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Abstract

We propose a novel modular inference approach combining two different generative models
— generative adversarial networks (GAN) and normalizing flows — to approximate the poste-
rior distribution of physics-based Bayesian inverse problems framed in high-dimensional ambi-
ent spaces. We dub the proposed framework GAN-Flow. The proposed method leverages the
intrinsic dimension reduction and superior sample generation capabilities of GANs to define a
low-dimensional data-driven prior distribution. Once a trained GAN-prior is available, the inverse
problem is solved entirely in the latent space of the GAN using variational Bayesian inference
with normalizing flow-based variational distribution, which approximates low-dimensional pos-
terior distribution by transforming realizations from the low-dimensional latent prior (Gaussian)
to corresponding realizations of a low-dimensional variational posterior distribution. The trained
GAN generator then maps realizations from this approximate posterior distribution in the latent
space back to the high-dimensional ambient space. We also propose a two-stage training strategy
for GAN-Flow wherein we train the two generative models sequentially. Thereafter, GAN-Flow
can estimate the statistics of posterior-predictive quantities of interest at virtually no additional
computational cost. The synergy between the two types of generative models allows us to over-
come many challenges associated with the application of Bayesian inference to large-scale inverse
problems, chief among which are describing an informative prior and sampling from the high-

1



10

11

12

13

14

15

dimensional posterior. GAN-Flow does not involve Markov chain Monte Carlo simulation, mak-
ing it particularly suitable for solving large-scale inverse problems. We demonstrate the efficacy
and flexibility of GAN-Flow on various physics-based inverse problems of varying ambient di-
mensionality and prior knowledge using different types of GANs and normalizing flows. Notably,
one of the applications we consider involves a 65,536-dimensional inverse problem of phase re-
trieval wherein an object is reconstructed from sparse noisy measurements of the magnitude of its

Fourier transform.

Keywords: Inverse problems, Bayesian inference, variational inference, generative modeling,

uncertainty quantification

1. Introduction

Inverse problems are useful for determining the causal factors behind an observed phenomenon
but remain challenging to solve. Inverse problems are ill-posed and, as such, they may admit mul-
tiple or, in the extreme case, no solutions [1]. Moreover, in most practical applications, the forward
problem is nonlinear, the inferred quantity is high-dimensional, and measurements are noisy: all of
these factors makes it challenging to solve inverse problems. Deterministic approaches to solving
inverse problems result in point estimates, i.e., a single solution to the inverse problem at hand,
which precludes other possible solutions. In contrast, the Bayesian paradigm treats inverse prob-
lems in a stochastic setting, with the posterior distribution characterizing all possible solutions to
the inverse problem at hand. Using Bayes’ rule, the posterior distribution results from updating the
prior distribution through a likelihood function: this process is known as Bayesian inference. The
posterior distribution is also useful for quantifying the relative plausibility of different solutions,
popularly known as uncertainty quantification. Bayesian inference is attractive because it is philo-
sophically appealing and conceptually simple while giving additional useful information about
uncertainty in the solution. However, the application of Bayesian inference poses many practical

and computational challenges. On a practical note, selecting a well-informed prior distribution is
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crucial to the success of Bayesian inference. However, the task of choosing such a distribution
capable of accommodating the myriad of variations encountered in practical solution fields is far
from straightforward. Even with a carefully designed prior, Bayesian inference remains compu-
tationally challenging because only a few cases permit closed-form posterior distributions, i.e.,
those where the prior and likelihood distributions form a conjugate pair. Unfortunately, scenarios
where it is possible to leverage Bayesian conjugacy seldom occur, and the posterior distribution
must be approximated using appropriate tools.

One way of approximating the posterior distribution is through samples drawn from it. Markov
chain Monte Carlo (MCMC) methods have been the workhorse of posterior sampling for almost
half a century [2]. However, the application of MCMC can be challenging on large-scale in-
verse problems, i.e., when the inferred quantity is high-dimensional — this is popularly known
as the ‘curse of dimensionality’. The difficulty manifests as long mixing times and larger auto-
correlations between successive samples of Markov chains [3, 4]. Many notable advancements
have been proposed to improve the performance of MCMC methods. Some advanced meth-
ods focus on carefully designing the proposal distributions in high dimensions to reduce mixing
times [5, 6]. Alternatively, some approaches try to reduce the stochastic dimensionality of the in-
verse problem [3, 7]. Despite these advancements, the application of MCMC to large-scale inverse
problems continues to present significant challenges.

Variational inference is often considered a computationally efficient alternative approach for
approximating the posterior distribution [8]. In this approach, a parameterized family of distribu-
tions that permit efficient sampling and density evaluations are used to approximate the posterior
distribution. The optimal parameters are chosen by minimizing some measure of divergence be-
tween the approximate posterior density induced by the adopted distribution family and the true
posterior density. Choosing an expressive approximation family for the posterior distribution is
critical to the success of variational inference, and doing so is difficult in high dimensions where
very little information is available about the shape of the posterior. Recently, transport maps have
emerged as a popular choice in this regard [9]. Instead of approximating the posterior distribution
using a parameterized family of distributions, transport maps mold the prior distribution into the

posterior distribution. Thus, instead of optimizing the parameters of a family of distributions, the
3
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parameters of the transport map must be optimized. While variational inference has been shown
to scale better than MCMC [9, 10], the curse of dimensionality is still a challenge. The number of
parameters that must be optimized, when approximating posterior distributions, proliferates as the
dimensionality of the inverse problem increases. Similarly, the construction of high-dimensional
transport maps can be difficult [11].

More recently, deep learning models capable of carrying out Bayesian inference while meet-
ing or circumventing the challenges posed by Bayesian inference are gaining popularity [12]. In
particular, deep generative models are at the forefront of deep learning-driven Bayesian inference.
Also popular are the conditional counterparts of deep generative models trained using supervised
data: given realizations from the prior distribution, synthetic measurements are generated using the
forward model, and the training data consists of pairs of the prior realizations and corresponding
measurements. In such a supervised setting, conditional generative models can be used to obtain
realizations from the posterior distribution for any new measurement. Some popular deep genera-
tive models are generative adversarial networks (GANs) [13], normalizing flows [14, 15, 16], and
variational auto-encoders [17]. Among them, GANs possess superior sample generation qualities
and intrinsic dimension reduction capabilities [18]. As a result, GANs have been used as a data
informative priors [19, 20]. Conditional GANs have also been used to approximate the posterior
distribution [21, 22, 23]. However, GANs remain notoriously difficult to train and susceptible to
mode collapse. Moreover, GANs are implicit generative models i.e., it is not possible to evaluate
point-wise the probability density induced by a GAN. In contrast, variational auto-encoders allow
for the computation of a lower bound on point-wise density values. Variational auto-encoders
have also been used to perform Bayesian inference [24, 25, 26], but tend to produce blurry outputs
compared to those from GANSs. In contrast to GANs and variational auto-encoders, normalizing
flows are explicit generative models and allow for point-wise evaluation of the probability den-
sity they induce [27]. Normalizing flows utilize invertible neural networks to construct a bijective
transformation [15, 16]. Therefore, normalizing flows are natural candidates for transport maps
and have been used for variational inference [14, 28, 29]. Conditional normalizing flows have also
been used to approximate the posterior distribution in inverse problems [30, 22, 23]. However,

the application of normalizing flows to large-scale inverse problems is challenging: when the in-
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verse problem at hand is high-dimensional, the memory footprint of high-dimensional normalizing
flows is so large that training requires access to extraordinary computational resources [31] (for
instance, see [32] where a GLOW normalizing flow model is trained with a mini-batch size of 1
per processing unit which approximately amounts to 40 GPU weeks). Aside from deep generative
models, Bayesian neural networks have also been used for Bayesian inference [33]. Bayesian neu-
ral networks implicitly learn to invert measurements by introducing stochasticity in the weights of
a neural network. However, Bayesian neural networks have limited capacity due to the approxi-
mations made to make the training tractable [34]. We note that the supervised datasets necessary
to train many of the aforementioned models may not be readily available and computationally
expensive to acquire.

In this work, we propose a modular unsupervised inference framework — GAN-Flow — that
couples together GANs and normalizing flows to solve large-scale physics-based inverse problems
when the only prior information available is a sample from the true but inaccessible prior distri-
bution. GAN-Flow aims to circumvent the challenges faced by generative models when they are
used to perform inference in high-dimensional settings by exploiting the respective strengths of
the two types of generative models it employs: the dimension reduction capability of GANs, and
the efficient variational inference capability of normalizing flows. More specifically, GAN-Flow
employs a Wasserstein GAN (WGAN) to learn a data-driven prior distribution which will be useful
for Bayesian inference. Further, the WGAN helps reduce the dimensionality of the inverse prob-
lem as the generator component of the GAN serves as an injective map from the low-dimensional
latent space to the high-dimensional ambient space where the inverse problem is framed. Thus,
GAN-Flow also leverages the dimension reduction offered by GANs. Recent findings suggest that
framing inverse problems in lower-dimensional latent spaces may be advantageous [35]. GAN-
Flow also utilizes normalizing flows to approximate the posterior distribution in the latent space.
Again, the dimension reduction capability of GANs facilitate the construction of simpler normal-
izing flow models, which now only need to perform variational inference in the lower-dimensional
latent space, thereby reducing the memory footprint of normalizing flow models. As a result,
GAN-Flow can be used to tackle large-scale inverse problems. The use of a normalizing flow,

which serves as a map between the latent prior and the latent posterior, offers one significant
5
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advantage: once the normalizing flow is trained, new samples from the latent posterior can be
efficiently generated without taking recourse to the computationally expensive forward model. A
new sample from the high-dimensional posterior is generated by successive transformations of a
sample from the latent space of the GAN using the trained normalizing flow model followed by
the trained generator. In this work, we demonstrate the wide applicability and flexibility of the
proposed framework on different large-scale linear and nonlinear inverse problems, different syn-
thetic (simple geometrical features and Shepp-Logan phantoms [36]) and real-world (MRI scans of
human knees [37, 38]) prior distributions, different GAN architectures (self-attention GANs [39]
and GANSs that progressively grow [40]), and normalizing flows with different invertible neural
network architectures (planar [14] and affine-coupling flows [41, 42]).

We must mention a growing body of work that has developed deep learning-based Bayesian
inference frameworks with some dimension reduction component. For instance, this work was di-
rectly inspired by [35, 19], where GANSs are used to learn prior distributions and MCMC methods
are used to sample from its posterior. Patel and Oberai [35] used the Hamiltonian MCMC, whereas
Bohra et al. [20] used the Metropolis-adjusted Langevin MCMC. However, posterior sampling us-
ing an MCMC-based method will fail when the latent space dimensionality continues to be high
(for example see Section 4.3). Additionally, it is non-trivial to ascertain the convergence of MCMC
chains. In contrast, one can easily gauge the convergence of the latent posterior induced by the
normalizing flow model by tracking the loss function used to train the normalizing flow model.
Moreover, for a fixed compute budget (as defined by the number of forward problem solves),
training the normalizing flow model requires less compute wall times since it is possible to train
it using mini-batches. Similarly, sampling is also embarrassingly parallelizable. Whereas MCMC
is inherently sequential, and samples are obtained iteratively. Bayesian inference approaches that
consist of a generative prior coupled with a way of sampling from its posterior are widely known
as modular Bayesian approaches. GAN-Flow is also a modular approach in that sense, but dis-
tinct because it uses a GAN-based prior and a variational posterior induced by a normalizing flow.
There are also several works where normalizing flows are constructed in lower-dimensional spaces
and subsequently used to solve inverse problems. Some tools that have been used to derive or learn

the injective map include principal component analysis [43], isometric auto-encoders [44] and in-
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jective neural networks [45]. Brehmer and Cranmer [46] also explore padding the low dimensional
latent variable with zeroes to increase dimensionality. Other approaches simultaneously learn the
dimension reduction map and normalizing flow [46, 43, 44, 45]. GAN-Flow is different since
it uses a GAN to approximate the prior density, and the generator of the WGAN serves as the

injective map.

1.1. Summary of contributions

In summary, the novel contributions of this work are as follows:

1. We introduce GAN-Flow, a novel unsupervised modular Bayesian inference framework, that
combines two types of generative models — GANs and normalizing flows — and exploits

their respective strengths.

2. We develop a two-stage strategy to train each sub-component of the GAN-Flow. First,
the GAN is trained using a priori available samples from the prior distribution. Then,
the normalizing flow model is used to perform variational Bayesian inference in the low-

dimensional latent space of the GAN for efficient posterior approximation.

3. We demonstrate the efficacy of GAN-Flow on three large-scale physics-based inverse prob-
lems involving both synthetic and real-world data. We consider three inverse problems
— inferring initial conditions in a heat conduction problem, an inverse Radon transform
problem wherein an object is recovered from its sinogram, and a phase retrieval problem
wherein an object is recovered form the magnitude of its Fourier transform. Where possible
we compare GAN-Flow with Monte Carlo simulation and an inference approach previously

proposed by Patel et al. [19] that also utilizes a WGAN-GP prior.

4. We also show that GAN-Flow is a flexible framework that can utilize various types of GAN
and normalizing flow models. For the various problems we consider, we use different GAN
models which include generators with self-attention units and GANs that are progressively
grown. We also show that GAN-Flow can accommodate different types of normalizing flows

such as planar flows and affine-coupling flows.
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The remainder of this paper is organized as follows. Section 2 sets up the problem of interest, and
provides a brief background on variational Bayesian inference, GANs and normalizing flows. We
introduce GAN-Flow in Section 3 and discuss the training of its two sub-components. In Section 4,
we apply GAN-Flow to solve three large-scale inverse problems. Finally, we draw conclusions in

Section 5.

2. Background

2.1. Problem setup and Bayesian inference

Consider the random vectors € 2y C R"* and y € )y C R™ related by the forward model
F : Qx — Qy such that y = F(x). Herein, x, Qx and ny are called the ambient variable, space
and dimension, respectively. The inference of  from a noisy measurement vector ¢y (a noisy
realization of y) constitutes an inverse problem. Given a likelihood function py (y|x), Bayes’ rule
is used to update prior belief about x, characterized through the prior probability density function
px (), as follows:

olin = Pv(9(Z) pa (@)

; )

where pxy(x|y) is the posterior distribution and py(y) is the evidence or marginal likelihood.
When measurements are corrupted by an additive noise 7, distributed according to p,,, the mea-
surement model y = y + n leads to the likelihood function py(y|x) = p,(y — F(x)) in Eq. (1).
The posterior distribution is useful for computing posterior-predictive statistics of any desired
quantity of interest, herein denoted as ¢(x). For instance, the posterior mean of ¢(x) can be com-

puted as follows:

Eanpa (ali) [L(2)] = ) ((z)px(x|y) do )

Typically, the integral in Eq. (2) is high-dimensional and intractable for practically interesting
problems, and must be approximated using Monte Carlo methods, which requires samples from
the posterior distribution. Given a sample of size ng, the Monte Carlo approximation to Eq. (2) is

given as:



181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

where x(?) is the i"" realization of & drawn from the posterior distribution. In this work, we propose
the novel inference framework GAN-Flow, which is efficient at sampling the posterior distribution
and, ultimately, estimating the statistics of posterior-predictive quantities. GAN-Flow is a hybrid

of two types of generative models: generative adversarial networks (GANs) and normalizing flows.

2.2. Generative Adversarial Networks

Generative adversarial networks [13] are generative models consisting of two sub-networks:
a generator and a discriminator (also known as the critic). GANSs are trained adversarially: the
generator tries to deceive the discriminator while the discriminator tries to distinguish between
‘fake’ samples generated from the generator and ‘frue’ samples available from the target distribu-
tion. The generator and critic play an adversarial ‘game’ between them with the ultimate goal of
generating new realizations from an underlying distribution, the prior distribution px(x) in this
case. Let the generator network GG, parameterized by 6, map the latent variable z € )z C R"=
to the target variable x, i.e., G(-,0) : Qz — Q. Herein, we refer to z, 2z and nz as the latent
variable, space and dimension, respectively. Typically, z is sampled from a simple distribution
pz(z), like the multivariate standard normal distribution. Moreover, the latent dimension nz is
typically chosen to be much smaller than the ambient dimension ny, i.e., nz < ny. Thus, GANs
are endowed with dimension reduction capabilities and the generator GG serves as a map from
the low-dimensional latent space to the high-dimensional ambient space. On the other hand, the
discriminator D, parameterized by ¢ such that D(-,¢) : Qy — R, tries to differentiate between
realizations drawn from py () and those generated by the generator.

The parameters 6 and ¢ of the generator and the discriminator networks, respectively, are

obtained through the min-max optimization of an appropriate loss function, say Lgan, i.€.,

(0,0") = arg mein (arg mngGAN(H, qb)) 4)

Different types of GANs will use different loss functions Lgan; interested readers may refer to [47,
48, 49] for an overview. It is important to note that training a GAN requires realizations of py (),

therefore, we assume that ng4,, independent and identically distributed (iid) realizations of & from
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px(x) are available, which we herein denote using S = {w(i)}izl

and refer to S as the prior
dataset. GAN-Flow uses the provided prior dataset to derive a data-driven informative prior. All

that’s required is a mechanism to sample from the GAN prior.

2.3. Variational Bayesian inference

MCMC methods approximate the posterior distribution using correlated realizations of x that
are sampled from an ergodic Markov chain with the stationary distribution py(x|y). In contrast,
variational Bayesian inference methods attempt to approximate the posterior probability distribu-
tion [8]. Variational Bayesian inference starts with a family of distributions qy (a;)) parame-
terized by 1. The optimal parameter vector @™ is determined by minimizing some divergence

measure d between qy(x; 1) and py(x|y):

Y= argmlgnd(qX(w;¢)||Px(w!@))~ )

The reverse Kullback-Leibler (KL) divergence is a popular choice for d but other divergence mea-
sures have also been used [50]. Thus, variational Bayesian inference converts the problem of pos-
terior sampling into an equivalent optimization problem. Once 1" has been determined, qx (x; ™)
serves as an approximation to px(x|y) and can be repeatedly sampled without additional likeli-
hood evaluations to obtain as many posterior samples as required — unlike MCMC-based meth-
ods. As a result, variational Bayesian inference offers a computationally efficient alternative to
MCMC sampling in many cases. The performance of variational Bayesian inference relies on the
a priori chosen parameterized family of distribution qx(-; %)) being capable of approximating the
posterior distributions, which can have a complex shape. This approximation may be difficult to
achieve using standard distribution families like mixture models. Moreover, the computational
effort of the optimization problem in Eq. (5) increases as the dimension of 1) increases, which is
expected to happen as the ambient dimensionality of the inverse problem grows.

An alternative approach to explicitly working with a family of distributions is to define a push-
forward map that can induce a good approximation to the posterior distribution. Let H(-;)) :

Qx — .y denote a bijective and differentiable map (also known as a diffeomorphism) that is pa-

10
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rameterized by 1, and let H,px(x;1)) denote the pushforward of the prior distribution px ().
Then

Hypx(x;v) = pa(x)|det Vo H(z;90)| 7, (6)

as a result of change of variables, where det V, H (x;)) is the Jacobian determinant of the push-
forward map H(-;1)). Therefore, one way of approximating the posterior distribution is to use
a flexible diffeomorphism such that the pushforward distribution Hypx(x;1)) is close (in some
sense) to the posterior distribution. However, the successful application of Eq. (6) requires that the
Jacobian determinant be easily computable. Many techniques, such as polynomial approximation
and radial basis functions, can be used to construct diffeomorphisms that permit efficient Jacobian
determinant computations [51]. More recently, normalizing flows [16, 15] have emerged as an

efficient tool to construct high-dimensional diffeomorphisms.

2.4. Normalizing flows

Normalizing flows are a class of generative models that uses invertible neural networks to
construct diffeomorphisms. Normalizing flows are constructed in a manner that facilitates efficient
computation of the Jacobian determinant. In practice, the inference map H is constructed by

stacking together multiple, say, n; invertible layers, which makes

H(x) = Hyp) (Hjp—1) (- - Hpy())).- (7)

Individual bijections Hy are called flows and the composition H is a normalizing flow. 1), which
we intentionally suppress in Eq. (7) and herein, denotes the parameters of all flow layers taken
collectively. Note that the composition of bijective functions is also a bijective function, and the

Jacobian determinant of which can be computed as:
det Vo H(x) = Hdet Ve Hi(@p-1)), (8)
k=1

where x,) = H[k](m[kfl]) and x() = x.

Many different types of invertible architectures exist that define bijections for which the Jaco-
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bian determinant is easily computable; see [16] for a recent review. In this work, we use two types

of invertible architecture.

2.4.1. Planar flows
Rezende and Mohamed [14] proposed an invertible neural network architecture based on pla-

nar transformations that apply the following perturbation to the input x;,_1) in k™ flow layer H K]
Higy (1)) = gy + upp - S (Wi @iy + byyg) ©)

where ;) = {up) € R%, wyy € R by € R} are the parameters of Hy, and S: R — R is a
nonlinear activation function with derivative S’. Rezende and Mohamed [14] adopt the taxonomy
‘planar’ because they claim that the perturbation introduced to ;1) is normal to the hyper-plane
wﬁdaz[kz_u + by = 0. However, note that, for a fixed wu, all points that lie on a plane w[j,;]w[k_u =
cy) are perturbed by the same amount, equal to ‘S (c[k] + b[k}) ‘ . ||u[k] ||, and in the same direction
as up. Thus, planar transformations ensure that a collection of points in d-dimensional place that
lie on a hyper-plane with normal w; is merely translated in space and continue to a lie on a new

hyper-plane that still has the same normal vector as before. The Jacobian determinant of Hyy is:
| det Vo, Hig(@p—n)| = |1+ S (wlyzp_1) + by ufywim| - (10)

Moreover, 'wﬁ]u[kz] > —11is a sufficient condition for HY) to be invertible when S'is the hyperbolic

tangent function [14], which is what we use in this work.

2.4.2. Affine-coupling flows

Dinh et al. [41] introduced coupling flows, of which affine-coupling is a specific type. Let
xh ) and a:l[’kfl] be two disjoint partitions of the input vector x|;_y), formed by randomly sampling
components of x,_y), then the coupling flow layer Hy; applies the following transformations to

its input @)

ml[)k} = w(fkq} ©exp [Sl<w?kfl])} + Tl(mt[lkq}) and wflk] = wflkq] ©exp [Sz(wfk})] + TZ(w?k])v (11)
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where wﬁf] = [a:ﬁ;, zcl[’kT}], S7 and Sy are known as scale networks, 77 and 75 are known as shift

networks, and ® denotes the Hadamard product. The scale and shift networks are modeled using
deep neural networks that preserve the dimensionality of their respective inputs. A coupling layer

constrains the Jacobian to be upper triangular [41, 42]. The determinant of the Jacobian is [42]:

| det Vo, Hig(@p—y)| = (eXp [Z {51(:3‘[2—1})}]-]) (exp

> {Sz<:vfk_u>}j]> . (12)

where {-}; denotes the j™ component of a vector, and Si(@f;,_y)) and Sa(af;, ) are outputs from

the scale networks S; and S, respectively.

3. Bayesian inference using GAN-Flow

Bayesian inference is useful for solving statistical inverse problems, but its practical applica-
tion to large-scale inverse problems is far from straightforward. First, it is important to recognize
that the quality of inference depends on the prior [52], more so when there is paucity of data. Sim-
ple parametric priors derived from tractable distributions are not useful for describing complex
entities such as brain scans, thermal conductivity fields, and the matrix of a composite material;
recent recognition of this fact has fostered efforts to develop physics-informed data-driven pri-
ors [53, 19]. Second, posterior sampling using MCMC methods is difficult in high-dimensional
spaces, i.e., when ny is large. In high-dimensional spaces, Markov chains tend to take a long time
before they can reach a ‘steady state’, and assessing the convergence of Markov chains is also
difficult. Third, MCMC sampling involves repeated evaluations of the likelihood function, which
means that the underlying physics-based forward model must be evaluated during sampling and
that the cost of obtaining new samples will scale linearly with the cost of forward model evalu-
ations; this is undesirable. Thus, MCMC sampling from high-dimensional posteriors continues
to be a challenging and computationally intensive task, which has been a major deterrent to the
practical application of Bayesian inference to large-scale inverse problems. GAN-Flow attempts
to circumvent these issues by coupling together two types of deep generative models — generative

adversarial networks and normalizing flows.
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3.1. Overview of GAN-Flow

GAN-Flow uses a GAN, specifically a Wasserstein GAN, to form a data-driven informative
prior that can synthesize realizations of @ similar to the constituents the prior dataset S. Moreover,
the generator network of the GAN becomes a map between the low-dimensional latent space and
the high-dimensional ambient space. The inverse problem is solved in the low-dimensional latent
space using variational Bayesian inference as the normalizing flow model acting as a pushforward
operator from the prior distribution to the posterior distribution. Fig. 1 shows the three phases of

the GAN-Flow framework.

3.2. Phase A: Training a GAN-based prior

GAN-Flow utilizes a Wasserstein GAN with Gradient Penalty (WGAN-GP) [54, 55] to model

the prior probability distribution pxy (). For a WGAN-GP, the loss function Lgan is given as

EGAN(Ov ¢) = Eﬂ?NPx(m) [D(wv (»b)] - ]EZNPZ(Z) [D(G(zv 0)7 ¢)] ) (13)

and the min-max optimization problem in Eq. (4) is solved under the constraint that D(z, ¢) lies in
the space of 1-Lipschitz functions. This constraint ensures that the inner maximization problem in
Eq. (4) leads to an approximation of the Wasserstein-1 distance (due to the Kantorovich-Rubinstein
duality [56]) between px () and the pushforward of pz(z) induced by G(+;0) [54, 55, 19]. The
1-Lipschitz constraint is satisfied by enforcing a soft penalty on the gradients of the critic D with
respect to z [55]. The resulting maximization problem that is solved to optimize the parameters

of the discriminator is
¢" = argmax Lo (0.6) ~ MEanne @) [(1V2D(&.0)2 ~ 1)7]. (14

where ) is the gradient penalty parameter, and p 4 () is the uniform distribution over the straight
line joining two pairs of points sampled from py () and the pushforward of pz(z) by G. The loss
function in Eq. (14) minimizes the Wasserstein-1 distance between py(x) and the pushforward

distribution of pz(z) due to G [35].
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Figure 1. Schematic diagram of the proposed GAN-Flow framework for solving physics-based
inverse problems. PHASE A involves the training of a WGAN-GP model with training samples
from the prior distribution. In PHASE B, the trained generator G*, the physics model F', the
noise model p, and the measurements ¥ are used to train the normalizing flow map H. PHASE
C corresponds to posterior sampling that is achieved by using the trained normalizing flow map
H* to transform realizations from the latent prior into realizations from the latent posterior, which
are then passed through the trained generator G130 obtain realizations from the ambient posterior
distribution.
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Now, let G* denote the generator G with optimally chosen parameters 8*. For a perfectly

trained GAN G*,
EwNPX(w) [m(w)] = I[‘-?‘vapg(z) [m(G* (z))} Vme Cb(QX)> (15)

where Cy(+) is the space of continuously bounded functions. Egs. (2) and (15) can be combined to

compute
Eampr(alp) ()] = Eanpz(zg) [((G*(2))] VL€ Co(Q), (16)
by choosing
{(z)py(Y|z)
= ~ , 17
mi() py(9) 1
where
.. py(ylz)pz(2)
= 18
pz(z|Y) oo (@) (18)

is the posterior distribution of the latent variable z and py(¥|z) is nothing but py(y|x) evaluated
atx = G*(z),i.e.,

py(@|2§) :py(@|$)|w=G*(z)' (19)

For additive noise models, Eq. (19) simplifies to py(y|z) = p,(y — F(G*(z))). Significantly,
Eq. (16) implies that any statistics with respect to & (respectively x|y) can be computed using
realizations of z (respectively z|y).

At the end of phase A, a trained generator G* is available. The GAN not only acts as a data-
driven prior, but the trained generator G* also serves as an injective map that can conveniently
transform realizations of the latent variable z from the latent space {2z to corresponding realiza-
tions of the ambient variable « in the ambient space (). Additionally, pz(z) is herein chosen to
be an nz-variate standard normal distribution. Also note that, in most practical cases, ny will be
large but the latent dimensionality of the WGAN-GP model will be such that nz < ny. Thus, di-
mension reduction is achieved by using GAN priors. The next step is to solve the inverse problem

in this lower-dimensional latent space.

Remark 1. Choosing the latent space dimensionality nz from ng,, realizations of py () is not
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straightforward. This will involve careful judgment from the user. However, meta-heuristic met-
rics, such as the Fréchet Inception Distance (FID) score [57] and Inception score [58], are useful
for comparing the quality of the realizations generated using GANs and real samples. These met-
rics can be used to evaluate the quality of the trained GAN, and suitably adjust the latent space
dimensionality if performance is not satisfactory. Metrics that are more physically motivated may
also be utilized in engineering applications. For instance, the consistency of miscrostructural de-
scriptors, like the distribution of porosity in a bi-phase material [59], across the generated samples
can be used when evaluating GANSs for generating miscrostructures of heterogeneous media. We
suggest choosing the smallest possible latent dimensionality that performs satisfactorily. This will

also help keep the subsequent normalizing flow model relatively lightweight.

Remark 2. Unless there is an influx of new prior information that must be incorporated, there is
no need to retrain WGAN-GP prior. This means that Phase A, which involves the training of the
WGAN-GP model, must be completed only once for a given inverse problem. Thereafter, we can

reuse the trained generator for multiple inferences.

3.3. Phase B: Inference using normalizing flows

With the latent prior density pz(z) and an optimally trained generator G*, a normalizing flow
is used to sample from the conditional posterior pz(z|y). This is done by learning a bijective map
H : Qz — Qz, parameterized by 1), such that Hpz(z;1) ~ pz(2z|y). The parameters 1) of the

bijective map H are chosen by minimizing the loss function

W' = argmindi (Hypz(2;9) [p=(2(9), 20)

where dxp (+||-) is the reverse KL divergence. On simplifying Eq. (20), the loss function Ly for

training the normalizing flow takes the form:

Lap(Y) = Eznpz(s) | — logpy (9| H (2:9)) — logpz(H (21)) —log|det V. H(z;:9)| |, (2D
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where py(y|H (z)) can be evaluated using Eq. (19) as

py(Y|H (2;%)) = py(91%)|e=c+(1(2)) (22)

and, for additive noise models, py(y|H(z;%)) = p,(y — F(H(G*(2);4))). We provide a de-
tailed derivation of Eq. (21) starting from Eq. (20) in Appendix A; our derivation closely follows
a similar derivation by Sun and Bouman [28]. In Eq. (21), V. H(z) is the Jacobian of H. Thus,
the physics model F' and the trained generator G* enters Eq. (21) through the log-likelihood term
logpy(y|H(z;1)). At the end of phase B, a trained normalizing flow map H (-;1"), herein de-

noted as H*, is available alongside the trained generator G*.

Remark 3. Suppose there is a change in the measurement vector ¥ as new measurements are avail-
able or the forward model F' changes, we must retrain the normalizing flow model. Perhaps one
can reduce the computational burden of retraining through knowledge transfer from the previously
trained normalizing flow model, for instance, by starting training from the old weights, by freezing
the weights of some of the flow layers, or by simply appending new flow layers to the existing nor-
malizing flow model. However, we do not consider such cases in this work, and the development

of knowledge transfer schemes is beyond the scope of the current work.

Remark 4. The training of the normalizing flow model boils down to the minimization problem in
Eq. (20) with the loss function given by Eq. (21). The minimization problem can be solved using an
appropriate stochastic gradient descent algorithm. In this work, we use the Adam algorithm [60].
Regardless of the optimization algorithm used, training the normalizing flow using gradient de-
scent algorithms involves the computation of the gradients of the output forward model F' with
respect to its input. This will pose challenges when F' is a black-box model that is incompatible
with automatic differentiation, ultimately leading to an increase in the overall computational cost;
this challenge is not a bottleneck unique to GAN-Flow as advanced MCMC algorithms, like HMC,
also require the gradients of /' [19]. One potential solution is to couple GAN-Flow with automat-
ically differentiable surrogate models for F’, such as neural networks [61], but this is beyond the

study herein.
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3.4. Phase C: Posterior sampling and estimation

We can use the optimally trained generator G* and normalizing flow map H* to estimate

Eompa (xg) [((x)] using Monte Carlo (MC) simulation. Let ¢ denote the MC estimator for Eq.p, (/) [{(2)]

given by
l=—=% UG (H (=), (23)

where z(*) are independent realizations drawn from pz(z). For instance, the posterior mean of x

can be computed by setting /() = x. Let & denote the MC estimator for Egp, (z/g) [a:] , then
2= LS o (=0 (24)
L 7

where 2 are iid realizations from pz(z). Similarly, the standard deviation for the i component

of , herein denoted as [0,],, can be estimated as:

: Z [{G*(H(z0))}, — {&}], (25)

Jj=1

{Ufc}i =

ng— 1

where [-]; denotes the 7 component of the vector corresponding vector.

Remark 5. Neither evaluating H* nor G* requires evaluation of the underlying physics model
F'. Therefore, posterior statistics or posterior predictive quantities can be computed at almost
negligible computational cost, and n, may be set arbitrarily large. This is another advantage of the

proposed GAN-Flow framework.

3.5. Discussion of the computational cost of each phase of GAN-Flow

Phase A of GAN-Flow involves the training of the WGAN-GP model. However, GAN-Flow
does not evaluate the forward model F' at this stage. Thus, the computational cost of Phase A
will be dominated by the cost of training the WGAN-GP model. Accordingly, the computational
cost of Phase A will scale with the total number of trainable parameters in the generator and
the critic. We expect that more complex prior information will require expressive models with a

large number of trainable parameters to develop a suitable generator and, therefore, will be more
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computationally expensive. Phase B, which involves training the normalizing flow model, requires
repeated evaluations of the forward model F'. Thus, the cost of evaluating the forward model F’
will dominate the computational cost of Phase B. More complicated posterior distributions will
require an expressive normalizing flow model. Expressivity can be achieved by adding more flow
layers or using complex transformations, like the affine coupling transform, which will require
longer training, translating to more evaluations of the forward model £, ultimately increasing the
computational cost. Phase C neither involves training network models nor evaluating the forward
model F'. Thus, Phase C will be the least computationally demanding stage of GAN-Flow. The
computational cost of this step will be dominated by the cost of evaluating the trained generator
G™* and the trained normalizing flow model H* and scale with the sample size n;.

The actual wall time of any particular phase will primarily depend on the particular applica-
tion at hand, the scale and type of resource available, and the choice of training hyperparameters,
among other factors. For instance, for the initial condition inference problem that we consider
in Section 4.1, phases A, B and C require approximately 1.6 hours, 8.5 minutes and 6 seconds,
respectively, when the generative models are trained using an NVIDIA Quadro RTX 8000 GPU
with 48 GB memory (see Fig. B1 and table B1 in Appendix B1 for details of the model architec-
tures and training hyper-parameters); thus, GAN-Flow requires less than 2 hours for completion.
Similarly, for the inverse Radon transform problem, phases A, B and C require approximately 3.4
hours, 1.6 hours and 11 seconds, respectively, when the generative models are trained using the
same NVIDIA Quadro RTX 8000 GPU (see Fig. B2 and table B1 in Appendix B1 for details of the
model architectures and training hyper-parameters). The more challenging phase imaging problem
(Section 4.3) requires approximately 23.5 hours, 16.7 hours and 2 minutes for phases A, B and C,
respectively when all phases were executed using a NVIDIA A40 GPU with 48 GB of memory
(see Appendices B1.1 and B2 and table B1 in Appendix B1 for details of the model architectures
and training hyper-parameters). For the problems we consider in this work, the wall-time of phase
A dominates because the forward model F' is relatively simple. ~We envisage that Phase B will
be the most computationally demanding stage of GAN-Flow in physics-based applications where

the underlying forward model F' is computationally demanding.
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3.6. Approximation errors due to GAN-Flow

There are two potential sources of error in GAN-Flow when it is used in practice. The first
source of error is from the WGAN-GP prior. A WGAN-GP trained using Eq. (14) may only be
able to approximately satisfy Eq. (15) [62] or not at all [63]. The error may stem from using
an approximate estimator for the Wasserstein distance in Eq. (14), the use of MC estimates for
estimating the Wasserstein distance, and failure to reach the optimal point [62]. However, previous
research [35, 19] has shown that WGAN-GP is useful as a data-driven prior despite theoretical
concerns. In practice, we monitor the loss function and terminate training when its value no
longer decreases. A second source of error stems from the normalizing flow map in situations
where it is unable to induce a good approximation to the latent posterior distribution [64]. The
latent posterior distribution may not belong to the family of distributions that the bijective map is
capable of inducing, which may be due to the limited fidelity (expressive power) of the normalizing
flow model. The pushforward distribution may also fail to approximate the latent posterior when
the reverse KL-divergence loss does not attain a value of zero, possibly due to slow convergence
during training. Even if the loss function attains a value of zero, the reverse KL-divergence is
known to be ‘mode seeking’, therefore, it is possible that the pushforward distribution is unable to
approximate the tails of the latent posterior. In practice, we monitor the value of the loss function
Lxr and stop training when it no longer decreases. However, it must be noted that, even when the
pushforward distribution is poor, estimates computed using the pushforward map may continue to
be useful. So, we evaluate the error in the estimated posterior statistics, such as the posterior mean
and standard deviation, to determine the quality of inference. In a practical setting, we suggest
the use of diagnostic tools to ascertain the quality of the pushforward distribution [64] or stacking

multiple normalizing flows with different seeds [65].

4. Results

In this section, we use GAN-Flow to solve three physics-based inverse problems: inference
of initial conditions (Section 4.1), inverse Radon transform (Section 4.2), and phase retrieval

(Section 4.3). By solving these inverse problems, we demonstrate that GAN-Flow can tackle
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large-scale linear and non-linear inverse problems, various levels of noise, and challenging prior
distributions. Our implementation also reveals that GAN-Flow is flexible in accommodating dif-
ferent types of WGAN-GP and normalizing flow architecture types, training methodologies, and
combinations thereof. More specifically, the variety in the numerical examples we present lies in

the following:

1. Forward model — The three inverse problems we consider involve different physical phe-
nomena. The initial condition inference problem is based on heat diffusion in a solid body,
and the inverse Radon transform problem is based on an object’s attenuation of penetrat-
ing waves by an object. Both aforementioned physics phenomena can be described using
a linear forward model; we adapt these inverse problems from [66, 19]. The third problem
we consider is phase retrieval, which forms the underpinnings of many modern coherent
diffraction imaging methods, wherein an object is reconstructed from the magnitude of its
Fourier transform. In this case, the forward model is highly nonlinear. We adapt the phase

imaging problem from [20].

2. Prior dataset — We consider three different prior datasets. The prior dataset for the initial
condition inference and inverse Radon transform problems consists of rectangular inclusions
in a zero-background and Shepp-Logan head phantoms, respectively; however, these priors
are synthetic and adapted from [66, 19]. For the phase retrieval problem we consider a

sub-sample of the publicly available NYU fastMRI [38, 37] dataset of human knee slices.

3. Ambient dimensionality — The ambient dimensionality of the inverse problems we con-
sider vary vastly. While the initial condition inference problem has a moderate ambient
dimensionality of 1,024, the phase retrieval problem is a large-scale inverse problem with
an ambient space of dimension 65,536, an order of magnitude beyond that of the initial

condition inference problem.

4. WGAN-GP prior model — For all numerical examples, we consider a WGAN-GP prior,
1.e., the loss function used to train the GANs is given by Eq. (14). However, we use different
architectures and/or training methodologies. The inverse Radon transform problem utilizes
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a simple generator and critic, consisting of fully connected and convolution layers. We use
self-attention-based [39] modules, along with convolutions, for the generator and critic for
the initial condition inference problem. We found that self-attention modules help render
the sharp transitions between the rectangular inclusion and the zero background. The phase
retrieval problem requires still more sophisticated training to synthesize large (256x256)
knee slices with many fine-scale features. The WGAN-GP model for the phase retrieval

problem is trained using the progressive growing of GAN methodology [40].

5. Dimension reduction — The WGAN-GP priors themselves lead to latent spaces of varying
dimension. We work with a low-dimensional latent space for the initial condition inference
problem (nz = 5), and a latent space of dimension 512 for the phase retrieval problem. On
average, we can achieve approximately O(10?) dimension reduction across all three inverse
problems while maintaining satisfactory accuracy of the estimated statistics of the posterior

distribution.

6. Normalizing flow model — We use two types of flow layers. For the low to moderate
dimensional latent spaces, as in the initial condition inference and inverse Radon transform
problem, we employ planar flow layers. For the relatively high-dimensional latent space of
the phase retrieval problem, we use affine coupling transforms to construct the normalizing

flows.

Table 1 provides a summary of the inverse problems we consider, their ambient and latent space
dimensionality, and the dimension reduction.

We implement GAN-Flow exclusively on PyTorch [67]. Where possible, we compare the
posterior statistics estimated using GAN-Flow with the method outlined in [19]; herein, we re-
fer to the latter method as GAN-HMC because it uses HMC to sample the latent posterior and
estimate the posterior statistics of the ambient variable. We implement HMC within PyTorch
using the hamiltorch package [68]. In all cases, we specify the number of leap-frog steps to
be 10, and discard 50% of the accepted states considering burn-in. The step size is adapted during
the burn-in phase so as to maintain a desired acceptance rate of 0.75. For the initial condition

inference problem, where the underlying (hidden) ambient dimensionality of the synthetic prior is
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small (only four), we even compare the posterior statistics estimated using GAN-Flow with MC
simulation (MCS).

For all examples, following Patel et al. [19], we re-scale the prior realizations between [—1, 1]
before training the WGAN-GP model and use hyperbolic tangent (TanH) activation in the last layer
of the generator. We invert this re-scaling operation before evaluating the likelihood function. In
this way, we satisfy physical constraints such as positive values of the temperature fields for the
initial condition inference problem, or positive values of material density for the inverse Radon

transform problem, or positive refractive index of an object in the phase retrieval problem.

4.1. Inferring the initial conditions in heat conduction

The first problem we consider is a two-dimensional unsteady heat conduction problem where
the initial condition of the temperature field « (at time ¢ = 0) must be inferred from a noisy
measurement of the temperature field y taken after some time (at time ¢ = 1). Inverse problems
of this type often arise when designing thermal equipment [69, 70]. The two-dimensional time-
dependent heat conduction partial differential equation over the bounded domain €2 is given as:

du(s, 1)

5 -V (H(S)VU(S,t>> = b(S,t), V(S,t) € x (07T>

u(s,0) =m(s), Vs e (26)
u(s,t) =0, V(s,t) € 00 x (0,T)

Table 1. Summary of inverse problems we consider in this work.

Inverse problem

Heat conduction Radon transform Phase imaging
(Section 4.1) (Section 4.2) (Section 4.3)

Type Linear Linear Non-linear
Ambient dimension ny 32 x 32 128 x 128 256 x 256
Prior dataset Rectangular Shepp-Logan phantom  fastMRI [38, 37]
Prior dataset size Ngata 2000 8000 29877
Latent dimension n z 5 60 512
Dimension reduction ny /nz ~200 ~273 128
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Figure 2. (a) Initial and (b) final temperature fields at ¢t = 0 and 1, respectively. (c) Noisy synthetic
measurements obtained after adding Gaussian white noise with unit variance to the temperature
field shown in (b).

where T is the final time at which measurements are made, i.e., 7' = 1, and the spatial domain (2
is a square region with the length of each side being 27 units, i.e., = [0, L] x [0, L] with L = 27
units. We represent the solid on a 32 x 32 Cartesian grid over 2. We assume that the thermal
conductivity x is homogeneous over {2 and equal to 0.64 units, and that b(s,t) = 0. We use the
central difference scheme to discretize temperature field on the same Cartesian grid as the solid
body, thus, ny = ny = 1024. The forward operator /' maps the initial temperature field x to the
temperature field at time 7" = 1. We use backward-difference with a step size of 0.01 for the time-
integration of Eq. (26). In this example, the inverse problem at hand is linear and it is possible to
relate « and y using a linear operator, i.e., y = Ax [66]. The temperature fields at ¢ = 0 (initial
condition) and t =1" = 1 are shown in Fig. 2(a) and (b), respectively. We add Gaussian white noise
with unit variance to the temperature field at time ¢ = 1 to generate the synthetic measurements;
see Fig. 2(c). From these noisy measurements, we want to infer the initial condition shown in
Fig. 2(a).

The prior dataset consists of ng,, = 2000 initial temperature fields where the temperature is
zero outside the rectangular inclusion and, within the rectangular inclusion, the temperature field
varies linearly from a value of 2 units on the left edge to 4 units on the right edge. The rectangular
region is generated by sampling uniformly the coordinates of the top-left and lower-right corners of
the inclusion between [0.2L,0.4L] and [0.6L,0.8L], respectively. We show four realizations from
the prior dataset in Fig. 3(a). The true temperature field in Fig. 2(a), which we want to infer, does

not belong to the prior dataset. First, we train a WGAN-GP using the prior dataset. We choose the
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Figure 3. (a) Realizations from the rectangular prior dataset. (b) Realizations generated from the
WGAN-GP prior.

latent space dimensionality to be 5, i.e., nz = 5!. Therefore, we achieve a dimension reduction of
approximately 200 times in this case. For details about the WGAN-GP model and the associated
hyper-parameters, see Appendix B1 and Table B1, respectively. We show some realizations from
the trained WGAN-GP prior in Fig. 3(b). The generated realizations are qualitatively similar
to those in the prior dataset. We emphasize that training the WGAN-GP does not require any
evaluation of the forward model F'.

After we train the WGAN-GP model, we turn to training the normalizing flow model. In this
example, the normalizing flow comprises 64 planar flow layers. See Table B1 for more details
about the hyper-parameters associated with training the normalizing flow model. Significantly,
the normalizing flow model is trained for 1000 epochs with a batch size of 32, meaning a total of
32,000 evaluations of the forward model F'. After the normalizing flow model has been trained,
we can use both the trained generator of the WGAN-GP model and the normalizing flow model
to obtain as many samples from the posterior as necessary. We show the posterior mean and stan-
dard deviation of the initial temperature field estimated using GAN-Flow from a sample of size
15,000 in the left most column of Fig. 4. For the purposes of comparison, the posterior mean
and standard deviation estimated using MCS (of sample size 10°) and GAN-HMC are also shown
in Fig. 4. In contrast to GAN-Flow, GAN-HMC makes 3x10° evaluations of ' to yield 15,000

realizations from the posterior. Table 2 tabulates the root-mean-square error of the statistics esti-

"We vary the latent space dimensionality nz € {5,10,20,40,60,80,100} keeping all other hyper-parameters
fixed, and choose the smallest latent space dimension to yield the best estimates of the posterior mean and standard
deviation; see Appendix C1 for the results from those experiments
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ferent inference method compared
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mean

20 asr 20 s 0r s t0 MCS.
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§ 3 Method Standard
e Mean andar
SR deviation
T N P GAN-Flow 0.034 0.048

Figure 4. Estimated posterior mean (top row) and stan- GAN-HMC 0071 0.049

dard deviation (bottom row) obtained using MCS (left col-
umn), GAN-Flow (middle column) and GAN-HMC (right
column) for the initial condition inference problem.

mated using GAN-Flow and GAN-HMC, with the statistics estimated using MCS serving as the
reference. From Fig. 4, we observe that the posterior statistics estimated using GAN-Flow and
GAN-HMC compare very well with the ‘true’ posterior statistics estimated using MCS. Quanti-
tatively, the posterior mean estimated using GAN-Flow is marginally better than GAN-HMC, but
this improvement is achieved with greater computational efficiency (about one order of magnitude
fewer evaluations of the forward model F'). These results are promising and suggest that GAN-
Flow may even be more computationally efficient than GAN-HMC. While we consider Dirichlet
boundary conditions in Eq. (26), investigations on a similar inverse problem with Neumann bound-

ary conditions will be interesting; we leave this for a future work.

4.2. Inverse Radon transform

Next, we consider the inverse problem of reconstructing an object from its noisy sinogram.
Inverse problems of this type arise in computerized tomography (CT) wherein an object is scanned
from different angles using X-ray beams, and subsequently reconstructed using information about
the difference in intensity before and after the beam passes through the object [71]. The forward

model is given by the Radon transform. Given the material density function p € Q C R? — R, the
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Table 3. Base parameters of the Shepp-Logan phantom. Note, o is in degrees.

k Tk S ay b, g Pk
1 0.0 0.0 0.69 092 0 1.0
2 0.0 —0.0184 0.6624 0.874 0 -0.8
3 0.22 0.0 0.11 031 —-18 -0.2
4 —-0.22 0.0 0.16 041 —-18 —-0.2
5 0.0 0.35 0.21 0.25 0 0.1
6 0.0 0.1 0.046 0.026 0 0.1
7 0.0 —0.1  0.046 0.046 0 0.1
8 —0.08 —0.605 0.046 0.023 0 0.1
9 0.0 —-0.606 0.023 0.023 0 0.1
10 0.06 —0.605 0.023 0.046 0 0.1
Radon transform is defined as [71]
R(pit,¢) = / pdl, (27)
lio

where [ , is the line that traverses through the object at a distance of ¢ from the center and an

inclination of ¢. Therefore, given an input phantom image x € R"™>" the forward model is
y=F(x) e R™ "™, (28)

which is a linear transformation of . In Eq. (28),

i J oo
yi,j = Rh<matzy¢j>7 t’L = n_pa¢j - ; \V/Z,] € {1727" '7np}7 (29)

and R" is the discrete Radon transform [71]. The output 4 is commonly known as a sinogram.
In this example, we consider input images of size 128x128, i.e., n, = 128. Additionally, every
input image is scanned at 128 uniformly spaced angles between 0° and 180° with 128 detectors;
thus, ny = 128 x 128. We use the torch-radon package [72] to compute Radon transforms.
The prior dataset for this example consists of Shepp-Logan head phantoms [36]. Every phantom
consists of ten ellipses, where each ellipse has constant density. Let the £™ ellipse £}, be centered

at (ry, sx), with semi-axis lengths a;, and by, angle of inclination «y, (in degrees) and density py.
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The density of the phantom at any coordinate (r, s) is

10 Pk if (7", S) S Ek
p(rys) =3,2,Ck(r,s), where Cy(r,s) = (30)

0 otherwise

Table 3 provides details of the nominal values of the base parameters of the ellipses, which we
adapt from Toft [36]. Following Patel et al. [19], we generate new phantoms by perturbing the

base parameters of every ellipse E, as follows:

fk =7+ 0-005&@,1; gk = S + 0-005&{,2; C~Lk = ai + 0.005&673,
~ (31)
bi = bp +0.0008k,4, O = g+ 2.58k5, pr = pr +0.00058,6

. k=10
where {{&H}Zi?} are uniform random variables in [—1, 1]. Now, the density of the perturbed
k=1

phantom p is

~ . 10 A ~ prif (r,s) € Ey,
p(r,s) = max ( 0, min (1, Yt Crl(r, 3)) ,  where Ci(r,s) = (32)
0  otherwise

ensures that the material density p at any point is bounded within O (air cavity) and 1 (bone). We
obtain ng,, = 8000 discrete phantom images by evaluating Eq. (32) on a grid of size 128 x 128.
The resulting image is further subject to a transformation that translates it by n, and n, pixels in
the horizontal and vertical direction, respectively, and rotates it by an angle 5. We assume that n,
and n, take integer values uniformly between —8 and 8, i.e., ny,ny ~ U {—8,—7,...,7,8}, while
the random variable 3 € U (—20°,20°).

We show four realizations from the prior dataset in Fig. 5(a). We use another realization,
not part of the prior dataset and shown in Fig. 6, to generate the synthetic measurements for this
example. We simulate noisy sinogram data by adding zero-mean Gaussian noise with variance
O'% to the noise-free sinogram. We vary the variance of the measurement noise ag € {1,10,50}
to test the robustness of GAN-Flow to varying levels of noise in the measurement. The noise

characteristics of CT data is Gaussian when the photon counts are large [73]. A Gaussian noise
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Figure 5. (a) Different phantoms from the prior dataset (b) Phantoms generated from the WGAN-
GP prior.
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Figure 6. (a) Test phantom and (b) corresponding noise-free sinogram. Noisy sinograms after
adding zero-mean Gaussian noise with variance (c) o; = 1 (d) o} = 10 and (e) 07 = 50.

model is useful even in the small photon count regime [73]. In this work, we limit our exposition
to Gaussian noise. We remark that we can accommodate any noise model by suitably modifying
the likelihood term in Eq. (21).

As in the previous example, we first train a WGAN-GP with latent dimensionality nz = 60
to approximate the prior distribution?. We provide details of the generator and critic architec-
tures used in this study in Appendix B1, while Table B1 provides details of other training hyper-
parameters. Fig. 5(b) shows some realizations from the trained WGAN-GP prior. Next, we train
a normalizing model that has 256 planar flow layers. We train the normalizing flow model for
15,000 epochs with a batch size of 32; we list other hyper-parameters associated with the training
in Table B1. Thus, training the normalizing flow model requires 4.8 x10° forward model evalu-
ations. After this we obtain 30,000 realizations from the posterior distribution and use them to

estimate the posterior mean and standard deviation. Fig. 7 shows the posterior statistics estimated

2Like the previous example, we vary nz € {5,10,20,40,60,80,100} and choose nz = 60 since the RMSE be-
tween the corresponding posterior mean and the test phantom is is either smallest or close to being the smallest; see
Appendix C2
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Figure 7. Estimated posterior mean (left) and standard deviation (right) obtained using GAN-Flow
(left column) and GAN-HMC (right column) for the inverse Radon transform problem at various
levels of measurement noise.

using GAN-Flow and GAN-HMC. For comparison, we also obtain a sample of size 60,000 from
the posterior distribution using HMC, discard the first 30,000 realizations considering burn-in, and
then estimate the posterior statistics. For this example, we run HMC with 10 steps and an initial
step size of 0.01. With this setting, sampling from the latent posterior using HMC requires 6 x 10°
forward model evaluations. The posterior statistics estimated using GAN-Flow and GAN-HMC
are qualitatively similar and shows elevated uncertainty around the edges of the phantom. The
uncertainty increases as the noise in the measurement increases, which is also expected. We com-
pute the RMSE and structural similarity index metric (SSIM) [74] between the posterior mean and
the test phantom for both GAN-Flow and GAN-HMC and report those values in Table 4. Quan-
titatively, both GAN-Flow and GAN-HMC provide similar reconstructions of the test phantom,
which is consistent with Fig. 7. The results confirm that GAN-Flow is robust with respect to the

level of measurement noise. We also perform additional experiments on another test phantom;

31



634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

see Figs. C8 and C9 in Appendix C2 for those results. The performance of GAN-Flow is similar

across both test phantoms.

Table 4. RMSE and SSIM of the posterior mean reconstruction of the test phantom at different
levels of measurement noise.

RMSE SSIM

2 _ 2 _ 2 _ 2 _ 2 _ 2 _
O’n—l 077—1() 077—5() Un—l an—l() 0'77—50

GAN-Flow  0.041 0.042 0.045 0.968 0.964 0.963
GAN-HMC  0.041 0.043 0.045 0.968 0.964 0.962

Method

4.3. Phase retrieval

The final application we consider concerns phase retrieval, which involves the recovery of an
object from the magnitude of its Fourier transform [75, 76]. Phase retrieval inverse problems are
ubiquitous in many areas of science and engineering [77, 78, 79, 80, 81]. More specifically, we
consider the phase retrieval problem of recovering an object from sparse measurements of the
magnitude of its Fourier transform. We undersample the measurements to simulate accelerated
measurement acquisition paradigms. The forward model for the phase retrieval problem we con-
sider is given by:

y = |MFz|+n, (33)

where & € R™*"™ is the object of interest discretized as an image of n, x n, pixels, F' is the two-
dimensional discrete Fourier transform (DFT), |-| computes the magnitude component wise, M is
a binary mask that undersamples the Fourier magnitude measurements, and 77 is the measurement
noise. In vector form, the effective dimensionality ny of ¥y depends on the undersampling ratio r
(also known as acceleration factor [38]), i.e., ny = ny /7.

For this example, the prior dataset comprises of a subsample of the single coil knee scans
from the publicly available NYU fastMRI training dataset [38, 37]. Similar to Kelkar et al. [82],
we prepare the prior dataset in the following way. The training dataset contains a total of 973
volumes and 34,742 slices. Each slice corresponds to an emulated single coil complex-valued
Fourier space (k-space) MRI measurement; the single coil data is emulated by linearly combining

multi-coil k-space data [38]. For every slice, the fastMRI initiative also provides a corresponding
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Figure 8. (a) Different knee slices from the prior dataset (b) Knee slices generated from the
WGAN-GP prior.

slice of the knee for that volume computed from the emulated single coil measurement using the
root-sum-of-squares method. We discard the first five reconstructed knee slices of every volume,
center crop the rest into images of size 256 x 256 and then randomly divide them up into training
and test sets. In total, the training and test set of the WGAN-GP contains 29,877 and 6,140 knee
slices, respectively. The aforementioned training set is the prior dataset for this example and it
contains ngy, = 29,877 knee slices. Moreover, the ambient dimensionality ny = 256 x 256 for
this problem. Fig. 8(a) shows four typical knee slices from the prior dataset. We emphasize that,
although we use knee slices from reconstructed MRI data, the forward model is nonlinear and
given by Eq. (33).

We use three realizations from the test set as the test case for this problem. The test cases are
shown in the top row of Fig. 9. Right below them, we plot the natural logarithm of the correspond-
ing noise free k-space magnitude data to which we subsequently add zero-mean Gaussian noise
with standard deviation equal to 0.04% of the zero-frequency amplitude of the two-dimensional
DFT [28]. We also consider two types of Cartesian undersampling masks to reflect realistic sce-
narios where an object must be reconstructed from sparse measurements. Specifically, we consider
two masks that yield four-fold and eight-fold accelerations. Following Zbontar et al. [38], the un-
dersampling masks include 8% and 4% of the central region of the k-space when the acceleration
factor r = 4 and 8, respectively. The remaining k-space lines are uniformly sampled with proba-
bility such that the desired acceleration can be achieved. As common in practice, we omit k-space

magnitude measurements in the phase direction, i.e., the undersampling masks consist of vertical
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Figure 9. Test slices used for phase retrieval (top row) and
corresponding noise free logarithm of Fourier (k-space) mag- Figure 10. Cartesian un-
nitudes (bottom row). We apply the masks, shown in Fig. 10, to dersampling masks with
the noisy Fourier magnitudes to generate the synthetic measure- four- and eight-fold ac-
ments for this example. celerations.

bands. Fig. 10 shows the two masks considered in this example.

In this example, the WGAN-GP prior is trained using the progressive growing of GAN (Pro-
GAN) method [40]. Not only does the ProGAN training method stabilize the training of GANs
designed to synthesize large images, but it also makes the training more efficient. In the ProGAN
training methodology, learning commences from a coarse scale wherein the generator learns to
synthesize, and the critic learns to discriminate, low resolution images, say of size 4 x 4. Over
stages of increasing resolution, going from 4 x 4 to 8 X 8 and ultimately to 256 x 256, new lay-
ers are added to the generator and the critic, as the generator learns to synthesize, and the critic
learns to discriminate, finer scale details. We adopt the implementation of ProGANs from [83]
and choose the latent space dimensionality nz = 512 following previous works [82, 40]. Fur-
ther details about the WGAN-GP model, ProGAN training methodology, and associated training
hyper-parameters may be found in Appendix B and Table B1. Samples from the trained WGAN-
GP prior are shown in Fig. 8(b). We note that the WGAN-GP model is frozen for all subsequent
steps.

The normalizing flow model for this problem consists of 16 affine-coupling flow layers with

34



690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

activation normalization [32]. See Appendix B2 for more details about the scale and shift networks
of the affine coupling layers. In this example, we train the normalizing flow model for 50,000
epochs and a batch size of 32. We train the normalizing flow model for every combination of test
slice and undersampling mask. Subsequently, for each combination of test slice and mask, we
obtain 10,000 samples from the latent posterior distribution to estimate the posterior pixel-wise
mean and standard mean. Figs. 11 and 12 show the posterior mean, posterior standard-deviation,
and the absolute error of the posterior mean reconstruction for the four- and eight-fold acceleration,
respectively. We compute the RMSE and SSIM between the posterior mean reconstruction and
the ground truth knee slices and report these values in Table 5. From Figs. 11 and 12 and Table 5,
we observe that the reconstruction is satisfactory. However, the reconstruction of test slice 1 is
comparatively better than those of test slices 2 and 3. This indicates that the reconstruction of
some knee slices, like test slice 1, which probably lies in the typical set of the generator’s latent
space (range of G* [84]), can be better than atypical test slices. Moreover, for test slice 2, the
posterior pixel-wise standard deviation when the acceleration factor » = 4 is marginally larger in
comparison to the case when r = 8; see the second row third column of Figs. 11 and 12. The result
above needs further investigation since a reduction in uncertainty as the number of measurements
reduces is counter-intuitive.

Significantly, this example showcases the efficacy of GAN-Flow compared to methods involv-
ing MCMC simulations. In this study, we attempted to carry out inference using GAN-HMC.
However, we were unsuccessful in obtaining convergence of the Markov chains after varying the
number of leapfrog steps and burn-in time. We posit that this may be due to the relatively large

latent dimensionality in this study.

Table 5. RMSE and SSIM of the of the posterior mean reconstruction of the test slices for different
accelerations.

4x acceleration 8 x acceleration
RMSE SSIM RMSE SSIM

Slice 1 0.0070 0.6185 0.0072 0.6142
Slice 2 0.0238 0.4802 0.0246 0.4587
Slice 3 0.0206 0.5556 0.0217 0.5702

Test slice
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Figure 11. Posterior pixel-wise standard mean (second column) and posterior pixel-wise standard
deviation (third column) for various test cases when acceleration factor » = 4. The first column
shows the ground truth slices for reference. The last column shows the absolute error between the
posterior mean and the ground truth.

5. Conclusions

Bayesian inference is widely applicable but its application is challenging, especially, in cases
where the inverse problem is high-dimensional and prior information is qualitative in nature. In
this work, we propose GAN-Flow, a dimension-reduced variational approach to solving large-scale
inverse problems. GAN-Flow combines together two types of generative models — GANs and
normalizing flows. The former is used to form an informative data-driven prior with the generator
providing a map between a low-dimensional latent space and the high-dimensional ambient space.
Normalizing flows are used to solve the inverse problem variationally in the low-dimensional latent

space, made possible due to an invertible map that transforms the prior distribution in the latent
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Figure 12. Posterior pixel-wise standard mean (second column) and posterior pixel-wise standard
deviation (third column) for various test cases when acceleration factor » = 8. The first column
shows the ground truth slices for reference. The last column shows the absolute error between the
posterior mean and the ground truth.

space into the posterior distribution in the latent space. The low-dimensional latent posterior
can be sampled, without evaluating the underlying forward model, to obtain samples from the
high-dimensional ambient space. We have also shown how GAN-Flow can be used to estimate
statistics of the ambient posterior distribution. We have used GAN-Flow to solve three physics-
based inverse problems that include various challenging scenarios. In particular, the application to
phase imaging shows that GAN-Flow can handle challenging prior information, nonlinear forward
models, and very large-scale inverse problems. The extension of GAN-Flow to black-box forward
models that are incompatible with automatic differentiation is a promising research direction that

will make GAN-Flow more widely applicable. Another interesting research direction will be the
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application of GAN-Flow to the inference of physics, i.e., terms in the governing equation of an

observed phenomena.
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Appendix A. Derivation of the loss function Lyy for training the normalizing flow model in

GAN-Flow
Let z ~ pz(z) and Z be two random vectors, both € 2z, and the diffeomorphism H (-;)) :
0z — Qzsuchthat 2 = H(z;4). Let 2 ~ p3(2), which can be computed using Eq. (6) as follows:

pz(2) = Hypz(z,9) = pz(2)|det V. H (z;4p)| . (A.1)

For any function a(-) : 2z — {2z, the change-of-variables theorem of multivariable calculus states:

(A2)

N J/
-~

pz(2) from Eq. (A.1)

_ /Q a(2) pa(z) [|det V, H(z: )| ~d2] = /Q a(H(z:)) p2(2) dz.

(. s

/Q a(z) pz(2) d%z/Q a(2) [pz(z)|det Vo H(z;4)| '] dz

g

dz

On recognizing that fﬂz a(z) pz(2) dz is nothing but E. .7, [a(2)], we can write

EZNH#pz la(z)] = Eanpz(z) la(H (z;))]. (A.3)

Now, the reverse KL divergence between the pushforward distribution H4pz(z;) and the

target distribution pz(z|y) is:

di (Hypz(2:9)|pz(2]9)) = Eznmryp. [log Hypz(211h) — logpz(2|9)] (A4)

/Q :log Hypz(z;1) — ﬂlOgPy(@|Z) +logpz(z) — 10gpy(’§l))j Hypz(z;%) dz

logpz(z|9)

log Hypz(2;1) — logpy(y|z) —logpz(z) + 10gpy(?9)} Hypz(z;1) dz

2
N

2
W

-~

Hypz(25)

()

zZ

=Eopz(z) [logpz(Z) — log|det V. H(2z;)| —logpy(y|H (z;9)) — logpz(H (2;)) + 10gpy(@)],
44

:logﬂpz(Z>|det VoH(z9)|™") —logpy(§|H (2;9)) — log pz(H (2;9)) + logpy(:f/)}pz(z) dz

logpz(2) — logldet V. H (i) | — log py (91 H(259)) — logpz(H (2 %)) + logpy(9) | p2() d2
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where we substitute the expression for pz(z|y) from Eq. (18) in the second line, and then use
Eq. (A.1) to replace H4pz(z;) in the fourth line while changing the variables of integration as
per Egs. (A.2) and (A.3). To obtain the proposed loss function Lng in Eq. (21) for training the
normalizing flow, we simply ignore the terms log pz(z) and logpy(y) in Eq. (A.4) since they do

not depend on 7). This completes the derivation of Eq. (21) starting from Eq. (20).

Appendix B. Details of the GAN and normalizing flow architectures of GAN-Flow and train-

ing hyper-parameters

In this section we describe the WGAN-GP and normalizing flow models used in the GAN-

Flow pipeline for various inverse problems. Some of the nomenclature we use are as follows:

1. FC(n) — Fully connected layer of width n.

2. Tr. Conv2D (cou, k5 S, P, Pour) — 2D transpose convolution layer with ¢y, output channels,
kernel size (k, k), stride s, padding p and output padding poy.

3. Conv2D (coy, ks s, p) — 2D convolution layer ¢, output channels, kernel size (k, k), stride
s and padding p.

4. Self Attention — self-attention module [39].

5. BN, LN, PixelNorm, Mini-batch std. dev. normalization — batch, layer, pixel [40] and
mini-batch standard deviation [40] normalization, respectively.

6. LReLU(«), ELU, and TanH — Leaky rectified linear unit (with parameter «/), exponential
linear unit and hyperbolic tangent activation functions, respectively.

7. Up-sample 2x — Up-scaling by a factor of 2 using bi-linear interpolation.

8. Down-sample 2 x — Average pooling over 2x2 patches with stride 2.

Bl. WGAN-GP model architectures

Table B1 lists the training hyper-parameters. Fig. B1 shows the generator and critic architec-
ture used in the initial condition inference problem. Fig. B2 shows the generator and architecture

used in the inverse Radon transform problem. Fig. B3(a) and (c) shows the generator and critic
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Table B1. Training hyper-parameters for WGAN-GP and normalizing flow models of the GAN-
Flow pipeline.

Model hyper-parameter Inverse problem

Heat conduction Radon transform Phase imaging
(Section 4.1) (Section 4.2) (Section 4.3)
Latent dimension n z 5 60 512
Z Architecture Fig. B1 Fig. B2 Fig. B3
é Training epochs 500 1000 294
£ Learning rate 0.0002 0.001 0.003
g Gradient penalty \ 10 10 10
2 Batch size 64 100 128 — 64
3 ncritic/ Tgen 5 4 1
Optimizer Adam Adam Adam
51 =0,82,=0.99 B1=0.5,82 =0.99 51 =0,082=0.99
% Type of flow model layer Planar Planar Affine coupling
fo Number of flow layers ng 64 256 16
E Training epochs 5000 15000 50000
= Learning rate 0.002 0.002 0.001
g Batch size 32 32 32
2 .. Adam Adam Adam
Optimizer

B1=0.9,8=0.999 31 =0.9,8=0.999 1 = 0.9, = 0.999

architectures, respectively, we use for the phase retrieval problem. The generator comprises con-
volution blocks that are shown in Fig. B3(b). Similarly, the critic is made of a convolution block
that is denoted as ‘Dis. Convolution Block’ in Fig. B3(c) and shown in Fig. B3(b). In this study,
we use the Progressive growing of GAN methodology to train the generator and critic networks.
We briefly summarize the ProGAN method here, and refer [40] to interested readers for more

details.

Bl1.1. Progressive growing of GANs

In the ProGAN methodology, both generator and critic are trained synchronously to synthesize
images starting from size 4 x4 up until 256 x256. For instance, at the first stage, when the GAN is
learning to synthesize images of size 4 x4, only the first three layers (after the inputs are reshaped
and including the first convolution block) of the generator is trained. Similarly, at this stage, the
discriminator only consists of first two layers (including the first Dis. Convolution block) and the

final four layers (starting from the mini-batch standard deviation normalization). After the first
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Figure B1. (a) Generator and (b) critic architectures of the WGAN-GP model for the initial con-
dition inference inverse problem.

stage of training is complete, a new convolution block is now appended to the previously trained
convolution block in the generator. Similarly, another ‘Dis. Convolution Block’ is appended to
the previously trained block of similar type to the discriminator. All weights of the generator and
critic networks are updated at this stage. This process continues for a further four stages, thus a
total six stages, up until the GAN learns to synthesize images of the required size. The requisite
number of stages ng,g. should satisfy 2nsueetl — 198, In this study, the desired size of the knee
slices was 256 x 256, which necessitates ng,e. = 7. We train the GAN for 42 epochs at each stage,
which makes a total of 294 epochs across all stages. We use a batch size of 128 for the first four
stages, and reduce it by half for the penultimate three stages. We also randomly flip the images
horizontally to augment the training dataset. At every stage lower-resolution images from the prior
dataset are down-sampled using average pooling to obtain the necessary ‘real’ images for training.
Moreover, during training at the &™ stage (k starts from 2 going to 8 corresponding to resolutions
of 4x4 to 128x128) beyond k = 2, the synthesized images are formed by a linear combination
of the up-sampled images from the previous generator up to the previous stage and the current
stage using residual connections. Similarly, the critic also blends together image features at the
(k — 1)th resolution level using residual connections. This linear superposition factor, say «, lin-
early increases between 0 and 1 through the training epochs to ultimately only consider the images

entirely synthesized at the k™ resolution level, i.e., the contribution from the residual connections
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Figure B2. (a) Generator and (b) critic architectures of the WGAN-GP model for the inverse
Radon transform problem.

gradually fades away as training progresses for every stage. Figure 2 in [40] is instructive of this
multi-scale blending. Fig. B4 shows knee slices of various resolutions generated at the end of k"

stage of training using the WGAN-GP model from Fig. B3.

B2. Normalizing flow model architectures

We use planar flow layers with hyperbolic tangent non-linearity for both the initial condi-
tion inference and inverse Radon transform problem. For the phase retrieval problem, we use
affine coupling flow layers, as shown in Fig. B5(a), and the scale and shift networks are shown
in Fig. B5(b). Every affine coupling block permutes its input such that the partition, described
above Eq. (11), is random for every layer; this promotes better mixing among every latent di-
mension. Subsequently, activation normalization is applied, which scales the inputs to have zero
mean and unit variance; this transformation is also updated during training. The re-scaling layer in
Fig. B5(b) has a single learnable parameter that simply scales and multiplies itself with the output
from the previous layer. This parameter is initially set to zero such that the whole layer starts out
as an identity transform. After the re-scaling layer, TanH operation operates on one-half of the

data and serves as the scale operator, while the other half acts as the shift operator.
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Appendix C. Additional results

Cl. Initial condition inference

For the initial condition inference inverse problem, we vary the latent dimensionality nz, while
keeping all other hyper-parameters fixed, to study its effect on the overall performance of GAN-
Flow. Fig. C6 reveals that the performance of both GAN-Flow and GAN+HMC deteriorates as
the latent dimensionality nz increases. One reason for this may be the following: the latent
space dimensionality controls the expressivity of the generator, and a larger than necessary latent
space dimensionality may be introducing spurious uncertainty in the prior. Additionally, the de-
teriorating performance can also be attributed to the curse of dimensionality. As the latent space
dimensionality increases, both HMC and normalizing flows find it increasingly harder to sample
the latent posterior distribution. In a nutshell, Fig. C6 is empirical evidence of the fact that di-
mension reduction is beneficial for Bayesian inference. From Fig. C6, nz = 5 leads to the lowest
RMSE in the estimated posterior statistics. This is expected since the underlying prior distribution
has only four random variables. While it may appear from Fig. C6(a) that GAN-Flow is not able
to estimate the posterior mean as well as GAN+HMC, recall that we train the normalizing flows
with the same hyper-parameter setting and a total of 3.2x 10* forward model evaluations irrespec-
tive of the value of nz. Increasing the computational effort as nz increases should help improve
the performance of GAN-Flow. In Fig. C6(b), GAN-Flow does at least as well as GAN+HMC in

capturing the posterior variance at modest dimensions (nz < 80).

C2. Inverse Radon transform

Similar to the previous example, we vary the latent dimensionality n z, while keeping all other
hyper-parameters fixed, to study its effect on the overall performance of GAN-Flow across differ-
ent levels of measurement noise. We plot the reconstruction error of the posterior mean in Fig. C7,
which shows that the optimal latent dimension nz lies between 40 and 80 for the three levels of
measurement noise we consider. Note that, in this example, the underlying prior distribution is
parameterized by 13 variables. Hence, the reconstructions from GAN-Flow and GAN-HMC are
inadequate when nz < 20. At such low latent dimensions, the prior distribution from the WGAN-

GP is not sufficiently expressive. Beyond that, the reconstruction error first reduces and then
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increases again. The comparatively larger reconstruction errors when nz > 80 may be due to in-
sufficient training of the normalizing flow or the inefficacy of HMC in sampling high-dimensional
distributions. Therefore, for this example, we choose nz = 60 to obtain a balanced performance
from GAN-Flow across all levels of measurement noise.

Further, we test GAN-Flow on another phantom separate from the one in Section 4.2 while
keeping all training hyperparameters fixed as before. Fig. C8 shows the phantom, corresponding
sinogram and noisy measurements for different levels of noise. Fig. C9 shows the pixel-wise
posterior mean and standard deviation estimation estimated using GAN-Flow. With respect to the
ground truth Fig. C8(a), the RMSE of the posterior mean reconstruction is 0.044, 0.047 and 0.047
for 0727 = 1,10 and 50, respectively. The SSIM is 0.965, 0.963 and 0.962 at ag = 1,10 and 50,
respectively. These metrics are similar to those reported in Table 4. Thus, the performance of

GAN-Flow is consistent across both test phantom.

Posterior
mean

Posterior
std. dev.

N | B | EE——

0.1 0.5 09 0.1 0.5 09 01 0.5 0.9

I ] EEE—— |
0.1 0.4 0.1 0.4 0.1 0.4

Figure C9. Estimated posterior mean (top row) and standard deviation (bottom row) obtained
using GAN-Flow for the alternate test phantom on inverse Radon transform problem at various
levels of measurement noise.
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Figure B3. (a) Generator and (c) critic architectures of the WGAN-GP model for the phase re-
trieval problem. (b) and (d) shows the convolution blocks within the generator and critic, respec-

tively.
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Stage 2 Stage 3 Stage 4 Stage 5
Image size 4 x4 Image size 8 x8 Image size 1616 Image size 32x32

Stage 6 Stage 7 Stage 8
Image size 64 x64 Image size 128x128  Image size 256256

Figure B4. Knee slices of resolution 2% x 2¥ generated at the end of the k™ training stage using the
WGAN-GP model for the phase retrieval problem.
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Figure BS. (a) Typical flow layer with affine coupling transform, and (b) scale and shift networks
used for the affine coupling transform in the phase retrieval problem.
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Figure C6. RMSE of the posterior pixel-wise (a) mean and (b) standard-deviation estimated using
various methods with respect to the corresponding statistics estimated using MCS for the initial
condition inference problem.
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Figure C7. RMSE of the posterior pixel-wise mean with respect to the ‘true’ phantom for varying
levels of variance 02 of the measurement noise in the inverse Radon transform problem.
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Figure C8. (a) Alternate test phantom and (b) corresponding noise-free sinogram. Noisy sino-
grams after adding zero-mean Gaussian noise with variance (c) af, =1(d) af] =10 and (e) 0% = 50.
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