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Abstract: The maleimide moiety is present in numerous species of commercial or 

theoretical interest.  The resemblance of maleimide to aromatic pyrrole raise the 

question of the aromaticity of the former. Are maleimides aromatic or antiaromatic, or 

neither? Should they be described as N-substituted derivatives of (2,5-dihydro)pyrrole-

2,5-dione or as pyrrole-2,5-dioxy biradical? Through an analysis of the energetics of 

neutral and ionic species alike, the former description is to be preferred with only 

minimal antiaromaticity associated with its 4 π electrons.  
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The maleimide (pyrrole-2,5-dione) moiety (1) is present in numerous molecules of 

commercial or theoretical interest, including pharmaceuticals [1-4], fluorescent probes [5-

8], fluorophores [9-14] and photoswitches [15-17]. Maleimide is also employed as 

bioconjugatable reactive group, due to the great reactivity of its C=C bond towards 

nucleophiles. [18]. Maleimide derivatives are useful building blocks and structural motifs 

utilized in, for example, helicenes [19,20] and multichromophoric arrays [21, 22]. In 

addition, maleimide is a powerful dienophile in Diels-Alder reaction, which is justified by 
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the presence of olefin substituted by two electron-withdrawing carbonyl groups [for 

selected examples of applications of maleimide in the Diels-Alder reaction, see [23-28]. 

The resemblance of maleimide to aromatic pyrrole raise the question on the 

aromaticity of the former. Particularly intriguing is the question on extent in which aromatic 

pyrrole-2,5-dioxy biradical (2) contributes to the structure of maleimide. In this regard, 

maleimide can be considered as an analog of quinone. The biradical character has been 

postulated for more elaborated quinoidal pyrrole derivatives. [29,30] We, thus analyzed 

here the maleimide, as a simplest quinoidal pyrrole derivative. Note, that simple 

quinodimethane pyrrole derivatives (3) received only limited attention [31], although this 

motif is present in porphyrins, [32] and the related chlorins, [33] corrins, [34, 35] and other 

cyclic [36] and acyclic [37,38] oligopyrrolic compounds. We thereby will ignore all 

quinodimethane derivatives. [39, 40].  We limit our analyses to maleimide derivatives, and 

therefore exclude the analogous five membered dicarbonyl compound (i.e., maleic 

anhydride), as well as phthalimide, due to the importance and the prevalence of the 

maleimide, discussed above, and due to the potential importance of our discussion to the 

chemistry of porphyrins and related species.  

 

Figure 1. Structures of maleimide (1), pyrrole-2,5-dioxy biradical (2), and 

quinodimethane pyrrole derivative (3). 

In the current study we briefly discuss the electronic description and energetics of 

maleimides. Should they be understood as N-substituted 2,5-dihydropyrrole-2,5-diones, 

1, and hence antiaromatic and therefore destabilized because of 4π electrons in the 

heterocyclic ring? Or should these species be understood as pyrrole-2,5-dioxy 

biradicals, 2, and therefore stabilized because of 6π electrons in its ring? Let us start 

with our discussion with a brief return to the measurement of the enthalpy of formation 

of a particularly simple maleimide, the N-methyl derivative 4 (Figure 2) [41]. We now 

acknowledge that species is the sole maleimide for which there is a measured enthalpy 



of combustion and accompanying enthalpy of formation. We also note that our 

thermochemical discussion emphasizes gas phase species. While this is rarely the 

phase that most organic chemists consider, absent are any intermolecular interactions 

that characterize the condensed phase, whether it be a solution or the pure liquid or 

solid. More precisely, we now give the enthalpies of formation of gaseous N-

methylmaleimide, the species of interest as a solid, and for the enthalpy of sublimation 

that connects these two quantities: -329.3 ± 1.4, -256.0 ± 1.5 and 73.3 ± 0.5 kJ mol-1 

respectively. [41] (These values, and all others in the current paper, are in kJ mol-1, 

where by definition 1 kJ mol-1 = 1/4.184 kcal mol-1. Furthermore, we will always implicitly 

refer to the gaseous species of interest at the “standard conditions” of 25oC and 1 atm.) 

In ref. [41] we find considerations of the hydrogenation of N-methylmaleimide resulting 

in N-methylsuccinimide 5 (Figure 2). Comparison was explicitly made with the 

nonaromatic cyclopentene and the resultant cyclopentane. In that the value of the 

hydrogenation enthalpy of N-methylmaleimide (137 kJ mol-1) is 27 kJ mol-1 larger than 

the nonaromatic cyclopentene 6 (110 kJ mol-1), suggests that N-methylmaleimide is 

antiaromatic by 137 – 110 = 27 kJ mol-1. 

 

Figure 2. Structures of N-methyl maleimide (4), N-methylsuccinimide (5), 

ceclopentene (6), and N-methylphthalimide (7).     

Alternatively, from the enthalpy of formation values in ref. [39] we find that the 

formal benzo-annelation of N-methylmaleimide to form N-methylphthalimide 7 is 

accompanied by an almost zero change.  By contrast, the increase from 

cyclopentadiene to its benzo-analog indene is ca. 27 kJ mol-1 endothermic.  The 

enthalpy of formation change associated with the unequivocally aromatic benzene to 

form naphthalene is endothermic by ca. 70 kJ mol-1.  The aforementioned ca. 30 kJ  

mol-1 difference of cyclopentene and N-methylmaleimide may be ascribed to the 



antiaromaticity of the latter species, in encouraging agreement with that suggested by 

our benzo-annelation logic. (For general discussions of aromaticity within the context of 

the energetics associated with benzo-annelation, see [42, 43])   

It Is tempting to compare N-methyl-2,5-dihydropyrrole-2,5-dione, 1, and N-

methyl-2,5-pyrrole-2,5-dioxy biradical, 2, with cyclo-1,4-hexadiene-2,5-dione 8  (Joel,is 

this a correct name? Do you mean 1,4-hexadiene3,6-dione?) and benzene-1,3-dioxy 

biradical 9 (Figure 3). More precisely, the first entry for both pairs of compounds is a 

dione affixed to a nonaromatic backbone, while the second entry shows an aromatic 

backbone with two affixed oxy radicals. Let us now use more common names for cyclo-

1,4-hexadiene-2,5-dione and benzene-1,3-dioxy biradical, species better known as p-

benzoquinone and m-benzoquinone. Let us adopt the findings of ref. [44] or both 

species. The former isomer is considerably more stable than the latter, the 

recommended enthalpies of formation are -116 ± 13 and 28 ± 17 kJ mol-1, a difference 

of 144 ± 20 kJ mol-1. Relatedly, the enthalpy of hydrogenation to the corresponding p-

and m-benzenediols (hydroquinone and resorcinol respectively) are 160 ± 13 and 313 ± 

17 kJ mol-1.  This results in a difference of 153 ± 21 kJ mol-1, that of m-benzoquinone 

that much higher. For the reader who is much more comfortable with results from 

classical calorimetric measurements than those using the analysis of ion-molecule 

reactions, and thereby deprived of all information about m-benzoquinone, the 

recommended enthalpies of formation of (gas phase) p-benzoquinone [43] and 

hydroquinone [44] are -119 ± 1 and -261 ± 1 kJ mol-1 respectively. This corresponds to a 

hydrogenation enthalpy of p-benzoquinone of 142 ± 2 kJ mol-1 . It is thus found that the 

values of the enthalpies of formation and hydrogenation of p-benzoquinone found by 

two methodologically independent studies are consistent within recommended error 

bars.  

 



Figure 3. Structures of p-benzoquinone (8), benzene-1,3-dioxy biradical (9), and 

cyclopentene-3,5-dione (10). 

This encourages us to trust the corresponding values for m-benzoquinone. As 

such, we trust the values for N-methyl-2,5-dihydropyrrole-2,5-dione and N-methyl-2,5-

pyrrole-2,5-dioxy biradical and the derived conclusion that the former is much more 

stable. In other words, the description of maleimide as the classical 4 π and so possibly 

antiaromatic species 1 is more correct than the plausible 6 π and so possible aromatic 

diradical 2. Gaining the conventionally high degree of aromaticity of benzene, and the 

lessened aromaticity of pyrrole, upon diradical formation are insufficient to overcome the 

loss of two carbonyl π bonds upon “conversion” of 1 into 2.   

Another study of the energetics of quinones involved gas phase electron affinity 

measurements. Perhaps not surprisingly the electron affinity of the m-isomer is found to 

be greater than that of the p-isomer by ca 95 kJ mol-1 [43, 47]. Upon formation of the 

isomeric semiquinone, less carbon-oxygen π bonding is lost for the m- than its p-isomer. 

This discussion of electron affinities returns us to the electron affinity of N-

methylmaleimide. The aforementioned high dienophilicity of maleimides in [4 + 2] 

cycloaddition reactions suggests a high electron affinity. The electron affinity of a variety 

of N-substituted maleimides have been studied [48] and the value is ca. 110 kJ mol-1 

regardless of the group on nitrogen. This invariance is quite surprising. Even more so is 

that roughly the same value is found for the isoelectronic carbocycle cyclopentene-3,5-

dione 10 (Figure 3) in which >CH2 has replaced the various >NR groups. These findings 

would be hard to reconcile if the maleimides were, in fact, pyrrole-2,5-dioxy radicals.  

 

Figure 4. Structures of azepine-2,7-dione (11) and tropone (12).  

Now, should maleimides have only minimal antiaromaticity, then the related ring-

expanded species with 6 π electrons, alternatively named azepine-2,7-dione and 

muconimides 11 (Figure 4), would be expected to be but weakly aromatic.  Indeed, the 



N-methyl derivative muconimide has been suggested [49] to have less aromatic 

character than the π-isoelectronic tropone 12 (Figure 4), a carbocyclic species long 

documented to be but weakly aromatic [50, 51, 52]. We would relatedly suggest that 

maleimides should be less antiaromatic than the π-isoelectronic tropone and 

muconimide are aromatic. In turn, the aromaticity of tropone would be expected to be 

less than the antiaromaticity of cyclopentadienone [52]. Using methodologies analogous 

to that earlier employed for the isomeric benzoquinones, cyclopentadienone has been 

suggested to have negligible antiaromaticity [53].  Once again, we conclude that 

maleimides enjoy little antiaromatic character.  

Yet another probe of the aromaticity/antiaromaticity of maleimides is shown by 

reactions with diversely substituted benzhydrylium ions 13 and quinone methides 14 (in 

aprotic solvents, Figure 5) the nucleophilicity of a large variety of N-based anions has 

been determined [54]. These studies showed that the anions of maleimide and 

succinimide, as their potassium salts, have very nearly the same nucleophilicity, the 

former slightly higher suggested therein to be due to “the higher electronegativity of sp2 

- compared to sp3 -hybridized carbon atoms.”. No effect arising from any difference in 

the aromaticity/antiaromaticity of the two anions was suggested.  

 

Figure 5. Structures of benzhydrylium ions (13), and quinone methide (14). 

We thus conclude that N-maleimides exhibit only a small degree of aromaticity or 

antiaromaticity, and that these species are not to be understood as pyrrole-2,5-dioxy 

biradical derivatives. 
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