

A dimension-reduced variational approach for solving physics-based inverse problems using generative adversarial network priors and normalizing flows

Agnimitra Dasgupta^a, Dhruv V Patel^b, Deep Ray^{c,d}, Erik A Johnson^e, Assad A Oberai^{a,*}

^a*Department of Aerospace & Mechanical Engineering, University of Southern California, Los Angeles, 90089, California, USA*

^b*Department of Mechanical Engineering, Stanford University, Stanford, 94305, California, USA*

^c*Department of Mathematics, University of Maryland, College Park, 20742, Maryland, USA*

^d*Institute for Physical Science and Technology, University of Maryland, College Park, 20742, Maryland, USA*

^e*Sonny Astani Department of Civil & Environmental Engineering, University of Southern California, Los Angeles, 90089, California, USA*

Abstract

We propose a novel modular inference approach combining two different generative models — generative adversarial networks (GAN) and normalizing flows — to approximate the posterior distribution of physics-based Bayesian inverse problems framed in high-dimensional ambient spaces. We dub the proposed framework GAN-Flow. The proposed method leverages the intrinsic dimension reduction and superior sample generation capabilities of GANs to define a low-dimensional data-driven prior distribution. Once a trained GAN-prior is available, the inverse problem is solved entirely in the latent space of the GAN using variational Bayesian inference with normalizing flow-based variational distribution, which approximates low-dimensional posterior distribution by transforming realizations from the low-dimensional latent prior (Gaussian) to corresponding realizations of a low-dimensional variational posterior distribution. The trained GAN generator then maps realizations from this approximate posterior distribution in the latent space back to the high-dimensional ambient space. We also propose a two-stage training strategy for GAN-Flow wherein we train the two generative models sequentially. Thereafter, GAN-Flow can estimate the statistics of posterior-predictive quantities of interest at virtually no additional computational cost. The synergy between the two types of generative models allows us to overcome many challenges associated with the application of Bayesian inference to large-scale inverse problems, chief among which are describing an informative prior and sampling from the high-

dimensional posterior. GAN-Flow does not involve Markov chain Monte Carlo simulation, making it particularly suitable for solving large-scale inverse problems. We demonstrate the efficacy and flexibility of GAN-Flow on various physics-based inverse problems of varying ambient dimensionality and prior knowledge using different types of GANs and normalizing flows. Notably, one of the applications we consider involves a 65,536-dimensional inverse problem of phase retrieval wherein an object is reconstructed from sparse noisy measurements of the magnitude of its Fourier transform.

Keywords: Inverse problems, Bayesian inference, variational inference, generative modeling, uncertainty quantification

1. Introduction

1 Inverse problems are useful for determining the causal factors behind an observed phenomenon
2 but remain challenging to solve. Inverse problems are ill-posed and, as such, they may admit mul-
3 tiple or, in the extreme case, no solutions [1]. Moreover, in most practical applications, the forward
4 problem is nonlinear, the inferred quantity is high-dimensional, and measurements are noisy: all of
5 these factors makes it challenging to solve inverse problems. Deterministic approaches to solving
6 inverse problems result in point estimates, i.e., a single solution to the inverse problem at hand,
7 which precludes other possible solutions. In contrast, the Bayesian paradigm treats inverse prob-
8 lems in a stochastic setting, with the *posterior* distribution characterizing all possible solutions to
9 the inverse problem at hand. Using Bayes' rule, the posterior distribution results from updating the
10 *prior* distribution through a *likelihood* function: this process is known as Bayesian inference. The
11 posterior distribution is also useful for quantifying the relative plausibility of different solutions,
12 popularly known as uncertainty quantification. Bayesian inference is attractive because it is philo-
13 sophically appealing and conceptually simple while giving additional useful information about
14 uncertainty in the solution. However, the application of Bayesian inference poses many practical
15 and computational challenges. On a practical note, selecting a well-informed prior distribution is

*Corresponding author

Email address: aoberai@usc.edu (Assad A Oberai)

16 crucial to the success of Bayesian inference. However, the task of choosing such a distribution
17 capable of accommodating the myriad of variations encountered in practical solution fields is far
18 from straightforward. Even with a carefully designed prior, Bayesian inference remains computa-
19 tionally challenging because only a few cases permit closed-form posterior distributions, i.e.,
20 those where the prior and likelihood distributions form a conjugate pair. Unfortunately, scenarios
21 where it is possible to leverage Bayesian conjugacy seldom occur, and the posterior distribution
22 must be approximated using appropriate tools.

23 One way of approximating the posterior distribution is through samples drawn from it. Markov
24 chain Monte Carlo (MCMC) methods have been the workhorse of posterior sampling for almost
25 half a century [2]. However, the application of MCMC can be challenging on large-scale in-
26 verse problems, i.e., when the inferred quantity is high-dimensional — this is popularly known
27 as the ‘*curse of dimensionality*’. The difficulty manifests as long mixing times and larger auto-
28 correlations between successive samples of Markov chains [3, 4]. Many notable advancements
29 have been proposed to improve the performance of MCMC methods. Some advanced meth-
30 ods focus on carefully designing the proposal distributions in high dimensions to reduce mixing
31 times [5, 6]. Alternatively, some approaches try to reduce the stochastic dimensionality of the in-
32 verse problem [3, 7]. Despite these advancements, the application of MCMC to large-scale inverse
33 problems continues to present significant challenges.

34 Variational inference is often considered a computationally efficient alternative approach for
35 approximating the posterior distribution [8]. In this approach, a parameterized family of distribu-
36 tions that permit efficient sampling and density evaluations are used to approximate the posterior
37 distribution. The optimal parameters are chosen by minimizing some measure of divergence be-
38 tween the approximate posterior density induced by the adopted distribution family and the true
39 posterior density. Choosing an expressive approximation family for the posterior distribution is
40 critical to the success of variational inference, and doing so is difficult in high dimensions where
41 very little information is available about the shape of the posterior. Recently, transport maps have
42 emerged as a popular choice in this regard [9]. Instead of approximating the posterior distribution
43 using a parameterized family of distributions, transport maps mold the prior distribution into the
44 posterior distribution. Thus, instead of optimizing the parameters of a family of distributions, the

45 parameters of the transport map must be optimized. While variational inference has been shown
46 to scale better than MCMC [9, 10], the curse of dimensionality is still a challenge. The number of
47 parameters that must be optimized, when approximating posterior distributions, proliferates as the
48 dimensionality of the inverse problem increases. Similarly, the construction of high-dimensional
49 transport maps can be difficult [11].

50 More recently, deep learning models capable of carrying out Bayesian inference while meet-
51 ing or circumventing the challenges posed by Bayesian inference are gaining popularity [12]. In
52 particular, deep generative models are at the forefront of deep learning-driven Bayesian inference.
53 Also popular are the conditional counterparts of deep generative models trained using supervised
54 data: given realizations from the prior distribution, synthetic measurements are generated using the
55 forward model, and the training data consists of pairs of the prior realizations and corresponding
56 measurements. In such a supervised setting, conditional generative models can be used to obtain
57 realizations from the posterior distribution for any new measurement. Some popular deep genera-
58 tive models are generative adversarial networks (GANs) [13], normalizing flows [14, 15, 16], and
59 variational auto-encoders [17]. Among them, GANs possess superior sample generation qualities
60 and intrinsic dimension reduction capabilities [18]. As a result, GANs have been used as a data
61 informative priors [19, 20]. Conditional GANs have also been used to approximate the posterior
62 distribution [21, 22, 23]. However, GANs remain notoriously difficult to train and susceptible to
63 mode collapse. Moreover, GANs are implicit generative models i.e., it is not possible to evaluate
64 point-wise the probability density induced by a GAN. In contrast, variational auto-encoders allow
65 for the computation of a lower bound on point-wise density values. Variational auto-encoders
66 have also been used to perform Bayesian inference [24, 25, 26], but tend to produce blurry outputs
67 compared to those from GANs. In contrast to GANs and variational auto-encoders, normalizing
68 flows are explicit generative models and allow for point-wise evaluation of the probability den-
69 sity they induce [27]. Normalizing flows utilize invertible neural networks to construct a bijective
70 transformation [15, 16]. Therefore, normalizing flows are natural candidates for transport maps
71 and have been used for variational inference [14, 28, 29]. Conditional normalizing flows have also
72 been used to approximate the posterior distribution in inverse problems [30, 22, 23]. However,
73 the application of normalizing flows to large-scale inverse problems is challenging: when the in-

74 verse problem at hand is high-dimensional, the memory footprint of high-dimensional normalizing
75 flows is so large that training requires access to extraordinary computational resources [31] (for
76 instance, see [32] where a GLOW normalizing flow model is trained with a mini-batch size of 1
77 per processing unit which approximately amounts to 40 GPU weeks). Aside from deep generative
78 models, Bayesian neural networks have also been used for Bayesian inference [33]. Bayesian neu-
79 ral networks implicitly learn to invert measurements by introducing stochasticity in the weights of
80 a neural network. However, Bayesian neural networks have limited capacity due to the approxi-
81 mations made to make the training tractable [34]. We note that the supervised datasets necessary
82 to train many of the aforementioned models may not be readily available and computationally
83 expensive to acquire.

84 In this work, we propose a modular unsupervised inference framework — GAN-Flow — that
85 couples together GANs and normalizing flows to solve large-scale physics-based inverse problems
86 when the only prior information available is a sample from the true but inaccessible prior distri-
87 bution. GAN-Flow aims to circumvent the challenges faced by generative models when they are
88 used to perform inference in high-dimensional settings by exploiting the respective strengths of
89 the two types of generative models it employs: the dimension reduction capability of GANs, and
90 the efficient variational inference capability of normalizing flows. More specifically, GAN-Flow
91 employs a Wasserstein GAN (WGAN) to learn a data-driven prior distribution which will be useful
92 for Bayesian inference. Further, the WGAN helps reduce the dimensionality of the inverse prob-
93 lem as the generator component of the GAN serves as an injective map from the low-dimensional
94 latent space to the high-dimensional ambient space where the inverse problem is framed. Thus,
95 GAN-Flow also leverages the dimension reduction offered by GANs. Recent findings suggest that
96 framing inverse problems in lower-dimensional latent spaces may be advantageous [35]. GAN-
97 Flow also utilizes normalizing flows to approximate the posterior distribution in the latent space.
98 Again, the dimension reduction capability of GANs facilitate the construction of simpler normal-
99 izing flow models, which now only need to perform variational inference in the lower-dimensional
100 latent space, thereby reducing the memory footprint of normalizing flow models. As a result,
101 GAN-Flow can be used to tackle large-scale inverse problems. The use of a normalizing flow,
102 which serves as a map between the latent prior and the latent posterior, offers one significant

103 advantage: once the normalizing flow is trained, new samples from the latent posterior can be
104 efficiently generated without taking recourse to the computationally expensive forward model. A
105 new sample from the high-dimensional posterior is generated by successive transformations of a
106 sample from the latent space of the GAN using the trained normalizing flow model followed by
107 the trained generator. In this work, we demonstrate the wide applicability and flexibility of the
108 proposed framework on different large-scale linear and nonlinear inverse problems, different syn-
109 synthetic (simple geometrical features and Shepp-Logan phantoms [36]) and real-world (MRI scans of
110 human knees [37, 38]) prior distributions, different GAN architectures (self-attention GANs [39]
111 and GANs that progressively grow [40]), and normalizing flows with different invertible neural
112 network architectures (planar [14] and affine-coupling flows [41, 42]).

113 We must mention a growing body of work that has developed deep learning-based Bayesian
114 inference frameworks with some dimension reduction component. For instance, this work was di-
115 rectly inspired by [35, 19], where GANs are used to learn prior distributions and MCMC methods
116 are used to sample from its posterior. Patel and Oberai [35] used the Hamiltonian MCMC, whereas
117 Bohra et al. [20] used the Metropolis-adjusted Langevin MCMC. However, posterior sampling us-
118 ing an MCMC-based method will fail when the latent space dimensionality continues to be high
119 (for example see Section 4.3). Additionally, it is non-trivial to ascertain the convergence of MCMC
120 chains. In contrast, one can easily gauge the convergence of the latent posterior induced by the
121 normalizing flow model by tracking the loss function used to train the normalizing flow model.
122 Moreover, for a fixed compute budget (as defined by the number of forward problem solves),
123 training the normalizing flow model requires less compute wall times since it is possible to train
124 it using mini-batches. Similarly, sampling is also embarrassingly parallelizable. Whereas MCMC
125 is inherently sequential, and samples are obtained iteratively. Bayesian inference approaches that
126 consist of a generative prior coupled with a way of sampling from its posterior are widely known
127 as *modular* Bayesian approaches. GAN-Flow is also a modular approach in that sense, but dis-
128 tinct because it uses a GAN-based prior and a variational posterior induced by a normalizing flow.
129 There are also several works where normalizing flows are constructed in lower-dimensional spaces
130 and subsequently used to solve inverse problems. Some tools that have been used to derive or learn
131 the injective map include principal component analysis [43], isometric auto-encoders [44] and in-

jective neural networks [45]. Brehmer and Cranmer [46] also explore padding the low dimensional latent variable with zeroes to increase dimensionality. Other approaches simultaneously learn the dimension reduction map and normalizing flow [46, 43, 44, 45]. GAN-Flow is different since it uses a GAN to approximate the prior density, and the generator of the WGAN serves as the injective map.

137 1.1. Summary of contributions

138 In summary, the novel contributions of this work are as follows:

- 139 1. We introduce GAN-Flow, a novel unsupervised modular Bayesian inference framework, that
140 combines two types of generative models — GANs and normalizing flows — and exploits
141 their respective strengths.
- 142 2. We develop a two-stage strategy to train each sub-component of the GAN-Flow. First,
143 the GAN is trained using *a priori* available samples from the prior distribution. Then,
144 the normalizing flow model is used to perform variational Bayesian inference in the low-
145 dimensional latent space of the GAN for efficient posterior approximation.
- 146 3. We demonstrate the efficacy of GAN-Flow on three large-scale physics-based inverse prob-
147 lems involving both synthetic and real-world data. We consider three inverse problems
148 — inferring initial conditions in a heat conduction problem, an inverse Radon transform
149 problem wherein an object is recovered from its sinogram, and a phase retrieval problem
150 wherein an object is recovered from the magnitude of its Fourier transform. Where possible
151 we compare GAN-Flow with Monte Carlo simulation and an inference approach previously
152 proposed by Patel et al. [19] that also utilizes a WGAN-GP prior.
- 153 4. We also show that GAN-Flow is a flexible framework that can utilize various types of GAN
154 and normalizing flow models. For the various problems we consider, we use different GAN
155 models which include generators with self-attention units and GANs that are progressively
156 grown. We also show that GAN-Flow can accommodate different types of normalizing flows
157 such as planar flows and affine-coupling flows.

158 The remainder of this paper is organized as follows. Section 2 sets up the problem of interest, and
 159 provides a brief background on variational Bayesian inference, GANs and normalizing flows. We
 160 introduce GAN-Flow in Section 3 and discuss the training of its two sub-components. In Section 4,
 161 we apply GAN-Flow to solve three large-scale inverse problems. Finally, we draw conclusions in
 162 Section 5.

163 **2. Background**

164 *2.1. Problem setup and Bayesian inference*

165 Consider the random vectors $\mathbf{x} \in \Omega_{\mathcal{X}} \subseteq \mathbb{R}^{n_{\mathcal{X}}}$ and $\mathbf{y} \in \Omega_{\mathcal{Y}} \subseteq \mathbb{R}^{n_{\mathcal{Y}}}$ related by the forward model
 166 $F : \Omega_{\mathcal{X}} \rightarrow \Omega_{\mathcal{Y}}$ such that $\mathbf{y} = F(\mathbf{x})$. Herein, \mathbf{x} , $\Omega_{\mathcal{X}}$ and $n_{\mathcal{X}}$ are called the *ambient* variable, space
 167 and dimension, respectively. The inference of \mathbf{x} from a noisy measurement vector $\hat{\mathbf{y}}$ (a noisy
 168 realization of \mathbf{y}) constitutes an inverse problem. Given a likelihood function $p_{\mathcal{Y}}(\hat{\mathbf{y}}|\mathbf{x})$, Bayes' rule
 169 is used to update prior belief about \mathbf{x} , characterized through the prior probability density function
 170 $p_{\mathcal{X}}(\mathbf{x})$, as follows:

$$p_{\mathcal{X}}(\mathbf{x}|\hat{\mathbf{y}}) = \frac{p_{\mathcal{Y}}(\hat{\mathbf{y}}|\mathbf{x}) p_{\mathcal{X}}(\mathbf{x})}{p_{\mathcal{Y}}(\hat{\mathbf{y}})}, \quad (1)$$

171 where $p_{\mathcal{X}}(\mathbf{x}|\hat{\mathbf{y}})$ is the posterior distribution and $p_{\mathcal{Y}}(\hat{\mathbf{y}})$ is the evidence or marginal likelihood.
 172 When measurements are corrupted by an additive noise $\boldsymbol{\eta}$, distributed according to $p_{\boldsymbol{\eta}}$, the mea-
 173 surement model $\hat{\mathbf{y}} = \mathbf{y} + \boldsymbol{\eta}$ leads to the likelihood function $p_{\mathcal{Y}}(\hat{\mathbf{y}}|\mathbf{x}) = p_{\boldsymbol{\eta}}(\hat{\mathbf{y}} - F(\mathbf{x}))$ in Eq. (1).
 174 The posterior distribution is useful for computing posterior-predictive statistics of any desired
 175 quantity of interest, herein denoted as $\ell(\mathbf{x})$. For instance, the posterior mean of $\ell(\mathbf{x})$ can be com-
 176 puted as follows:

$$\mathbb{E}_{\mathbf{x} \sim p_{\mathcal{X}}(\mathbf{x}|\hat{\mathbf{y}})} [\ell(\mathbf{x})] = \int_{\Omega_{\mathcal{X}}} \ell(\mathbf{x}) p_{\mathcal{X}}(\mathbf{x}|\hat{\mathbf{y}}) d\mathbf{x} \quad (2)$$

177 Typically, the integral in Eq. (2) is high-dimensional and intractable for practically interesting
 178 problems, and must be approximated using Monte Carlo methods, which requires samples from
 179 the posterior distribution. Given a sample of size n_s , the Monte Carlo approximation to Eq. (2) is
 180 given as:

$$\mathbb{E}_{\mathbf{x} \sim p_{\mathcal{X}}(\mathbf{x}|\hat{\mathbf{y}})} [\ell(\mathbf{x})] \approx \frac{1}{n_s} \sum_{i=1}^{n_s} \ell(\mathbf{x}^{(i)}), \quad (3)$$

181 where $\mathbf{x}^{(i)}$ is the i^{th} realization of \mathbf{x} drawn from the posterior distribution. In this work, we propose
 182 the novel inference framework GAN-Flow, which is efficient at sampling the posterior distribution
 183 and, ultimately, estimating the statistics of posterior-predictive quantities. GAN-Flow is a hybrid
 184 of two types of generative models: generative adversarial networks (GANs) and normalizing flows.

185 *2.2. Generative Adversarial Networks*

186 Generative adversarial networks [13] are generative models consisting of two sub-networks:
 187 a generator and a discriminator (also known as the critic). GANs are trained *adversarially*: the
 188 generator tries to deceive the discriminator while the discriminator tries to distinguish between
 189 ‘fake’ samples generated from the generator and ‘true’ samples available from the target distribu-
 190 tion. The generator and critic play an adversarial ‘game’ between them with the ultimate goal of
 191 generating new realizations from an underlying distribution, the prior distribution $p_{\mathcal{X}}(\mathbf{x})$ in this
 192 case. Let the generator network G , parameterized by $\boldsymbol{\theta}$, map the *latent* variable $\mathbf{z} \in \Omega_{\mathcal{Z}} \subseteq \mathbb{R}^{n_{\mathcal{Z}}}$
 193 to the target variable \mathbf{x} , i.e., $G(\cdot, \boldsymbol{\theta}) : \Omega_{\mathcal{Z}} \rightarrow \Omega_{\mathcal{X}}$. Herein, we refer to \mathbf{z} , $\Omega_{\mathcal{Z}}$ and $n_{\mathcal{Z}}$ as the *latent*
 194 variable, space and dimension, respectively. Typically, \mathbf{z} is sampled from a simple distribution
 195 $p_{\mathcal{Z}}(\mathbf{z})$, like the multivariate standard normal distribution. Moreover, the latent dimension $n_{\mathcal{Z}}$ is
 196 typically chosen to be much smaller than the ambient dimension $n_{\mathcal{X}}$, i.e., $n_{\mathcal{Z}} \ll n_{\mathcal{X}}$. Thus, GANs
 197 are endowed with dimension reduction capabilities and the generator G serves as a map from
 198 the low-dimensional latent space to the high-dimensional ambient space. On the other hand, the
 199 discriminator D , parameterized by $\boldsymbol{\phi}$ such that $D(\cdot, \boldsymbol{\phi}) : \Omega_{\mathcal{X}} \rightarrow \mathbb{R}$, tries to differentiate between
 200 realizations drawn from $p_{\mathcal{X}}(\mathbf{x})$ and those generated by the generator.

201 The parameters $\boldsymbol{\theta}$ and $\boldsymbol{\phi}$ of the generator and the discriminator networks, respectively, are
 202 obtained through the min-max optimization of an appropriate loss function, say \mathcal{L}_{GAN} , i.e.,

$$(\boldsymbol{\theta}^*, \boldsymbol{\phi}^*) = \arg \min_{\boldsymbol{\theta}} \left(\arg \max_{\boldsymbol{\phi}} \mathcal{L}_{\text{GAN}}(\boldsymbol{\theta}, \boldsymbol{\phi}) \right). \quad (4)$$

203 Different types of GANs will use different loss functions \mathcal{L}_{GAN} ; interested readers may refer to [47,
 204 48, 49] for an overview. It is important to note that training a GAN requires realizations of $p_{\mathcal{X}}(\mathbf{x})$,
 205 therefore, we assume that n_{data} independent and identically distributed (iid) realizations of \mathbf{x} from

206 $p_{\mathcal{X}}(\mathbf{x})$ are available, which we herein denote using $\mathcal{S} = \{\mathbf{x}^{(i)}\}_{i=1}^{n_{\text{data}}}$ and refer to \mathcal{S} as the prior
 207 dataset. GAN-Flow uses the provided prior dataset to derive a data-driven informative prior. All
 208 that's required is a mechanism to sample from the GAN prior.

209 *2.3. Variational Bayesian inference*

210 MCMC methods approximate the posterior distribution using correlated realizations of \mathbf{x} that
 211 are sampled from an ergodic Markov chain with the stationary distribution $p_{\mathcal{X}}(\mathbf{x}|\hat{\mathbf{y}})$. In contrast,
 212 variational Bayesian inference methods attempt to approximate the posterior probability distribu-
 213 tion [8]. Variational Bayesian inference starts with a family of distributions $q_{\mathcal{X}}(\mathbf{x}; \psi)$ parame-
 214 terized by ψ . The optimal parameter vector ψ^* is determined by minimizing some divergence
 215 measure d between $q_{\mathcal{X}}(\mathbf{x}; \psi)$ and $p_{\mathcal{X}}(\mathbf{x}|\hat{\mathbf{y}})$:

$$\psi^* = \arg \min_{\psi} d(q_{\mathcal{X}}(\mathbf{x}; \psi) \| p_{\mathcal{X}}(\mathbf{x}|\hat{\mathbf{y}})). \quad (5)$$

216 The reverse Kullback-Leibler (KL) divergence is a popular choice for d but other divergence mea-
 217 sures have also been used [50]. Thus, variational Bayesian inference converts the problem of pos-
 218 terior sampling into an equivalent optimization problem. Once ψ^* has been determined, $q_{\mathcal{X}}(\mathbf{x}; \psi^*)$
 219 serves as an approximation to $p_{\mathcal{X}}(\mathbf{x}|\hat{\mathbf{y}})$ and can be repeatedly sampled without additional likeli-
 220 hood evaluations to obtain as many posterior samples as required — unlike MCMC-based meth-
 221 ods. As a result, variational Bayesian inference offers a computationally efficient alternative to
 222 MCMC sampling in many cases. The performance of variational Bayesian inference relies on the
 223 *a priori* chosen parameterized family of distribution $q_{\mathcal{X}}(\cdot; \psi)$ being capable of approximating the
 224 posterior distributions, which can have a complex shape. This approximation may be difficult to
 225 achieve using standard distribution families like mixture models. Moreover, the computational
 226 effort of the optimization problem in Eq. (5) increases as the dimension of ψ increases, which is
 227 expected to happen as the ambient dimensionality of the inverse problem grows.

228 An alternative approach to explicitly working with a family of distributions is to define a *push-*
 229 *forward* map that can induce a good approximation to the posterior distribution. Let $H(\cdot; \psi) :$
 230 $\Omega_{\mathcal{X}} \rightarrow \Omega_{\mathcal{X}}$ denote a bijective and differentiable map (also known as a diffeomorphism) that is pa-

231 parameterized by ψ , and let $H_{\#}p_{\mathcal{X}}(\mathbf{x}; \psi)$ denote the pushforward of the prior distribution $p_{\mathcal{X}}(\mathbf{x})$.

232 Then

$$H_{\#}p_{\mathcal{X}}(\mathbf{x}; \psi) = p_{\mathcal{X}}(\mathbf{x}) |\det \nabla_{\mathbf{x}} H(\mathbf{x}; \psi)|^{-1}, \quad (6)$$

233 as a result of change of variables, where $\det \nabla_{\mathbf{x}} H(\mathbf{x}; \psi)$ is the Jacobian determinant of the push-
 234 forward map $H(\cdot; \psi)$. Therefore, one way of approximating the posterior distribution is to use
 235 a flexible diffeomorphism such that the pushforward distribution $H_{\#}p_{\mathcal{X}}(\mathbf{x}; \psi)$ is close (in some
 236 sense) to the posterior distribution. However, the successful application of Eq. (6) requires that the
 237 Jacobian determinant be easily computable. Many techniques, such as polynomial approximation
 238 and radial basis functions, can be used to construct diffeomorphisms that permit efficient Jacobian
 239 determinant computations [51]. More recently, normalizing flows [16, 15] have emerged as an
 240 efficient tool to construct high-dimensional diffeomorphisms.

241 *2.4. Normalizing flows*

242 Normalizing flows are a class of generative models that uses invertible neural networks to
 243 construct diffeomorphisms. Normalizing flows are constructed in a manner that facilitates efficient
 244 computation of the Jacobian determinant. In practice, the inference map H is constructed by
 245 stacking together multiple, say, n_f invertible layers, which makes

$$H(\mathbf{x}) = H_{[n_f]}(H_{[n_f-1]}(\cdots H_{[1]}(\mathbf{x}))). \quad (7)$$

246 Individual bijections $H_{[k]}$ are called flows and the composition H is a normalizing flow. ψ , which
 247 we intentionally suppress in Eq. (7) and herein, denotes the parameters of all flow layers taken
 248 collectively. Note that the composition of bijective functions is also a bijective function, and the
 249 Jacobian determinant of which can be computed as:

$$\det \nabla_{\mathbf{x}} H(\mathbf{x}) = \prod_{k=1}^{n_f} \det \nabla_{\mathbf{x}_{[k-1]}} H_{[k]}(\mathbf{x}_{[k-1]}), \quad (8)$$

250 where $\mathbf{x}_{[k]} = H_{[k]}(\mathbf{x}_{[k-1]})$ and $\mathbf{x}_{[0]} = \mathbf{x}$.

251 Many different types of invertible architectures exist that define bijections for which the Jaco-

252 bian determinant is easily computable; see [16] for a recent review. In this work, we use two types
 253 of invertible architecture.

254 *2.4.1. Planar flows*

255 Rezende and Mohamed [14] proposed an invertible neural network architecture based on pla-
 256 nar transformations that apply the following perturbation to the input $\mathbf{x}_{[k-1]}$ in k^{th} flow layer $H_{[k]}$:

$$H_{[k]}(\mathbf{x}_{[k-1]}) = \mathbf{x}_{[k-1]} + \mathbf{u}_{[k]} \cdot S(\mathbf{w}_{[k]}^T \mathbf{x}_{[k-1]} + b_{[k]}), \quad (9)$$

257 where $\psi_{[k]} = \{\mathbf{u}_{[k]} \in \mathbb{R}^d, \mathbf{w}_{[k]} \in \mathbb{R}^d, b_{[k]} \in \mathbb{R}\}$ are the parameters of $H_{[k]}$, and $S : \mathbb{R} \rightarrow \mathbb{R}$ is a
 258 nonlinear activation function with derivative S' . Rezende and Mohamed [14] adopt the taxonomy
 259 ‘planar’ because they claim that the perturbation introduced to $\mathbf{x}_{[k-1]}$ is normal to the hyper-plane
 260 $\mathbf{w}_{[k]}^T \mathbf{x}_{[k-1]} + b_{[k]} = 0$. However, note that, for a fixed $\mathbf{u}_{[k]}$, all points that lie on a plane $\mathbf{w}_{[k]}^T \mathbf{x}_{[k-1]} =$
 261 $c_{[k]}$ are perturbed by the same amount, equal to $|S(c_{[k]} + b_{[k]})| \cdot \|\mathbf{u}_{[k]}\|$, and in the same direction
 262 as $\mathbf{u}_{[k]}$. Thus, planar transformations ensure that a collection of points in d -dimensional place that
 263 lie on a hyper-plane with normal $\mathbf{w}_{[k]}$ is merely translated in space and continue to a lie on a new
 264 hyper-plane that still has the same normal vector as before. The Jacobian determinant of $H_{[k]}$ is:

$$|\det \nabla_{\mathbf{x}_{[k-1]}} H_{[k]}(\mathbf{x}_{[k-1]})| = |1 + S'(\mathbf{w}_{[k]}^T \mathbf{x}_{[k-1]} + b_{[k]}) \mathbf{u}_{[k]}^T \mathbf{w}_{[k]}|. \quad (10)$$

265 Moreover, $\mathbf{w}_{[k]}^T \mathbf{u}_{[k]} \geq -1$ is a sufficient condition for $H_{[k]}$ to be invertible when S is the hyperbolic
 266 tangent function [14], which is what we use in this work.

267 *2.4.2. Affine-coupling flows*

268 Dinh et al. [41] introduced coupling flows, of which affine-coupling is a specific type. Let
 269 $\mathbf{x}_{[k-1]}^a$ and $\mathbf{x}_{[k-1]}^b$ be two disjoint partitions of the input vector $\mathbf{x}_{[k-1]}$, formed by randomly sampling
 270 components of $\mathbf{x}_{[k-1]}$, then the coupling flow layer $H_{[k]}$ applies the following transformations to
 271 its input $\mathbf{x}_{[k-1]}$:

$$\mathbf{x}_{[k]}^b = \mathbf{x}_{[k-1]}^b \odot \exp [S_1(\mathbf{x}_{[k-1]}^a)] + T_1(\mathbf{x}_{[k-1]}^a) \text{ and } \mathbf{x}_{[k]}^a = \mathbf{x}_{[k-1]}^a \odot \exp [S_2(\mathbf{x}_{[k]}^b)] + T_2(\mathbf{x}_{[k]}^b), \quad (11)$$

272 where $\mathbf{x}_{[k]}^T = \left[\mathbf{x}_{[k]}^{aT}; \mathbf{x}_{[k]}^{bT} \right]$, S_1 and S_2 are known as scale networks, T_1 and T_2 are known as shift
 273 networks, and \odot denotes the Hadamard product. The scale and shift networks are modeled using
 274 deep neural networks that preserve the dimensionality of their respective inputs. A coupling layer
 275 constrains the Jacobian to be upper triangular [41, 42]. The determinant of the Jacobian is [42]:

$$|\det \nabla_{\mathbf{x}_{[k-1]}} H_{[k]}(\mathbf{x}_{[k-1]})| = \left(\exp \left[\sum_j \{S_1(\mathbf{x}_{[k-1]}^a)\}_j \right] \right) \left(\exp \left[\sum_j \{S_2(\mathbf{x}_{[k-1]}^c)\}_j \right] \right), \quad (12)$$

276 where $\{\cdot\}_j$ denotes the j^{th} component of a vector, and $S_1(\mathbf{x}_{[k-1]}^a)$ and $S_2(\mathbf{x}_{[k-1]}^c)$ are outputs from
 277 the scale networks S_1 and S_2 , respectively.

278 3. Bayesian inference using GAN-Flow

279 Bayesian inference is useful for solving statistical inverse problems, but its practical applica-
 280 tion to large-scale inverse problems is far from straightforward. First, it is important to recognize
 281 that the quality of inference depends on the prior [52], more so when there is paucity of data. Sim-
 282 ple parametric priors derived from tractable distributions are not useful for describing complex
 283 entities such as brain scans, thermal conductivity fields, and the matrix of a composite material;
 284 recent recognition of this fact has fostered efforts to develop physics-informed data-driven pri-
 285 ors [53, 19]. Second, posterior sampling using MCMC methods is difficult in high-dimensional
 286 spaces, i.e., when $n_{\mathcal{X}}$ is large. In high-dimensional spaces, Markov chains tend to take a long time
 287 before they can reach a ‘*steady state*’, and assessing the convergence of Markov chains is also
 288 difficult. Third, MCMC sampling involves repeated evaluations of the likelihood function, which
 289 means that the underlying physics-based forward model must be evaluated during sampling and
 290 that the cost of obtaining new samples will scale linearly with the cost of forward model eval-
 291 uations; this is undesirable. Thus, MCMC sampling from high-dimensional posteriors continues
 292 to be a challenging and computationally intensive task, which has been a major deterrent to the
 293 practical application of Bayesian inference to large-scale inverse problems. GAN-Flow attempts
 294 to circumvent these issues by coupling together two types of deep generative models — generative
 295 adversarial networks and normalizing flows.

296 *3.1. Overview of GAN-Flow*

297 GAN-Flow uses a GAN, specifically a Wasserstein GAN, to form a data-driven informative
 298 prior that can synthesize realizations of \mathbf{x} similar to the constituents the prior dataset \mathcal{S} . Moreover,
 299 the generator network of the GAN becomes a map between the low-dimensional latent space and
 300 the high-dimensional ambient space. The inverse problem is solved in the low-dimensional latent
 301 space using variational Bayesian inference as the normalizing flow model acting as a pushforward
 302 operator from the prior distribution to the posterior distribution. Fig. 1 shows the three phases of
 303 the GAN-Flow framework.

304 *3.2. Phase A: Training a GAN-based prior*

305 GAN-Flow utilizes a Wasserstein GAN with Gradient Penalty (WGAN-GP) [54, 55] to model
 306 the prior probability distribution $p_{\mathcal{X}}(\mathbf{x})$. For a WGAN-GP, the loss function \mathcal{L}_{GAN} is given as

$$\mathcal{L}_{\text{GAN}}(\boldsymbol{\theta}, \boldsymbol{\phi}) = \mathbb{E}_{\mathbf{x} \sim p_{\mathcal{X}}(\mathbf{x})} [D(\mathbf{x}, \boldsymbol{\phi})] - \mathbb{E}_{\mathbf{z} \sim p_{\mathcal{Z}}(\mathbf{z})} [D(G(\mathbf{z}, \boldsymbol{\theta}), \boldsymbol{\phi})], \quad (13)$$

307 and the min-max optimization problem in Eq. (4) is solved under the constraint that $D(\mathbf{z}, \boldsymbol{\phi})$ lies in
 308 the space of 1-Lipschitz functions. This constraint ensures that the inner maximization problem in
 309 Eq. (4) leads to an approximation of the Wasserstein-1 distance (due to the Kantorovich-Rubinstein
 310 duality [56]) between $p_{\mathcal{X}}(\mathbf{x})$ and the pushforward of $p_{\mathcal{Z}}(\mathbf{z})$ induced by $G(\cdot; \boldsymbol{\theta})$ [54, 55, 19]. The
 311 1-Lipschitz constraint is satisfied by enforcing a soft penalty on the gradients of the critic D with
 312 respect to \mathbf{z} [55]. The resulting maximization problem that is solved to optimize the parameters
 313 of the discriminator is

$$\boldsymbol{\phi}^* = \operatorname{argmax}_{\boldsymbol{\phi}} \mathcal{L}_{\text{GAN}}(\boldsymbol{\theta}, \boldsymbol{\phi}) - \lambda \mathbb{E}_{\tilde{\mathbf{x}} \sim p_{\tilde{\mathcal{X}}}(\tilde{\mathbf{x}})} [(\|\nabla_{\tilde{\mathbf{x}}} D(\tilde{\mathbf{x}}, \boldsymbol{\phi})\|_2 - 1)^2], \quad (14)$$

314 where λ is the gradient penalty parameter, and $p_{\tilde{\mathcal{X}}}(\tilde{\mathbf{x}})$ is the uniform distribution over the straight
 315 line joining two pairs of points sampled from $p_{\mathcal{X}}(\mathbf{x})$ and the pushforward of $p_{\mathcal{Z}}(\mathbf{z})$ by G . The loss
 316 function in Eq. (14) minimizes the Wasserstein-1 distance between $p_{\mathcal{X}}(\mathbf{x})$ and the pushforward
 317 distribution of $p_{\mathcal{Z}}(\mathbf{z})$ due to G [35].

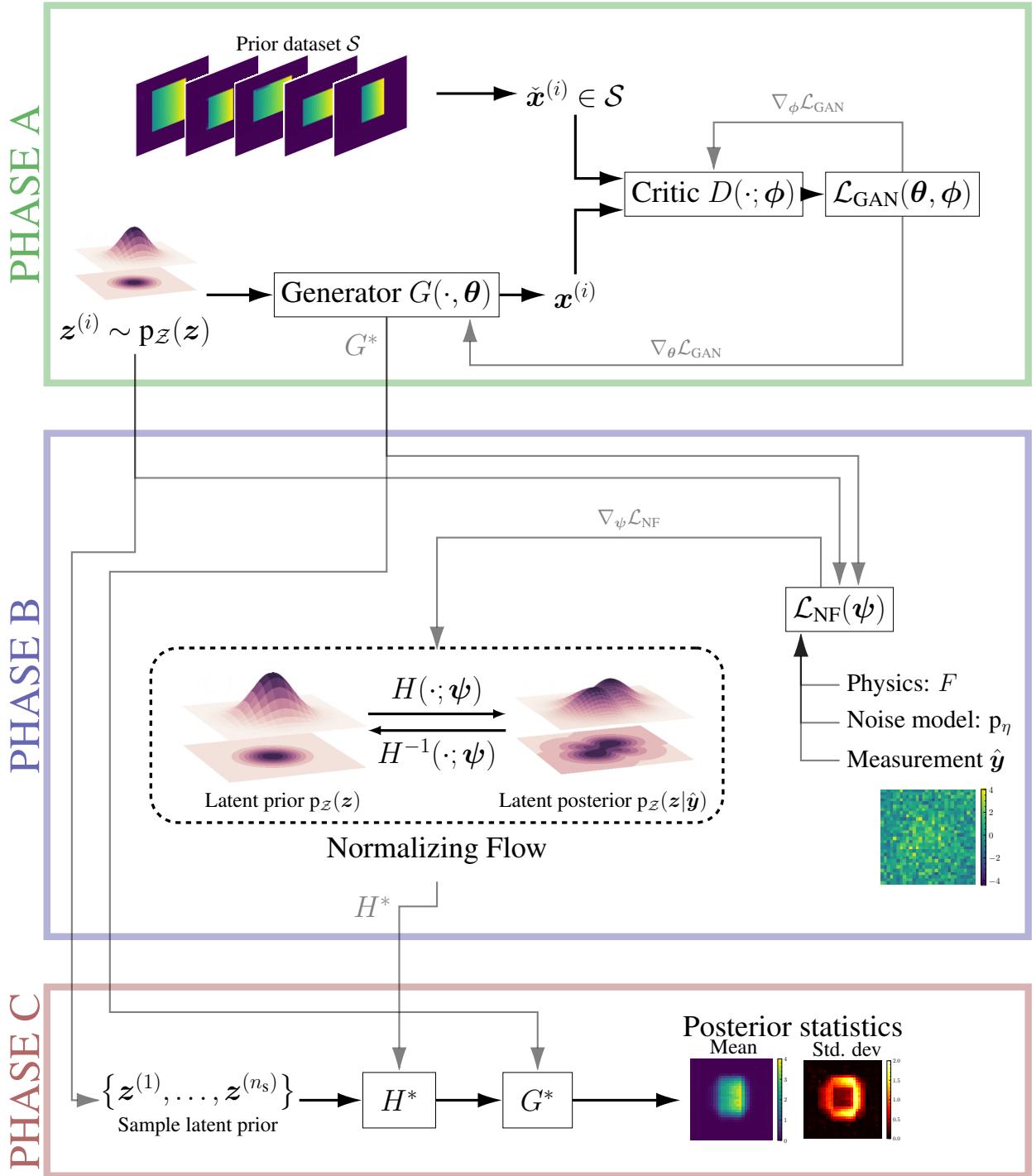


Figure 1. Schematic diagram of the proposed GAN-Flow framework for solving physics-based inverse problems. PHASE A involves the training of a WGAN-GP model with training samples from the prior distribution. In PHASE B, the trained generator G^* , the physics model F , the noise model p_η and the measurements \hat{y} are used to train the normalizing flow map H . PHASE C corresponds to posterior sampling that is achieved by using the trained normalizing flow map H^* to transform realizations from the latent prior into realizations from the latent posterior, which are then passed through the trained generator G^* to obtain realizations from the ambient posterior distribution.

318 Now, let G^* denote the generator G with optimally chosen parameters θ^* . For a perfectly
 319 trained GAN G^* ,

$$\mathbb{E}_{\mathbf{x} \sim p_{\mathcal{X}}(\mathbf{x})} [m(\mathbf{x})] = \mathbb{E}_{\mathbf{z} \sim p_{\mathcal{Z}}(\mathbf{z})} [m(G^*(\mathbf{z}))] \quad \forall m \in C_b(\Omega_{\mathcal{X}}), \quad (15)$$

320 where $C_b(\cdot)$ is the space of continuously bounded functions. Eqs. (2) and (15) can be combined to
 321 compute

$$\mathbb{E}_{\mathbf{x} \sim p_{\mathcal{X}}(\mathbf{x}|\hat{\mathbf{y}})} [\ell(\mathbf{x})] = \mathbb{E}_{\mathbf{z} \sim p_{\mathcal{Z}}(\mathbf{z}|\hat{\mathbf{y}})} [\ell(G^*(\mathbf{z}))] \quad \forall \ell \in C_b(\Omega_{\mathcal{X}}), \quad (16)$$

322 by choosing

$$m(\mathbf{z}) = \frac{\ell(\mathbf{z}) p_{\mathcal{Y}}(\hat{\mathbf{y}}|\mathbf{z})}{p_{\mathcal{Y}}(\hat{\mathbf{y}})}, \quad (17)$$

323 where

$$p_{\mathcal{Z}}(\mathbf{z}|\hat{\mathbf{y}}) = \frac{p_{\mathcal{Y}}(\hat{\mathbf{y}}|\mathbf{z}) p_{\mathcal{Z}}(\mathbf{z})}{p_{\mathcal{Y}}(\hat{\mathbf{y}})} \quad (18)$$

324 is the posterior distribution of the latent variable \mathbf{z} and $p_{\mathcal{Y}}(\hat{\mathbf{y}}|\mathbf{z})$ is nothing but $p_{\mathcal{Y}}(\hat{\mathbf{y}}|\mathbf{x})$ evaluated
 325 at $\mathbf{x} = G^*(\mathbf{z})$, i.e.,

$$p_{\mathcal{Y}}(\hat{\mathbf{y}}|\mathbf{z}) = p_{\mathcal{Y}}(\hat{\mathbf{y}}|\mathbf{x})|_{\mathbf{x}=G^*(\mathbf{z})}. \quad (19)$$

326 For additive noise models, Eq. (19) simplifies to $p_{\mathcal{Y}}(\hat{\mathbf{y}}|\mathbf{z}) = p_{\eta}(\hat{\mathbf{y}} - F(G^*(\mathbf{z})))$. Significantly,
 327 Eq. (16) implies that any statistics with respect to \mathbf{x} (respectively $\mathbf{x}|\hat{\mathbf{y}}$) can be computed using
 328 realizations of \mathbf{z} (respectively $\mathbf{z}|\hat{\mathbf{y}}$).

329 At the end of phase A, a trained generator G^* is available. The GAN not only acts as a data-
 330 driven prior, but the trained generator G^* also serves as an injective map that can conveniently
 331 transform realizations of the latent variable \mathbf{z} from the latent space $\Omega_{\mathcal{Z}}$ to corresponding realiza-
 332 tions of the ambient variable \mathbf{x} in the ambient space $\Omega_{\mathcal{X}}$. Additionally, $p_{\mathcal{Z}}(\mathbf{z})$ is herein chosen to
 333 be an $n_{\mathcal{Z}}$ -variate standard normal distribution. Also note that, in most practical cases, $n_{\mathcal{X}}$ will be
 334 large but the latent dimensionality of the WGAN-GP model will be such that $n_{\mathcal{Z}} \ll n_{\mathcal{X}}$. Thus, di-
 335 mension reduction is achieved by using GAN priors. The next step is to solve the inverse problem
 336 in this lower-dimensional latent space.

337 *Remark 1.* Choosing the latent space dimensionality $n_{\mathcal{Z}}$ from n_{data} realizations of $p_{\mathcal{X}}(\mathbf{x})$ is not

338 straightforward. This will involve careful judgment from the user. However, meta-heuristic met-
 339 rics, such as the Fréchet Inception Distance (FID) score [57] and Inception score [58], are useful
 340 for comparing the quality of the realizations generated using GANs and real samples. These met-
 341 rics can be used to evaluate the quality of the trained GAN, and suitably adjust the latent space
 342 dimensionality if performance is not satisfactory. Metrics that are more physically motivated may
 343 also be utilized in engineering applications. For instance, the consistency of microstructural de-
 344 scriptors, like the distribution of porosity in a bi-phase material [59], across the generated samples
 345 can be used when evaluating GANs for generating microstructures of heterogeneous media. We
 346 suggest choosing the smallest possible latent dimensionality that performs satisfactorily. This will
 347 also help keep the subsequent normalizing flow model relatively lightweight.

348 *Remark 2.* Unless there is an influx of new prior information that must be incorporated, there is
 349 no need to retrain WGAN-GP prior. This means that Phase A, which involves the training of the
 350 WGAN-GP model, must be completed only once for a given inverse problem. Thereafter, we can
 351 reuse the trained generator for multiple inferences.

352 *3.3. Phase B: Inference using normalizing flows*

353 With the latent prior density $p_{\mathcal{Z}}(z)$ and an optimally trained generator G^* , a normalizing flow
 354 is used to sample from the conditional posterior $p_{\mathcal{Z}}(z|\hat{y})$. This is done by learning a bijective map
 355 $H : \Omega_{\mathcal{Z}} \rightarrow \Omega_{\mathcal{Z}}$, parameterized by ψ , such that $H_{\#}p_{\mathcal{Z}}(z;\psi) \sim p_{\mathcal{Z}}(z|\hat{y})$. The parameters ψ of the
 356 bijective map H are chosen by minimizing the loss function

$$\psi^* = \arg \min_{\psi} d_{\text{KL}}(H_{\#}p_{\mathcal{Z}}(z;\psi) \| p_{\mathcal{Z}}(z|\hat{y})), \quad (20)$$

357 where $d_{\text{KL}}(\cdot \| \cdot)$ is the reverse KL divergence. On simplifying Eq. (20), the loss function \mathcal{L}_{NF} for
 358 training the normalizing flow takes the form:

$$\mathcal{L}_{\text{NF}}(\psi) = \mathbb{E}_{z \sim p_{\mathcal{Z}}(z)} [-\log p_{\mathcal{Y}}(\hat{y}|H(z;\psi)) - \log p_{\mathcal{Z}}(H(z;\psi)) - \log |\det \nabla_z H(z;\psi)|], \quad (21)$$

359 where $p_{\mathcal{Y}}(\hat{\mathbf{y}}|H(\mathbf{z}))$ can be evaluated using Eq. (19) as

$$p_{\mathcal{Y}}(\hat{\mathbf{y}}|H(\mathbf{z}; \psi)) = p_{\mathcal{Y}}(\hat{\mathbf{y}}|\mathbf{x})|_{\mathbf{x}=G^*(H(\mathbf{z}))}, \quad (22)$$

360 and, for additive noise models, $p_{\mathcal{Y}}(\hat{\mathbf{y}}|H(\mathbf{z}; \psi)) = p_{\eta}(\hat{\mathbf{y}} - F(H(G^*(\mathbf{z}); \psi)))$. We provide a de-
361 tailed derivation of Eq. (21) starting from Eq. (20) in [Appendix A](#); our derivation closely follows
362 a similar derivation by Sun and Bouman [\[28\]](#). In Eq. (21), $\nabla_{\mathbf{z}}H(\mathbf{z})$ is the Jacobian of H . Thus,
363 the physics model F and the trained generator G^* enters Eq. (21) through the log-likelihood term
364 $\log p_{\mathcal{Y}}(\hat{\mathbf{y}}|H(\mathbf{z}; \psi))$. At the end of phase B, a trained normalizing flow map $H(\cdot; \psi^*)$, herein de-
365 noted as H^* , is available alongside the trained generator G^* .

366 *Remark 3.* Suppose there is a change in the measurement vector $\hat{\mathbf{y}}$ as new measurements are avail-
367 able or the forward model F changes, we must retrain the normalizing flow model. Perhaps one
368 can reduce the computational burden of retraining through knowledge transfer from the previously
369 trained normalizing flow model, for instance, by starting training from the old weights, by freezing
370 the weights of some of the flow layers, or by simply appending new flow layers to the existing nor-
371 malizing flow model. However, we do not consider such cases in this work, and the development
372 of knowledge transfer schemes is beyond the scope of the current work.

373 *Remark 4.* The training of the normalizing flow model boils down to the minimization problem in
374 Eq. (20) with the loss function given by Eq. (21). The minimization problem can be solved using an
375 appropriate stochastic gradient descent algorithm. In this work, we use the Adam algorithm [\[60\]](#).
376 Regardless of the optimization algorithm used, training the normalizing flow using gradient de-
377 scent algorithms involves the computation of the gradients of the output forward model F with
378 respect to its input. This will pose challenges when F is a black-box model that is incompatible
379 with automatic differentiation, ultimately leading to an increase in the overall computational cost;
380 this challenge is not a bottleneck unique to GAN-Flow as advanced MCMC algorithms, like HMC,
381 also require the gradients of F [\[19\]](#). One potential solution is to couple GAN-Flow with automati-
382 cally differentiable surrogate models for F , such as neural networks [\[61\]](#), but this is beyond the
383 study herein.

384 *3.4. Phase C: Posterior sampling and estimation*

385 We can use the optimally trained generator G^* and normalizing flow map H^* to estimate
 386 $\mathbb{E}_{\mathbf{x} \sim p_{\mathcal{X}}(\mathbf{x}|\hat{\mathbf{y}})}[\ell(\mathbf{x})]$ using Monte Carlo (MC) simulation. Let $\bar{\ell}$ denote the MC estimator for $\mathbb{E}_{\mathbf{x} \sim p_{\mathcal{X}}(\mathbf{x}|\hat{\mathbf{y}})}[\ell(\mathbf{x})]$
 387 given by

$$\bar{\ell} = \frac{1}{n_s} \sum_{i=1}^{n_s} \ell(G^*(H^*(\mathbf{z}^{(i)}))), \quad (23)$$

388 where $\mathbf{z}^{(i)}$ are independent realizations drawn from $p_{\mathcal{Z}}(\mathbf{z})$. For instance, the posterior mean of \mathbf{x}
 389 can be computed by setting $\ell(\mathbf{x}) = \mathbf{x}$. Let $\bar{\mathbf{x}}$ denote the MC estimator for $\mathbb{E}_{\mathbf{x} \sim p_{\mathcal{X}}(\mathbf{x}|\hat{\mathbf{y}})}[\mathbf{x}]$, then

$$\bar{\mathbf{x}} = \frac{1}{n_s} \sum_{i=1}^{n_s} G^*(H^*(\mathbf{z}^{(i)})), \quad (24)$$

390 where $\mathbf{z}^{(i)}$ are iid realizations from $p_{\mathcal{Z}}(\mathbf{z})$. Similarly, the standard deviation for the i^{th} component
 391 of \mathbf{x} , herein denoted as $[\sigma_{\mathbf{x}}]_i$, can be estimated as:

$$\{\sigma_{\mathbf{x}}\}_i = \sqrt{\frac{1}{n_s - 1} \sum_{j=1}^{n_s} [\{G^*(H^*(\mathbf{z}^{(j)}))\}_i - \{\bar{\mathbf{x}}\}_i]^2}, \quad (25)$$

392 where $[\cdot]_i$ denotes the i^{th} component of the vector corresponding vector.

393 *Remark 5.* Neither evaluating H^* nor G^* requires evaluation of the underlying physics model
 394 F . Therefore, posterior statistics or posterior predictive quantities can be computed at almost
 395 negligible computational cost, and n_s may be set arbitrarily large. This is another advantage of the
 396 proposed GAN-Flow framework.

397 *3.5. Discussion of the computational cost of each phase of GAN-Flow*

398 Phase A of GAN-Flow involves the training of the WGAN-GP model. However, GAN-Flow
 399 does not evaluate the forward model F at this stage. Thus, the computational cost of Phase A
 400 will be dominated by the cost of training the WGAN-GP model. Accordingly, the computational
 401 cost of Phase A will scale with the total number of trainable parameters in the generator and
 402 the critic. We expect that more complex prior information will require expressive models with a
 403 large number of trainable parameters to develop a suitable generator and, therefore, will be more

404 computationally expensive. Phase B, which involves training the normalizing flow model, requires
405 repeated evaluations of the forward model F . Thus, the cost of evaluating the forward model F
406 will dominate the computational cost of Phase B. More complicated posterior distributions will
407 require an expressive normalizing flow model. Expressivity can be achieved by adding more flow
408 layers or using complex transformations, like the affine coupling transform, which will require
409 longer training, translating to more evaluations of the forward model F , ultimately increasing the
410 computational cost. Phase C neither involves training network models nor evaluating the forward
411 model F . Thus, Phase C will be the least computationally demanding stage of GAN-Flow. The
412 computational cost of this step will be dominated by the cost of evaluating the trained generator
413 G^* and the trained normalizing flow model H^* and scale with the sample size n_s .

414 The actual wall time of any particular phase will primarily depend on the particular applica-
415 tion at hand, the scale and type of resource available, and the choice of training hyperparameters,
416 among other factors. For instance, for the initial condition inference problem that we consider
417 in Section 4.1, phases A, B and C require approximately 1.6 hours, 8.5 minutes and 6 seconds,
418 respectively, when the generative models are trained using an NVIDIA Quadro RTX 8000 GPU
419 with 48 GB memory (see Fig. B1 and table B1 in Appendix B1 for details of the model architec-
420 tures and training hyper-parameters); thus, GAN-Flow requires less than 2 hours for completion.
421 Similarly, for the inverse Radon transform problem, phases A, B and C require approximately 3.4
422 hours, 1.6 hours and 11 seconds, respectively, when the generative models are trained using the
423 same NVIDIA Quadro RTX 8000 GPU (see Fig. B2 and table B1 in Appendix B1 for details of the
424 model architectures and training hyper-parameters). The more challenging phase imaging problem
425 (Section 4.3) requires approximately 23.5 hours, 16.7 hours and 2 minutes for phases A, B and C,
426 respectively when all phases were executed using a NVIDIA A40 GPU with 48 GB of memory
427 (see Appendices B1.1 and B2 and table B1 in Appendix B1 for details of the model architectures
428 and training hyper-parameters). For the problems we consider in this work, the wall-time of phase
429 A dominates because the forward model F is relatively simple. We envisage that Phase B will
430 be the most computationally demanding stage of GAN-Flow in physics-based applications where
431 the underlying forward model F is computationally demanding.

432 *3.6. Approximation errors due to GAN-Flow*

433 There are two potential sources of error in GAN-Flow when it is used in practice. The first
434 source of error is from the WGAN-GP prior. A WGAN-GP trained using Eq. (14) may only be
435 able to approximately satisfy Eq. (15) [62] or not at all [63]. The error may stem from using
436 an approximate estimator for the Wasserstein distance in Eq. (14), the use of MC estimates for
437 estimating the Wasserstein distance, and failure to reach the optimal point [62]. However, previous
438 research [35, 19] has shown that WGAN-GP is useful as a data-driven prior despite theoretical
439 concerns. In practice, we monitor the loss function and terminate training when its value no
440 longer decreases. A second source of error stems from the normalizing flow map in situations
441 where it is unable to induce a good approximation to the latent posterior distribution [64]. The
442 latent posterior distribution may not belong to the family of distributions that the bijective map is
443 capable of inducing, which may be due to the limited fidelity (expressive power) of the normalizing
444 flow model. The pushforward distribution may also fail to approximate the latent posterior when
445 the reverse KL-divergence loss does not attain a value of zero, possibly due to slow convergence
446 during training. Even if the loss function attains a value of zero, the reverse KL-divergence is
447 known to be ‘mode seeking’, therefore, it is possible that the pushforward distribution is unable to
448 approximate the tails of the latent posterior. In practice, we monitor the value of the loss function
449 \mathcal{L}_{NF} and stop training when it no longer decreases. However, it must be noted that, even when the
450 pushforward distribution is poor, estimates computed using the pushforward map may continue to
451 be useful. So, we evaluate the error in the estimated posterior statistics, such as the posterior mean
452 and standard deviation, to determine the quality of inference. In a practical setting, we suggest
453 the use of diagnostic tools to ascertain the quality of the pushforward distribution [64] or stacking
454 multiple normalizing flows with different seeds [65].

455 **4. Results**

456 In this section, we use GAN-Flow to solve three physics-based inverse problems: inference
457 of initial conditions (Section 4.1), inverse Radon transform (Section 4.2), and phase retrieval
458 (Section 4.3). By solving these inverse problems, we demonstrate that GAN-Flow can tackle

459 large-scale linear and non-linear inverse problems, various levels of noise, and challenging prior
460 distributions. Our implementation also reveals that GAN-Flow is flexible in accommodating dif-
461 ferent types of WGAN-GP and normalizing flow architecture types, training methodologies, and
462 combinations thereof. More specifically, the variety in the numerical examples we present lies in
463 the following:

- 464 1. Forward model — The three inverse problems we consider involve different physical phe-
465 nomena. The initial condition inference problem is based on heat diffusion in a solid body,
466 and the inverse Radon transform problem is based on an object’s attenuation of penetrat-
467 ing waves by an object. Both aforementioned physics phenomena can be described using
468 a linear forward model; we adapt these inverse problems from [66, 19]. The third problem
469 we consider is phase retrieval, which forms the underpinnings of many modern coherent
470 diffraction imaging methods, wherein an object is reconstructed from the magnitude of its
471 Fourier transform. In this case, the forward model is highly nonlinear. We adapt the phase
472 imaging problem from [20].
- 473 2. Prior dataset — We consider three different prior datasets. The prior dataset for the initial
474 condition inference and inverse Radon transform problems consists of rectangular inclusions
475 in a zero-background and Shepp-Logan head phantoms, respectively; however, these priors
476 are synthetic and adapted from [66, 19]. For the phase retrieval problem we consider a
477 sub-sample of the publicly available NYU fastMRI [38, 37] dataset of human knee slices.
- 478 3. Ambient dimensionality — The ambient dimensionality of the inverse problems we con-
479 sider vary vastly. While the initial condition inference problem has a moderate ambient
480 dimensionality of 1,024, the phase retrieval problem is a large-scale inverse problem with
481 an ambient space of dimension 65,536, an order of magnitude beyond that of the initial
482 condition inference problem.
- 483 4. WGAN-GP prior model — For all numerical examples, we consider a WGAN-GP prior,
484 i.e., the loss function used to train the GANs is given by Eq. (14). However, we use different
485 architectures and/or training methodologies. The inverse Radon transform problem utilizes

486 a simple generator and critic, consisting of fully connected and convolution layers. We use
487 self-attention-based [39] modules, along with convolutions, for the generator and critic for
488 the initial condition inference problem. We found that self-attention modules help render
489 the sharp transitions between the rectangular inclusion and the zero background. The phase
490 retrieval problem requires still more sophisticated training to synthesize large (256×256)
491 knee slices with many fine-scale features. The WGAN-GP model for the phase retrieval
492 problem is trained using the progressive growing of GAN methodology [40].

493 5. Dimension reduction — The WGAN-GP priors themselves lead to latent spaces of varying
494 dimension. We work with a low-dimensional latent space for the initial condition inference
495 problem ($n_{\mathcal{Z}} = 5$), and a latent space of dimension 512 for the phase retrieval problem. On
496 average, we can achieve approximately $\mathcal{O}(10^2)$ dimension reduction across all three inverse
497 problems while maintaining satisfactory accuracy of the estimated statistics of the posterior
498 distribution.

499 6. Normalizing flow model — We use two types of flow layers. For the low to moderate
500 dimensional latent spaces, as in the initial condition inference and inverse Radon transform
501 problem, we employ planar flow layers. For the relatively high-dimensional latent space of
502 the phase retrieval problem, we use affine coupling transforms to construct the normalizing
503 flows.

504 Table 1 provides a summary of the inverse problems we consider, their ambient and latent space
505 dimensionality, and the dimension reduction.

506 We implement GAN-Flow exclusively on PyTorch [67]. Where possible, we compare the
507 posterior statistics estimated using GAN-Flow with the method outlined in [19]; herein, we re-
508 fer to the latter method as GAN-HMC because it uses HMC to sample the latent posterior and
509 estimate the posterior statistics of the ambient variable. We implement HMC within PyTorch
510 using the `hamilton` package [68]. In all cases, we specify the number of leap-frog steps to
511 be 10, and discard 50% of the accepted states considering burn-in. The step size is adapted during
512 the burn-in phase so as to maintain a desired acceptance rate of 0.75. For the initial condition
513 inference problem, where the underlying (hidden) ambient dimensionality of the synthetic prior is

514 small (only four), we even compare the posterior statistics estimated using GAN-Flow with MC
 515 simulation (MCS).

516 For all examples, following Patel et al. [19], we re-scale the prior realizations between $[-1, 1]$
 517 before training the WGAN-GP model and use hyperbolic tangent (Tanh) activation in the last layer
 518 of the generator. We invert this re-scaling operation before evaluating the likelihood function. In
 519 this way, we satisfy physical constraints such as positive values of the temperature fields for the
 520 initial condition inference problem, or positive values of material density for the inverse Radon
 521 transform problem, or positive refractive index of an object in the phase retrieval problem.

522 *4.1. Inferring the initial conditions in heat conduction*

523 The first problem we consider is a two-dimensional unsteady heat conduction problem where
 524 the initial condition of the temperature field \mathbf{x} (at time $t = 0$) must be inferred from a noisy
 525 measurement of the temperature field $\hat{\mathbf{y}}$ taken after some time (at time $t = 1$). Inverse problems
 526 of this type often arise when designing thermal equipment [69, 70]. The two-dimensional time-
 527 dependent heat conduction partial differential equation over the bounded domain Ω is given as:

$$\begin{aligned} \frac{\partial u(\mathbf{s}, t)}{\partial t} - \nabla \cdot (\kappa(\mathbf{s}) \nabla u(\mathbf{s}, t)) &= b(\mathbf{s}, t), & \forall (\mathbf{s}, t) \in \Omega \times (0, T) \\ u(\mathbf{s}, 0) &= m(\mathbf{s}), & \forall \mathbf{s} \in \Omega \\ u(\mathbf{s}, t) &= 0, & \forall (\mathbf{s}, t) \in \partial\Omega \times (0, T) \end{aligned} \quad (26)$$

Table 1. Summary of inverse problems we consider in this work.

	Inverse problem		
	Heat conduction (Section 4.1)	Radon transform (Section 4.2)	Phase imaging (Section 4.3)
Type	Linear	Linear	Non-linear
Ambient dimension $n_{\mathcal{X}}$	32×32	128×128	256×256
Prior dataset	Rectangular	Shepp-Logan phantom	fastMRI [38, 37]
Prior dataset size n_{data}	2000	8000	29877
Latent dimension $n_{\mathcal{Z}}$	5	60	512
Dimension reduction $n_{\mathcal{X}}/n_{\mathcal{Z}}$	~ 200	~ 273	128

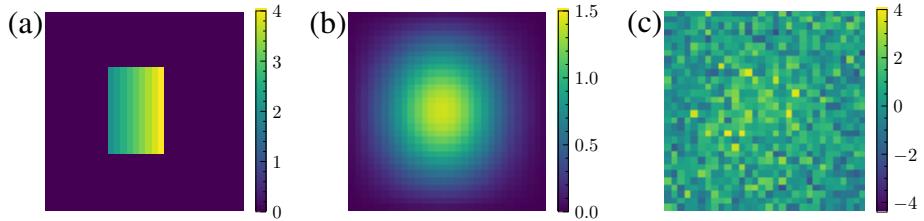


Figure 2. (a) Initial and (b) final temperature fields at $t = 0$ and 1 , respectively. (c) Noisy synthetic measurements obtained after adding Gaussian white noise with unit variance to the temperature field shown in (b).

528 where T is the final time at which measurements are made, i.e., $T = 1$, and the spatial domain Ω
 529 is a square region with the length of each side being 2π units, i.e., $\Omega = [0, L] \times [0, L]$ with $L = 2\pi$
 530 units. We represent the solid on a 32×32 Cartesian grid over Ω . We assume that the thermal
 531 conductivity κ is homogeneous over Ω and equal to 0.64 units, and that $b(\mathbf{s}, t) = 0$. We use the
 532 central difference scheme to discretize temperature field on the same Cartesian grid as the solid
 533 body, thus, $n_x = n_y = 1024$. The forward operator F maps the initial temperature field \mathbf{x} to the
 534 temperature field at time $T = 1$. We use backward-difference with a step size of 0.01 for the time-
 535 integration of Eq. (26). In this example, the inverse problem at hand is linear and it is possible to
 536 relate \mathbf{x} and \mathbf{y} using a linear operator, i.e., $\mathbf{y} = \mathbf{A}\mathbf{x}$ [66]. The temperature fields at $t = 0$ (initial
 537 condition) and $t = T = 1$ are shown in Fig. 2(a) and (b), respectively. We add Gaussian white noise
 538 with unit variance to the temperature field at time $t = 1$ to generate the synthetic measurements;
 539 see Fig. 2(c). From these noisy measurements, we want to infer the initial condition shown in
 540 Fig. 2(a).

541 The prior dataset consists of $n_{\text{data}} = 2000$ initial temperature fields where the temperature is
 542 zero outside the rectangular inclusion and, within the rectangular inclusion, the temperature field
 543 varies linearly from a value of 2 units on the left edge to 4 units on the right edge. The rectangular
 544 region is generated by sampling uniformly the coordinates of the top-left and lower-right corners of
 545 the inclusion between $[0.2L, 0.4L]$ and $[0.6L, 0.8L]$, respectively. We show four realizations from
 546 the prior dataset in Fig. 3(a). The true temperature field in Fig. 2(a), which we want to infer, does
 547 not belong to the prior dataset. First, we train a WGAN-GP using the prior dataset. We choose the

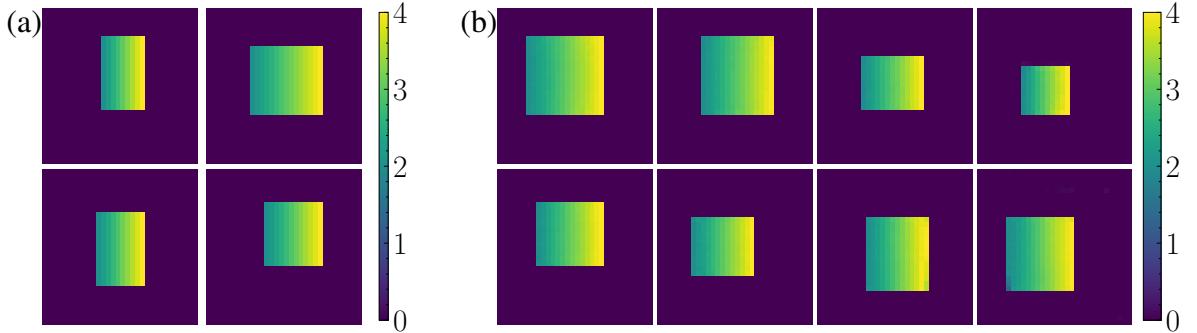


Figure 3. (a) Realizations from the rectangular prior dataset. (b) Realizations generated from the WGAN-GP prior.

548 latent space dimensionality to be 5, i.e., $n_{\mathcal{Z}} = 5$ ¹. Therefore, we achieve a dimension reduction of
 549 approximately 200 times in this case. For details about the WGAN-GP model and the associated
 550 hyper-parameters, see Appendix B1 and Table B1, respectively. We show some realizations from
 551 the trained WGAN-GP prior in Fig. 3(b). The generated realizations are qualitatively similar
 552 to those in the prior dataset. We emphasize that training the WGAN-GP does not require any
 553 evaluation of the forward model F .

554 After we train the WGAN-GP model, we turn to training the normalizing flow model. In this
 555 example, the normalizing flow comprises 64 planar flow layers. See Table B1 for more details
 556 about the hyper-parameters associated with training the normalizing flow model. Significantly,
 557 the normalizing flow model is trained for 1000 epochs with a batch size of 32, meaning a total of
 558 32,000 evaluations of the forward model F . After the normalizing flow model has been trained,
 559 we can use both the trained generator of the WGAN-GP model and the normalizing flow model
 560 to obtain as many samples from the posterior as necessary. We show the posterior mean and stan-
 561 dard deviation of the initial temperature field estimated using GAN-Flow from a sample of size
 562 15,000 in the left most column of Fig. 4. For the purposes of comparison, the posterior mean
 563 and standard deviation estimated using MCS (of sample size 10^6) and GAN-HMC are also shown
 564 in Fig. 4. In contrast to GAN-Flow, GAN-HMC makes 3×10^5 evaluations of F to yield 15,000
 565 realizations from the posterior. Table 2 tabulates the root-mean-square error of the statistics esti-

¹We vary the latent space dimensionality $n_{\mathcal{Z}} \in \{5, 10, 20, 40, 60, 80, 100\}$ keeping all other hyper-parameters fixed, and choose the smallest latent space dimension to yield the best estimates of the posterior mean and standard deviation; see Appendix C1 for the results from those experiments

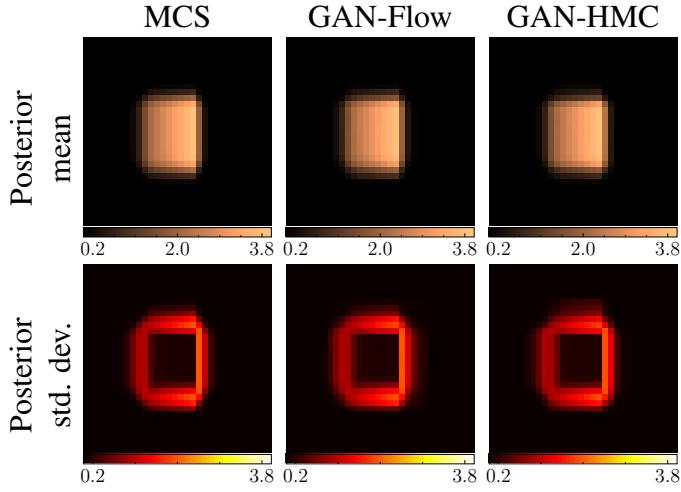


Figure 4. Estimated posterior mean (top row) and standard deviation (bottom row) obtained using MCS (left column), GAN-Flow (middle column) and GAN-HMC (right column) for the initial condition inference problem.

Table 2. RMSE in the posterior statistics obtained using different inference method compared to MCS.

Method	Posterior statistic	
	Mean	Standard deviation
GAN-Flow	0.034	0.048
GAN-HMC	0.071	0.049

566 mated using GAN-Flow and GAN-HMC, with the statistics estimated using MCS serving as the
 567 reference. From Fig. 4, we observe that the posterior statistics estimated using GAN-Flow and
 568 GAN-HMC compare very well with the ‘true’ posterior statistics estimated using MCS. Quanti-
 569 tatively, the posterior mean estimated using GAN-Flow is marginally better than GAN-HMC, but
 570 this improvement is achieved with greater computational efficiency (about one order of magnitude
 571 fewer evaluations of the forward model F). These results are promising and suggest that GAN-
 572 Flow may even be more computationally efficient than GAN-HMC. While we consider Dirichlet
 573 boundary conditions in Eq. (26), investigations on a similar inverse problem with Neumann bound-
 574 ary conditions will be interesting; we leave this for a future work.

575 4.2. Inverse Radon transform

576 Next, we consider the inverse problem of reconstructing an object from its noisy sinogram.
 577 Inverse problems of this type arise in computerized tomography (CT) wherein an object is scanned
 578 from different angles using X-ray beams, and subsequently reconstructed using information about
 579 the difference in intensity before and after the beam passes through the object [71]. The forward
 580 model is given by the Radon transform. Given the material density function $\rho \in \Omega \subset \mathbb{R}^2 \rightarrow \mathbb{R}$, the

Table 3. Base parameters of the Shepp-Logan phantom. Note, α_k is in degrees.

k	r_k	s_k	a_k	b_k	α_k	ρ_k
1	0.0	0.0	0.69	0.92	0	1.0
2	0.0	-0.0184	0.6624	0.874	0	-0.8
3	0.22	0.0	0.11	0.31	-18	-0.2
4	-0.22	0.0	0.16	0.41	-18	-0.2
5	0.0	0.35	0.21	0.25	0	0.1
6	0.0	0.1	0.046	0.026	0	0.1
7	0.0	-0.1	0.046	0.046	0	0.1
8	-0.08	-0.605	0.046	0.023	0	0.1
9	0.0	-0.606	0.023	0.023	0	0.1
10	0.06	-0.605	0.023	0.046	0	0.1

581 Radon transform is defined as [71]

$$\mathcal{R}(\rho; t, \phi) = \int_{l_{t,\phi}} \rho \, dl, \quad (27)$$

582 where $l_{t,\phi}$ is the line that traverses through the object at a distance of t from the center and an
583 inclination of ϕ . Therefore, given an input phantom image $\mathbf{x} \in \mathbb{R}^{n_p \times n_p}$, the forward model is

$$\mathbf{y} = F(\mathbf{x}) \in \mathbb{R}^{n_p \times n_p}, \quad (28)$$

584 which is a linear transformation of \mathbf{x} . In Eq. (28),

$$\mathbf{y}_{i,j} = \mathcal{R}^h(\mathbf{x}; t_i, \phi_j), \quad t_i = \frac{i}{n_p}, \phi_j = \frac{j}{\pi} \quad \forall i, j \in \{1, 2, \dots, n_p\}, \quad (29)$$

585 and \mathcal{R}^h is the discrete Radon transform [71]. The output \mathbf{y} is commonly known as a sinogram.
586 In this example, we consider input images of size 128×128 , i.e., $n_p = 128$. Additionally, every
587 input image is scanned at 128 uniformly spaced angles between 0° and 180° with 128 detectors;
588 thus, $n_y = 128 \times 128$. We use the `torch-radon` package [72] to compute Radon transforms.
589 The prior dataset for this example consists of Shepp-Logan head phantoms [36]. Every phantom
590 consists of ten ellipses, where each ellipse has constant density. Let the k^{th} ellipse E_k be centered
591 at (r_k, s_k) , with semi-axis lengths a_k and b_k , angle of inclination α_k (in degrees) and density ρ_k .

592 The density of the phantom at any coordinate (r, s) is

$$\rho(r, s) = \sum_{k=1}^{10} C_k(r, s), \quad \text{where } C_k(r, s) = \begin{cases} \rho_k & \text{if } (r, s) \in E_k \\ 0 & \text{otherwise} \end{cases} \quad (30)$$

593 Table 3 provides details of the nominal values of the base parameters of the ellipses, which we
594 adapt from Toft [36]. Following Patel et al. [19], we generate new phantoms by perturbing the
595 base parameters of every ellipse \tilde{E}_k as follows:

$$\begin{aligned} \tilde{r}_k &= r_k + 0.005\xi_{k,1}, & \tilde{s}_k &= s_k + 0.005\xi_{k,2}, & \tilde{a}_k &= a_k + 0.005\xi_{k,3}, \\ \tilde{b}_k &= b_k + 0.005\xi_{k,4}, & \tilde{\alpha}_k &= \alpha_k + 2.5\xi_{k,5}, & \tilde{\rho}_k &= \rho_k + 0.0005\xi_{k,6} \end{aligned} \quad (31)$$

596 where $\left\{ \{\xi_{k,i}\}_{i=1}^{i=6} \right\}_{k=1}^{k=10}$ are uniform random variables in $[-1, 1]$. Now, the density of the perturbed
597 phantom $\tilde{\rho}$ is

$$\tilde{\rho}(r, s) = \max \left(0, \min \left(1, \sum_{k=1}^{10} \tilde{C}_k(r, s) \right) \right), \quad \text{where } \tilde{C}_k(r, s) = \begin{cases} \tilde{\rho}_k & \text{if } (r, s) \in \tilde{E}_k \\ 0 & \text{otherwise} \end{cases} \quad (32)$$

598 ensures that the material density $\tilde{\rho}$ at any point is bounded within 0 (air cavity) and 1 (bone). We
599 obtain $n_{\text{data}} = 8000$ discrete phantom images by evaluating Eq. (32) on a grid of size 128×128 .
600 The resulting image is further subject to a transformation that translates it by n_h and n_v pixels in
601 the horizontal and vertical direction, respectively, and rotates it by an angle β . We assume that n_h
602 and n_v take integer values uniformly between -8 and 8 , i.e., $n_h, n_v \sim \mathcal{U} \{-8, -7, \dots, 7, 8\}$, while
603 the random variable $\beta \in \mathcal{U}(-20^\circ, 20^\circ)$.

604 We show four realizations from the prior dataset in Fig. 5(a). We use another realization,
605 not part of the prior dataset and shown in Fig. 6, to generate the synthetic measurements for this
606 example. We simulate noisy sinogram data by adding zero-mean Gaussian noise with variance
607 σ_η^2 to the noise-free sinogram. We vary the variance of the measurement noise $\sigma_\eta^2 \in \{1, 10, 50\}$
608 to test the robustness of GAN-Flow to varying levels of noise in the measurement. The noise
609 characteristics of CT data is Gaussian when the photon counts are large [73]. A Gaussian noise

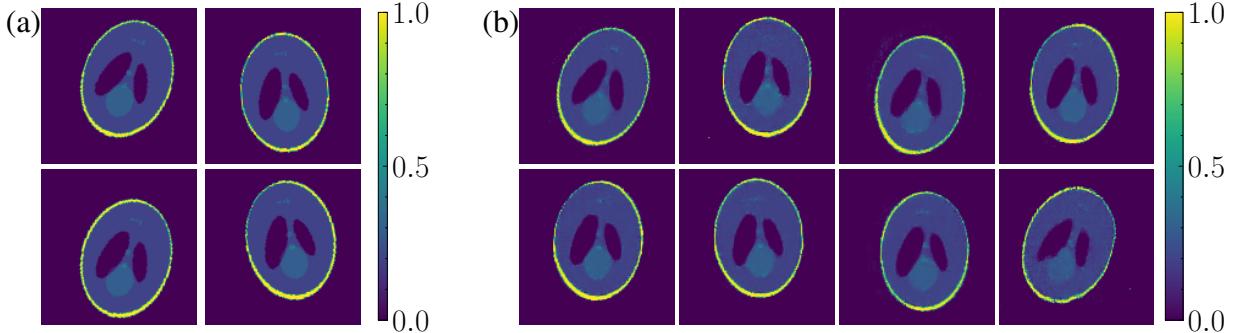


Figure 5. (a) Different phantoms from the prior dataset (b) Phantoms generated from the WGAN-GP prior.

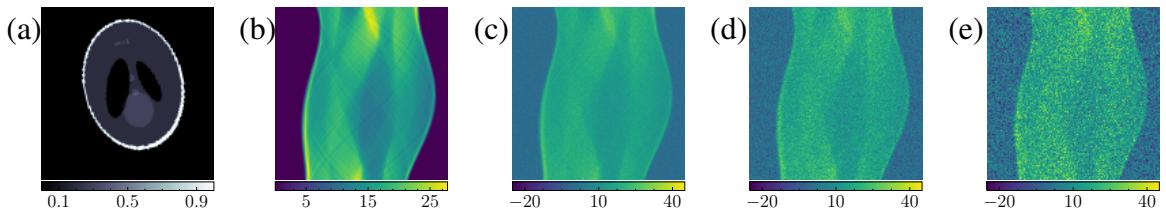


Figure 6. (a) Test phantom and (b) corresponding noise-free sinogram. Noisy sinograms after adding zero-mean Gaussian noise with variance (c) $\sigma_\eta^2 = 1$ (d) $\sigma_\eta^2 = 10$ and (e) $\sigma_\eta^2 = 50$.

610 model is useful even in the small photon count regime [73]. In this work, we limit our exposition
 611 to Gaussian noise. We remark that we can accommodate any noise model by suitably modifying
 612 the likelihood term in Eq. (21).

613 As in the previous example, we first train a WGAN-GP with latent dimensionality $n_{\mathcal{Z}} = 60$
 614 to approximate the prior distribution². We provide details of the generator and critic architec-
 615 tures used in this study in Appendix B1, while Table B1 provides details of other training hyper-
 616 parameters. Fig. 5(b) shows some realizations from the trained WGAN-GP prior. Next, we train
 617 a normalizing model that has 256 planar flow layers. We train the normalizing flow model for
 618 15,000 epochs with a batch size of 32; we list other hyper-parameters associated with the training
 619 in Table B1. Thus, training the normalizing flow model requires 4.8×10^5 forward model eval-
 620 uations. After this we obtain 30,000 realizations from the posterior distribution and use them to
 621 estimate the posterior mean and standard deviation. Fig. 7 shows the posterior statistics estimated

²Like the previous example, we vary $n_{\mathcal{Z}} \in \{5, 10, 20, 40, 60, 80, 100\}$ and choose $n_{\mathcal{Z}} = 60$ since the RMSE between the corresponding posterior mean and the test phantom is either smallest or close to being the smallest; see Appendix C2

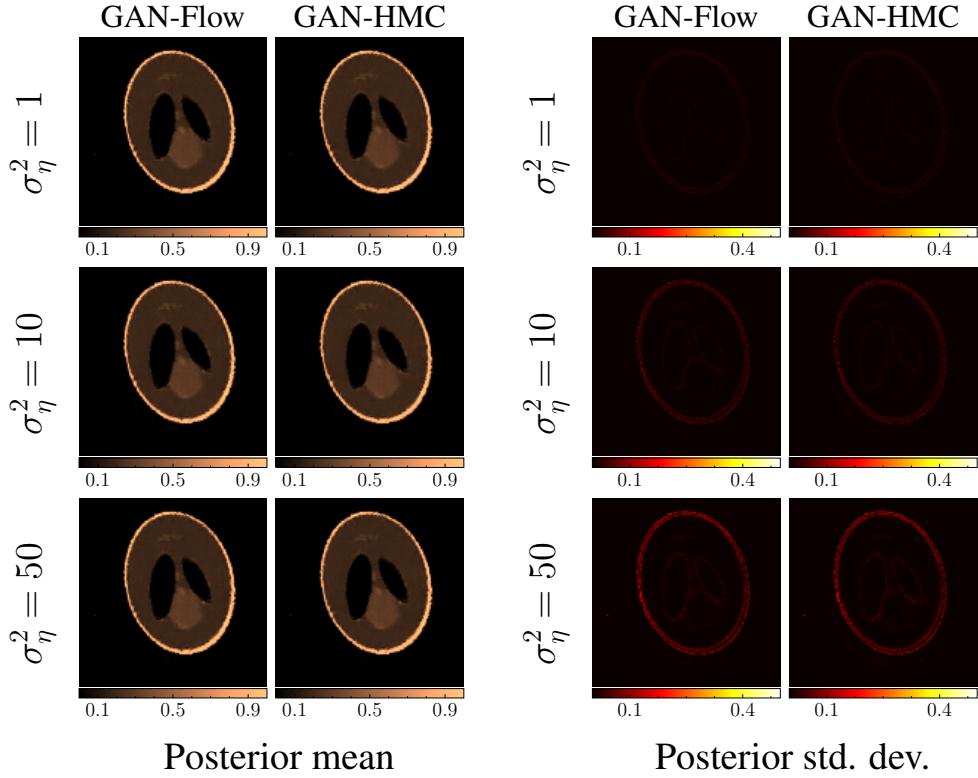


Figure 7. Estimated posterior mean (left) and standard deviation (right) obtained using GAN-Flow (left column) and GAN-HMC (right column) for the inverse Radon transform problem at various levels of measurement noise.

622 using GAN-Flow and GAN-HMC. For comparison, we also obtain a sample of size 60,000 from
 623 the posterior distribution using HMC, discard the first 30,000 realizations considering burn-in, and
 624 then estimate the posterior statistics. For this example, we run HMC with 10 steps and an initial
 625 step size of 0.01. With this setting, sampling from the latent posterior using HMC requires 6×10^5
 626 forward model evaluations. The posterior statistics estimated using GAN-Flow and GAN-HMC
 627 are qualitatively similar and shows elevated uncertainty around the edges of the phantom. The
 628 uncertainty increases as the noise in the measurement increases, which is also expected. We com-
 629 pute the RMSE and structural similarity index metric (SSIM) [74] between the posterior mean and
 630 the test phantom for both GAN-Flow and GAN-HMC and report those values in Table 4. Quan-
 631 titatively, both GAN-Flow and GAN-HMC provide similar reconstructions of the test phantom,
 632 which is consistent with Fig. 7. The results confirm that GAN-Flow is robust with respect to the
 633 level of measurement noise. We also perform additional experiments on another test phantom;

634 see Figs. C8 and C9 in Appendix C2 for those results. The performance of GAN-Flow is similar
 635 across both test phantoms.

Table 4. RMSE and SSIM of the posterior mean reconstruction of the test phantom at different levels of measurement noise.

Method	RMSE			SSIM		
	$\sigma_\eta^2 = 1$	$\sigma_\eta^2 = 10$	$\sigma_\eta^2 = 50$	$\sigma_\eta^2 = 1$	$\sigma_\eta^2 = 10$	$\sigma_\eta^2 = 50$
GAN-Flow	0.041	0.042	0.045	0.968	0.964	0.963
GAN-HMC	0.041	0.043	0.045	0.968	0.964	0.962

636 *4.3. Phase retrieval*

637 The final application we consider concerns phase retrieval, which involves the recovery of an
 638 object from the magnitude of its Fourier transform [75, 76]. Phase retrieval inverse problems are
 639 ubiquitous in many areas of science and engineering [77, 78, 79, 80, 81]. More specifically, we
 640 consider the phase retrieval problem of recovering an object from sparse measurements of the
 641 magnitude of its Fourier transform. We undersample the measurements to simulate accelerated
 642 measurement acquisition paradigms. The forward model for the phase retrieval problem we con-
 643 sider is given by:

$$\mathbf{y} = |\mathbf{M}\mathbf{F}\mathbf{x}| + \boldsymbol{\eta}, \quad (33)$$

644 where $\mathbf{x} \in \mathbb{R}^{n_p \times n_p}$ is the object of interest discretized as an image of $n_p \times n_p$ pixels, \mathbf{F} is the two-
 645 dimensional discrete Fourier transform (DFT), $|\cdot|$ computes the magnitude component wise, \mathbf{M} is
 646 a binary mask that undersamples the Fourier magnitude measurements, and $\boldsymbol{\eta}$ is the measurement
 647 noise. In vector form, the effective dimensionality n_y of \mathbf{y} depends on the undersampling ratio r
 648 (also known as acceleration factor [38]), i.e., $n_y = n_x/r$.

649 For this example, the prior dataset comprises of a subsample of the single coil knee scans
 650 from the publicly available NYU fastMRI training dataset [38, 37]. Similar to Kelkar et al. [82],
 651 we prepare the prior dataset in the following way. The training dataset contains a total of 973
 652 volumes and 34,742 slices. Each slice corresponds to an *emulated* single coil complex-valued
 653 Fourier space (k -space) MRI measurement; the single coil data is emulated by linearly combining
 654 multi-coil k -space data [38]. For every slice, the fastMRI initiative also provides a corresponding

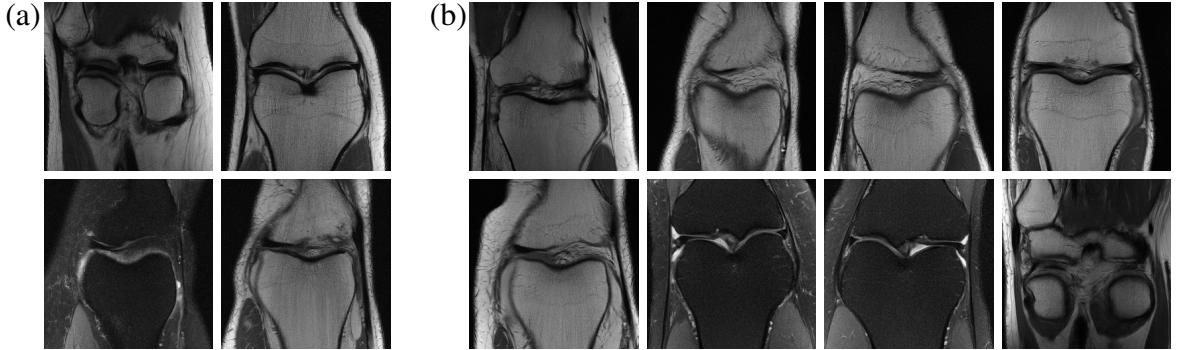


Figure 8. (a) Different knee slices from the prior dataset (b) Knee slices generated from the WGAN-GP prior.

655 slice of the knee for that volume computed from the emulated single coil measurement using the
 656 root-sum-of-squares method. We discard the first five reconstructed knee slices of every volume,
 657 center crop the rest into images of size 256×256 and then randomly divide them up into training
 658 and test sets. In total, the training and test set of the WGAN-GP contains 29,877 and 6,140 knee
 659 slices, respectively. The aforementioned training set is the prior dataset for this example and it
 660 contains $n_{\text{data}} = 29,877$ knee slices. Moreover, the ambient dimensionality $n_{\mathcal{X}} = 256 \times 256$ for
 661 this problem. Fig. 8(a) shows four typical knee slices from the prior dataset. We emphasize that,
 662 although we use knee slices from reconstructed MRI data, the forward model is nonlinear and
 663 given by Eq. (33).

664 We use three realizations from the test set as the test case for this problem. The test cases are
 665 shown in the top row of Fig. 9. Right below them, we plot the natural logarithm of the correspond-
 666 ing noise free k -space magnitude data to which we subsequently add zero-mean Gaussian noise
 667 with standard deviation equal to 0.04% of the zero-frequency amplitude of the two-dimensional
 668 DFT [28]. We also consider two types of Cartesian undersampling masks to reflect realistic sce-
 669 narios where an object must be reconstructed from sparse measurements. Specifically, we consider
 670 two masks that yield four-fold and eight-fold accelerations. Following Zbontar et al. [38], the un-
 671 dersampling masks include 8% and 4% of the central region of the k -space when the acceleration
 672 factor $r = 4$ and 8, respectively. The remaining k -space lines are uniformly sampled with proba-
 673 bility such that the desired acceleration can be achieved. As common in practice, we omit k -space
 674 magnitude measurements in the phase direction, i.e., the undersampling masks consist of vertical

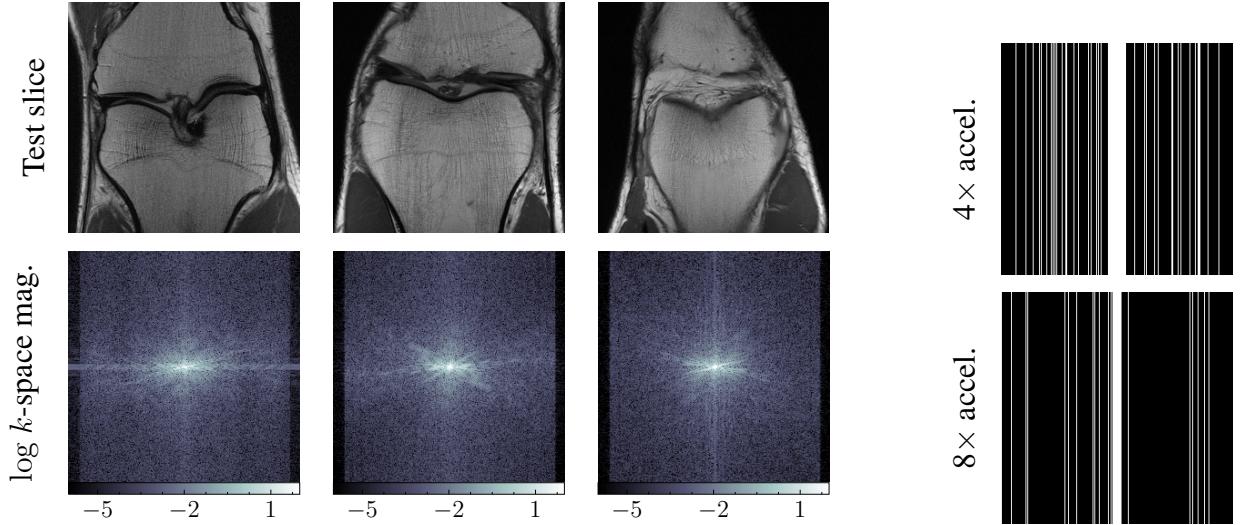


Figure 9. Test slices used for phase retrieval (top row) and corresponding noise free logarithm of Fourier (k -space) magnitudes (bottom row). We apply the masks, shown in Fig. 10, to the noisy Fourier magnitudes to generate the synthetic measurements for this example.

Figure 10. Cartesian undersampling masks with four- and eight-fold accelerations.

bands. Fig. 10 shows the two masks considered in this example.

In this example, the WGAN-GP prior is trained using the progressive growing of GAN (ProGAN) method [40]. Not only does the ProGAN training method stabilize the training of GANs designed to synthesize large images, but it also makes the training more efficient. In the ProGAN training methodology, learning commences from a coarse scale wherein the generator learns to synthesize, and the critic learns to discriminate, low resolution images, say of size 4×4 . Over stages of increasing resolution, going from 4×4 to 8×8 and ultimately to 256×256 , new layers are added to the generator and the critic, as the generator learns to synthesize, and the critic learns to discriminate, finer scale details. We adopt the implementation of ProGANs from [83] and choose the latent space dimensionality $n_z = 512$ following previous works [82, 40]. Further details about the WGAN-GP model, ProGAN training methodology, and associated training hyper-parameters may be found in Appendix B and Table B1. Samples from the trained WGAN-GP prior are shown in Fig. 8(b). We note that the WGAN-GP model is frozen for all subsequent steps.

The normalizing flow model for this problem consists of 16 affine-coupling flow layers with

690 activation normalization [32]. See Appendix B2 for more details about the scale and shift networks
 691 of the affine coupling layers. In this example, we train the normalizing flow model for 50,000
 692 epochs and a batch size of 32. We train the normalizing flow model for every combination of test
 693 slice and undersampling mask. Subsequently, for each combination of test slice and mask, we
 694 obtain 10,000 samples from the latent posterior distribution to estimate the posterior pixel-wise
 695 mean and standard mean. Figs. 11 and 12 show the posterior mean, posterior standard-deviation,
 696 and the absolute error of the posterior mean reconstruction for the four- and eight-fold acceleration,
 697 respectively. We compute the RMSE and SSIM between the posterior mean reconstruction and
 698 the ground truth knee slices and report these values in Table 5. From Figs. 11 and 12 and Table 5,
 699 we observe that the reconstruction is satisfactory. However, the reconstruction of test slice 1 is
 700 comparatively better than those of test slices 2 and 3. This indicates that the reconstruction of
 701 some knee slices, like test slice 1, which probably lies in the typical set of the generator’s latent
 702 space (range of G^* [84]), can be better than atypical test slices. Moreover, for test slice 2, the
 703 posterior pixel-wise standard deviation when the acceleration factor $r = 4$ is marginally larger in
 704 comparison to the case when $r = 8$; see the second row third column of Figs. 11 and 12. The result
 705 above needs further investigation since a reduction in uncertainty as the number of measurements
 706 reduces is counter-intuitive.

707 Significantly, this example showcases the efficacy of GAN-Flow compared to methods involv-
 708 ing MCMC simulations. In this study, we attempted to carry out inference using GAN-HMC.
 709 However, we were unsuccessful in obtaining convergence of the Markov chains after varying the
 710 number of leapfrog steps and burn-in time. We posit that this may be due to the relatively large
 711 latent dimensionality in this study.

Table 5. RMSE and SSIM of the of the posterior mean reconstruction of the test slices for different accelerations.

Test slice	4× acceleration		8× acceleration	
	RMSE	SSIM	RMSE	SSIM
Slice 1	0.0070	0.6185	0.0072	0.6142
Slice 2	0.0238	0.4802	0.0246	0.4587
Slice 3	0.0206	0.5556	0.0217	0.5702

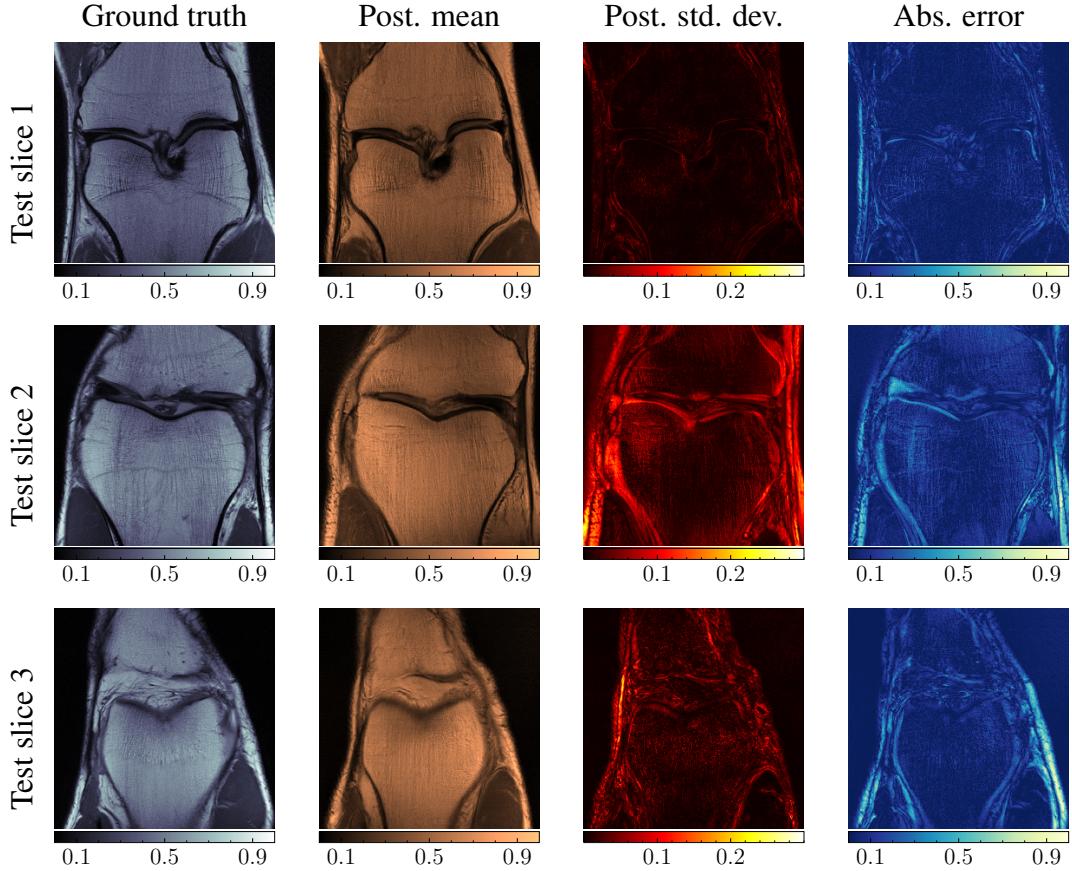


Figure 11. Posterior pixel-wise standard mean (second column) and posterior pixel-wise standard deviation (third column) for various test cases when acceleration factor $r = 4$. The first column shows the ground truth slices for reference. The last column shows the absolute error between the posterior mean and the ground truth.

712 5. Conclusions

713 Bayesian inference is widely applicable but its application is challenging, especially, in cases
 714 where the inverse problem is high-dimensional and prior information is qualitative in nature. In
 715 this work, we propose GAN-Flow, a dimension-reduced variational approach to solving large-scale
 716 inverse problems. GAN-Flow combines together two types of generative models — GANs and
 717 normalizing flows. The former is used to form an informative data-driven prior with the generator
 718 providing a map between a low-dimensional latent space and the high-dimensional ambient space.
 719 Normalizing flows are used to solve the inverse problem variationally in the low-dimensional latent
 720 space, made possible due to an invertible map that transforms the prior distribution in the latent

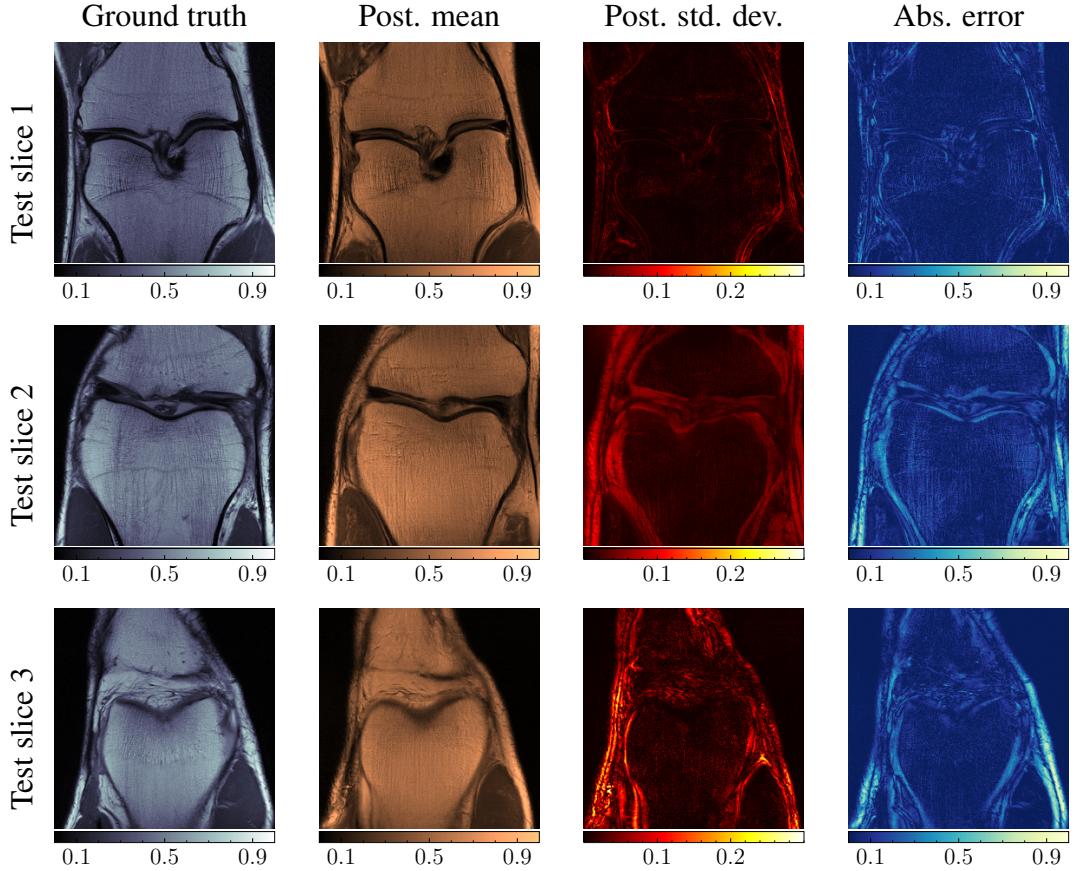


Figure 12. Posterior pixel-wise standard mean (second column) and posterior pixel-wise standard deviation (third column) for various test cases when acceleration factor $r = 8$. The first column shows the ground truth slices for reference. The last column shows the absolute error between the posterior mean and the ground truth.

721 space into the posterior distribution in the latent space. The low-dimensional latent posterior
 722 can be sampled, without evaluating the underlying forward model, to obtain samples from the
 723 high-dimensional ambient space. We have also shown how GAN-Flow can be used to estimate
 724 statistics of the ambient posterior distribution. We have used GAN-Flow to solve three physics-
 725 based inverse problems that include various challenging scenarios. In particular, the application to
 726 phase imaging shows that GAN-Flow can handle challenging prior information, nonlinear forward
 727 models, and very large-scale inverse problems. The extension of GAN-Flow to black-box forward
 728 models that are incompatible with automatic differentiation is a promising research direction that
 729 will make GAN-Flow more widely applicable. Another interesting research direction will be the

730 application of GAN-Flow to the inference of physics, i.e., terms in the governing equation of an
731 observed phenomena.

732 **6. Acknowledgments**

733 This work was carried out while the first author was a graduate student in the Sonny As-
734 tani Department of Civil & Environmental Engineering at the University of Southern California.
735 Agnimitra Dasgupta acknowledges support from the University of Southern California through a
736 Provost's Ph.D. Fellowship. Agnimitra Dasgupta and Erik A Johnson also gratefully acknowledge
737 the support of this work by the National Science Foundation through award CMMI 16-63667.
738 Assad A Oberai gratefully acknowledges support from ARO, USA grant W911NF2010050. Any
739 opinions, findings, and conclusions or recommendations expressed in this material are those of the
740 authors and do not necessarily reflect the views of NSF or USC. The authors also acknowledge
741 the Center for Advanced Research Computing (CARC, carc.usc.edu) at the University of Southern
742 California for providing computing resources that have contributed to the research results reported
743 within this publication.

744 **References**

745 [1] D. Calvetti, E. Somersalo, Inverse problems: From regularization to Bayesian inference, Wiley Interdisciplinary
746 Reviews: Computational Statistics 10 (2018) e1427.

747 [2] C. Robert, G. Casella, A short history of Markov chain Monte Carlo: Subjective recollections from incomplete
748 data, Statistical Science 26 (2011) 102–115.

749 [3] T. Cui, J. Martin, Y. M. Marzouk, A. Solonen, A. Spantini, Likelihood-informed dimension reduction for
750 nonlinear inverse problems, Inverse Problems 30 (2014) 114015.

751 [4] M. Betancourt, A conceptual introduction to Hamiltonian Monte Carlo, arXiv preprint arXiv:1701.02434
752 (2017).

753 [5] R. M. Neal, MCMC using Hamiltonian dynamics, Handbook of Markov chain Monte Carlo 2 (2011) 2.

754 [6] M. Girolami, B. Calderhead, Riemann manifold Langevin and Hamiltonian Monte Carlo methods, Journal of
755 the Royal Statistical Society: Series B (Statistical Methodology) 73 (2011) 123–214.

756 [7] T. Cui, X. T. Tong, A unified performance analysis of likelihood-informed subspace methods, arXiv preprint
757 arXiv:2101.02417 (2021).

758 [8] D. M. Blei, A. Kucukelbir, J. D. McAuliffe, Variational inference: A review for statisticians, *Journal of the*
 759 *American Statistical Association* 112 (2017) 859–877.

760 [9] T. A. El Moselhy, Y. M. Marzouk, Bayesian inference with optimal maps, *Journal of Computational Physics*
 761 231 (2012) 7815–7850.

762 [10] A. Andrle, N. Farchmin, P. Hagemann, S. Heidenreich, V. Soltwisch, G. Steidl, Invertible neural networks versus
 763 MCMC for posterior reconstruction in grazing incidence X-ray fluorescence, in: *International Conference on*
 764 *Scale Space and Variational Methods in Computer Vision*, Springer, 2021, pp. 528–539.

765 [11] M. Brennan, D. Bigoni, O. Zahm, A. Spantini, Y. Marzouk, Greedy inference with structure-exploiting lazy
 766 maps, *Advances in Neural Information Processing Systems* 33 (2020) 8330–8342.

767 [12] G. Ongie, A. Jalal, C. A. Metzler, R. G. Baraniuk, A. G. Dimakis, R. Willett, Deep learning techniques for
 768 inverse problems in imaging, *IEEE Journal on Selected Areas in Information Theory* 1 (2020) 39–56.

769 [13] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Gener-
 770 ative adversarial nets, *Advances in Neural Information Processing Systems* 27 (2014).

771 [14] D. Rezende, S. Mohamed, Variational inference with normalizing flows, in: *International Conference on*
 772 *Machine Learning*, PMLR, 2015, pp. 1530–1538.

773 [15] G. Papamakarios, E. T. Nalisnick, D. J. Rezende, S. Mohamed, B. Lakshminarayanan, Normalizing flows for
 774 probabilistic modeling and inference., *Journal of Machine Learning Research* 22 (2021) 1–64.

775 [16] I. Kobyzev, S. J. Prince, M. A. Brubaker, Normalizing flows: An introduction and review of current methods,
 776 *IEEE Transactions on Pattern Analysis and Machine Intelligence* 43 (2020) 3964–3979.

777 [17] D. P. Kingma, M. Welling, Auto-encoding variational Bayes, *arXiv preprint arXiv:1312.6114* (2013).

778 [18] S. Bond-Taylor, A. Leach, Y. Long, C. G. Willcocks, Deep generative modelling: A comparative review of
 779 VAEs, GANs, normalizing flows, energy-based and autoregressive models, *arXiv preprint arXiv:2103.04922*
 780 (2021).

781 [19] D. V. Patel, D. Ray, A. A. Oberai, Solution of physics-based bayesian inverse problems with deep generative
 782 priors, *Computer Methods in Applied Mechanics and Engineering* 400 (2022) 115428.

783 [20] P. Bohra, T.-a. Pham, J. Dong, M. Unser, Bayesian inversion for nonlinear imaging models using deep generative
 784 priors, *arXiv preprint arXiv:2203.10078* (2022).

785 [21] J. Adler, O. Öktem, Deep bayesian inversion, *arXiv preprint arXiv:1811.05910* (2018).

786 [22] D. Ray, H. Ramaswamy, D. V. Patel, A. A. Oberai, The efficacy and generalizability of conditional GANs for
 787 posterior inference in physics-based inverse problems, *Numerical Algebra, Control and Optimization* (2022).

788 [23] D. Ray, J. Murgoitio-Esandi, A. Dasgupta, A. A. Oberai, Solution of physics-based inverse problems using
 789 conditional generative adversarial networks with full gradient penalty, *arXiv preprint arXiv:2306.04895* (2023).

790 [24] K. Sohn, H. Lee, X. Yan, Learning structured output representation using deep conditional generative models,
 791 *Advances in Neural Information Processing Systems* 28 (2015).

792 [25] H. Goh, S. Sheriffdeen, J. Wittmer, T. Bui-Thanh, Solving Bayesian inverse problems via variational autoen-
793 coders, arXiv preprint arXiv:1912.04212 (2019).

794 [26] T. Sahlström, T. Tarvainen, Utilizing variational autoencoders in the Bayesian inverse problem of photoacoustic
795 tomography, SIAM Journal on Imaging Sciences 16 (2023) 89–110.

796 [27] A. Dasgupta, E. A. Johnson, REIN: Reliability estimation via importance sampling with normalizing flows,
797 Reliability Engineering and System Safety (Under review).

798 [28] H. Sun, K. L. Bouman, Deep probabilistic imaging: Uncertainty quantification and multi-modal solution char-
799 acterization for computational imaging, in: Proceedings of the AAAI Conference on Artificial Intelligence,
800 volume 35, 2021, pp. 2628–2637.

801 [29] A. Dasgupta, Z. W. Di, Uncertainty quantification for ptychography using normalizing flows, in: Fourth
802 Workshop on Machine Learning and the Physical Sciences, 2021.

803 [30] G. A. Padmanabha, N. Zabaras, Solving inverse problems using conditional invertible neural networks, Journal
804 of Computational Physics 433 (2021) 110194.

805 [31] R. Orozco, A. Siahkoohi, G. Rizzuti, T. van Leeuwen, F. J. Herrmann, Adjoint operators enable fast and
806 amortized machine learning based Bayesian uncertainty quantification, in: Medical Imaging 2023: Image
807 Processing, volume 12464, SPIE, 2023, pp. 357–367.

808 [32] D. P. Kingma, P. Dhariwal, GLOW: Generative flow with invertible 1×1 convolutions, Advances in Neural
809 Information Processing Systems 31 (2018).

810 [33] J. Lampinen, A. Vehtari, Bayesian approach for neural networks—review and case studies, Neural networks 14
811 (2001) 257–274.

812 [34] B.-H. Tran, S. Rossi, D. Milios, M. Filippone, All you need is a good functional prior for Bayesian deep learning,
813 Journal of Machine Learning Research 23 (2022) 1–56.

814 [35] D. V. Patel, A. A. Oberai, GAN-based priors for quantifying uncertainty in supervised learning, SIAM/ASA
815 Journal on Uncertainty Quantification 9 (2021) 1314–1343.

816 [36] P. Toft, The Radon transform, Ph.D. thesis, Technical University of Denmark, 1996.

817 [37] F. Knoll, J. Zbontar, A. Sriram, M. J. Muckley, M. Bruno, A. Defazio, M. Parente, K. J. Geras, J. Katsnel-
818 son, H. Chandarana, Z. Zhang, M. Drozdzal, A. Romero, M. Rabbat, P. Vincent, J. Pinkerton, D. Wang,
819 N. Yakubova, E. Owens, C. L. Zitnick, M. P. Recht, D. K. Sodickson, Y. W. Lui, fastMRI: A publicly avail-
820 able raw k-space and DICOM dataset of knee images for accelerated MR image reconstruction using machine
821 learning, Radiology: Artificial Intelligence 2 (2020) e190007.

822 [38] J. Zbontar, F. Knoll, A. Sriram, T. Murrell, Z. Huang, M. J. Muckley, A. Defazio, R. Stern, P. Johnson, M. Bruno,
823 M. Parente, K. J. Geras, J. Katsnelson, H. Chandarana, Z. Zhang, M. Drozdal, A. Romero, M. Rabbat, P. Vin-
824 cent, N. Yakubova, J. Pinkerton, D. Wang, E. Owens, C. L. Zitnick, M. P. Recht, D. K. Sodickson, Y. W. Lui,
825 fastmri: An open dataset and benchmarks for accelerated MRI, arXiv preprint arXiv:1811.08839 (2018).

826 [39] H. Zhang, I. Goodfellow, D. Metaxas, A. Odena, Self-attention generative adversarial networks, in: International
827 Conference on Machine Learning, PMLR, 2019, pp. 7354–7363.

828 [40] T. Karras, T. Aila, S. Laine, J. Lehtinen, Progressive growing of GANs for improved quality, stability, and
829 variation, in: International Conference on Learning Representations, 2018.

830 [41] L. Dinh, D. Krueger, Y. Bengio, NICE: Non-linear independent components estimation, arXiv preprint
831 arXiv:1410.8516 (2014).

832 [42] L. Dinh, J. Sohl-Dickstein, S. Bengio, Density estimation using Real NVP, arXiv preprint arXiv:1605.08803
833 (2016).

834 [43] E. Cramer, A. Mitsos, R. Tempone, M. Dahmen, Principal component density estimation for scenario generation
835 using normalizing flows, Data-Centric Engineering 3 (2022).

836 [44] E. Cramer, F. Rauh, A. Mitsos, R. Tempone, M. Dahmen, Nonlinear isometric manifold learning for injective
837 normalizing flows, arXiv preprint arXiv:2203.03934 (2022).

838 [45] K. Kothari, A. Khorashadizadeh, M. de Hoop, I. Dokmanić, Trumpets: Injective flows for inference and inverse
839 problems, in: Uncertainty in Artificial Intelligence, PMLR, 2021, pp. 1269–1278.

840 [46] J. Brehmer, K. Cranmer, Flows for simultaneous manifold learning and density estimation, Advances in Neural
841 Information Processing Systems 33 (2020) 442–453.

842 [47] Y. Hong, U. Hwang, J. Yoo, S. Yoon, How generative adversarial networks and their variants work: An overview,
843 ACM Computing Surveys 52 (2019) 1–43.

844 [48] X. Yi, E. Walia, P. Babyn, Generative adversarial network in medical imaging: A review, Medical Image
845 Analysis 58 (2019) 101552.

846 [49] A. Jabbar, X. Li, B. Omar, A survey on generative adversarial networks: Variants, applications, and training,
847 ACM Computing Surveys 54 (2021) 1–49.

848 [50] A. K. Dhaka, A. Catalina, M. Welandawe, M. R. Andersen, J. Huggins, A. Vehtari, Challenges and opportunities
849 in high dimensional variational inference, Advances in Neural Information Processing Systems 34 (2021) 7787–
850 7798.

851 [51] Y. Marzouk, T. Moseley, M. Parno, A. Spantini, An introduction to sampling via measure transport, arXiv
852 preprint arXiv:1602.05023 (2016).

853 [52] A. Gelman, C. R. Shalizi, Philosophy and the practice of Bayesian statistics, British Journal of Mathematical
854 and Statistical Psychology 66 (2013) 8–38.

855 [53] X. Meng, L. Yang, Z. Mao, J. del Águila Ferrandis, G. E. Karniadakis, Learning functional priors and posteriors
856 from data and physics, Journal of Computational Physics 457 (2022) 111073.

857 [54] M. Arjovsky, S. Chintala, L. Bottou, Wasserstein generative adversarial networks, in: International Conference
858 on Machine Learning, PMLR, 2017, pp. 214–223.

859 [55] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A. C. Courville, Improved training of Wasserstein GANs,

860 Advances in Neural Information Processing Systems 30 (2017).

861 [56] J. Thickstun, Kantorovich-Rubinstein Duality, 2019. URL: https://courses.cs.washington.edu/courses/cse599i/20au/resources/L12_duality.pdf.

863 [57] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, S. Hochreiter, GANs trained by a two time-scale update rule converge to a local Nash equilibrium, Advances in Neural Information Processing Systems 30 (2017).

865 [58] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, X. Chen, Improved techniques for training GANs, Advances in Neural Information Processing Systems 29 (2016).

867 [59] A. Bhaduri, A. Gupta, A. Olivier, L. Graham-Brady, An efficient optimization based microstructure reconstruction approach with multiple loss functions, Computational Materials Science 199 (2021) 110709.

869 [60] D. P. Kingma, J. Ba, ADAM: A method for stochastic optimization, arXiv preprint arXiv:1412.6980 (2014).

870 [61] Y. Wang, F. Liu, D. E. Schiavazzi, Variational inference with NoFAS: Normalizing flow with adaptive surrogate for computationally expensive models, Journal of Computational Physics 467 (2022) 111454.

872 [62] A. Mallasto, G. Montúfar, A. Gerolin, How well do WGANs estimate the Wasserstein metric?, arXiv preprint arXiv:1910.03875 (2019).

874 [63] J. Stanczuk, C. Etmann, L. M. Kreusser, C.-B. Schönlieb, Wasserstein GANs work because they fail (to approximate the Wasserstein distance), arXiv preprint arXiv:2103.01678 (2021).

876 [64] Y. Yao, A. Vehtari, D. Simpson, A. Gelman, Yes, but did it work?: Evaluating variational inference, in: International Conference on Machine Learning, PMLR, 2018, pp. 5581–5590.

878 [65] Y. Yao, A. Vehtari, A. Gelman, Stacking for non-mixing Bayesian computations: The curse and blessing of multimodal posteriors, Journal of Machine Learning Research 23 (2022).

880 [66] D. Patel, A. A. Oberai, Bayesian inference with generative adversarial network priors, arXiv preprint arXiv:1907.09987 (2019).

882 [67] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala, PyTorch: An imperative style, high-performance deep learning library, in: Advances in Neural Information Processing Systems, 2019, pp. 8024–8035.

886 [68] A. D. Cobb, B. Jalaian, Scaling Hamiltonian Monte Carlo inference for Bayesian neural networks with symmetric splitting, in: Uncertainty in Artificial Intelligence, PMLR, 2021, pp. 675–685.

888 [69] J. Cannon, S. P. Esteva, An inverse problem for the heat equation, Inverse Problems 2 (1986) 395.

889 [70] J. R. Cannon, P. DuChateau, Structural identification of an unknown source term in a heat equation, Inverse Problems 14 (1998) 535.

891 [71] T. G. Feeman, The mathematics of medical imaging: A beginner’s guide, Springer, 2015.

892 [72] M. Ronchetti, torchradon: Fast differentiable routines for computed tomography, arXiv preprint arXiv:2009.14788 (2020).

894 [73] J. Wang, H. Lu, Z. Liang, D. Eremina, G. Zhang, S. Wang, J. Chen, J. Manzione, An experimental study on the
895 noise properties of X-ray CT sinogram data in radon space, *Physics in Medicine & Biology* 53 (2008) 3327.

896 [74] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, Image quality assessment: from error visibility to
897 structural similarity, *IEEE Transactions on Image Processing* 13 (2004) 600–612.

898 [75] M. V. Klibanov, P. E. Sacks, A. V. Tikhonravov, The phase retrieval problem, *Inverse Problems* 11 (1995) 1.

899 [76] J. Rosenblatt, Phase retrieval, *Communications in Mathematical Physics* 95 (1984) 317–343.

900 [77] Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, M. Segev, Phase retrieval with application to
901 optical imaging: A contemporary overview, *IEEE Signal Processing Magazine* 32 (2015) 87–109.

902 [78] J. Miao, R. L. Sandberg, C. Song, Coherent x-ray diffraction imaging, *IEEE Journal of Selected Topics in*
903 *Quantum Electronics* 18 (2011) 399–410.

904 [79] M. H. Maleki, A. J. Devaney, Phase-retrieval and intensity-only reconstruction algorithms for optical diffraction
905 tomography, *Journal of the Optical Society of America A* 10 (1993) 1086–1092.

906 [80] R. P. Millane, Phase retrieval in crystallography and optics, *Journal of the Optical Society of America A* 7
907 (1990) 394–411.

908 [81] J. R. Fienup, J. C. Marron, T. J. Schulz, J. H. Seldin, Hubble Space Telescope characterized by using phase-
909 retrieval algorithms, *Applied Optics* 32 (1993) 1747–1767.

910 [82] V. A. Kelkar, S. Bhadra, M. A. Anastasio, Compressible latent-space invertible networks for generative model-
911 constrained image reconstruction, *IEEE Transactions on Computational Imaging* 7 (2021) 209–223.

912 [83] A. Karnewar, *pro_gan_pytorch*, https://github.com/akanimax/pro_gan_pytorch, 2018.

913 [84] A. Bora, A. Jalal, E. Price, A. G. Dimakis, Compressed sensing using generative models, in: *International*
914 *Conference on Machine Learning*, PMLR, 2017, pp. 537–546.

915 **Appendix A. Derivation of the loss function \mathcal{L}_{NF} for training the normalizing flow model in**
 916 **GAN-Flow**

917 Let $\mathbf{z} \sim p_{\mathcal{Z}}(\mathbf{z})$ and $\tilde{\mathbf{z}}$ be two random vectors, both $\in \Omega_{\mathcal{Z}}$, and the diffeomorphism $H(\cdot; \psi) : \Omega_{\mathcal{Z}} \rightarrow \Omega_{\mathcal{Z}}$ such that $\tilde{\mathbf{z}} = H(\mathbf{z}; \psi)$. Let $\tilde{p}_{\mathcal{Z}}(\tilde{\mathbf{z}})$, which can be computed using Eq. (6) as follows:

$$p_{\tilde{\mathcal{Z}}}(\tilde{\mathbf{z}}) = H_{\#}p_{\mathcal{Z}}(\mathbf{z}; \psi) = p_{\mathcal{Z}}(\mathbf{z}) |\det \nabla_{\mathbf{z}} H(\mathbf{z}; \psi)|^{-1}. \quad (\text{A.1})$$

919 For any function $a(\cdot) : \Omega_{\mathcal{Z}} \rightarrow \Omega_{\mathcal{Z}}$, the change-of-variables theorem of multivariable calculus states:

$$\begin{aligned} \int_{\Omega_{\mathcal{Z}}} a(\tilde{\mathbf{z}}) p_{\tilde{\mathcal{Z}}}(\tilde{\mathbf{z}}) d\tilde{\mathbf{z}} &= \int_{\Omega_{\mathcal{Z}}} a(\tilde{\mathbf{z}}) \underbrace{[p_{\mathcal{Z}}(\mathbf{z}) |\det \nabla_{\mathbf{z}} H(\mathbf{z}; \psi)|^{-1}]}_{p_{\tilde{\mathcal{Z}}}(\tilde{\mathbf{z}}) \text{ from Eq. (A.1)}} d\tilde{\mathbf{z}} \\ &= \int_{\Omega_{\mathcal{Z}}} a(\tilde{\mathbf{z}}) p_{\mathcal{Z}}(\mathbf{z}) \underbrace{[|\det \nabla_{\mathbf{z}} H(\mathbf{z}; \psi)|^{-1} d\tilde{\mathbf{z}}]}_{d\mathbf{z}} = \int_{\Omega_{\mathcal{Z}}} a(H(\mathbf{z}; \psi)) p_{\mathcal{Z}}(\mathbf{z}) d\mathbf{z}. \end{aligned} \quad (\text{A.2})$$

920 On recognizing that $\int_{\Omega_{\mathcal{Z}}} a(\tilde{\mathbf{z}}) p_{\tilde{\mathcal{Z}}}(\tilde{\mathbf{z}}) d\tilde{\mathbf{z}}$ is nothing but $\mathbb{E}_{\mathbf{z} \sim H_{\#}p_{\mathcal{Z}}} [a(\mathbf{z})]$, we can write

$$\mathbb{E}_{\mathbf{z} \sim H_{\#}p_{\mathcal{Z}}} [a(\mathbf{z})] = \mathbb{E}_{\mathbf{z} \sim p_{\mathcal{Z}}(\mathbf{z})} [a(H(\mathbf{z}; \psi))]. \quad (\text{A.3})$$

921 Now, the reverse KL divergence between the pushforward distribution $H_{\#}p_{\mathcal{Z}}(\mathbf{z}; \psi)$ and the
 922 target distribution $p_{\mathcal{Z}}(\mathbf{z}|\hat{\mathbf{y}})$ is:

$$\begin{aligned} d_{\text{KL}}(H_{\#}p_{\mathcal{Z}}(\mathbf{z}; \psi) \| p_{\mathcal{Z}}(\mathbf{z}|\hat{\mathbf{y}})) &\equiv \mathbb{E}_{\mathbf{z} \sim H_{\#}p_{\mathcal{Z}}} [\log H_{\#}p_{\mathcal{Z}}(\mathbf{z}; \psi) - \log p_{\mathcal{Z}}(\mathbf{z}|\hat{\mathbf{y}})] \\ &= \int_{\Omega_{\mathcal{Z}}} \left[\log H_{\#}p_{\mathcal{Z}}(\mathbf{z}; \psi) - \underbrace{(\log p_{\mathcal{Y}}(\hat{\mathbf{y}}|\mathbf{z}) + \log p_{\mathcal{Z}}(\mathbf{z}) - \log p_{\mathcal{Y}}(\hat{\mathbf{y}}))}_{\log p_{\mathcal{Z}}(\mathbf{z}|\hat{\mathbf{y}})} \right] H_{\#}p_{\mathcal{Z}}(\mathbf{z}; \psi) d\mathbf{z} \\ &= \int_{\Omega_{\mathcal{Z}}} \left[\log H_{\#}p_{\mathcal{Z}}(\mathbf{z}; \psi) - \log p_{\mathcal{Y}}(\hat{\mathbf{y}}|\mathbf{z}) - \log p_{\mathcal{Z}}(\mathbf{z}) + \log p_{\mathcal{Y}}(\hat{\mathbf{y}}) \right] H_{\#}p_{\mathcal{Z}}(\mathbf{z}; \psi) d\mathbf{z} \\ &= \int_{\Omega_{\mathcal{Z}}} \left[\log \underbrace{(p_{\mathcal{Z}}(\mathbf{z}) |\det \nabla_{\mathbf{z}} H(\mathbf{z}; \psi)|^{-1})}_{H_{\#}p_{\mathcal{Z}}(\mathbf{z}; \psi)} - \log p_{\mathcal{Y}}(\hat{\mathbf{y}}|H(\mathbf{z}; \psi)) - \log p_{\mathcal{Z}}(H(\mathbf{z}; \psi)) + \log p_{\mathcal{Y}}(\hat{\mathbf{y}}) \right] p_{\mathcal{Z}}(\mathbf{z}) d\mathbf{z} \\ &= \int_{\Omega_{\mathcal{Z}}} \left[\log p_{\mathcal{Z}}(\mathbf{z}) - \log |\det \nabla_{\mathbf{z}} H(\mathbf{z}; \psi)| - \log p_{\mathcal{Y}}(\hat{\mathbf{y}}|H(\mathbf{z}; \psi)) - \log p_{\mathcal{Z}}(H(\mathbf{z}; \psi)) + \log p_{\mathcal{Y}}(\hat{\mathbf{y}}) \right] p_{\mathcal{Z}}(\mathbf{z}) d\mathbf{z} \\ &= \mathbb{E}_{\mathbf{z} \sim p_{\mathcal{Z}}(\mathbf{z})} \left[\log p_{\mathcal{Z}}(\mathbf{z}) - \log |\det \nabla_{\mathbf{z}} H(\mathbf{z}; \psi)| - \log p_{\mathcal{Y}}(\hat{\mathbf{y}}|H(\mathbf{z}; \psi)) - \log p_{\mathcal{Z}}(H(\mathbf{z}; \psi)) + \log p_{\mathcal{Y}}(\hat{\mathbf{y}}) \right], \end{aligned} \quad (\text{A.4})$$

923 where we substitute the expression for $p_{\mathcal{Z}}(\mathbf{z}|\hat{\mathbf{y}})$ from Eq. (18) in the second line, and then use
 924 Eq. (A.1) to replace $H_{\#}p_{\mathcal{Z}}(\mathbf{z}; \psi)$ in the fourth line while changing the variables of integration as
 925 per Eqs. (A.2) and (A.3). To obtain the proposed loss function \mathcal{L}_{NF} in Eq. (21) for training the
 926 normalizing flow, we simply ignore the terms $\log p_{\mathcal{Z}}(\mathbf{z})$ and $\log p_{\mathcal{Y}}(\hat{\mathbf{y}})$ in Eq. (A.4) since they do
 927 not depend on ψ . This completes the derivation of Eq. (21) starting from Eq. (20).

928 **Appendix B. Details of the GAN and normalizing flow architectures of GAN-Flow and train-
 929 ing hyper-parameters**

930 In this section we describe the WGAN-GP and normalizing flow models used in the GAN-
 931 Flow pipeline for various inverse problems. Some of the nomenclature we use are as follows:

- 932 1. FC(n) — Fully connected layer of width n .
- 933 2. Tr. Conv2D (c_{out} , k , s , p , p_{out}) — 2D transpose convolution layer with c_{out} output channels,
 934 kernel size (k, k) , stride s , padding p and output padding p_{out} .
- 935 3. Conv2D (c_{out} , k , s , p) — 2D convolution layer c_{out} output channels, kernel size (k, k) , stride
 936 s and padding p .
- 937 4. Self Attention — self-attention module [39].
- 938 5. BN, LN, PixelNorm, Mini-batch std. dev. normalization — batch, layer, pixel [40] and
 939 mini-batch standard deviation [40] normalization, respectively.
- 940 6. LReLU(α), ELU, and TanH — Leaky rectified linear unit (with parameter α), exponential
 941 linear unit and hyperbolic tangent activation functions, respectively.
- 942 7. Up-sample $2 \times$ — Up-scaling by a factor of 2 using bi-linear interpolation.
- 943 8. Down-sample $2 \times$ — Average pooling over 2×2 patches with stride 2.

944 **B1. WGAN-GP model architectures**

945 Table B1 lists the training hyper-parameters. Fig. B1 shows the generator and critic architec-
 946 ture used in the initial condition inference problem. Fig. B2 shows the generator and architecture
 947 used in the inverse Radon transform problem. Fig. B3(a) and (c) shows the generator and critic

Table B1. Training hyper-parameters for WGAN-GP and normalizing flow models of the GAN-Flow pipeline.

Model	hyper-parameter	Inverse problem		
		Heat conduction (Section 4.1)	Radon transform (Section 4.2)	Phase imaging (Section 4.3)
Wasserstein GAN	Latent dimension n_Z	5	60	512
	Architecture	Fig. B1	Fig. B2	Fig. B3
	Training epochs	500	1000	294
	Learning rate	0.0002	0.001	0.003
	Gradient penalty λ	10	10	10
	Batch size	64	100	$128 \rightarrow 64$
	$n_{\text{critic}}/n_{\text{gen}}$	5	4	1
	Optimizer	Adam $\beta_1 = 0, \beta_2 = 0.99$	Adam $\beta_1 = 0.5, \beta_2 = 0.99$	Adam $\beta_1 = 0, \beta_2 = 0.99$
Normalizing flow	Type of flow model layer	Planar	Planar	Affine coupling
	Number of flow layers n_f	64	256	16
	Training epochs	5000	15000	50000
	Learning rate	0.002	0.002	0.001
	Batch size	32	32	32
	Optimizer	Adam $\beta_1 = 0.9, \beta_2 = 0.999$	Adam $\beta_1 = 0.9, \beta_2 = 0.999$	Adam $\beta_1 = 0.9, \beta_2 = 0.999$

948 architectures, respectively, we use for the phase retrieval problem. The generator comprises con-
949 volution blocks that are shown in Fig. B3(b). Similarly, the critic is made of a convolution block
950 that is denoted as ‘Dis. Convolution Block’ in Fig. B3(c) and shown in Fig. B3(b). In this study,
951 we use the Progressive growing of GAN methodology to train the generator and critic networks.
952 We briefly summarize the ProGAN method here, and refer [40] to interested readers for more
953 details.

954 *B1.1. Progressive growing of GANs*

955 In the ProGAN methodology, both generator and critic are trained synchronously to synthesize
956 images starting from size 4×4 up until 256×256 . For instance, at the first stage, when the GAN is
957 learning to synthesize images of size 4×4 , only the first three layers (after the inputs are reshaped
958 and including the first convolution block) of the generator is trained. Similarly, at this stage, the
959 discriminator only consists of first two layers (including the first Dis. Convolution block) and the
960 final four layers (starting from the mini-batch standard deviation normalization). After the first

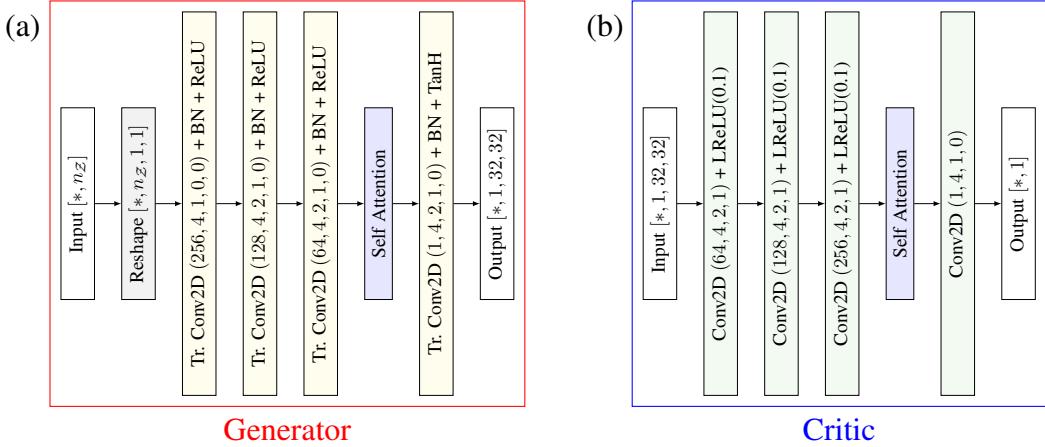


Figure B1. (a) Generator and (b) critic architectures of the WGAN-GP model for the initial condition inference inverse problem.

stage of training is complete, a new convolution block is now appended to the previously trained convolution block in the generator. Similarly, another ‘Dis. Convolution Block’ is appended to the previously trained block of similar type to the discriminator. All weights of the generator and critic networks are updated at this stage. This process continues for a further four stages, thus a total six stages, up until the GAN learns to synthesize images of the required size. The requisite number of stages n_{stage} should satisfy $2^{n_{\text{stage}}+1} = 128$. In this study, the desired size of the knee slices was 256×256 , which necessitates $n_{\text{stage}} = 7$. We train the GAN for 42 epochs at each stage, which makes a total of 294 epochs across all stages. We use a batch size of 128 for the first four stages, and reduce it by half for the penultimate three stages. We also randomly flip the images horizontally to augment the training dataset. At every stage lower-resolution images from the prior dataset are down-sampled using average pooling to obtain the necessary ‘*real*’ images for training. Moreover, during training at the k^{th} stage (k starts from 2 going to 8 corresponding to resolutions of 4×4 to 128×128) beyond $k = 2$, the synthesized images are formed by a linear combination of the up-sampled images from the previous generator up to the previous stage and the current stage using residual connections. Similarly, the critic also blends together image features at the $(k - 1)^{\text{th}}$ resolution level using residual connections. This linear superposition factor, say α , linearly increases between 0 and 1 through the training epochs to ultimately only consider the images entirely synthesized at the k^{th} resolution level, i.e., the contribution from the residual connections

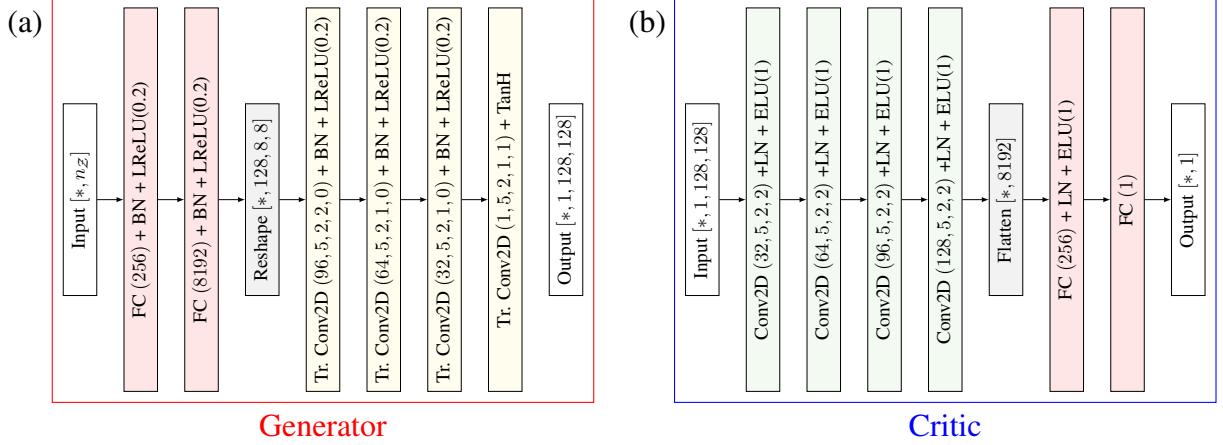


Figure B2. (a) Generator and (b) critic architectures of the WGAN-GP model for the inverse Radon transform problem.

979 gradually fades away as training progresses for every stage. Figure 2 in [40] is instructive of this
 980 multi-scale blending. Fig. B4 shows knee slices of various resolutions generated at the end of k^{th}
 981 stage of training using the WGAN-GP model from Fig. B3.

982 B2. Normalizing flow model architectures

983 We use planar flow layers with hyperbolic tangent non-linearity for both the initial condi-
 984 tion inference and inverse Radon transform problem. For the phase retrieval problem, we use
 985 affine coupling flow layers, as shown in Fig. B5(a), and the scale and shift networks are shown
 986 in Fig. B5(b). Every affine coupling block permutes its input such that the partition, described
 987 above Eq. (11), is random for every layer; this promotes better mixing among every latent di-
 988 mension. Subsequently, activation normalization is applied, which scales the inputs to have zero
 989 mean and unit variance; this transformation is also updated during training. The re-scaling layer in
 990 Fig. B5(b) has a single learnable parameter that simply scales and multiplies itself with the output
 991 from the previous layer. This parameter is initially set to zero such that the whole layer starts out
 992 as an identity transform. After the re-scaling layer, TanH operation operates on one-half of the
 993 data and serves as the scale operator, while the other half acts as the shift operator.

994 **Appendix C. Additional results**

995 *C1. Initial condition inference*

996 For the initial condition inference inverse problem, we vary the latent dimensionality $n_{\mathcal{Z}}$, while
997 keeping all other hyper-parameters fixed, to study its effect on the overall performance of GAN-
998 Flow. Fig. C6 reveals that the performance of both GAN-Flow and GAN+HMC deteriorates as
999 the latent dimensionality $n_{\mathcal{Z}}$ increases. One reason for this may be the following: the latent
1000 space dimensionality controls the expressivity of the generator, and a larger than necessary latent
1001 space dimensionality may be introducing spurious uncertainty in the prior. Additionally, the de-
1002 teriorating performance can also be attributed to the curse of dimensionality. As the latent space
1003 dimensionality increases, both HMC and normalizing flows find it increasingly harder to sample
1004 the latent posterior distribution. In a nutshell, Fig. C6 is empirical evidence of the fact that di-
1005 mension reduction is beneficial for Bayesian inference. From Fig. C6, $n_{\mathcal{Z}} = 5$ leads to the lowest
1006 RMSE in the estimated posterior statistics. This is expected since the underlying prior distribution
1007 has only four random variables. While it may appear from Fig. C6(a) that GAN-Flow is not able
1008 to estimate the posterior mean as well as GAN+HMC, recall that we train the normalizing flows
1009 with the same hyper-parameter setting and a total of 3.2×10^4 forward model evaluations irrespec-
1010 tive of the value of $n_{\mathcal{Z}}$. Increasing the computational effort as $n_{\mathcal{Z}}$ increases should help improve
1011 the performance of GAN-Flow. In Fig. C6(b), GAN-Flow does at least as well as GAN+HMC in
1012 capturing the posterior variance at modest dimensions ($n_{\mathcal{Z}} < 80$).

1013 *C2. Inverse Radon transform*

1014 Similar to the previous example, we vary the latent dimensionality $n_{\mathcal{Z}}$, while keeping all other
1015 hyper-parameters fixed, to study its effect on the overall performance of GAN-Flow across differ-
1016 ent levels of measurement noise. We plot the reconstruction error of the posterior mean in Fig. C7,
1017 which shows that the optimal latent dimension $n_{\mathcal{Z}}$ lies between 40 and 80 for the three levels of
1018 measurement noise we consider. Note that, in this example, the underlying prior distribution is
1019 parameterized by 13 variables. Hence, the reconstructions from GAN-Flow and GAN-HMC are
1020 inadequate when $n_{\mathcal{Z}} \leq 20$. At such low latent dimensions, the prior distribution from the WGAN-
1021 GP is not sufficiently expressive. Beyond that, the reconstruction error first reduces and then

1022 increases again. The comparatively larger reconstruction errors when $n_{\mathcal{Z}} > 80$ may be due to in-
 1023 sufficient training of the normalizing flow or the inefficacy of HMC in sampling high-dimensional
 1024 distributions. Therefore, for this example, we choose $n_{\mathcal{Z}} = 60$ to obtain a balanced performance
 1025 from GAN-Flow across all levels of measurement noise.

1026 Further, we test GAN-Flow on another phantom separate from the one in Section 4.2 while
 1027 keeping all training hyperparameters fixed as before. Fig. C8 shows the phantom, corresponding
 1028 sinogram and noisy measurements for different levels of noise. Fig. C9 shows the pixel-wise
 1029 posterior mean and standard deviation estimation obtained using GAN-Flow. With respect to the
 1030 ground truth Fig. C8(a), the RMSE of the posterior mean reconstruction is 0.044, 0.047 and 0.047
 1031 for $\sigma_{\eta}^2 = 1, 10$ and 50, respectively. The SSIM is 0.965, 0.963 and 0.962 at $\sigma_{\eta}^2 = 1, 10$ and 50,
 1032 respectively. These metrics are similar to those reported in Table 4. Thus, the performance of
 1033 GAN-Flow is consistent across both test phantom.

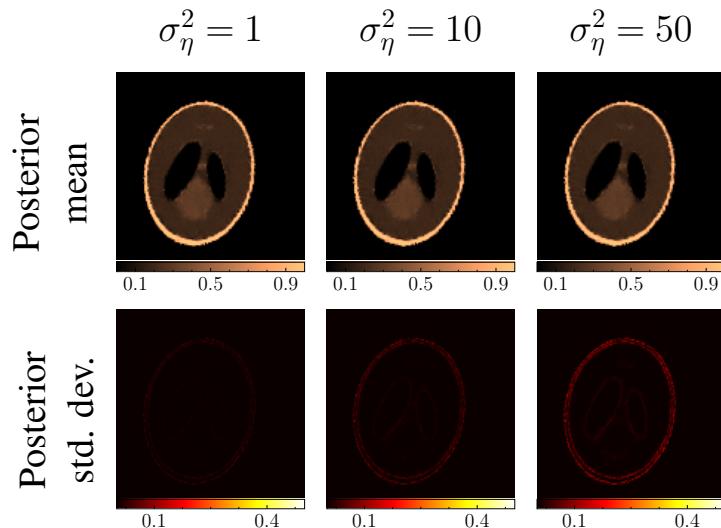


Figure C9. Estimated posterior mean (top row) and standard deviation (bottom row) obtained using GAN-Flow for the alternate test phantom on inverse Radon transform problem at various levels of measurement noise.

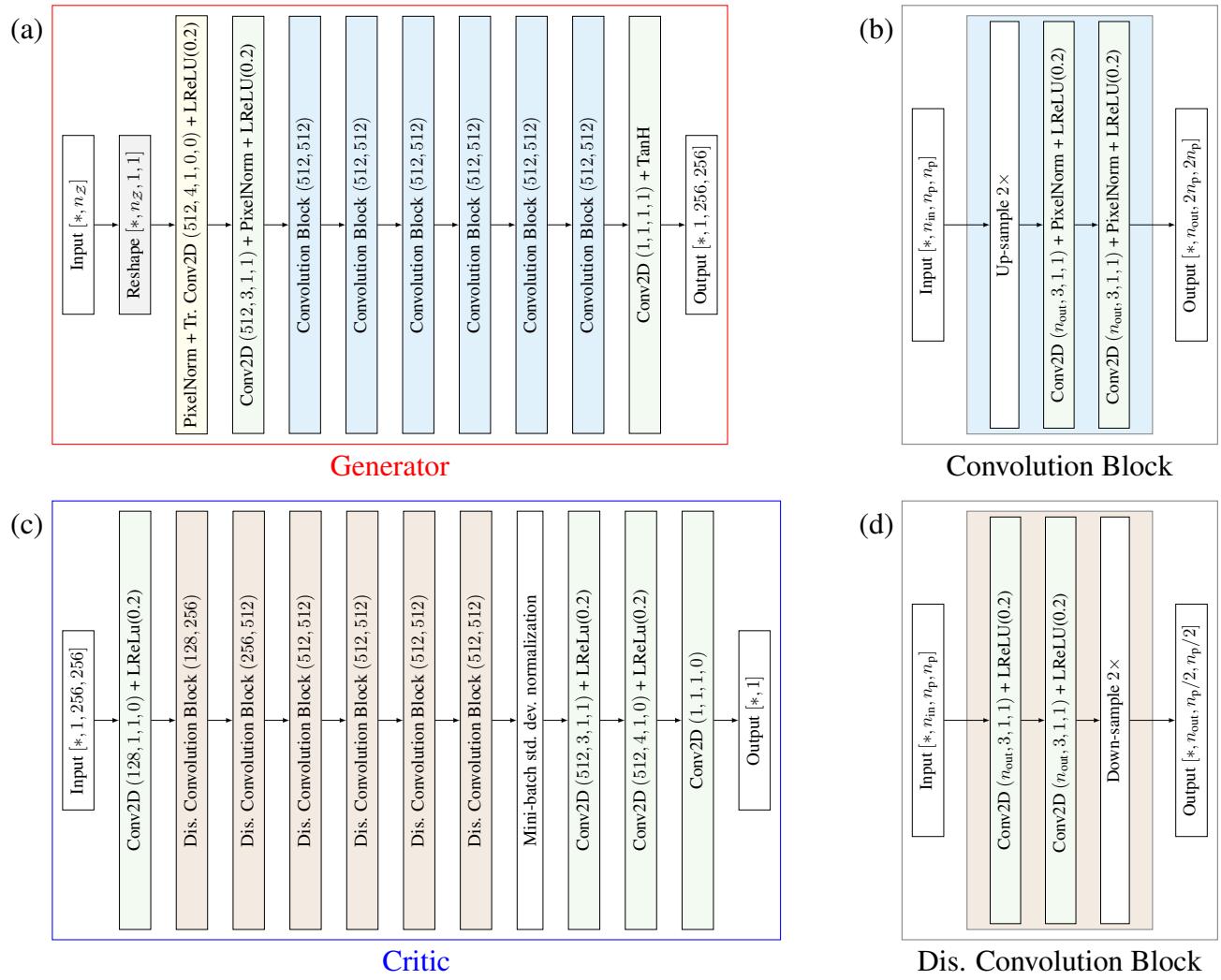


Figure B3. (a) Generator and (c) critic architectures of the WGAN-GP model for the phase retrieval problem. (b) and (d) shows the convolution blocks within the generator and critic, respectively.

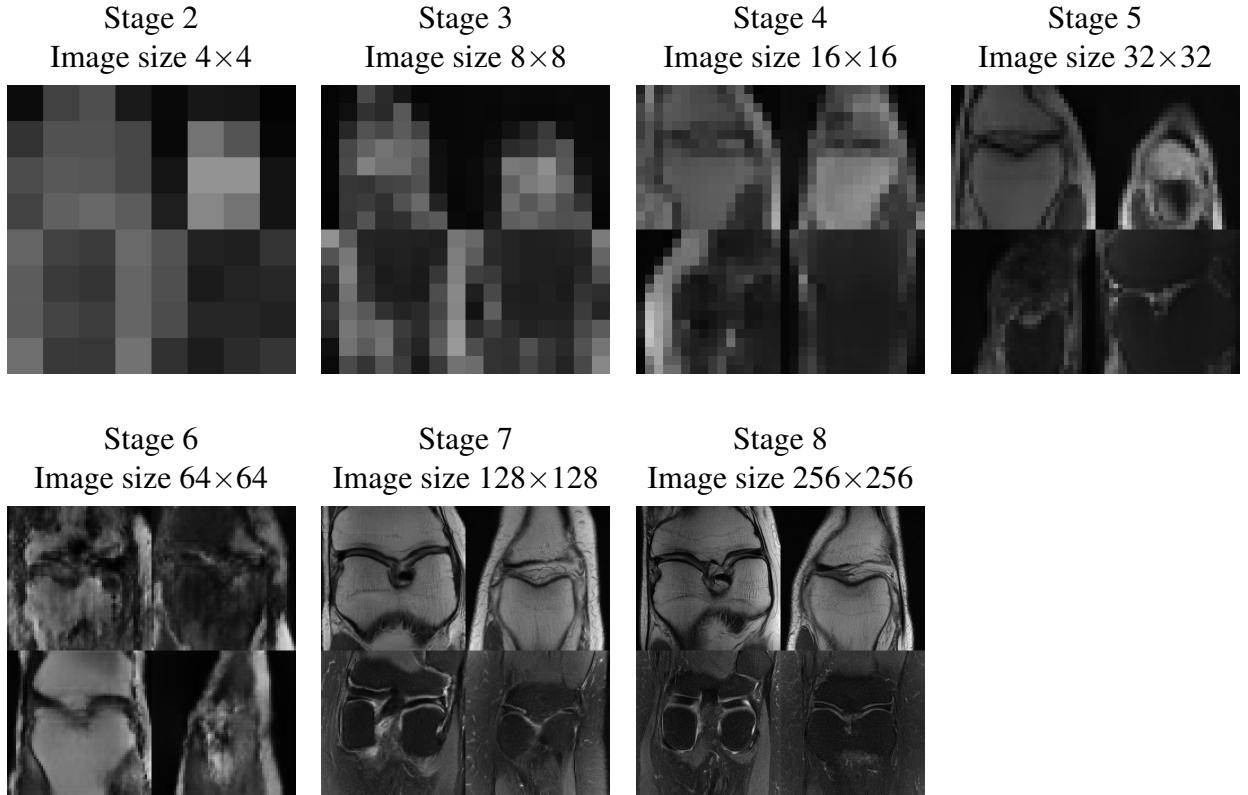


Figure B4. Knee slices of resolution $2^k \times 2^k$ generated at the end of the k^{th} training stage using the WGAN-GP model for the phase retrieval problem.

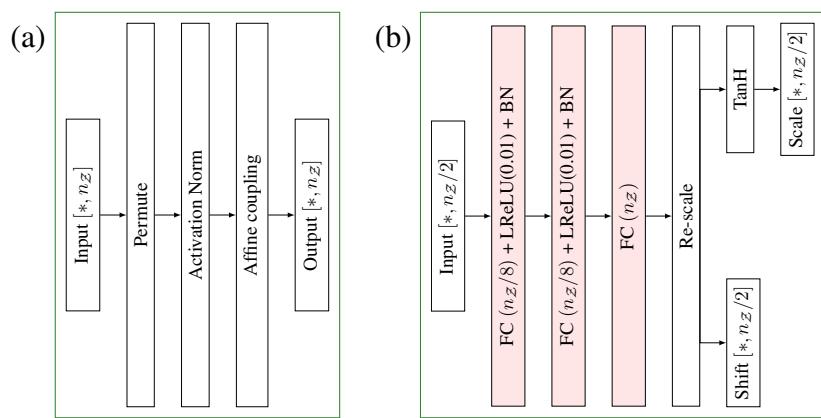


Figure B5. (a) Typical flow layer with affine coupling transform, and (b) scale and shift networks used for the affine coupling transform in the phase retrieval problem.

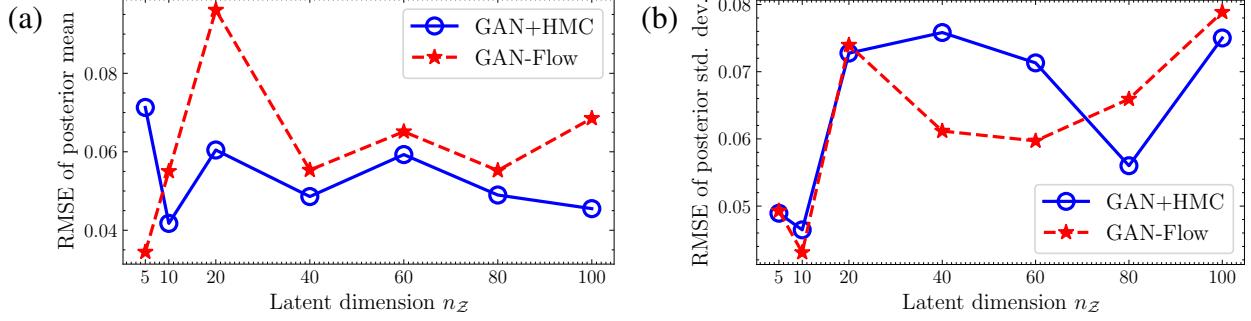


Figure C6. RMSE of the posterior pixel-wise (a) mean and (b) standard-deviation estimated using various methods with respect to the corresponding statistics estimated using MCS for the initial condition inference problem.

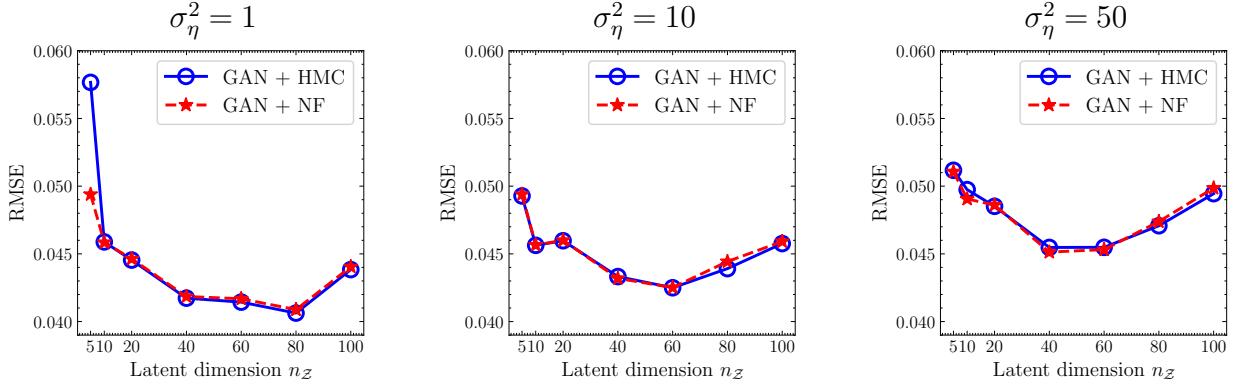


Figure C7. RMSE of the posterior pixel-wise mean with respect to the ‘true’ phantom for varying levels of variance σ_η^2 of the measurement noise in the inverse Radon transform problem.

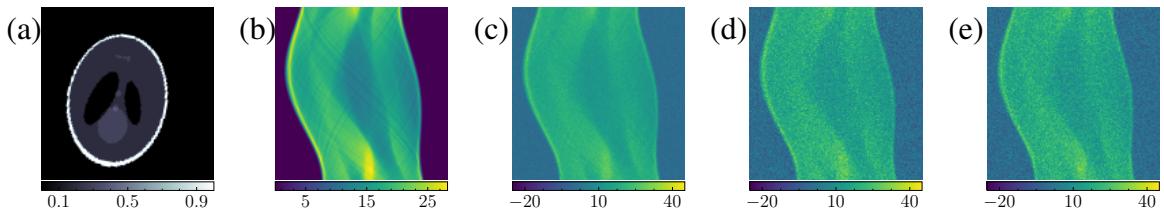


Figure C8. (a) Alternate test phantom and (b) corresponding noise-free sinogram. Noisy sinograms after adding zero-mean Gaussian noise with variance (c) $\sigma_\eta^2 = 1$ (d) $\sigma_\eta^2 = 10$ and (e) $\sigma_\eta^2 = 50$.