of steroidogenesis. *J Med Chem* 56: 5115-5129. <https://doi.org/10.1021/jm400511s>

[4] Zhang M, Li B, Chen H, Lu H, Ma H, Cheng X, Wang W, Wang Y, Ding Y, Hu A (2020) Triggering the antitumor activity of acyclic enediyne through maleimide-assisted rearrangement and cycloaromatization. *J Org Chem* 85: 9808-9819. <https://doi.org/10.1021/acs.joc.0c01124>

[5] Chen Y, Tsao K, Acton SL, Keillor JW (2018) A green BODIPY-based, super-fluorogenic, protein-specific labelling agent. *Angew Chem Int Ed* 57: 12390-12394. <https://doi.org/10.1002/anie.201805482>

[6] Matsumoto T, Urano Y, Shoda T, Kojima H, Nagano T (2007) A thiol-reactive fluorescence probe based on donor-excited photoinduced electron transfer: key role of ortho substitution. *Org Lett* 9: 3375-3377. <https://doi.org/10.1021/o1071352e>

[7] Kand D, Kalle AM, Varma SJ, Talukdar PA (2012) Chromenoquinoline-based fluorescent off-on thiol probe for bioimaging. *Chem Commun* 48: 2722-2742. <https://doi.org/10.1039/C2CC16593G>

[8] Chen Y, Parr T, Holmes AE, Nakanishi K (2008) Porphyrinmaleimides: towards thiol probes for cysteine residues in proteins. *Bioconjugate Chem* 19: 5-9.

<https://doi.org/10.1021/bc700267f>

[9] Yeh HC, Wu WC, Chen CT (2003) The colorful fluorescence from readily-synthesized 3,4-diaryl-substituted maleimide fluorophores. *Chem Comm* 404-405.

<https://doi.org/10.1039/B211537A>

[10] Nakazono M, Nanobu S, Uesaki A, Kuwano R, Kashiwabara M, Zaitsu K (2007) Bisindolylmaleimides with large Stokes shift and long-lasting chemiluminescence properties. *Org. Lett.* 9: 3583-3586. <https://doi.org/10.1021/ol701431g>

[11] Price J, Albright E, Decken A, Eisler S (2019) Thioarylamides: accessible, tunable, and strongly emissive building blocks. *Org Biomol Chem* 17: 9562-9566.

<https://doi.org/10.1039/C9OB01741K>

[12] Yeh HC, Wu WC, Wen YS, Dai DC, Wang JK, Chen CT (2004) Derivatives of  $\alpha,\beta$ -dicyanostilbene: Convenient precursor for the synthesis of diphenylmaleimide compounds, E-Z isomerization, crystal structure, and solid-state fluorescence. *J Org Chem* 69: 6455-6462. <https://doi.org/10.1021/jo049512c>

[13] Yang Z, Li X, Yang K, Yu N, Gao R, Ren Y (2023) Synthesis and unexpected optical properties of ionic phosphorus heterocycles with P-regulated noncovalent interactions. *J Org Chem* 88: 2792-2800. <https://doi.org/10.1021/acs.joc.2c02424>

[14] Xie HD, Ho LA, Truelove MS, Corry B, Stewart SG (2010) Fluorescent triphenyl substituted maleimide derivatives: synthesis, spectroscopy, and quantum chemical calculations. *J Fluores* 20, 1077-1085. <https://doi.org/10.1007/s10895-010-0660-y>

[15] Fukaminato T, Irie M (2006) Reversible fluorescence wavelength shift based on photoinduced aggregate formation. *Adv Mater* 18: 3225-3228. <https://doi.org/10.1002/adma.200601222>

[16] van Herpt JT, Stuart MCA, Browne WR, Feringa BL (2014) A Dithienylethene-based rewritable hydrogelator. *Chem Eur J* 20: 3077-3083.

<https://doi.org/10.1002/chem.201304064>

[17] Ohsumi M, Fukaminato T, Irie M (2005) Chemical control of the photochromic reactivity of diarylethene derivatives. *Chem Comm* 3921-3923.

<https://doi.org/10.1039/B506801K>

[18] Ravasco JM, Faustino H, Trindade A, Gois PMP (2019) Bioconjugation with maleimides: a useful tool for chemical biology. *Chem Eur J* 25: 43-59.

<https://doi.org/10.1002/chem.201803174>

[19] Waghray D, Nulens W, Dehaen W (2011). Efficient synthesis of benzo fused tetrathia[7]helicenes. *Org Lett* 13: 5516-5519. <https://doi.org/10.1021/ol202236r>

[20] Bock H, Subervie D, Mathey P, Pradhan A, Sarkar P, Dechambenoit P, Hilard EA, Durola F (2014) Helicenes from diarylmaleimides. *Org Lett* 16: 1546-1549.

<https://doi.org/10.1021/ol500154k>

[21] Ansteatt S, Gelfand R, Pelton M, Ptaszek M (2023) Geometry-independent ultrafast energy transfer in bioinspired arrays containing electronically coupled BODIPY dyads as energy donors. *Chem Eur J* submitted for publication.

[22] Ansteatt S, Uthe B, Mandal B, Gelfand R, Dunietz BD, Pelton M, Ptaszek M (2023) Engineering giant excitonic coupling in bioinspired, covalently bridged BODIPY dyads. *Phys Chem Chem Phys* 25: 8013-8027. <https://doi.org/10.1039/D2CP05621F>

[23] Rulisek L, Sebek P, Havlas Z, Hrabal R, Capek P, Svatos A (2005) An experimental and theoretical study of stereoselectivity of furan-maleic anhydride and furan-maleimide Diels-Alder reactions. *J Org Chem* 70: 6295-6302. <https://doi.org/10.1021/jo050759z>

[24] Yoshioka S, Aoyama H, Fujioka H, Arisawa M (2018) Cascade, multiple Diels-Alder reactions of styrene derivatives with maleimide or maleic anhydride. *J Org Chem* 83: 6599-6606. <https://doi.org/10.1021/acs.joc.8b00890>

[25] Gidron O, Shimon LJW, Leitus G, Bendikov M (2012) Reactivity of long conjugated systems: selectivity of Diels-Alder cycloaddition in oligofurans. *Org Lett* 14: 502-505. <https://doi.org/10.1021/ol202987e>

[26] Uchoa AF, de Oliveira KT, Baptista MS, Bortoluzzi AJ, Iamamoto Y, Serra OA (2011) Chlorin photosensitizers sterically designed to prevent self-aggregation. *J Org Chem* 76: 8824-8832. <https://doi.org/10.1021/jo201568n>

[27] Fallon T, Willis AC, Paddon-Row MN, Sherburn MS (2014) Furanodendralenes. *J Org Chem* 79: 3185-3193. <https://doi.org/10.1021/jo500458y>

[28] Werner S, Curran DP (2003) Fluorous dienophiles are powerful diene scavengers in Diels-Alder reactions. *Org Lett* 5: 3293-3296. <https://doi.org/10.1021/o1035214a>

[29] Zeng Z, Ishida M, Zafra JL, Zhu X, Sung YM, Bao N, Webster RD, Lee BS, Li RW, Zeng W, Li Y, Chi C, Navarrete JTL, Ding J, Casado J, Kim D, Wu J (2013) Pushing extended p-quinodimethanes to the limit: stable tetracyano-oligo(N-annulated perylene)quinodimethanes with tunable ground states. *J Am Chem Soc* 135: 6363-6371. <https://doi.org/10.1021/ja402467y>

[30] Zeng Z, Lee S, Zafra JL, Ishida M, Zhu X, Sun Z, Ni Y, Webster RD, Li RW, Navarrete JTL, Chi C, Dinh J, Casado J, Kim D, Wu J (2013) Tetracyanoquerrylene and tetracyanohexarylenequinodimethanes with tunable ground states and strong near-infrared absorption. *Angew Chem Int Ed* 52: 8561-8565.  
<https://doi.org/10.1002/anie.201305348>

[31] Ishii A, Horikawa Y, Takaki I, Shibata J, Nakayama J, Hosh M (1991) Preparation of 2,5-bis(diaryl)methylene)-2,5-dihydrothiophenes and their furan, selenophene, and N-methylpyrrole analogs. *Tetrahedron Lett* 32: 4313-4316. [https://doi.org/10.1016/S0040-4039\(00\)92158-0](https://doi.org/10.1016/S0040-4039(00)92158-0)

[32] Gouterman M (1978) Optical spectra and electronic structure of porphyrins and related rings. in *The Porphyrins*. Dolphin, D. Volume III, pages 1-156. Academic Press.

[33] Lindsey JS (2015) De novo synthesis of gem-dialkyl chlorophyll analogues for probing and emulating our green world. *Chem Rev* 115: 6534-6620.  
<https://doi.org/10.1021/acs.chemrev.5b00065>

[34] Brown KL (2005) Chemistry and enzymology of vitamin B<sub>12</sub>. *Chem Rev* 105: 2075-2149. <https://doi.org/10.1021/cr030720z>

[35] Eschenmoser A (1979) in Vitamin B12, ed. B. Zagalak and W. Friedrich, Walter de Gruyter, Berlin, pp. 89–117.

[36] Mack J (2017) Expanded, contracted, and isomeric porphyrins: theoretical aspects. *Chem Rev* 117: 3444-3478. <https://doi.org/10.1021/acs.chemrev.6b00568>

[37] Bongards C, Gartner W (2010) The role of the chromophore in the biological photoreceptor phytochrome: an approach using chemically synthesized tetrapyrroles. *Acc Chem Res* 43: 485-495. <https://doi.org/10.1021/ar800133x>

[38] Tomat E, Curtis CJ (2021) Biopyrrin pigments: from heme metabolites to redox-active ligands and luminescent radicals. *Acc Chem Res* 54: 4584-4594. <https://doi.org/10.1021/acs.accounts.1c00613>

[39] Hammad LA, Wenthold PG (2000) Synthesis, Characterization, and Reactivity of the m-Xylylene Anion in the Gas Phase. The Enthalpy of Formation of m-Xylylene. *J. Am. Chem. Soc.*, 122: 11203-11211. <https://doi.org/10.1021/ja960663+>

[40] Pei Z, Magann NL, Sowden MJ, Murphy RB, Gardiner MG, Sherburn MS, Coote ML (2023) Computational and experimental confirmation of the diradical character of *para*-quinonemethide. *J. Am. Chem. Soc. ASAP Article*. <https://doi.org/10.1021/jacs.3c04363>

[41] Roux MV, Jiménez P, Martin-Luengo MA, Dávalos JZ, Sun Z, Hosmane RS, Liebman JF (1997) The elusive antiaromaticity of maleimides and maleic anhydride: Enthalpies of formation of N-methylmaleimide, N-methylsuccinimide, N-methylphthalimide and N-benzoyl-N-methylbenzamide. *J Org Chem* 62:2732-2737. <https://doi.org/10.1021/jo9621985>

[42] Matos MAR, Liebman JF (2009) In Gupta RR, Krygowski TM, Cyranski MK (eds) *Topics in heterocyclic chemistry: experimental thermochemistry of heterocycles and their aromaticity. A study of nitrogen, oxygen, and sulfur derivatives of indane and indene*, vol 19. Springer, Heidelberg, pp 1–26 [https://doi10.1007/7081\\_2008\\_5](https://doi10.1007/7081_2008_5)

[43] Miranda MS, Matos MAR, Morais VMF, Liebman JF (2011) Paradigms and paradoxes: The aromaticity of 6:6 fused carbocycles and heterocycles as an extension of a study of indane and indene derivatives. *Struct Chem* 22:1221-1224 (2011). <http://doi.org/10.1007/s11224-011-9812-1>

[44] Fattahi A, Kass SR, Liebman JF, Matos MAR, Miranda MS, Morais VMF (2005) The enthalpies of formation of o-, m-and p-benzoquinone: gas-phase ion energetics, combustion calorimetry and quantum chemical computations combined. *J Am Chem Soc*, 127:6116-6122. <https://doi.org/10.1021/ja042612f>

[45] Emel'yanenko VN; Varfolomeev MA, Novikov VB, Turovtsev VV, Orlov YD (2017) Thermodynamic properties of 1,4-benzoquinones in gaseous and condensed phases: experimental and theoretical studies. *J Chem Eng Data* 62:2413-2422. <https://doi.org/10.1021/acs.jced.7b00354>

[46] Gonçalves EM, Agapito F, Almeida TS; Martinho Simões JA, (2014) Enthalpies of formation of dihydroxybenzenes revisited: Combining experimental and high-level ab initio data. *J Chem Thermodyn* 73:90-99. <https://doi.org/10.1016/j.jct.2013.10.032>

[47] Fu QA; Yang JL; Wang XB (2001) On the electronic structures and electron affinities of the m-benzoquinone (BQ) diradical and the o-, p-BQ molecules: A synergetic photoelectron spectroscopic and theoretical study, *J Phys Chem A*, 2011, 115, 3201-3207. <https://doi.org/10.1021/jp1120542>

[48] Paul G, Kebarle P (1989) Electron affinities of cyclic unsaturated dicarbonyls: Maleic anhydrides, maleimides, and cyclopentenedione, *J Am Chem Soc* 111:464-470. <https://doi.org/10.1021/ja00184a009>

[49] Shapiro R, Nesnow S (1969) 1-Methylazepine-2,7-dione: Synthesis and reactions, *J Org Chem* 34:1695-1700. <https://doi.org/10.1021/jo01258a036>

[50] Doering WvE, Detert F (1951) Cycloheptatrienylum oxide. *J Am Chem Soc* 73:876-877

[51] Turner RB, Meador WR, Doering WvE, Knox LH, Mayer JR, Wiley DW (1957) Heats of hydrogenation. III. Hydrogenation of cyclooctatetraene and of some seven-

membered nonbenzenoid aromatic compounds, J Am Chem Soc 79:4127-4133.

<https://doi.org/10.1021/ja01572a041>

[52] Hess BA Jr; Schaad LJ. Holyoke CW Jr (1972) Aromaticity of annulenones. Tetrahedron 28:5299-5305.

[53] Fattahi A, Liebman JF, Miranda MS, Morais VMF, Matos MAR, Lis L, Kass SR (2014) Indenone and cyclopentadienone energetics via mass spectrometry and computations: Are these species antiaromatic or 'merely' nonaromatic? Intl J Mass Spectry 369:87-91. <https://doi.org/10.1016/j.ijms.2014.06.011>. This paper was reprinted without change as Intl. J. Mass Spectry, 378:175-179 (2015)

<https://doi.org/10.1016/j.ijms.2014.07.042> as part of a special issue of the *International Journal of Mass Spectrometry* in honor of Prof. Veronica M. Bierbaum.

[54] Breugst M, Tokuyasu T, Mayr, H (2010) Nucleophilic reactivities of imide and amide anions. J Org Chem 75: 5250-5258. <https://doi.org/10.1021/jo1009883>