
A dimension-reduced variational approach for solving
physics-based inverse problems using generative adversarial

network priors and normalizing flows

Agnimitra Dasguptaa, Dhruv V Patelb, Deep Rayc,d, Erik A Johnsone, Assad A Oberaia,∗

aDepartment of Aerospace & Mechanical Engineering, University of Southern California, Los
Angeles, 90089, California, USA

bDepartment of Mechanical Engineering, Stanford University, Stanford, 94305, California, USA
cDepartment of Mathematics, University of Maryland, College Park, 20742, Maryland, USA

dInstitute for Physical Science and Technology, University of Maryland, College Park, 20742, Maryland, USA
eSonny Astani Department of Civil & Environmental Engineering, University of Southern California, Los

Angeles, 90089, California, USA

Abstract

We propose a novel modular inference approach combining two different generative models

— generative adversarial networks (GAN) and normalizing flows — to approximate the poste-

rior distribution of physics-based Bayesian inverse problems framed in high-dimensional ambi-

ent spaces. We dub the proposed framework GAN-Flow. The proposed method leverages the

intrinsic dimension reduction and superior sample generation capabilities of GANs to define a

low-dimensional data-driven prior distribution. Once a trained GAN-prior is available, the inverse

problem is solved entirely in the latent space of the GAN using variational Bayesian inference

with normalizing flow-based variational distribution, which approximates low-dimensional pos-

terior distribution by transforming realizations from the low-dimensional latent prior (Gaussian)

to corresponding realizations of a low-dimensional variational posterior distribution. The trained

GAN generator then maps realizations from this approximate posterior distribution in the latent

space back to the high-dimensional ambient space. We also propose a two-stage training strategy

for GAN-Flow wherein we train the two generative models sequentially. Thereafter, GAN-Flow

can estimate the statistics of posterior-predictive quantities of interest at virtually no additional

computational cost. The synergy between the two types of generative models allows us to over-

come many challenges associated with the application of Bayesian inference to large-scale inverse

problems, chief among which are describing an informative prior and sampling from the high-
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dimensional posterior. GAN-Flow does not involve Markov chain Monte Carlo simulation, mak-

ing it particularly suitable for solving large-scale inverse problems. We demonstrate the efficacy

and flexibility of GAN-Flow on various physics-based inverse problems of varying ambient di-

mensionality and prior knowledge using different types of GANs and normalizing flows. Notably,

one of the applications we consider involves a 65,536-dimensional inverse problem of phase re-

trieval wherein an object is reconstructed from sparse noisy measurements of the magnitude of its

Fourier transform.

Keywords: Inverse problems, Bayesian inference, variational inference, generative modeling,

uncertainty quantification

1. Introduction

Inverse problems are useful for determining the causal factors behind an observed phenomenon1

but remain challenging to solve. Inverse problems are ill-posed and, as such, they may admit mul-2

tiple or, in the extreme case, no solutions [1]. Moreover, in most practical applications, the forward3

problem is nonlinear, the inferred quantity is high-dimensional, and measurements are noisy: all of4

these factors makes it challenging to solve inverse problems. Deterministic approaches to solving5

inverse problems result in point estimates, i.e., a single solution to the inverse problem at hand,6

which precludes other possible solutions. In contrast, the Bayesian paradigm treats inverse prob-7

lems in a stochastic setting, with the posterior distribution characterizing all possible solutions to8

the inverse problem at hand. Using Bayes’ rule, the posterior distribution results from updating the9

prior distribution through a likelihood function: this process is known as Bayesian inference. The10

posterior distribution is also useful for quantifying the relative plausibility of different solutions,11

popularly known as uncertainty quantification. Bayesian inference is attractive because it is philo-12

sophically appealing and conceptually simple while giving additional useful information about13

uncertainty in the solution. However, the application of Bayesian inference poses many practical14

and computational challenges. On a practical note, selecting a well-informed prior distribution is15
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crucial to the success of Bayesian inference. However, the task of choosing such a distribution16

capable of accommodating the myriad of variations encountered in practical solution fields is far17

from straightforward. Even with a carefully designed prior, Bayesian inference remains compu-18

tationally challenging because only a few cases permit closed-form posterior distributions, i.e.,19

those where the prior and likelihood distributions form a conjugate pair. Unfortunately, scenarios20

where it is possible to leverage Bayesian conjugacy seldom occur, and the posterior distribution21

must be approximated using appropriate tools.22

One way of approximating the posterior distribution is through samples drawn from it. Markov23

chain Monte Carlo (MCMC) methods have been the workhorse of posterior sampling for almost24

half a century [2]. However, the application of MCMC can be challenging on large-scale in-25

verse problems, i.e., when the inferred quantity is high-dimensional — this is popularly known26

as the ‘curse of dimensionality’. The difficulty manifests as long mixing times and larger auto-27

correlations between successive samples of Markov chains [3, 4]. Many notable advancements28

have been proposed to improve the performance of MCMC methods. Some advanced meth-29

ods focus on carefully designing the proposal distributions in high dimensions to reduce mixing30

times [5, 6]. Alternatively, some approaches try to reduce the stochastic dimensionality of the in-31

verse problem [3, 7]. Despite these advancements, the application of MCMC to large-scale inverse32

problems continues to present significant challenges.33

Variational inference is often considered a computationally efficient alternative approach for34

approximating the posterior distribution [8]. In this approach, a parameterized family of distribu-35

tions that permit efficient sampling and density evaluations are used to approximate the posterior36

distribution. The optimal parameters are chosen by minimizing some measure of divergence be-37

tween the approximate posterior density induced by the adopted distribution family and the true38

posterior density. Choosing an expressive approximation family for the posterior distribution is39

critical to the success of variational inference, and doing so is difficult in high dimensions where40

very little information is available about the shape of the posterior. Recently, transport maps have41

emerged as a popular choice in this regard [9]. Instead of approximating the posterior distribution42

using a parameterized family of distributions, transport maps mold the prior distribution into the43

posterior distribution. Thus, instead of optimizing the parameters of a family of distributions, the44
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parameters of the transport map must be optimized. While variational inference has been shown45

to scale better than MCMC [9, 10], the curse of dimensionality is still a challenge. The number of46

parameters that must be optimized, when approximating posterior distributions, proliferates as the47

dimensionality of the inverse problem increases. Similarly, the construction of high-dimensional48

transport maps can be difficult [11].49

More recently, deep learning models capable of carrying out Bayesian inference while meet-50

ing or circumventing the challenges posed by Bayesian inference are gaining popularity [12]. In51

particular, deep generative models are at the forefront of deep learning-driven Bayesian inference.52

Also popular are the conditional counterparts of deep generative models trained using supervised53

data: given realizations from the prior distribution, synthetic measurements are generated using the54

forward model, and the training data consists of pairs of the prior realizations and corresponding55

measurements. In such a supervised setting, conditional generative models can be used to obtain56

realizations from the posterior distribution for any new measurement. Some popular deep genera-57

tive models are generative adversarial networks (GANs) [13], normalizing flows [14, 15, 16], and58

variational auto-encoders [17]. Among them, GANs possess superior sample generation qualities59

and intrinsic dimension reduction capabilities [18]. As a result, GANs have been used as a data60

informative priors [19, 20]. Conditional GANs have also been used to approximate the posterior61

distribution [21, 22, 23]. However, GANs remain notoriously difficult to train and susceptible to62

mode collapse. Moreover, GANs are implicit generative models i.e., it is not possible to evaluate63

point-wise the probability density induced by a GAN. In contrast, variational auto-encoders allow64

for the computation of a lower bound on point-wise density values. Variational auto-encoders65

have also been used to perform Bayesian inference [24, 25, 26], but tend to produce blurry outputs66

compared to those from GANs. In contrast to GANs and variational auto-encoders, normalizing67

flows are explicit generative models and allow for point-wise evaluation of the probability den-68

sity they induce [27]. Normalizing flows utilize invertible neural networks to construct a bijective69

transformation [15, 16]. Therefore, normalizing flows are natural candidates for transport maps70

and have been used for variational inference [14, 28, 29]. Conditional normalizing flows have also71

been used to approximate the posterior distribution in inverse problems [30, 22, 23]. However,72

the application of normalizing flows to large-scale inverse problems is challenging: when the in-73
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verse problem at hand is high-dimensional, the memory footprint of high-dimensional normalizing74

flows is so large that training requires access to extraordinary computational resources [31] (for75

instance, see [32] where a GLOW normalizing flow model is trained with a mini-batch size of 176

per processing unit which approximately amounts to 40 GPU weeks). Aside from deep generative77

models, Bayesian neural networks have also been used for Bayesian inference [33]. Bayesian neu-78

ral networks implicitly learn to invert measurements by introducing stochasticity in the weights of79

a neural network. However, Bayesian neural networks have limited capacity due to the approxi-80

mations made to make the training tractable [34]. We note that the supervised datasets necessary81

to train many of the aforementioned models may not be readily available and computationally82

expensive to acquire.83

In this work, we propose a modular unsupervised inference framework — GAN-Flow — that84

couples together GANs and normalizing flows to solve large-scale physics-based inverse problems85

when the only prior information available is a sample from the true but inaccessible prior distri-86

bution. GAN-Flow aims to circumvent the challenges faced by generative models when they are87

used to perform inference in high-dimensional settings by exploiting the respective strengths of88

the two types of generative models it employs: the dimension reduction capability of GANs, and89

the efficient variational inference capability of normalizing flows. More specifically, GAN-Flow90

employs a Wasserstein GAN (WGAN) to learn a data-driven prior distribution which will be useful91

for Bayesian inference. Further, the WGAN helps reduce the dimensionality of the inverse prob-92

lem as the generator component of the GAN serves as an injective map from the low-dimensional93

latent space to the high-dimensional ambient space where the inverse problem is framed. Thus,94

GAN-Flow also leverages the dimension reduction offered by GANs. Recent findings suggest that95

framing inverse problems in lower-dimensional latent spaces may be advantageous [35]. GAN-96

Flow also utilizes normalizing flows to approximate the posterior distribution in the latent space.97

Again, the dimension reduction capability of GANs facilitate the construction of simpler normal-98

izing flow models, which now only need to perform variational inference in the lower-dimensional99

latent space, thereby reducing the memory footprint of normalizing flow models. As a result,100

GAN-Flow can be used to tackle large-scale inverse problems. The use of a normalizing flow,101

which serves as a map between the latent prior and the latent posterior, offers one significant102
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advantage: once the normalizing flow is trained, new samples from the latent posterior can be103

efficiently generated without taking recourse to the computationally expensive forward model. A104

new sample from the high-dimensional posterior is generated by successive transformations of a105

sample from the latent space of the GAN using the trained normalizing flow model followed by106

the trained generator. In this work, we demonstrate the wide applicability and flexibility of the107

proposed framework on different large-scale linear and nonlinear inverse problems, different syn-108

thetic (simple geometrical features and Shepp-Logan phantoms [36]) and real-world (MRI scans of109

human knees [37, 38]) prior distributions, different GAN architectures (self-attention GANs [39]110

and GANs that progressively grow [40]), and normalizing flows with different invertible neural111

network architectures (planar [14] and affine-coupling flows [41, 42]).112

We must mention a growing body of work that has developed deep learning-based Bayesian113

inference frameworks with some dimension reduction component. For instance, this work was di-114

rectly inspired by [35, 19], where GANs are used to learn prior distributions and MCMC methods115

are used to sample from its posterior. Patel and Oberai [35] used the Hamiltonian MCMC, whereas116

Bohra et al. [20] used the Metropolis-adjusted Langevin MCMC. However, posterior sampling us-117

ing an MCMC-based method will fail when the latent space dimensionality continues to be high118

(for example see Section 4.3). Additionally, it is non-trivial to ascertain the convergence of MCMC119

chains. In contrast, one can easily gauge the convergence of the latent posterior induced by the120

normalizing flow model by tracking the loss function used to train the normalizing flow model.121

Moreover, for a fixed compute budget (as defined by the number of forward problem solves),122

training the normalizing flow model requires less compute wall times since it is possible to train123

it using mini-batches. Similarly, sampling is also embarrassingly parallelizable. Whereas MCMC124

is inherently sequential, and samples are obtained iteratively. Bayesian inference approaches that125

consist of a generative prior coupled with a way of sampling from its posterior are widely known126

as modular Bayesian approaches. GAN-Flow is also a modular approach in that sense, but dis-127

tinct because it uses a GAN-based prior and a variational posterior induced by a normalizing flow.128

There are also several works where normalizing flows are constructed in lower-dimensional spaces129

and subsequently used to solve inverse problems. Some tools that have been used to derive or learn130

the injective map include principal component analysis [43], isometric auto-encoders [44] and in-131
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jective neural networks [45]. Brehmer and Cranmer [46] also explore padding the low dimensional132

latent variable with zeroes to increase dimensionality. Other approaches simultaneously learn the133

dimension reduction map and normalizing flow [46, 43, 44, 45]. GAN-Flow is different since134

it uses a GAN to approximate the prior density, and the generator of the WGAN serves as the135

injective map.136

1.1. Summary of contributions137

In summary, the novel contributions of this work are as follows:138

1. We introduce GAN-Flow, a novel unsupervised modular Bayesian inference framework, that139

combines two types of generative models — GANs and normalizing flows — and exploits140

their respective strengths.141

2. We develop a two-stage strategy to train each sub-component of the GAN-Flow. First,142

the GAN is trained using a priori available samples from the prior distribution. Then,143

the normalizing flow model is used to perform variational Bayesian inference in the low-144

dimensional latent space of the GAN for efficient posterior approximation.145

3. We demonstrate the efficacy of GAN-Flow on three large-scale physics-based inverse prob-146

lems involving both synthetic and real-world data. We consider three inverse problems147

— inferring initial conditions in a heat conduction problem, an inverse Radon transform148

problem wherein an object is recovered from its sinogram, and a phase retrieval problem149

wherein an object is recovered form the magnitude of its Fourier transform. Where possible150

we compare GAN-Flow with Monte Carlo simulation and an inference approach previously151

proposed by Patel et al. [19] that also utilizes a WGAN-GP prior.152

4. We also show that GAN-Flow is a flexible framework that can utilize various types of GAN153

and normalizing flow models. For the various problems we consider, we use different GAN154

models which include generators with self-attention units and GANs that are progressively155

grown. We also show that GAN-Flow can accommodate different types of normalizing flows156

such as planar flows and affine-coupling flows.157
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The remainder of this paper is organized as follows. Section 2 sets up the problem of interest, and158

provides a brief background on variational Bayesian inference, GANs and normalizing flows. We159

introduce GAN-Flow in Section 3 and discuss the training of its two sub-components. In Section 4,160

we apply GAN-Flow to solve three large-scale inverse problems. Finally, we draw conclusions in161

Section 5.162

2. Background163

2.1. Problem setup and Bayesian inference164

Consider the random vectors x ∈ ΩX ⊆ RnX and y ∈ ΩY ⊆ RnY related by the forward model165

F : ΩX → ΩY such that y = F (x). Herein, x, ΩX and nX are called the ambient variable, space166

and dimension, respectively. The inference of x from a noisy measurement vector ŷ (a noisy167

realization of y) constitutes an inverse problem. Given a likelihood function pY(ŷ|x), Bayes’ rule168

is used to update prior belief about x, characterized through the prior probability density function169

pX (x), as follows:170

pX (x|ŷ) =
pY(ŷ|x) pX (x)

pY(ŷ)
, (1)

where pX (x|ŷ) is the posterior distribution and pY(ŷ) is the evidence or marginal likelihood.171

When measurements are corrupted by an additive noise η, distributed according to pη, the mea-172

surement model ŷ = y + η leads to the likelihood function pY(ŷ|x) = pη(ŷ − F (x)) in Eq. (1).173

The posterior distribution is useful for computing posterior-predictive statistics of any desired174

quantity of interest, herein denoted as ℓ(x). For instance, the posterior mean of ℓ(x) can be com-175

puted as follows:176

Ex∼pX (x|ŷ)
[
ℓ(x)

]
=

∫

ΩX

ℓ(x)pX (x|ŷ) dx (2)

Typically, the integral in Eq. (2) is high-dimensional and intractable for practically interesting177

problems, and must be approximated using Monte Carlo methods, which requires samples from178

the posterior distribution. Given a sample of size ns, the Monte Carlo approximation to Eq. (2) is179

given as:180

Ex∼pX (x|ŷ)
[
ℓ(x)

]
≈ 1

ns

ns∑

i=1

ℓ(x(i)), (3)
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where x(i) is the ith realization of x drawn from the posterior distribution. In this work, we propose181

the novel inference framework GAN-Flow, which is efficient at sampling the posterior distribution182

and, ultimately, estimating the statistics of posterior-predictive quantities. GAN-Flow is a hybrid183

of two types of generative models: generative adversarial networks (GANs) and normalizing flows.184

2.2. Generative Adversarial Networks185

Generative adversarial networks [13] are generative models consisting of two sub-networks:186

a generator and a discriminator (also known as the critic). GANs are trained adversarially: the187

generator tries to deceive the discriminator while the discriminator tries to distinguish between188

‘fake’ samples generated from the generator and ‘true’ samples available from the target distribu-189

tion. The generator and critic play an adversarial ‘game’ between them with the ultimate goal of190

generating new realizations from an underlying distribution, the prior distribution pX (x) in this191

case. Let the generator network G, parameterized by θ, map the latent variable z ∈ ΩZ ⊆ RnZ192

to the target variable x, i.e., G(·,θ) : ΩZ → ΩX . Herein, we refer to z, ΩZ and nZ as the latent193

variable, space and dimension, respectively. Typically, z is sampled from a simple distribution194

pZ(z), like the multivariate standard normal distribution. Moreover, the latent dimension nZ is195

typically chosen to be much smaller than the ambient dimension nX , i.e., nZ ≪ nX . Thus, GANs196

are endowed with dimension reduction capabilities and the generator G serves as a map from197

the low-dimensional latent space to the high-dimensional ambient space. On the other hand, the198

discriminator D, parameterized by ϕ such that D(·,ϕ) : ΩX → R, tries to differentiate between199

realizations drawn from pX (x) and those generated by the generator.200

The parameters θ and ϕ of the generator and the discriminator networks, respectively, are201

obtained through the min-max optimization of an appropriate loss function, say LGAN, i.e.,202

(θ∗,ϕ∗) = argmin
θ

(
argmax

ϕ
LGAN(θ,ϕ)

)
. (4)

Different types of GANs will use different loss functions LGAN; interested readers may refer to [47,203

48, 49] for an overview. It is important to note that training a GAN requires realizations of pX (x),204

therefore, we assume that ndata independent and identically distributed (iid) realizations of x from205
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pX (x) are available, which we herein denote using S =
{
x(i)
}ndata

i=1
and refer to S as the prior206

dataset. GAN-Flow uses the provided prior dataset to derive a data-driven informative prior. All207

that’s required is a mechanism to sample from the GAN prior.208

2.3. Variational Bayesian inference209

MCMC methods approximate the posterior distribution using correlated realizations of x that210

are sampled from an ergodic Markov chain with the stationary distribution pX (x|ŷ). In contrast,211

variational Bayesian inference methods attempt to approximate the posterior probability distribu-212

tion [8]. Variational Bayesian inference starts with a family of distributions qX (x;ψ) parame-213

terized by ψ. The optimal parameter vector ψ∗ is determined by minimizing some divergence214

measure d between qX (x;ψ) and pX (x|ŷ):215

ψ∗ = argmin
ψ

d
(
qX (x;ψ)∥pX (x|ŷ)

)
. (5)

The reverse Kullback-Leibler (KL) divergence is a popular choice for d but other divergence mea-216

sures have also been used [50]. Thus, variational Bayesian inference converts the problem of pos-217

terior sampling into an equivalent optimization problem. Onceψ∗ has been determined, qX (x;ψ
∗)218

serves as an approximation to pX (x|ŷ) and can be repeatedly sampled without additional likeli-219

hood evaluations to obtain as many posterior samples as required — unlike MCMC-based meth-220

ods. As a result, variational Bayesian inference offers a computationally efficient alternative to221

MCMC sampling in many cases. The performance of variational Bayesian inference relies on the222

a priori chosen parameterized family of distribution qX (·;ψ) being capable of approximating the223

posterior distributions, which can have a complex shape. This approximation may be difficult to224

achieve using standard distribution families like mixture models. Moreover, the computational225

effort of the optimization problem in Eq. (5) increases as the dimension of ψ increases, which is226

expected to happen as the ambient dimensionality of the inverse problem grows.227

An alternative approach to explicitly working with a family of distributions is to define a push-228

forward map that can induce a good approximation to the posterior distribution. Let H(·;ψ) :229

ΩX → ΩX denote a bijective and differentiable map (also known as a diffeomorphism) that is pa-230
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rameterized by ψ, and let H#pX (x;ψ) denote the pushforward of the prior distribution pX (x).231

Then232

H#pX (x;ψ) = pX (x)|det∇xH(x;ψ)|−1, (6)

as a result of change of variables, where det∇xH(x;ψ) is the Jacobian determinant of the push-233

forward map H(·;ψ). Therefore, one way of approximating the posterior distribution is to use234

a flexible diffeomorphism such that the pushforward distribution H#pX (x;ψ) is close (in some235

sense) to the posterior distribution. However, the successful application of Eq. (6) requires that the236

Jacobian determinant be easily computable. Many techniques, such as polynomial approximation237

and radial basis functions, can be used to construct diffeomorphisms that permit efficient Jacobian238

determinant computations [51]. More recently, normalizing flows [16, 15] have emerged as an239

efficient tool to construct high-dimensional diffeomorphisms.240

2.4. Normalizing flows241

Normalizing flows are a class of generative models that uses invertible neural networks to242

construct diffeomorphisms. Normalizing flows are constructed in a manner that facilitates efficient243

computation of the Jacobian determinant. In practice, the inference map H is constructed by244

stacking together multiple, say, nf invertible layers, which makes245

H(x) = H[nf](H[nf−1](· · ·H[1](x))). (7)

Individual bijections H[k] are called flows and the composition H is a normalizing flow. ψ, which246

we intentionally suppress in Eq. (7) and herein, denotes the parameters of all flow layers taken247

collectively. Note that the composition of bijective functions is also a bijective function, and the248

Jacobian determinant of which can be computed as:249

det∇xH(x) =

nf∏

k=1

det∇x[k−1]
H[k](x[k−1]), (8)

where x[k] = H[k](x[k−1]) and x[0] = x.250

Many different types of invertible architectures exist that define bijections for which the Jaco-251
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bian determinant is easily computable; see [16] for a recent review. In this work, we use two types252

of invertible architecture.253

2.4.1. Planar flows254

Rezende and Mohamed [14] proposed an invertible neural network architecture based on pla-255

nar transformations that apply the following perturbation to the input x[k−1] in kth flow layer H[k]:256

H[k](x[k−1]) = x[k−1] +u[k] · S
(
wT

[k]x[k−1] + b[k]
)
, (9)

where ψ[k] = {u[k] ∈ Rd,w[k] ∈ Rd, b[k] ∈ R} are the parameters of H[k], and S : R → R is a257

nonlinear activation function with derivative S ′. Rezende and Mohamed [14] adopt the taxonomy258

‘planar’ because they claim that the perturbation introduced to x[k−1] is normal to the hyper-plane259

wT
[k]x[k−1] + b[k] = 0. However, note that, for a fixed u[k], all points that lie on a planewT

[k]x[k−1] =260

c[k] are perturbed by the same amount, equal to
∣∣∣S
(
c[k] + b[k]

) ∣∣∣ · ∥u[k]∥, and in the same direction261

as u[k]. Thus, planar transformations ensure that a collection of points in d-dimensional place that262

lie on a hyper-plane with normal w[k] is merely translated in space and continue to a lie on a new263

hyper-plane that still has the same normal vector as before. The Jacobian determinant of H[k] is:264

∣∣det∇x[k−1]
H[k](x[k−1])

∣∣ =
∣∣1 + S ′(wT

[k]x[k−1] + b[k])u
T
[k]w[k]

∣∣ . (10)

Moreover,wT
[k]u[k] ≥−1 is a sufficient condition for H[k] to be invertible when S is the hyperbolic265

tangent function [14], which is what we use in this work.266

2.4.2. Affine-coupling flows267

Dinh et al. [41] introduced coupling flows, of which affine-coupling is a specific type. Let268

xa
[k−1] andxb

[k−1] be two disjoint partitions of the input vectorx[k−1], formed by randomly sampling269

components of x[k−1], then the coupling flow layer H[k] applies the following transformations to270

its input x[k−1]:271

xb
[k] = x

b
[k−1]⊙ exp

[
S1(x

a
[k−1])

]
+T1(x

a
[k−1]) and xa

[k] = x
a
[k−1]⊙ exp

[
S2(x

b
[k])
]
+T2(x

b
[k]), (11)
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where xT
[k] =

[
T

xa
[k],

T
xb
[k]

]
, S1 and S2 are known as scale networks, T1 and T2 are known as shift272

networks, and ⊙ denotes the Hadamard product. The scale and shift networks are modeled using273

deep neural networks that preserve the dimensionality of their respective inputs. A coupling layer274

constrains the Jacobian to be upper triangular [41, 42]. The determinant of the Jacobian is [42]:275

∣∣det∇x[k−1]
H[k](x[k−1])

∣∣ =
(
exp

[∑

j

{
S1(x

a
[k−1])

}
j

])(
exp

[∑

j

{
S2(x

c
[k−1])

}
j

])
, (12)

where {·}j denotes the j th component of a vector, and S1(x
a
[k−1]) and S2(x

c
[k−1]) are outputs from276

the scale networks S1 and S2, respectively.277

3. Bayesian inference using GAN-Flow278

Bayesian inference is useful for solving statistical inverse problems, but its practical applica-279

tion to large-scale inverse problems is far from straightforward. First, it is important to recognize280

that the quality of inference depends on the prior [52], more so when there is paucity of data. Sim-281

ple parametric priors derived from tractable distributions are not useful for describing complex282

entities such as brain scans, thermal conductivity fields, and the matrix of a composite material;283

recent recognition of this fact has fostered efforts to develop physics-informed data-driven pri-284

ors [53, 19]. Second, posterior sampling using MCMC methods is difficult in high-dimensional285

spaces, i.e., when nX is large. In high-dimensional spaces, Markov chains tend to take a long time286

before they can reach a ‘steady state’, and assessing the convergence of Markov chains is also287

difficult. Third, MCMC sampling involves repeated evaluations of the likelihood function, which288

means that the underlying physics-based forward model must be evaluated during sampling and289

that the cost of obtaining new samples will scale linearly with the cost of forward model evalu-290

ations; this is undesirable. Thus, MCMC sampling from high-dimensional posteriors continues291

to be a challenging and computationally intensive task, which has been a major deterrent to the292

practical application of Bayesian inference to large-scale inverse problems. GAN-Flow attempts293

to circumvent these issues by coupling together two types of deep generative models — generative294

adversarial networks and normalizing flows.295
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3.1. Overview of GAN-Flow296

GAN-Flow uses a GAN, specifically a Wasserstein GAN, to form a data-driven informative297

prior that can synthesize realizations of x similar to the constituents the prior dataset S . Moreover,298

the generator network of the GAN becomes a map between the low-dimensional latent space and299

the high-dimensional ambient space. The inverse problem is solved in the low-dimensional latent300

space using variational Bayesian inference as the normalizing flow model acting as a pushforward301

operator from the prior distribution to the posterior distribution. Fig. 1 shows the three phases of302

the GAN-Flow framework.303

3.2. Phase A: Training a GAN-based prior304

GAN-Flow utilizes a Wasserstein GAN with Gradient Penalty (WGAN-GP) [54, 55] to model305

the prior probability distribution pX (x). For a WGAN-GP, the loss function LGAN is given as306

LGAN(θ,ϕ) = Ex∼pX (x) [D(x,ϕ)]−Ez∼pZ(z) [D(G(z,θ),ϕ)] , (13)

and the min-max optimization problem in Eq. (4) is solved under the constraint that D(z,ϕ) lies in307

the space of 1-Lipschitz functions. This constraint ensures that the inner maximization problem in308

Eq. (4) leads to an approximation of the Wasserstein-1 distance (due to the Kantorovich-Rubinstein309

duality [56]) between pX (x) and the pushforward of pZ(z) induced by G(·;θ) [54, 55, 19]. The310

1-Lipschitz constraint is satisfied by enforcing a soft penalty on the gradients of the critic D with311

respect to z [55]. The resulting maximization problem that is solved to optimize the parameters312

of the discriminator is313

ϕ∗ = argmax
ϕ

LGAN(θ,ϕ)− λEx̃∼pX̃(x̃)

[
(∥∇x̃D(x̃,ϕ)∥2 − 1)2

]
, (14)

where λ is the gradient penalty parameter, and pX̃(x̃) is the uniform distribution over the straight314

line joining two pairs of points sampled from pX (x) and the pushforward of pZ(z) by G. The loss315

function in Eq. (14) minimizes the Wasserstein-1 distance between pX (x) and the pushforward316

distribution of pZ(z) due to G [35].317
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Figure 1. Schematic diagram of the proposed GAN-Flow framework for solving physics-based
inverse problems. PHASE A involves the training of a WGAN-GP model with training samples
from the prior distribution. In PHASE B, the trained generator G∗, the physics model F , the
noise model pη and the measurements ŷ are used to train the normalizing flow map H . PHASE
C corresponds to posterior sampling that is achieved by using the trained normalizing flow map
H∗ to transform realizations from the latent prior into realizations from the latent posterior, which
are then passed through the trained generator G∗ to obtain realizations from the ambient posterior
distribution.
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Now, let G∗ denote the generator G with optimally chosen parameters θ∗. For a perfectly318

trained GAN G∗,319

Ex∼pX (x)

[
m(x)

]
= Ez∼pZ(z)

[
m(G∗(z))

]
∀ m ∈ Cb(ΩX ), (15)

where Cb(·) is the space of continuously bounded functions. Eqs. (2) and (15) can be combined to320

compute321

Ex∼pX (x|ŷ)
[
ℓ(x)

]
= Ez∼pZ(z|ŷ)

[
ℓ(G∗(z))

]
∀ ℓ ∈ Cb(ΩX ), (16)

by choosing322

m(z) =
ℓ(z)pY(ŷ|z)

pY(ŷ)
, (17)

where323

pZ(z|ŷ) =
pY(ŷ|z)pZ(z)

pY(ŷ)
(18)

is the posterior distribution of the latent variable z and pY(ŷ|z) is nothing but pY(ŷ|x) evaluated324

at x = G∗(z), i.e.,325

pY(ŷ|z) = pY(ŷ|x)|x=G∗(z). (19)

For additive noise models, Eq. (19) simplifies to pY(ŷ|z) = pη(ŷ − F (G∗(z))). Significantly,326

Eq. (16) implies that any statistics with respect to x (respectively x|ŷ) can be computed using327

realizations of z (respectively z|ŷ).328

At the end of phase A, a trained generator G∗ is available. The GAN not only acts as a data-329

driven prior, but the trained generator G∗ also serves as an injective map that can conveniently330

transform realizations of the latent variable z from the latent space ΩZ to corresponding realiza-331

tions of the ambient variable x in the ambient space ΩX . Additionally, pZ(z) is herein chosen to332

be an nZ-variate standard normal distribution. Also note that, in most practical cases, nX will be333

large but the latent dimensionality of the WGAN-GP model will be such that nZ ≪ nX . Thus, di-334

mension reduction is achieved by using GAN priors. The next step is to solve the inverse problem335

in this lower-dimensional latent space.336

Remark 1. Choosing the latent space dimensionality nZ from ndata realizations of pX (x) is not337
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straightforward. This will involve careful judgment from the user. However, meta-heuristic met-338

rics, such as the Fréchet Inception Distance (FID) score [57] and Inception score [58], are useful339

for comparing the quality of the realizations generated using GANs and real samples. These met-340

rics can be used to evaluate the quality of the trained GAN, and suitably adjust the latent space341

dimensionality if performance is not satisfactory. Metrics that are more physically motivated may342

also be utilized in engineering applications. For instance, the consistency of miscrostructural de-343

scriptors, like the distribution of porosity in a bi-phase material [59], across the generated samples344

can be used when evaluating GANs for generating miscrostructures of heterogeneous media. We345

suggest choosing the smallest possible latent dimensionality that performs satisfactorily. This will346

also help keep the subsequent normalizing flow model relatively lightweight.347

Remark 2. Unless there is an influx of new prior information that must be incorporated, there is348

no need to retrain WGAN-GP prior. This means that Phase A, which involves the training of the349

WGAN-GP model, must be completed only once for a given inverse problem. Thereafter, we can350

reuse the trained generator for multiple inferences.351

3.3. Phase B: Inference using normalizing flows352

With the latent prior density pZ(z) and an optimally trained generator G∗, a normalizing flow353

is used to sample from the conditional posterior pZ(z|ŷ). This is done by learning a bijective map354

H : ΩZ → ΩZ , parameterized by ψ, such that H#pZ(z;ψ) ∼ pZ(z|ŷ). The parameters ψ of the355

bijective map H are chosen by minimizing the loss function356

ψ∗ = argmin
ψ

dKL
(
H#pZ(z;ψ)∥pZ(z|ŷ)

)
, (20)

where dKL(·∥·) is the reverse KL divergence. On simplifying Eq. (20), the loss function LNF for357

training the normalizing flow takes the form:358

LNF(ψ) = Ez∼pZ(z)

[
− log pY(ŷ|H(z;ψ))− log pZ(H(z;ψ))− log|det∇zH(z;ψ)|

]
, (21)
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where pY(ŷ|H(z)) can be evaluated using Eq. (19) as359

pY(ŷ|H(z;ψ)) = pY(ŷ|x)|x=G∗(H(z)), (22)

and, for additive noise models, pY(ŷ|H(z;ψ)) = pη(ŷ − F (H(G∗(z);ψ))). We provide a de-360

tailed derivation of Eq. (21) starting from Eq. (20) in Appendix A; our derivation closely follows361

a similar derivation by Sun and Bouman [28]. In Eq. (21), ∇zH(z) is the Jacobian of H . Thus,362

the physics model F and the trained generator G∗ enters Eq. (21) through the log-likelihood term363

log pY(ŷ|H(z;ψ)). At the end of phase B, a trained normalizing flow map H(·;ψ∗), herein de-364

noted as H∗, is available alongside the trained generator G∗.365

Remark 3. Suppose there is a change in the measurement vector ŷ as new measurements are avail-366

able or the forward model F changes, we must retrain the normalizing flow model. Perhaps one367

can reduce the computational burden of retraining through knowledge transfer from the previously368

trained normalizing flow model, for instance, by starting training from the old weights, by freezing369

the weights of some of the flow layers, or by simply appending new flow layers to the existing nor-370

malizing flow model. However, we do not consider such cases in this work, and the development371

of knowledge transfer schemes is beyond the scope of the current work.372

Remark 4. The training of the normalizing flow model boils down to the minimization problem in373

Eq. (20) with the loss function given by Eq. (21). The minimization problem can be solved using an374

appropriate stochastic gradient descent algorithm. In this work, we use the Adam algorithm [60].375

Regardless of the optimization algorithm used, training the normalizing flow using gradient de-376

scent algorithms involves the computation of the gradients of the output forward model F with377

respect to its input. This will pose challenges when F is a black-box model that is incompatible378

with automatic differentiation, ultimately leading to an increase in the overall computational cost;379

this challenge is not a bottleneck unique to GAN-Flow as advanced MCMC algorithms, like HMC,380

also require the gradients of F [19]. One potential solution is to couple GAN-Flow with automat-381

ically differentiable surrogate models for F , such as neural networks [61], but this is beyond the382

study herein.383
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3.4. Phase C: Posterior sampling and estimation384

We can use the optimally trained generator G∗ and normalizing flow map H∗ to estimate385

Ex∼pX (x|ŷ)
[
ℓ(x)

]
using Monte Carlo (MC) simulation. Let ℓ̄ denote the MC estimator for Ex∼pX (x|ŷ)

[
ℓ(x)

]
386

given by387

ℓ̄ =
1

ns

ns∑

i=1

ℓ(G∗(H∗(z(i)))), (23)

where z(i) are independent realizations drawn from pZ(z). For instance, the posterior mean of x388

can be computed by setting ℓ(x) = x. Let x̄ denote the MC estimator for Ex∼pX (x|ŷ)
[
x
]
, then389

x̄ =
1

ns

ns∑

i=1

G∗(H∗(z(i))), (24)

where z(i) are iid realizations from pZ(z). Similarly, the standard deviation for the ith component390

of x, herein denoted as [σx]i, can be estimated as:391

{σx}i =

√√√√ 1

ns − 1

ns∑

j=1

[
{G∗(H∗(z(j)))}i − {x̄}i

]2
, (25)

where [·]i denotes the ith component of the vector corresponding vector.392

Remark 5. Neither evaluating H∗ nor G∗ requires evaluation of the underlying physics model393

F . Therefore, posterior statistics or posterior predictive quantities can be computed at almost394

negligible computational cost, and ns may be set arbitrarily large. This is another advantage of the395

proposed GAN-Flow framework.396

3.5. Discussion of the computational cost of each phase of GAN-Flow397

Phase A of GAN-Flow involves the training of the WGAN-GP model. However, GAN-Flow398

does not evaluate the forward model F at this stage. Thus, the computational cost of Phase A399

will be dominated by the cost of training the WGAN-GP model. Accordingly, the computational400

cost of Phase A will scale with the total number of trainable parameters in the generator and401

the critic. We expect that more complex prior information will require expressive models with a402

large number of trainable parameters to develop a suitable generator and, therefore, will be more403
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computationally expensive. Phase B, which involves training the normalizing flow model, requires404

repeated evaluations of the forward model F . Thus, the cost of evaluating the forward model F405

will dominate the computational cost of Phase B. More complicated posterior distributions will406

require an expressive normalizing flow model. Expressivity can be achieved by adding more flow407

layers or using complex transformations, like the affine coupling transform, which will require408

longer training, translating to more evaluations of the forward model F , ultimately increasing the409

computational cost. Phase C neither involves training network models nor evaluating the forward410

model F . Thus, Phase C will be the least computationally demanding stage of GAN-Flow. The411

computational cost of this step will be dominated by the cost of evaluating the trained generator412

G∗ and the trained normalizing flow model H∗ and scale with the sample size ns.413

The actual wall time of any particular phase will primarily depend on the particular applica-414

tion at hand, the scale and type of resource available, and the choice of training hyperparameters,415

among other factors. For instance, for the initial condition inference problem that we consider416

in Section 4.1, phases A, B and C require approximately 1.6 hours, 8.5 minutes and 6 seconds,417

respectively, when the generative models are trained using an NVIDIA Quadro RTX 8000 GPU418

with 48 GB memory (see Fig. B1 and table B1 in Appendix B1 for details of the model architec-419

tures and training hyper-parameters); thus, GAN-Flow requires less than 2 hours for completion.420

Similarly, for the inverse Radon transform problem, phases A, B and C require approximately 3.4421

hours, 1.6 hours and 11 seconds, respectively, when the generative models are trained using the422

same NVIDIA Quadro RTX 8000 GPU (see Fig. B2 and table B1 in Appendix B1 for details of the423

model architectures and training hyper-parameters). The more challenging phase imaging problem424

(Section 4.3) requires approximately 23.5 hours, 16.7 hours and 2 minutes for phases A, B and C,425

respectively when all phases were executed using a NVIDIA A40 GPU with 48 GB of memory426

(see Appendices B1.1 and B2 and table B1 in Appendix B1 for details of the model architectures427

and training hyper-parameters). For the problems we consider in this work, the wall-time of phase428

A dominates because the forward model F is relatively simple. We envisage that Phase B will429

be the most computationally demanding stage of GAN-Flow in physics-based applications where430

the underlying forward model F is computationally demanding.431
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3.6. Approximation errors due to GAN-Flow432

There are two potential sources of error in GAN-Flow when it is used in practice. The first433

source of error is from the WGAN-GP prior. A WGAN-GP trained using Eq. (14) may only be434

able to approximately satisfy Eq. (15) [62] or not at all [63]. The error may stem from using435

an approximate estimator for the Wasserstein distance in Eq. (14), the use of MC estimates for436

estimating the Wasserstein distance, and failure to reach the optimal point [62]. However, previous437

research [35, 19] has shown that WGAN-GP is useful as a data-driven prior despite theoretical438

concerns. In practice, we monitor the loss function and terminate training when its value no439

longer decreases. A second source of error stems from the normalizing flow map in situations440

where it is unable to induce a good approximation to the latent posterior distribution [64]. The441

latent posterior distribution may not belong to the family of distributions that the bijective map is442

capable of inducing, which may be due to the limited fidelity (expressive power) of the normalizing443

flow model. The pushforward distribution may also fail to approximate the latent posterior when444

the reverse KL-divergence loss does not attain a value of zero, possibly due to slow convergence445

during training. Even if the loss function attains a value of zero, the reverse KL-divergence is446

known to be ‘mode seeking’, therefore, it is possible that the pushforward distribution is unable to447

approximate the tails of the latent posterior. In practice, we monitor the value of the loss function448

LNF and stop training when it no longer decreases. However, it must be noted that, even when the449

pushforward distribution is poor, estimates computed using the pushforward map may continue to450

be useful. So, we evaluate the error in the estimated posterior statistics, such as the posterior mean451

and standard deviation, to determine the quality of inference. In a practical setting, we suggest452

the use of diagnostic tools to ascertain the quality of the pushforward distribution [64] or stacking453

multiple normalizing flows with different seeds [65].454

4. Results455

In this section, we use GAN-Flow to solve three physics-based inverse problems: inference456

of initial conditions (Section 4.1), inverse Radon transform (Section 4.2), and phase retrieval457

(Section 4.3). By solving these inverse problems, we demonstrate that GAN-Flow can tackle458
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large-scale linear and non-linear inverse problems, various levels of noise, and challenging prior459

distributions. Our implementation also reveals that GAN-Flow is flexible in accommodating dif-460

ferent types of WGAN-GP and normalizing flow architecture types, training methodologies, and461

combinations thereof. More specifically, the variety in the numerical examples we present lies in462

the following:463

1. Forward model — The three inverse problems we consider involve different physical phe-464

nomena. The initial condition inference problem is based on heat diffusion in a solid body,465

and the inverse Radon transform problem is based on an object’s attenuation of penetrat-466

ing waves by an object. Both aforementioned physics phenomena can be described using467

a linear forward model; we adapt these inverse problems from [66, 19]. The third problem468

we consider is phase retrieval, which forms the underpinnings of many modern coherent469

diffraction imaging methods, wherein an object is reconstructed from the magnitude of its470

Fourier transform. In this case, the forward model is highly nonlinear. We adapt the phase471

imaging problem from [20].472

2. Prior dataset — We consider three different prior datasets. The prior dataset for the initial473

condition inference and inverse Radon transform problems consists of rectangular inclusions474

in a zero-background and Shepp-Logan head phantoms, respectively; however, these priors475

are synthetic and adapted from [66, 19]. For the phase retrieval problem we consider a476

sub-sample of the publicly available NYU fastMRI [38, 37] dataset of human knee slices.477

3. Ambient dimensionality — The ambient dimensionality of the inverse problems we con-478

sider vary vastly. While the initial condition inference problem has a moderate ambient479

dimensionality of 1,024, the phase retrieval problem is a large-scale inverse problem with480

an ambient space of dimension 65,536, an order of magnitude beyond that of the initial481

condition inference problem.482

4. WGAN-GP prior model — For all numerical examples, we consider a WGAN-GP prior,483

i.e., the loss function used to train the GANs is given by Eq. (14). However, we use different484

architectures and/or training methodologies. The inverse Radon transform problem utilizes485
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a simple generator and critic, consisting of fully connected and convolution layers. We use486

self-attention-based [39] modules, along with convolutions, for the generator and critic for487

the initial condition inference problem. We found that self-attention modules help render488

the sharp transitions between the rectangular inclusion and the zero background. The phase489

retrieval problem requires still more sophisticated training to synthesize large (256×256)490

knee slices with many fine-scale features. The WGAN-GP model for the phase retrieval491

problem is trained using the progressive growing of GAN methodology [40].492

5. Dimension reduction — The WGAN-GP priors themselves lead to latent spaces of varying493

dimension. We work with a low-dimensional latent space for the initial condition inference494

problem (nZ = 5), and a latent space of dimension 512 for the phase retrieval problem. On495

average, we can achieve approximately O(102) dimension reduction across all three inverse496

problems while maintaining satisfactory accuracy of the estimated statistics of the posterior497

distribution.498

6. Normalizing flow model — We use two types of flow layers. For the low to moderate499

dimensional latent spaces, as in the initial condition inference and inverse Radon transform500

problem, we employ planar flow layers. For the relatively high-dimensional latent space of501

the phase retrieval problem, we use affine coupling transforms to construct the normalizing502

flows.503

Table 1 provides a summary of the inverse problems we consider, their ambient and latent space504

dimensionality, and the dimension reduction.505

We implement GAN-Flow exclusively on PyTorch [67]. Where possible, we compare the506

posterior statistics estimated using GAN-Flow with the method outlined in [19]; herein, we re-507

fer to the latter method as GAN-HMC because it uses HMC to sample the latent posterior and508

estimate the posterior statistics of the ambient variable. We implement HMC within PyTorch509

using the hamiltorch package [68]. In all cases, we specify the number of leap-frog steps to510

be 10, and discard 50% of the accepted states considering burn-in. The step size is adapted during511

the burn-in phase so as to maintain a desired acceptance rate of 0.75. For the initial condition512

inference problem, where the underlying (hidden) ambient dimensionality of the synthetic prior is513
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small (only four), we even compare the posterior statistics estimated using GAN-Flow with MC514

simulation (MCS).515

For all examples, following Patel et al. [19], we re-scale the prior realizations between [−1,1]516

before training the WGAN-GP model and use hyperbolic tangent (TanH) activation in the last layer517

of the generator. We invert this re-scaling operation before evaluating the likelihood function. In518

this way, we satisfy physical constraints such as positive values of the temperature fields for the519

initial condition inference problem, or positive values of material density for the inverse Radon520

transform problem, or positive refractive index of an object in the phase retrieval problem.521

4.1. Inferring the initial conditions in heat conduction522

The first problem we consider is a two-dimensional unsteady heat conduction problem where523

the initial condition of the temperature field x (at time t = 0) must be inferred from a noisy524

measurement of the temperature field ŷ taken after some time (at time t = 1). Inverse problems525

of this type often arise when designing thermal equipment [69, 70]. The two-dimensional time-526

dependent heat conduction partial differential equation over the bounded domain Ω is given as:527

∂u(s, t)

∂t
−∇ · (κ(s)∇u(s, t)) = b(s, t), ∀(s, t) ∈ Ω× (0, T )

u(s,0) = m(s), ∀s ∈ Ω

u(s, t) = 0, ∀(s, t) ∈ ∂Ω× (0, T )

(26)

Table 1. Summary of inverse problems we consider in this work.

Inverse problem
Heat conduction

(Section 4.1)
Radon transform

(Section 4.2)
Phase imaging
(Section 4.3)

Type Linear Linear Non-linear
Ambient dimension nX 32 × 32 128 × 128 256 × 256
Prior dataset Rectangular Shepp-Logan phantom fastMRI [38, 37]
Prior dataset size ndata 2000 8000 29877
Latent dimension nZ 5 60 512
Dimension reduction nX /nZ ∼200 ∼273 128
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Figure 2. (a) Initial and (b) final temperature fields at t= 0 and 1, respectively. (c) Noisy synthetic
measurements obtained after adding Gaussian white noise with unit variance to the temperature
field shown in (b).

where T is the final time at which measurements are made, i.e., T = 1, and the spatial domain Ω528

is a square region with the length of each side being 2π units, i.e., Ω = [0,L]× [0,L] with L = 2π529

units. We represent the solid on a 32× 32 Cartesian grid over Ω. We assume that the thermal530

conductivity κ is homogeneous over Ω and equal to 0.64 units, and that b(s, t) = 0. We use the531

central difference scheme to discretize temperature field on the same Cartesian grid as the solid532

body, thus, nX = nY = 1024. The forward operator F maps the initial temperature field x to the533

temperature field at time T = 1. We use backward-difference with a step size of 0.01 for the time-534

integration of Eq. (26). In this example, the inverse problem at hand is linear and it is possible to535

relate x and y using a linear operator, i.e., y = Ax [66]. The temperature fields at t = 0 (initial536

condition) and t= T = 1 are shown in Fig. 2(a) and (b), respectively. We add Gaussian white noise537

with unit variance to the temperature field at time t = 1 to generate the synthetic measurements;538

see Fig. 2(c). From these noisy measurements, we want to infer the initial condition shown in539

Fig. 2(a).540

The prior dataset consists of ndata = 2000 initial temperature fields where the temperature is541

zero outside the rectangular inclusion and, within the rectangular inclusion, the temperature field542

varies linearly from a value of 2 units on the left edge to 4 units on the right edge. The rectangular543

region is generated by sampling uniformly the coordinates of the top-left and lower-right corners of544

the inclusion between [0.2L,0.4L] and [0.6L,0.8L], respectively. We show four realizations from545

the prior dataset in Fig. 3(a). The true temperature field in Fig. 2(a), which we want to infer, does546

not belong to the prior dataset. First, we train a WGAN-GP using the prior dataset. We choose the547
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Figure 3. (a) Realizations from the rectangular prior dataset. (b) Realizations generated from the
WGAN-GP prior.

latent space dimensionality to be 5, i.e., nZ = 51. Therefore, we achieve a dimension reduction of548

approximately 200 times in this case. For details about the WGAN-GP model and the associated549

hyper-parameters, see Appendix B1 and Table B1, respectively. We show some realizations from550

the trained WGAN-GP prior in Fig. 3(b). The generated realizations are qualitatively similar551

to those in the prior dataset. We emphasize that training the WGAN-GP does not require any552

evaluation of the forward model F .553

After we train the WGAN-GP model, we turn to training the normalizing flow model. In this554

example, the normalizing flow comprises 64 planar flow layers. See Table B1 for more details555

about the hyper-parameters associated with training the normalizing flow model. Significantly,556

the normalizing flow model is trained for 1000 epochs with a batch size of 32, meaning a total of557

32,000 evaluations of the forward model F . After the normalizing flow model has been trained,558

we can use both the trained generator of the WGAN-GP model and the normalizing flow model559

to obtain as many samples from the posterior as necessary. We show the posterior mean and stan-560

dard deviation of the initial temperature field estimated using GAN-Flow from a sample of size561

15,000 in the left most column of Fig. 4. For the purposes of comparison, the posterior mean562

and standard deviation estimated using MCS (of sample size 106) and GAN-HMC are also shown563

in Fig. 4. In contrast to GAN-Flow, GAN-HMC makes 3×105 evaluations of F to yield 15,000564

realizations from the posterior. Table 2 tabulates the root-mean-square error of the statistics esti-565

1We vary the latent space dimensionality nZ ∈ {5,10,20,40,60,80,100} keeping all other hyper-parameters
fixed, and choose the smallest latent space dimension to yield the best estimates of the posterior mean and standard
deviation; see Appendix C1 for the results from those experiments
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Figure 4. Estimated posterior mean (top row) and stan-
dard deviation (bottom row) obtained using MCS (left col-
umn), GAN-Flow (middle column) and GAN-HMC (right
column) for the initial condition inference problem.

Table 2. RMSE in the poste-
rior statistics obtained using dif-
ferent inference method compared
to MCS.

Method
Posterior statistic

Mean
Standard
deviation

GAN-Flow 0.034 0.048
GAN-HMC 0.071 0.049

mated using GAN-Flow and GAN-HMC, with the statistics estimated using MCS serving as the566

reference. From Fig. 4, we observe that the posterior statistics estimated using GAN-Flow and567

GAN-HMC compare very well with the ‘true’ posterior statistics estimated using MCS. Quanti-568

tatively, the posterior mean estimated using GAN-Flow is marginally better than GAN-HMC, but569

this improvement is achieved with greater computational efficiency (about one order of magnitude570

fewer evaluations of the forward model F ). These results are promising and suggest that GAN-571

Flow may even be more computationally efficient than GAN-HMC. While we consider Dirichlet572

boundary conditions in Eq. (26), investigations on a similar inverse problem with Neumann bound-573

ary conditions will be interesting; we leave this for a future work.574

4.2. Inverse Radon transform575

Next, we consider the inverse problem of reconstructing an object from its noisy sinogram.576

Inverse problems of this type arise in computerized tomography (CT) wherein an object is scanned577

from different angles using X-ray beams, and subsequently reconstructed using information about578

the difference in intensity before and after the beam passes through the object [71]. The forward579

model is given by the Radon transform. Given the material density function ρ ∈ Ω ⊂ R2 → R, the580
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Table 3. Base parameters of the Shepp-Logan phantom. Note, αk is in degrees.

k rk sk ak bk αk ρk

1 0.0 0.0 0.69 0.92 0 1.0
2 0.0 −0.0184 0.6624 0.874 0 −0.8
3 0.22 0.0 0.11 0.31 −18 −0.2
4 −0.22 0.0 0.16 0.41 −18 −0.2
5 0.0 0.35 0.21 0.25 0 0.1
6 0.0 0.1 0.046 0.026 0 0.1
7 0.0 −0.1 0.046 0.046 0 0.1
8 −0.08 −0.605 0.046 0.023 0 0.1
9 0.0 −0.606 0.023 0.023 0 0.1

10 0.06 −0.605 0.023 0.046 0 0.1

Radon transform is defined as [71]581

R(ρ; t, ϕ) =

∫

lt,ϕ

ρdl, (27)

where lt,ϕ is the line that traverses through the object at a distance of t from the center and an582

inclination of ϕ. Therefore, given an input phantom image x ∈ Rnp×np , the forward model is583

y = F (x) ∈ Rnp×np , (28)

which is a linear transformation of x. In Eq. (28),584

yi,j = Rh(x; ti, ϕj), ti =
i

np
, ϕj =

j

π
∀i, j ∈ {1,2, . . . , np}, (29)

and Rh is the discrete Radon transform [71]. The output y is commonly known as a sinogram.585

In this example, we consider input images of size 128×128, i.e., np = 128. Additionally, every586

input image is scanned at 128 uniformly spaced angles between 0◦ and 180◦ with 128 detectors;587

thus, nY = 128× 128. We use the torch-radon package [72] to compute Radon transforms.588

The prior dataset for this example consists of Shepp-Logan head phantoms [36]. Every phantom589

consists of ten ellipses, where each ellipse has constant density. Let the kth ellipse Ek be centered590

at (rk, sk), with semi-axis lengths ak and bk, angle of inclination αk (in degrees) and density ρk.591
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The density of the phantom at any coordinate (r, s) is592

ρ(r, s) = Σ10
k=1Ck(r, s), where Ck(r, s) =




ρk if (r, s) ∈ Ek

0 otherwise
(30)

Table 3 provides details of the nominal values of the base parameters of the ellipses, which we593

adapt from Toft [36]. Following Patel et al. [19], we generate new phantoms by perturbing the594

base parameters of every ellipse Ẽk as follows:595

r̃k = rk + 0.005ξk,1, s̃k = sk + 0.005ξk,2, ãk = ak + 0.005ξk,3,

b̃k = bk + 0.005ξk,4, α̃k = αk + 2.5ξk,5, ρ̃k = ρk + 0.0005ξk,6

(31)

where
{
{ξk,i}i=6

i=1

}k=10

k=1
are uniform random variables in [−1,1]. Now, the density of the perturbed596

phantom ρ̃ is597

ρ̃(r, s) = max

(
0,min

(
1,Σ10

k=1C̃k(r, s)
))

, where C̃k(r, s) =




ρ̃k if (r, s) ∈ Ẽk

0 otherwise
(32)

ensures that the material density ρ̃ at any point is bounded within 0 (air cavity) and 1 (bone). We598

obtain ndata = 8000 discrete phantom images by evaluating Eq. (32) on a grid of size 128× 128.599

The resulting image is further subject to a transformation that translates it by nh and nv pixels in600

the horizontal and vertical direction, respectively, and rotates it by an angle β. We assume that nh601

and nv take integer values uniformly between −8 and 8, i.e., nh, nv ∼ U {−8,−7, . . . ,7,8}, while602

the random variable β ∈ U(−20◦,20◦).603

We show four realizations from the prior dataset in Fig. 5(a). We use another realization,604

not part of the prior dataset and shown in Fig. 6, to generate the synthetic measurements for this605

example. We simulate noisy sinogram data by adding zero-mean Gaussian noise with variance606

σ2
η to the noise-free sinogram. We vary the variance of the measurement noise σ2

η ∈ {1,10,50}607

to test the robustness of GAN-Flow to varying levels of noise in the measurement. The noise608

characteristics of CT data is Gaussian when the photon counts are large [73]. A Gaussian noise609
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Figure 5. (a) Different phantoms from the prior dataset (b) Phantoms generated from the WGAN-
GP prior.
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Figure 6. (a) Test phantom and (b) corresponding noise-free sinogram. Noisy sinograms after
adding zero-mean Gaussian noise with variance (c) σ2

η = 1 (d) σ2
η = 10 and (e) σ2

η = 50.

model is useful even in the small photon count regime [73]. In this work, we limit our exposition610

to Gaussian noise. We remark that we can accommodate any noise model by suitably modifying611

the likelihood term in Eq. (21).612

As in the previous example, we first train a WGAN-GP with latent dimensionality nZ = 60613

to approximate the prior distribution2. We provide details of the generator and critic architec-614

tures used in this study in Appendix B1, while Table B1 provides details of other training hyper-615

parameters. Fig. 5(b) shows some realizations from the trained WGAN-GP prior. Next, we train616

a normalizing model that has 256 planar flow layers. We train the normalizing flow model for617

15,000 epochs with a batch size of 32; we list other hyper-parameters associated with the training618

in Table B1. Thus, training the normalizing flow model requires 4.8×105 forward model evalu-619

ations. After this we obtain 30,000 realizations from the posterior distribution and use them to620

estimate the posterior mean and standard deviation. Fig. 7 shows the posterior statistics estimated621

2Like the previous example, we vary nZ ∈ {5,10,20,40,60,80,100} and choose nZ = 60 since the RMSE be-
tween the corresponding posterior mean and the test phantom is is either smallest or close to being the smallest; see
Appendix C2
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Figure 7. Estimated posterior mean (left) and standard deviation (right) obtained using GAN-Flow
(left column) and GAN-HMC (right column) for the inverse Radon transform problem at various
levels of measurement noise.

using GAN-Flow and GAN-HMC. For comparison, we also obtain a sample of size 60,000 from622

the posterior distribution using HMC, discard the first 30,000 realizations considering burn-in, and623

then estimate the posterior statistics. For this example, we run HMC with 10 steps and an initial624

step size of 0.01. With this setting, sampling from the latent posterior using HMC requires 6×105
625

forward model evaluations. The posterior statistics estimated using GAN-Flow and GAN-HMC626

are qualitatively similar and shows elevated uncertainty around the edges of the phantom. The627

uncertainty increases as the noise in the measurement increases, which is also expected. We com-628

pute the RMSE and structural similarity index metric (SSIM) [74] between the posterior mean and629

the test phantom for both GAN-Flow and GAN-HMC and report those values in Table 4. Quan-630

titatively, both GAN-Flow and GAN-HMC provide similar reconstructions of the test phantom,631

which is consistent with Fig. 7. The results confirm that GAN-Flow is robust with respect to the632

level of measurement noise. We also perform additional experiments on another test phantom;633
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see Figs. C8 and C9 in Appendix C2 for those results. The performance of GAN-Flow is similar634

across both test phantoms.635

Table 4. RMSE and SSIM of the posterior mean reconstruction of the test phantom at different
levels of measurement noise.

Method
RMSE SSIM

σ2
η = 1 σ2

η = 10 σ2
η = 50 σ2

η = 1 σ2
η = 10 σ2

η = 50

GAN-Flow 0.041 0.042 0.045 0.968 0.964 0.963
GAN-HMC 0.041 0.043 0.045 0.968 0.964 0.962

4.3. Phase retrieval636

The final application we consider concerns phase retrieval, which involves the recovery of an637

object from the magnitude of its Fourier transform [75, 76]. Phase retrieval inverse problems are638

ubiquitous in many areas of science and engineering [77, 78, 79, 80, 81]. More specifically, we639

consider the phase retrieval problem of recovering an object from sparse measurements of the640

magnitude of its Fourier transform. We undersample the measurements to simulate accelerated641

measurement acquisition paradigms. The forward model for the phase retrieval problem we con-642

sider is given by:643

y = |MFx|+ η, (33)

where x ∈ Rnp×np is the object of interest discretized as an image of np × np pixels, F is the two-644

dimensional discrete Fourier transform (DFT), |·| computes the magnitude component wise,M is645

a binary mask that undersamples the Fourier magnitude measurements, and η is the measurement646

noise. In vector form, the effective dimensionality nY of y depends on the undersampling ratio r647

(also known as acceleration factor [38]), i.e., nY = nX/r.648

For this example, the prior dataset comprises of a subsample of the single coil knee scans649

from the publicly available NYU fastMRI training dataset [38, 37]. Similar to Kelkar et al. [82],650

we prepare the prior dataset in the following way. The training dataset contains a total of 973651

volumes and 34,742 slices. Each slice corresponds to an emulated single coil complex-valued652

Fourier space (k-space) MRI measurement; the single coil data is emulated by linearly combining653

multi-coil k-space data [38]. For every slice, the fastMRI initiative also provides a corresponding654
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(a) (b)

Figure 8. (a) Different knee slices from the prior dataset (b) Knee slices generated from the
WGAN-GP prior.

slice of the knee for that volume computed from the emulated single coil measurement using the655

root-sum-of-squares method. We discard the first five reconstructed knee slices of every volume,656

center crop the rest into images of size 256× 256 and then randomly divide them up into training657

and test sets. In total, the training and test set of the WGAN-GP contains 29,877 and 6,140 knee658

slices, respectively. The aforementioned training set is the prior dataset for this example and it659

contains ndata = 29,877 knee slices. Moreover, the ambient dimensionality nX = 256× 256 for660

this problem. Fig. 8(a) shows four typical knee slices from the prior dataset. We emphasize that,661

although we use knee slices from reconstructed MRI data, the forward model is nonlinear and662

given by Eq. (33).663

We use three realizations from the test set as the test case for this problem. The test cases are664

shown in the top row of Fig. 9. Right below them, we plot the natural logarithm of the correspond-665

ing noise free k-space magnitude data to which we subsequently add zero-mean Gaussian noise666

with standard deviation equal to 0.04% of the zero-frequency amplitude of the two-dimensional667

DFT [28]. We also consider two types of Cartesian undersampling masks to reflect realistic sce-668

narios where an object must be reconstructed from sparse measurements. Specifically, we consider669

two masks that yield four-fold and eight-fold accelerations. Following Zbontar et al. [38], the un-670

dersampling masks include 8% and 4% of the central region of the k-space when the acceleration671

factor r = 4 and 8, respectively. The remaining k-space lines are uniformly sampled with proba-672

bility such that the desired acceleration can be achieved. As common in practice, we omit k-space673

magnitude measurements in the phase direction, i.e., the undersampling masks consist of vertical674
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Figure 9. Test slices used for phase retrieval (top row) and
corresponding noise free logarithm of Fourier (k-space) mag-
nitudes (bottom row). We apply the masks, shown in Fig. 10, to
the noisy Fourier magnitudes to generate the synthetic measure-
ments for this example.
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Figure 10. Cartesian un-
dersampling masks with
four- and eight-fold ac-
celerations.

bands. Fig. 10 shows the two masks considered in this example.675

In this example, the WGAN-GP prior is trained using the progressive growing of GAN (Pro-676

GAN) method [40]. Not only does the ProGAN training method stabilize the training of GANs677

designed to synthesize large images, but it also makes the training more efficient. In the ProGAN678

training methodology, learning commences from a coarse scale wherein the generator learns to679

synthesize, and the critic learns to discriminate, low resolution images, say of size 4× 4. Over680

stages of increasing resolution, going from 4× 4 to 8× 8 and ultimately to 256× 256, new lay-681

ers are added to the generator and the critic, as the generator learns to synthesize, and the critic682

learns to discriminate, finer scale details. We adopt the implementation of ProGANs from [83]683

and choose the latent space dimensionality nZ = 512 following previous works [82, 40]. Fur-684

ther details about the WGAN-GP model, ProGAN training methodology, and associated training685

hyper-parameters may be found in Appendix B and Table B1. Samples from the trained WGAN-686

GP prior are shown in Fig. 8(b). We note that the WGAN-GP model is frozen for all subsequent687

steps.688

The normalizing flow model for this problem consists of 16 affine-coupling flow layers with689
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activation normalization [32]. See Appendix B2 for more details about the scale and shift networks690

of the affine coupling layers. In this example, we train the normalizing flow model for 50,000691

epochs and a batch size of 32. We train the normalizing flow model for every combination of test692

slice and undersampling mask. Subsequently, for each combination of test slice and mask, we693

obtain 10,000 samples from the latent posterior distribution to estimate the posterior pixel-wise694

mean and standard mean. Figs. 11 and 12 show the posterior mean, posterior standard-deviation,695

and the absolute error of the posterior mean reconstruction for the four- and eight-fold acceleration,696

respectively. We compute the RMSE and SSIM between the posterior mean reconstruction and697

the ground truth knee slices and report these values in Table 5. From Figs. 11 and 12 and Table 5,698

we observe that the reconstruction is satisfactory. However, the reconstruction of test slice 1 is699

comparatively better than those of test slices 2 and 3. This indicates that the reconstruction of700

some knee slices, like test slice 1, which probably lies in the typical set of the generator’s latent701

space (range of G∗ [84]), can be better than atypical test slices. Moreover, for test slice 2, the702

posterior pixel-wise standard deviation when the acceleration factor r = 4 is marginally larger in703

comparison to the case when r = 8; see the second row third column of Figs. 11 and 12. The result704

above needs further investigation since a reduction in uncertainty as the number of measurements705

reduces is counter-intuitive.706

Significantly, this example showcases the efficacy of GAN-Flow compared to methods involv-707

ing MCMC simulations. In this study, we attempted to carry out inference using GAN-HMC.708

However, we were unsuccessful in obtaining convergence of the Markov chains after varying the709

number of leapfrog steps and burn-in time. We posit that this may be due to the relatively large710

latent dimensionality in this study.711

Table 5. RMSE and SSIM of the of the posterior mean reconstruction of the test slices for different
accelerations.

Test slice
4× acceleration 8× acceleration
RMSE SSIM RMSE SSIM

Slice 1 0.0070 0.6185 0.0072 0.6142
Slice 2 0.0238 0.4802 0.0246 0.4587
Slice 3 0.0206 0.5556 0.0217 0.5702

35



0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.2 0.1 0.5 0.9

0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.2 0.1 0.5 0.9

0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.2 0.1 0.5 0.9

Ground truth Post. mean Post. std. dev. Abs. error
Te

st
sl

ic
e

1
Te

st
sl

ic
e

2
Te

st
sl

ic
e

3

Figure 11. Posterior pixel-wise standard mean (second column) and posterior pixel-wise standard
deviation (third column) for various test cases when acceleration factor r = 4. The first column
shows the ground truth slices for reference. The last column shows the absolute error between the
posterior mean and the ground truth.

5. Conclusions712

Bayesian inference is widely applicable but its application is challenging, especially, in cases713

where the inverse problem is high-dimensional and prior information is qualitative in nature. In714

this work, we propose GAN-Flow, a dimension-reduced variational approach to solving large-scale715

inverse problems. GAN-Flow combines together two types of generative models — GANs and716

normalizing flows. The former is used to form an informative data-driven prior with the generator717

providing a map between a low-dimensional latent space and the high-dimensional ambient space.718

Normalizing flows are used to solve the inverse problem variationally in the low-dimensional latent719

space, made possible due to an invertible map that transforms the prior distribution in the latent720
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Figure 12. Posterior pixel-wise standard mean (second column) and posterior pixel-wise standard
deviation (third column) for various test cases when acceleration factor r = 8. The first column
shows the ground truth slices for reference. The last column shows the absolute error between the
posterior mean and the ground truth.

space into the posterior distribution in the latent space. The low-dimensional latent posterior721

can be sampled, without evaluating the underlying forward model, to obtain samples from the722

high-dimensional ambient space. We have also shown how GAN-Flow can be used to estimate723

statistics of the ambient posterior distribution. We have used GAN-Flow to solve three physics-724

based inverse problems that include various challenging scenarios. In particular, the application to725

phase imaging shows that GAN-Flow can handle challenging prior information, nonlinear forward726

models, and very large-scale inverse problems. The extension of GAN-Flow to black-box forward727

models that are incompatible with automatic differentiation is a promising research direction that728

will make GAN-Flow more widely applicable. Another interesting research direction will be the729
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application of GAN-Flow to the inference of physics, i.e., terms in the governing equation of an730

observed phenomena.731
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Appendix A. Derivation of the loss function LNF for training the normalizing flow model in915

GAN-Flow916

Let z ∼ pZ(z) and z̃ be two random vectors, both ∈ ΩZ , and the diffeomorphism H(·;ψ) :917

ΩZ →ΩZ such that z̃ =H(z;ψ). Let z̃ ∼ pZ̃(z̃), which can be computed using Eq. (6) as follows:918

pZ̃(z̃) = H#pZ(z;ψ) = pZ(z)|det∇zH(z;ψ)|−1. (A.1)

For any function a(·) : ΩZ →ΩZ , the change-of-variables theorem of multivariable calculus states:919

∫

ΩZ

a(z̃) pZ̃(z̃) dz̃ =

∫

ΩZ

a(z̃)
[
pZ(z)|det∇zH(z;ψ)|−1

]
︸ ︷︷ ︸

pZ̃(z̃) from Eq. (A.1)

dz̃ (A.2)

=

∫

ΩZ

a(z̃) pZ(z)
[
|det∇zH(z;ψ)|−1dz̃

]
︸ ︷︷ ︸

dz

=

∫

ΩZ

a
(
H(z;ψ)

)
pZ(z) dz.

On recognizing that
∫
ΩZ

a(z̃) pZ̃(z̃) dz̃ is nothing but Ez∼H#pZ [a(z)], we can write920

Ez∼H#pZ [a(z)] = Ez∼pZ(z) [a(H(z;ψ))] . (A.3)

Now, the reverse KL divergence between the pushforward distribution H#pZ(z;ψ) and the921

target distribution pZ(z|ŷ) is:922

dKL
(
H#pZ(z;ψ)∥pZ(z|ŷ)

)
≡ Ez∼H#pZ [logH#pZ(z;ψ)− log pZ(z|ŷ)] (A.4)

=

∫

ΩZ

[
logH#pZ(z;ψ)−

(
log pY(ŷ|z) + log pZ(z)− log pY(ŷ)

)
︸ ︷︷ ︸

log pZ(z|ŷ)

]
H#pZ(z;ψ) dz

=

∫

ΩZ

[
logH#pZ(z;ψ)− log pY(ŷ|z)− log pZ(z) + log pY(ŷ)

]
H#pZ(z;ψ) dz

=

∫

ΩZ

[
log
(
pZ(z)|det∇zH(z;ψ)|−1

)
︸ ︷︷ ︸

H#pZ(z;ψ)

− log pY(ŷ|H(z;ψ))− log pZ(H(z;ψ)) + log pY(ŷ)
]
pZ(z) dz

=

∫

ΩZ

[
log pZ(z)− log|det∇zH(z;ψ)| − log pY(ŷ|H(z;ψ))− log pZ(H(z;ψ)) + log pY(ŷ)

]
pZ(z) dz

= Ez∼pZ(z)

[
log pZ(z)− log|det∇zH(z;ψ)| − log pY(ŷ|H(z;ψ))− log pZ(H(z;ψ)) + log pY(ŷ)

]
,
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where we substitute the expression for pZ(z|ŷ) from Eq. (18) in the second line, and then use923

Eq. (A.1) to replace H#pZ(z;ψ) in the fourth line while changing the variables of integration as924

per Eqs. (A.2) and (A.3). To obtain the proposed loss function LNF in Eq. (21) for training the925

normalizing flow, we simply ignore the terms log pZ(z) and log pY(ŷ) in Eq. (A.4) since they do926

not depend on ψ. This completes the derivation of Eq. (21) starting from Eq. (20).927

Appendix B. Details of the GAN and normalizing flow architectures of GAN-Flow and train-928

ing hyper-parameters929

In this section we describe the WGAN-GP and normalizing flow models used in the GAN-930

Flow pipeline for various inverse problems. Some of the nomenclature we use are as follows:931

1. FC(n) — Fully connected layer of width n.932

2. Tr. Conv2D (cout, k, s, p, pout) — 2D transpose convolution layer with cout output channels,933

kernel size (k, k), stride s, padding p and output padding pout.934

3. Conv2D (cout, k, s, p) — 2D convolution layer cout output channels, kernel size (k, k), stride935

s and padding p.936

4. Self Attention — self-attention module [39].937

5. BN, LN, PixelNorm, Mini-batch std. dev. normalization — batch, layer, pixel [40] and938

mini-batch standard deviation [40] normalization, respectively.939

6. LReLU(α), ELU, and TanH — Leaky rectified linear unit (with parameter α), exponential940

linear unit and hyperbolic tangent activation functions, respectively.941

7. Up-sample 2× – Up-scaling by a factor of 2 using bi-linear interpolation.942

8. Down-sample 2× – Average pooling over 2×2 patches with stride 2.943

B1. WGAN-GP model architectures944

Table B1 lists the training hyper-parameters. Fig. B1 shows the generator and critic architec-945

ture used in the initial condition inference problem. Fig. B2 shows the generator and architecture946

used in the inverse Radon transform problem. Fig. B3(a) and (c) shows the generator and critic947
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Table B1. Training hyper-parameters for WGAN-GP and normalizing flow models of the GAN-
Flow pipeline.

Model hyper-parameter
Inverse problem

Heat conduction
(Section 4.1)

Radon transform
(Section 4.2)

Phase imaging
(Section 4.3)

W
as

se
rs

te
in

G
A

N

Latent dimension nZ 5 60 512
Architecture Fig. B1 Fig. B2 Fig. B3
Training epochs 500 1000 294
Learning rate 0.0002 0.001 0.003
Gradient penalty λ 10 10 10
Batch size 64 100 128 → 64
ncritic/ngen 5 4 1

Optimizer
Adam

β1 = 0, β2 = 0.99
Adam

β1 = 0.5, β2 = 0.99
Adam

β1 = 0, β2 = 0.99

N
or

m
al

iz
in

g
flo

w Type of flow model layer Planar Planar Affine coupling
Number of flow layers nf 64 256 16
Training epochs 5000 15000 50000
Learning rate 0.002 0.002 0.001
Batch size 32 32 32

Optimizer
Adam

β1 = 0.9, β2 = 0.999
Adam

β1 = 0.9, β2 = 0.999
Adam

β1 = 0.9, β2 = 0.999

architectures, respectively, we use for the phase retrieval problem. The generator comprises con-948

volution blocks that are shown in Fig. B3(b). Similarly, the critic is made of a convolution block949

that is denoted as ‘Dis. Convolution Block’ in Fig. B3(c) and shown in Fig. B3(b). In this study,950

we use the Progressive growing of GAN methodology to train the generator and critic networks.951

We briefly summarize the ProGAN method here, and refer [40] to interested readers for more952

details.953

B1.1. Progressive growing of GANs954

In the ProGAN methodology, both generator and critic are trained synchronously to synthesize955

images starting from size 4×4 up until 256×256. For instance, at the first stage, when the GAN is956

learning to synthesize images of size 4×4, only the first three layers (after the inputs are reshaped957

and including the first convolution block) of the generator is trained. Similarly, at this stage, the958

discriminator only consists of first two layers (including the first Dis. Convolution block) and the959

final four layers (starting from the mini-batch standard deviation normalization). After the first960
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Generator Critic

Figure B1. (a) Generator and (b) critic architectures of the WGAN-GP model for the initial con-
dition inference inverse problem.

stage of training is complete, a new convolution block is now appended to the previously trained961

convolution block in the generator. Similarly, another ‘Dis. Convolution Block’ is appended to962

the previously trained block of similar type to the discriminator. All weights of the generator and963

critic networks are updated at this stage. This process continues for a further four stages, thus a964

total six stages, up until the GAN learns to synthesize images of the required size. The requisite965

number of stages nstage should satisfy 2nstage+1 = 128. In this study, the desired size of the knee966

slices was 256×256, which necessitates nstage = 7. We train the GAN for 42 epochs at each stage,967

which makes a total of 294 epochs across all stages. We use a batch size of 128 for the first four968

stages, and reduce it by half for the penultimate three stages. We also randomly flip the images969

horizontally to augment the training dataset. At every stage lower-resolution images from the prior970

dataset are down-sampled using average pooling to obtain the necessary ‘real’ images for training.971

Moreover, during training at the kth stage (k starts from 2 going to 8 corresponding to resolutions972

of 4×4 to 128×128) beyond k = 2, the synthesized images are formed by a linear combination973

of the up-sampled images from the previous generator up to the previous stage and the current974

stage using residual connections. Similarly, the critic also blends together image features at the975

(k− 1)th resolution level using residual connections. This linear superposition factor, say α, lin-976

early increases between 0 and 1 through the training epochs to ultimately only consider the images977

entirely synthesized at the kth resolution level, i.e., the contribution from the residual connections978
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Figure B2. (a) Generator and (b) critic architectures of the WGAN-GP model for the inverse
Radon transform problem.

gradually fades away as training progresses for every stage. Figure 2 in [40] is instructive of this979

multi-scale blending. Fig. B4 shows knee slices of various resolutions generated at the end of kth
980

stage of training using the WGAN-GP model from Fig. B3.981

B2. Normalizing flow model architectures982

We use planar flow layers with hyperbolic tangent non-linearity for both the initial condi-983

tion inference and inverse Radon transform problem. For the phase retrieval problem, we use984

affine coupling flow layers, as shown in Fig. B5(a), and the scale and shift networks are shown985

in Fig. B5(b). Every affine coupling block permutes its input such that the partition, described986

above Eq. (11), is random for every layer; this promotes better mixing among every latent di-987

mension. Subsequently, activation normalization is applied, which scales the inputs to have zero988

mean and unit variance; this transformation is also updated during training. The re-scaling layer in989

Fig. B5(b) has a single learnable parameter that simply scales and multiplies itself with the output990

from the previous layer. This parameter is initially set to zero such that the whole layer starts out991

as an identity transform. After the re-scaling layer, TanH operation operates on one-half of the992

data and serves as the scale operator, while the other half acts as the shift operator.993
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Appendix C. Additional results994

C1. Initial condition inference995

For the initial condition inference inverse problem, we vary the latent dimensionality nZ , while996

keeping all other hyper-parameters fixed, to study its effect on the overall performance of GAN-997

Flow. Fig. C6 reveals that the performance of both GAN-Flow and GAN+HMC deteriorates as998

the latent dimensionality nZ increases. One reason for this may be the following: the latent999

space dimensionality controls the expressivity of the generator, and a larger than necessary latent1000

space dimensionality may be introducing spurious uncertainty in the prior. Additionally, the de-1001

teriorating performance can also be attributed to the curse of dimensionality. As the latent space1002

dimensionality increases, both HMC and normalizing flows find it increasingly harder to sample1003

the latent posterior distribution. In a nutshell, Fig. C6 is empirical evidence of the fact that di-1004

mension reduction is beneficial for Bayesian inference. From Fig. C6, nZ = 5 leads to the lowest1005

RMSE in the estimated posterior statistics. This is expected since the underlying prior distribution1006

has only four random variables. While it may appear from Fig. C6(a) that GAN-Flow is not able1007

to estimate the posterior mean as well as GAN+HMC, recall that we train the normalizing flows1008

with the same hyper-parameter setting and a total of 3.2×104 forward model evaluations irrespec-1009

tive of the value of nZ . Increasing the computational effort as nZ increases should help improve1010

the performance of GAN-Flow. In Fig. C6(b), GAN-Flow does at least as well as GAN+HMC in1011

capturing the posterior variance at modest dimensions (nZ < 80).1012

C2. Inverse Radon transform1013

Similar to the previous example, we vary the latent dimensionality nZ , while keeping all other1014

hyper-parameters fixed, to study its effect on the overall performance of GAN-Flow across differ-1015

ent levels of measurement noise. We plot the reconstruction error of the posterior mean in Fig. C7,1016

which shows that the optimal latent dimension nZ lies between 40 and 80 for the three levels of1017

measurement noise we consider. Note that, in this example, the underlying prior distribution is1018

parameterized by 13 variables. Hence, the reconstructions from GAN-Flow and GAN-HMC are1019

inadequate when nZ ≤ 20. At such low latent dimensions, the prior distribution from the WGAN-1020

GP is not sufficiently expressive. Beyond that, the reconstruction error first reduces and then1021
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increases again. The comparatively larger reconstruction errors when nZ > 80 may be due to in-1022

sufficient training of the normalizing flow or the inefficacy of HMC in sampling high-dimensional1023

distributions. Therefore, for this example, we choose nZ = 60 to obtain a balanced performance1024

from GAN-Flow across all levels of measurement noise.1025

Further, we test GAN-Flow on another phantom separate from the one in Section 4.2 while1026

keeping all training hyperparameters fixed as before. Fig. C8 shows the phantom, corresponding1027

sinogram and noisy measurements for different levels of noise. Fig. C9 shows the pixel-wise1028

posterior mean and standard deviation estimation estimated using GAN-Flow. With respect to the1029

ground truth Fig. C8(a), the RMSE of the posterior mean reconstruction is 0.044, 0.047 and 0.0471030

for σ2
η = 1,10 and 50, respectively. The SSIM is 0.965, 0.963 and 0.962 at σ2

η = 1,10 and 50,1031

respectively. These metrics are similar to those reported in Table 4. Thus, the performance of1032

GAN-Flow is consistent across both test phantom.1033
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Figure C9. Estimated posterior mean (top row) and standard deviation (bottom row) obtained
using GAN-Flow for the alternate test phantom on inverse Radon transform problem at various
levels of measurement noise.
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Figure B3. (a) Generator and (c) critic architectures of the WGAN-GP model for the phase re-
trieval problem. (b) and (d) shows the convolution blocks within the generator and critic, respec-
tively.
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Stage 2
Image size 4×4

Stage 3
Image size 8×8

Stage 4
Image size 16×16

Stage 5
Image size 32×32

Stage 6
Image size 64×64

Stage 7
Image size 128×128

Stage 8
Image size 256×256

Figure B4. Knee slices of resolution 2k×2k generated at the end of the kth training stage using the
WGAN-GP model for the phase retrieval problem.
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Figure B5. (a) Typical flow layer with affine coupling transform, and (b) scale and shift networks
used for the affine coupling transform in the phase retrieval problem.
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Figure C6. RMSE of the posterior pixel-wise (a) mean and (b) standard-deviation estimated using
various methods with respect to the corresponding statistics estimated using MCS for the initial
condition inference problem.
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Figure C7. RMSE of the posterior pixel-wise mean with respect to the ‘true’ phantom for varying
levels of variance σ2

η of the measurement noise in the inverse Radon transform problem.
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Figure C8. (a) Alternate test phantom and (b) corresponding noise-free sinogram. Noisy sino-
grams after adding zero-mean Gaussian noise with variance (c) σ2

η = 1 (d) σ2
η = 10 and (e) σ2

η = 50.
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