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Abstract

We consider the class of conservative-dissipative ODE systems, which is a subclass of Lyapunov stable,
linear time-invariant ODE systems. We characterize asymptotically stable, conservative-dissipative ODE
systems via the hypocoercivity (theory) of their system matrices. Our main result is a concise characteri-
zation of the hypocoercivity index (an algebraic structural property of matrices with positive semi-definite
Hermitian part introduced in Achleitner, Arnold, and Carlen (2018)) in terms of the short time behavior of
the norm of the matrix exponential for the associated conservative-dissipative ODE system.
© 2023 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we shall use hypocoercivity techniques to characterize the short time behavior
of linear time-invariant ODE systems of the form

X (t) = —Bx(1), (1.1)
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with matrices B € C"*" whose Hermitian part By := (B + B*)/2 is positive semi-definite,'
such that — B is a conservative-dissipative (or semi-dissipative) matrix, see Definition 1.1 below.
An extension to stable systems of the form (1.1), i.e. matrices B having their spectrum in the
closed right half plane where, additionally, purely imaginary eigenvalues are non-defective,” are
discussed in the parallel article [5].

Concerning the short time behavior of the propagator P(¢) of (1.1), given by the fundamental
matrix P(t) := e B!, we shall be interested in estimates on the spectral norm of the matrix
exponential e~ 57 of the form

IPOI2=1—ct*+0¢*TYH  fort— 0t (1.2)

where ¢ > 0 and a € N. For practical reason, we shall refer to the spectral norm of the matrix
exponential e~ B’ as the propagator norm. The large time behavior, including conditions guaran-
teeing exponential decay estimates of the form

I[Pl <ce™™, >0, (1.3)

with some ¢ > 1, and p > 0 will be discussed in the forthcoming article [3].

Following [18], the matrix B is called hypocoercive if (1.3) holds, and B is coercive if and
only if || P(2)||2 < e for some u > 0 and all ¢ > 0. For the intermediate time regime we shall
be interested in a waiting time ty such that all solutions will have decayed (at least) by a factor
1/e, ie.

1
1P®l2 =2, 1=1. (1.4)

Here we shall include numerical evidence on this intermediate time regime; a detailed analysis
will be provided in [3].

Our interest in systems (1.1) is motivated by non-equilibrium statistical physics and, in par-
ticular, kinetic theory. There, a frequently encountered class of linear equations has the form

%f(t,x,v)=—v'fo(t,x,v)—|—Qf(t,x,v),

where Q is a linear operator, the so-called linearized collision operator, describing changes in
velocity resulting from binary collisions. Take the domain of the x variable to be a d—dimensional
torus 7 of side-length L. The operator v - V,, called the streaming operator is anti-Hermitian on
a weighted L?-space on 7 x R?, whereas Q is negative semi-definite on the same weighted L?-
space. Concerning examples we refer to [10, §1.4], [1,2] where a modal decomposition (in x) of
kinetic BGK-type equations® led to ODE systems like (1.1); in the case of continuous velocities
it actually led to “infinite matrices” B. In the follow-up paper [9] a spectral decomposition of
Fokker—Planck equations allowed for a precise analysis of their short time behavior in the spirit
of (1.2).

' We use the following notation: The conjugate transpose of a matrix B € C"*" is denoted by B*. Positive definiteness
(resp. semi-definiteness) of Hermitian matrices is denoted by B > 0 (resp. B > 0).

2 An eigenvalue is non-defective if its algebraic and geometric multiplicities coincide.

3 named after the physicists Bhatnagar—Gross—Krook.
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Very often, one is interested in initial data fy(x, v) for the equation that are nearly constant on
spatial scales much smaller than L, where L is large, so that v- V, f (¢, x, v) will be of order 1/L.
Finite dimensional approximations of such systems result in systems of ODEs of the form (1.1),
where its Hermitian part By is positive semi-definite. Hence it is often natural to write (1.1) in
the form

X (1) = —€ Ax(t) — Cx(1), (1.5)

where € € R, A € C"™*" is anti-Hermitian, and C € C"*" is positive semi-definite Hermitian.
The systems (1.1) and (1.5) are related via By = €A and By = C, where B4 := (B — B*)/2
denotes the anti-Hermitian part of B. One is then led to study the asymptotics of the solution as
€ — 0. This is often referred to as asymptotic limit.

The main goal of this paper is to give a concise interpretation of the hypocoercivity index (an
algebraic structural property of the matrix B, introduced in [2]) in terms of the exponent a in
short time estimate (1.2).

The rest of this paper is organized as follows: In the remainder of §1 we define and charac-
terize conservative-dissipative ODE systems and hypocoercive matrices. In §2.1 we give three
equivalent definitions of the hypocoercivity index of a matrix and three corresponding Kalman
rank conditions. Our main result, Theorem 2.7, gives a sharp characterization of the hypocoer-
civity index of a matrix B in terms of the short time decay of the spectral norm of the associated
matrix exponential e 87Tt is presented in §2.2, while technical parts of the proof are deferred to
Appendix A. Finally, §2.3 gives a numerical illustration of Theorem 2.7.

1.1. Conservative-dissipative systems of ODEs

It is well known that the null solution x(¢) = 0 of a linear system (1.1) is (Lyapunov) stable if
all eigenvalues of —B have non-positive real part and the eigenvalues on the imaginary axis are
non-defective, and the null solution x(¢) = 0 of (1.1) is asymptotically stable if all eigenvalues
of —B have negative real part. For practical reasons, if the null solution x(#) = 0 of a linear
system (1.1) is (asymptotically) stable then we will call (1.1) an (asymptotically) stable system.

Consider a linear system of ODEs (1.1) with matrix B € C"*". Then the derivative of the
squared Euclidean norm of a solution x(#) satisfies

d
T IX()113 = (=BX(1), X(1)) + (x(1), = Bx(1)) = =2(x(t), Bux(1)). (1.6)

Therefore a sufficient condition for B to generate a stable system (1.1) is that its Hermitian part is
positive semi-definite.* This fact and the importance of this subclass of stable systems in kinetic
theory inspires the following definition:

Definition 1.1. A matrix —B € C"*" is called dissipative (resp. conservative-dissipative or semi-
dissipative) if the Hermitian part of — B is negative definite (resp. negative semi-definite).

For a (conservative-)dissipative matrix —B € C"*" the associated system of ODEs (1.1) is
called a (conservative-)dissipative ODE system.

4 However, the Hermitian part of a matrix B pertaining to a stable system does not have to be positive semi-definite; a
different equivalent norm will generally yield a different sufficient condition.
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For practical reasons, a matrix B € C"*" is called positive conservative-dissipative if the
Hermitian part of B is positive semi-definite.

This conservative-dissipative property of a matrix B is invariant under unitary transforma-
tions, but it is not invariant under similarity transformations (see [5] for details). Let )‘Z?n and
)»22’,( denote the least and the greatest eigenvalues of By, respectively. By the Rayleigh-Ritz
variational principle

By

b= min (x, Byx)  and  Ap# = max (x, Byx).

max —
Ixll2=1 Ixl2=1

It follows immediately that

2B

min

<min{RX : L €o(B)} <max{NX : L eao(B)} < ABu (1.7)

max *°

1.2. Hypocoercive matrices

In the introduction, matrices B € C"*" are called hypocoercive if the associated propagator
P(t) := e "B satisfies (1.3) for some ¢ > 1 and p > 0. In other words, B is hypocoercive if (the
null-solution x(#) = 0 of) the associated linear system (1.1) is exponentially stable. For linear
time-invariant systems (1.1), exponential stability is equivalent to asymptotic stability (i.e. all
solutions approach the origin in the large time limit), which is equivalent to the condition that
all eigenvalues of —B have negative real part. Starting with the classical notion of a coercive
operator/matrix, we characterize hypocoercive matrices as follows (see e.g. [2]):

Definition 1.2. A matrix B € C"*" is called coercive if its Hermitian part By is positive definite,
and it is called hypocoercive if the spectrum of B lies in the open right half plane.

Hypocoercive matrices are often called positive stable. We use the notion of hypocoercivity
to emphasize the link to the analogous situation in partial differential equations, see [2,8,18].

It is well-known, see (1.7), that for positive conservative-dissipative matrices B € C"*", the
spectrum of B lies in the closed right half plane, but there may be purely imaginary eigenvalues.
In this case, the existence of purely imaginary eigenvalues can be characterized as follows:

Proposition 1.3 ([ 16, Lemma 3.1], [2, Lemma 2.4 with Proposition 1(B2), (B4)]). Let B € C"*"
be (positive) conservative-dissipative. Then, B has an eigenvalue on the imaginary axis if and
only if Bgv =0 for some eigenvector v of Ba.

Hence, a positive conservative-dissipative matrix B is hypocoercive if and only if no eigen-
vector of the anti-Hermitian part lies in the kernel of the Hermitian part. The latter condition
is well known in control theory, and there exists a range of equivalent characterizations, see

e.g. [2, Proposition 1] and [16, Lemma 3.1]: For example, positive conservative-dissipative ma-
trices B € C"*" are hypocoercive if and only if

“No non-trivial subspace of ker(Bp) is invariant under B4.” (1.8)
The characterization (1.8) implies the following result:
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Lemma 1.4. Let B € C"*" be positive conservative-dissipative. Then B = B4 + By is hypoco-
ercive if and only if e By + By is hypocoercive for all € # 0.

But even if hypocoercivity of B is known, it is not trivial to obtain an exponential decay es-
timate (1.3) with a quantitative (or even optimal) decay rate ;. Indeed, a simple energy estimate
(i.e. pre-multiplying (1.1) by x*) or using Trotter’s product formula only yields conservative-
dissipativity of the system, but no decay: So, its propagator P(¢) = e B’ satisfies at least
[P(t)]l2 <1forall t > 0.

Let us also comment on the short time behavior. If a decay estimate (1.2) holds with some
exponent a > 1, then an estimate of the form || P(z)|| < e # (as it is typical for coercive matri-
ces B) is impossible (consider the Taylor expansion of || P(¢)||> around ¢ = 0). In such cases the
system can only be hypocoercive, along with an estimate (1.3) with ¢ > 1.

Our conditions for hypocoercivity lead naturally to the notion of an index of hypocoercivity,
which is a non-negative integer whenever B is hypocoercive, and is zero if and only if B is
coercive (see §2.1).

2. Hypocoercivity index and the short time decay of conservative-dissipative ODE systems

In this section we shall present our main result, i.e. a concise characterization of the hypoco-
ercivity index in terms of the short time behavior of conservative-dissipative ODE systems (1.1).

2.1. Hypocoercivity index
First we recall from [2, §2.2] the definition of the hypocoercivity index:

Definition 2.1. Let B € C"*" be positive conservative-dissipative. Its hypocoercivity index (HC-
index) mgc is defined as the smallest integer m € Ny (if it exists) such that the matrix

m
T, = ZBQBH(B;;)J‘ 2.1
j=0

is positive definite. The matrix B is coercive iff m gc = 0, hypocoercive iff mgc € Ny (due to
[2, Lemma 2.4]), and for non-hypocoercive matrices B we set mgc = 00.

The Hermitian matrix 7;, in Definition 2.1 readily shows that the hypocoercivity index of a
positive conservative-dissipative matrix B is invariant under unitary congruence transformations
but, in general, not under similarity transformations (see [4] for details).

In [7, Lemma 2.3] it was proven that this index equals the smallest integer m € Ny such that

rank {\/By, Bav/By., ..., Byy/By}=n, (2.2)

which is often called Kalman rank condition (see also [2, Proposition 1(B1)]).

Remark 2.2. When considering rather € B4 + Bp, its hypocoercivity property and its index of
hypocoercivity are independent of € # 0, which follows trivially from (2.2). Due to the above
mentioned equality of the indices, the positive definiteness of ZZZOC (€B4) By (e Bj;)j is hence
also independent of € # 0.
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Next we shall present four (equivalent) variants of the Kalman rank condition:

Lemma 2.3. Let B € C"*" be positive conservative-dissipative. Consider the following four
Kalman rank conditions:

dm € Ny : rank{\/E, BA\/E, Bff\/a}:n, (2.3a)
ImeNo: rank{y/By, By/By, ..., B"/By}=n, (2.3b)
ImeNy: rank{y/By, B*VBy, ..., (BY"\/By}=n, (2.3¢)
dm e Ng: rank{Co,Cy, ..., Cp}=n

with Co := v/Bu; Cjt1:=[Cj, Bal=CjBa— BaCj, j€Ng. (23d)

The conditions (2.3a)—(2.3d) are equivalent in the sense that, if there exists m € Ng such that one
condition holds, then the other three conditions hold as well for the same m.

Proof. In fact, we prove that for all m € Ny the ranges of all four matrices in (2.3) are equal,

range{y/ By, Bav/ B, ..., B}/ By} =range{\/By, By/Byu, ..., B"\/By} (2.4a)
= range{y/By, B*V/Bu, ..., (B)"\/By)
(2.4b)
=range{Cop, C1, ..., Cp}, (2.4c¢)
which can be done inductively:

The base case m = 0 is trivial, since all four matrices in (2.4) are equal to v/ By . We start with
the induction step for the equivalence of the first identity in (2.4): Assume (2.4a) holds for some

m € Ny. Then, the following representations hold: (B”+! — B1) /By = >0 B/{;«/BHXj,
with appropriate matrices X ; € C"*", and e.g., X,,, = Bp. Therefore

range ((B" ™' — B /By) C range{/By, Bav/Bu, ... BY\/Bu)

which implies

range{ﬁ, BBy, ..., Bm\/E, B’"“\/E}
=range{\/B_, BA\/E, BA"\/E, BmH\/E}
:range{@, BA\/B_, o 32@7 B;‘"'H\/E},
Hence, range{v/By, Bav/Bu, ..., By"'VBy) =range(/By, BBy, ..., B"*'/By)

follows.
In the same way, for m € Ny, the identity

range{y/ By, Bav/ B, ..., B}/ By} =range{\/By, B*\/By, ..., (B*)"\/Bu}
is proven.
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Since the equivalence of range{~/By, Ba~/BH, ..., B} </By} and range{Co, Cy, ..., Cp}
follows very similarly, we only give the key steps: Note that the term of C; | with the leading
maximum exponent of B, is of the form (=B4)/t'/Bpy. This allows to compute Cp41 —
(—BA)" T /By = Z;'?:O Biij, with appropriate matrices X; € C"*" and, e.g., X, =
(=1)™(m + 1) By4. Therefore

range (Cpt1 — (—Ba)"t'V/By) C range(y/Bu, Bav/Bu, ..., BY/Bu}
and the rest of the proof is as before. O

Next we shall present two (equivalent) variants of Definition 2.1 for the hypocoercivity index
that are related to similar concepts in the literature: In [8, §2], the definition of the hypocoercivity
index of a degenerate Fokker—Planck equation with linear drift involves a positive stable matrix
B and its Hermitian part By > 0 (rather than the Hermitian part and anti-Hermitian part of B as
in Definition 2.1 here). In order to connect these two situations we shall establish the equivalence
of these two definitions in the subsequent lemma.

The condition 7;, > 0 from Definition 2.1 can also be related to Hormander’s “rank r”
bracket condition for hypoellipticity, cf. [13]. In particular, in [18] iterated commutators were
used to establish hypocoercivity of kinetic PDEs by constructing an appropriate Lyapunov func-
tional. In Lemma 2.4, Equation (2.5d), below we shall mimic condition (3.5) of [18] for the
ODE-system (1.1).

Lemma 2.4. Let B € C"*" be positive conservative-dissipative. Consider the following four
hypocoercivity conditions:

m
ImeNyg: Tp:= Z B)\Bu(B}) >0, (2.5a)
j=0
m
ImeNo: T,:=» BIBy(B*) >0, (2.5b)
j=0
—~ m
ImeNo: Twi=Y (B ByB/ >0, (2.5¢)
j=0
m
ImeNy: T :=Zc;fcj >0

j=0

with Co :=+/Bp; Cjt1:=[Cj, Bal=C;jBa — BaCj, j€ Np. (2.5d)

The conditions (2.52)—(2.5d) are equivalent in the sense that, if there exists m € Ny such that one
condition holds, then the other three conditions hold as well for the same m.

Proof. According to [7, Lemma 2.3], each of these four matrix inequalities (2.5a)—(2.5d) is
equivalent to the corresponding Kalman rank conditions (2.3a)—(2.3d) where we used in the
last case that C7 = C; (verifiable by a simple induction). Moreover, the Kalman rank condi-
tions (2.3a)—(2.3d) are equivalent due to Lemma 2.3. O
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This lemma shows that gle hypocoercivity index can equally be defined as the smallest integer
m € Ny such that Tm >0, ?m >0, or Tm > 0. Hence, it also gives the smallest necessary number
of iterated commutators of By > 0 with the matrix B4 such that their ranges span all of C" —
in the spirit of Hormander’s hypoellipticity theorem.

As an example we consider two matrices with the same Hermitian part By = diag(0, 0, 1, 1)
such that rank(ker(Bpy)) = 2 but two different anti-Hermitian parts such that one and, respec-
tively, two iterated commutators are needed:

Example 2.5. Consider

0 0 0 1 0 0 0 1
m_|10 0 1 0 m_| 0 0 1 0
B = 0 -1 1 0 suchthat B, = o -1 0 0l

-1 0 0 1 -1 0 0 O
0 0 0 -1
®» 3|0 0 -1 0
[BH’BA]_ 0o -1 0 o\
-1 0 0 0
and
0 1 0 0 0 1 0 0
Q _ -1 0 1 O @ _ 1 1 0
B = 0 -1 0 0 such that B,” = o -1 0 0l
0 0O 0O 0 0 0 O
0 0 0 0
[, ,»1_|0 0 -1 0
[ BH’BA]_ 0O -1 0 O
0 0 0o 0

Hence rank{,/B}_Il),[ BS),BS)]} = 4, but rank{,/Bg),[ B;?,Bff)]} = 3. Thus, by
Lemma 2.3, mgc(BW)Y=1and myc(B?)=2.

While finite dimensional positive conservative-dissipative matrices are hypocoercive if and
only if they have a finite hypocoercivity index, this is not true in the infinite dimensional case:

Example 2.6. Consider a block-diagonal “ODE”, with each block of the form

0 1
-1
Ek — 1 c kak ,
-1 0
-1 1
(Ex)y = diag(0,0,...,0,1), (Ex)a = toeplitz(—1,0, 1) . (2.6)
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Then, the matrices Ey, k € N are positive conservative-dissipative. Evidently, (Ex)gv =0 if and
only if v= (vy,..., vk_1, 0). For such a vector,

(Ex)av=(v2,V3 = V1,..., —Vk—2, —Vk_1) -

A simple inductive argument shows that if (Ex)4v = Av for any A # 0, then v = 0. By Proposi-
tion 1.3, Ej has no eigenvalue on iR. Hence, the matrices Ey, k € N are hypocoercive, satisfying
the estimate

—E —A
lle™ = “

2 <ce t>0, 2.7
for constants ¢, > 1 and g > 0, k € N. We now make a simple rescaling, defining Ek =rEg
for ry > 0 to be chosen below, and consider the propagator P(¢) for dlag(E 1, Ez, ...), and let
| - ll> be the spectral norm on £2. By (2.7),

= B _ 1 1+ logck
le=Bxlly = le ™ Ex ||y < cpe ™ <~ for = ——2K
e Mk

Therefore, making this choice of rg, || P(1)]|2 < 1/e, so that (1.4) is satisfied for o = 1. Thus this
infinite dimensional system is hypocoercive.

We now show that the combined system has an infinite hypocoercivity index. For this we can
ignore the scaling and work with the original matrices Ey. Let ¢; denote the j-th standard basis
vector in C*. Then, (Ex) gy = ekez and Ty, as specified in (2.1) is given by

m
T =) (=) (Ex)}eref (En) -
j=0
Form=1,...,k—1,itis evident that

€5 (Ex)ex)> =0 for j<k—m but [e5(E) e’ =1.

Hence, mpyc(Ey) = k — 1. Thus, the combined system diag(E1, E2,...) can not have a finite
mgc.

2.2. Short time decay of conservative-dissipative ODE systems

Here we shall prove that the hypocoercivity index of a conservative-dissipative ODE system
characterizes the decay of its propagator norm for short time. We denote the solution semigroup
pertaining to (1.1) by P(t) := e~ B’ € C"*", and its spectral norm by || P (t)||2 := sup{|| P(1)x]|> :
[Ix|l2 = 1}, which is also the largest singular value of P(z). Its short time decay is related to the
hypocoercivity index as follows:

Theorem 2.7. Let the ODE system (1.1) be conservative-dissipative with (positive conservative-
dissipative) matrix B € C"*",
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(a) The (positive conservative-dissipative) matrix B is hypocoercive (with hypocoercivity index
mygc € No) if and only if

le Bl = 1 —ct* + Oty fort €0, €), 28)

for some a, c, € > 0. In this case, necessarily a =2mpgc + 1.
(b) Moreover, for myc > 1, the optimal multiplicative factor c in (2.8) is given by

1

c= 5 _ min (x, (B*)™HC By BMHCX)
@Cmpc + l)!(m:cc) xeker (T e—1), IxlI=1
{ 2.9)
= _ min (x, (B})"He BHB/T”CX),
@Cmyc + 1)!(2,:,":5) xeker (T 1) IXlI=1

and for myc = 0 we have ¢ = min|x=1 (X, ByX).

Proof. Since the proof for the coercive case, i.e. mgc = 0, is trivial, we shall confine ourselves
now tomgc > 1:

Part (a): For sufficiently small time #y > 0, there exists a real analytic function @ : [0, fp] - R
such that

IP()]2=®(t) foralltel0,1], (2.10)

e.g. see [15, Lemma 1]. Alternatively, the statement can be derived from [ 14, Part I11.§6] or [12,
Theorem 4.3.17].

For the forward direction we assume that B has a finite HC-index m ¢ € N. Hence we are
left to prove that the Taylor expansion of || P(z)||> has the form (2.8). This proof will be split into
two separate parts, the lower and the (technically more subtle) upper bound.

Lower bound: First, we shall prove that there exists ¢; > 0 such that
[Pt)ll2>1—c1t* +O@*T!) ast—0F (2.11a)
or, equivalently,
IP@O)I5=1—2c1t"+ 0@t asr— 0T (2.11b)

holds with @ = 2m ¢ + 1. To this end suppose X is any unit vector such that for some m € N
(not necessarily m =mpgc),

m—1

xocker | S (B ByBI | =ker(T_1). (2.12)
j=0

5 In inequalities, such as (2.11), the Landau symbol O is used in the sense that there exist constants €, M > 0 such that
1Pz =1—c1t® — M 12 forr €0, €).
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which is equivalent to

VBB x0lp=0 for 0<j<m—1. (2.13)

If such an x( exists, we will show for the corresponding trajectory that

2 2m
IP(t)xoll5 =1 — ¢# ! i ( m )<xO, (B*)™ By B™xo) + O(t*"+?2) . (2.14)

Note that our hypotheses allow the possibility that (xg, (B*)™ By B™xg) = 0 in which case we
have simply || P(1)xo3 =1 + O@*"*2).

Now take xq as in Equation (2.12) with ||xo|| = 1, and define ¢ (¢) := ||P(t)xo||2. Standard
theory gives that (see also Equation (1.6))

q'(1) = =2|ly/Bu P(1)%o|1> = —2(v/Bu P ()Xo, v/ B P(1)X0). (2.15)

Using the assumption on Xg, we have that /By P ()Xo = Z,fim i—k!«/BH(—B)kxo. Substituting
this in (2.15) gives

2m o
1
q/(t):—2m<,/BHB"’x0,,/BHB’"xo>+ > etk (2.16)

k=2m+1

for some scalars uy. Since this sequence converges absolutely (The expression in (2.15) is real
analytic), we can integrate this expression term-wise to obtain ¢ (r). Using that ¢ (0) = ||Xo[|> = 1,
we find

2 t2m+l 00

o (VBuB"x0.V/BiB"x0)+ Y ikt 2.17)

Hele—"
() 2m—+ Lml-m!

which shows (2.14).
Now, since the positive conservative-dissipative matrix B is hypocoercive with HC-index
mpgc € Ny, there exists a normalized vector Xg such that

||\/BHBjX0||2=O forO<j<myc—1, and/ByB"1°xy+#0, (2.18)
but none that would satisfy instead also /By B"™#¢xy = 0. Hence, for such xo € ker (mec,l)
the identitX (2.14) holds with m = m g c. Finally, taking the supremum over all initial conditions
Xq € ker (TmHC_l), [xoll2 = 1 (which is a closed set) yields the estimates (2.11a) and (2.11b)
witha =2mgc + 1 and

1 . 2mic
cri=y . in m( )(XOa (B*)"™HC By B"1Cx0)
xoeker (T —1)s IIXoll2=1 muc (2.19)

1 2m
:—‘< HC) _ min (X0, (B%)"HC By B xg) .
Cmpc + DI\ muc / xoeker(Frpyei). Ixola=1
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In the last step we used

B™HCxy = ByB"HC"xg = ... = B}"‘xo, (2.20)

~

since all other terms vanish due to x( € ker (mec,l). Due to (2.18), ¢ > 0.

-2
In the proof of Part (b) we shall actually improve this constant by the factor (zr;”:cc) , see
Lemma A.3.
Upper bound: Second, we prove that there exists ¢ > 0 such that
IPO]2<1—cat® + 0™ty ast— 0F (2.21a)
or, equivalently,
IP(O)I3<1—2ct"+ Ot asr— 0T (2.21b)

holds with a = 2mpyc + 1.° Here, we consider the case myc = 1 whereas the general case
mpc € N is treated in Appendix A.
If matrix B has hypocoercivity index m gc = 1, there exists ¥ > 0 such that

~ muc . .
Tmye= Y (B ByB/ =By + B*ByB>«I>0. (2.22)
j=0
Since myc = 1, B* By B is positive definite on ker(By). For x € C" with ||x|| = 1, we define

Ax:=(X,Bgx) >0, pux:=(x,B*ByBx)>0, suchthatiy+pux>«>0. (2.23)

Note that || P()xol|3 = (x0, Q()Xo) where
oo i J .
QN =P 0 P =ePle P =} ;—J. > (,ﬁ) (=BY'=BYF. @24
j=0"7" k=0

Since | Z/i;o (g)(—B*)k(—B)J—k |, < 2lIBlI2)7, the Taylor series for the matrix family Q(r)
converges uniformly on bounded 7-intervals. Hence we have

IPOIZ=110MN2=10;®)2+ 0@, (2.25)
where Q () denotes the Taylor expansion (2.24), but truncated after the t/-term. Consider

3 2 3

t t t
Q3(t)=z(:)ﬁUj=I+tU1+EU2+§U3. (2.26)
j:

6 In inequalities, such as (2.21), the Landau symbol O is used in the sense that there exist constants €, M > 0 such that
1Pz <1—cat® + M 12 forr €0, €).
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Then, its spectral norm satisfies

1Q3()ll2:= sup [[Q@3()Xoll2= sup (X0, Q3(t)Xo), (2.27)

[Ixoll=1 [Ixoll=1
for sufficiently small ¢ > 0. The latter identity holds, since the self-adjoint matrix Q3(t) satisfies

03(0)=1.

Let x be a unit vector, we estimate each expression (X, U;x), j = 1, 2, 3 separately as
(x, U1x) = —2(x, Byx) = —2Ax using Ax= (X, Byx)>0.
Next, since Uy = 2(B* By + By B), so that by the Cauchy—Schwarz inequality,

(x, Uxx) = 2(x, (B*By + By B)x) < 4|/ Bux|||lv/ Bu Bx|| = 4y/Ax/1ix
using (2.23). In the same way, we derive for U3 = —2(By B> + 2B*By B + (B*)?By) that
(x, Usx) < —4(x, B* By Bx) — 2(x, (By B> 4+ (B*)* By)x)
< —4yux + 41V Bux|l|v Bu B*x|| = —4jux + 4/ Al B B?x]).

Altogether then,

2 2
(X, Q3()X) <1 = 2hx t + 2¢/Ax/Tix 12 — T + gx/AXn\/BHBZn £

m 2 1 2
zl_zt(,@_v "r) — i 4 3Vl VB B .

2

(2.28)

To estimate (2.28), we will distinguish two cases for v/Ax € [0, |[v/B ||]: If v/Ax is sufficiently
small we will use the third term in (2.28) to compensate the non-negative fourth term in (2.28),
while in the other case we will use the second term to do so.

Case a: If

A <a with o :=min (2.29)

<1’ 20 +4||JE32||)) -

then the following estimates hold: Due to (2.23) and /Ax < 1 we deduce that ux >k — Ax >
k — +/Ax which implies that

1 2
(x Q3000 =1 = i 1”4+ SVl B B £ < 1 - 1K_2 B, forr>0.  (2.30)
Case b: If @ < /Ax < ||~/ Bpg]| then we restrict the time interval to obtain a similar estimate.
Using « from (2.29), define

o
fHim ——. 2.31)
VIIB*By B
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Fort € [0, 1], we use 0 < ux < | B*By B]| to derive

\/)TX—V;LX ~ Mx g>0

t>a— Y"1 >
2

Consequently, the expression in (2.28) can be estimated as

2
o 2
(%, Q3(x) <1 = =1+ ZIIVBul Iv/BuB?| £
sl 2 )
<1-1(5 5 = 3IVBul IWBuB)).
1
Then, there exists t, € (0, #1] such that

(x, 03(Nx) < 1 — % £, fortel0,n]. 2.32)
Together the estimates (2.30) and (2.32) as well as (2.25), (2.27) prove the upper bound (2.21b)
witha =3 formgc =1, e.g. with ¢; :=«k/24. For mpgc > 2, see Lemma A.1 in Appendix A.
To sum up, due to (2.11a) and Lemma A.1, there exist constants cy, c2 > 0 such that a =
2mpyc + 1 and

l—cit* + O™ < |PO <1 =t + Oty ast— 0, (2.33)

e.g. choosing c¢1 as in (2.19) and ¢, as in Lemma A.1, respectively. Moreover, due to (2.10),
| P(2)]l2 is analytic on [0, #p]. This implies that the propagator norm satisfies (2.8) for some
¢ € R, which satisfies 0 < ¢y <c¢ <c¢;.

For the reverse direction suppose that (2.8) is satisfied for some constant ¢ > 0 and
an exponent a > 0. Then, as we shall show, for some least finite value of m € Ny, T;, =

>0 Bi; By (B%)’ > 0 has to hold, or equivalently,

m
Ty = Z(B*)jBHBj >0.
j=0

cherwise, for arbitrarily large values of 7 € N, we could find unit vectors X¢ such that
T,,z_ 1X0 = 0, and then by the first part of this proof, we would have for such a vector || P (¢)Xg ||% >
1-— szﬁﬂ + O(IMH) with some ¢z > 0, because of (2.17). But for sufficiently large 71, this
is incompatible with (2.8). Thus we conclude that, whenever (2.8) is valid for any a > 0, B has
a finite hypocoercivity index mgc € No, and then necessarily, a € 2N + 1.

Part (b): So far we have proved that the propagator norm satisfies (2.33), e.g. choosing c|
as in (2.19) and ¢, as the lower bound of ¢ in (A.2), respectively. Using the improved upper
bound ¢ in (A.34) and lower bound c; in (A.2) for the multiplicative constant ¢ we realize that
¢y = ¢ = c1 such that (2.9) holds. In the final identity of (2.9) we used again (2.20) to reveal that
¢ is proportional to BimH €. This finishes the proof. O

For e-dependent ODE systems of the form (1.5), Theorem 2.7(b) implies the following result:
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Corollary 2.8. Consider the e-dependent ODE (1.5) with system matrix B = €A + C where € €
R. If B=¢€A + C is hypocoercive for € # 0, then the coefficient ¢ = c. in the Taylor expansion
of the propagator norm (2.8) satisfies

1
¢ =ce = €MHC min (xg, (A*)"MHCCAMHCxg) . (2.34)

2myc
@mpc + 1)!(mHC) xoeker (T 1), [Xoll2=1

Remark 2.9. As already briefly mentioned in Example 2 of [4], the hypocoercivity index m gc
is upper semicontinuous w.r.t. the matrix B: An arbitrarily small perturbation of B can lower
but not increase the index. This is consistent with the result in (2.8): All Taylor coefficients are
there of course continuous in B. But a small perturbation of B may lower, but not increase the
number a of the first non-vanishing monomial in this Taylor series (beyond the constant 1).

Remark 2.10. Note that the leading exponent in (2.8) can only be odd. This is related to the local
behavior of trajectories that decay the worst (in the vicinity of a stationary point 7o of ||x(¢)]]), see
the yellow curve in Fig. 1, left. Since the system (1.1) is assumed to be conservative-dissipative,
such a trajectory, of course, cannot behave locally like 1 — c(t — 79)* with a even.

Remark 2.11. Special cases of the above theorem were pointed out to us by Laurent Miclo:
In §1 of [17] the short time decay behavior of the Goldstein-Taylor model (a linear transport
equation with relaxation term) was determined as 1 — g + o(¢3). Actually, this model is a PDE.
But since it is considered on a torus in x, each of its spatial Fourier modes (except of the 0-mode)
satisfies a conservative-dissipative ODE system with hypocoercivity index 1 (see [1] for details
of this modal decomposition). Hence, mode by mode, the result from [17] is an example for
Theorem 2.7. For closely related BGK-models with hypocoercivity index 2 and 3 we refer to [2].

In [11] the short time decay behavior of a kinetic Fokker—Planck equation on the torus in x

was computed as 1 — % + o(¢3). Again, in Fourier space and by using a Hermite function basis
in velocity, this model can be written as an (infinite dimensional) conservative-dissipative system
with hypocoercivity index 1 (see §2.1 of [11]). In that paper it was also mentioned that the decay
exponent in (2.8) can be seen as some “order of hypocoercivity” of the generator.

For degenerate Fokker—Planck equations, the hypocoercivity index can also be related to the
regularization rate for short times: In [18, Theorem A.12] the regularization of initial data from a
weighted L? space into a weighted H 1 space is derived, and in [18, Theorem A.15], [8, Theorem
4.8] it is generalized to entropy functionals and their corresponding Fisher informations. In all
these cases the regularization rate is  ~¢ with a = 2mpg¢ + 1 (somewhat related to Theorem 2.7
above).

By definition, the propagator norm of an ODE (1.1) is given as the envelope of the norm of a
family of solutions, see e.g. [6] and Fig. 1. But, maybe surprisingly, even its precise short time
behavior is not given by the norm of any specific solution. This is illustrated in the following

example.

Example 2.12. We consider ODE (1.1) with matrix

(1 =3/10
B_<3/10 0 ) (2.35)
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The eigenvalues of B are A1 = 1/10 and A, =9/10, and the eigenvalues of By are 0 and 1. Thus,
matrix B is hypocoercive with hypocoercivity index myc = 1. Following (the first part of) the
proof of Theorem 2.7, solutions starting in Xo satisfying (2.18) are used to establish the desired
lower bound of the propagator norm. The kernel of By is one-dimensional and it is spanned by
Xp = ((1)) The solution of (1.1) with initial condition x(0) = xg is given by

_1 3 _3 e 1/10
x(t) =g (9 _1) <e9t/10

IxX(O3=5e " — e + 5e P ~1-0.061" +0@1*) fort — 0%

and its squared norm satisfies

By contrast, due to [6, Proposition 4.2], the squared propagator norm satisfies

—Bt 2 -t 1 —_0)2 _ 162 —
le 513 <e 16(\/(ZSCosh(St/m) 9)¢ — 16 + 25 cosh(8¢/10) 9) (2.36)

~1-0.015240@* forr— 0%,

Thus the propagator norm decays slower than the solution starting at the vector xo which satis-
fies (2.18) with mgc = 1, see also Fig. 1.

In fact, the sharp constant ¢ = 0.015 in (2.36) cannot be obtained by any single trajectory,
but rather by a family of trajectories starting at the one-parameter family of normalized initial

conditions, X;, T > 0 emerging from Xo: More concretely, using x; := ( — %—6, I)T /V1+ %
(as constructed in Lemma A.4 below) yields

le B x5 ~1—-0.0157> +O@*) forr— 0T,

Note that we used here the initial conditions x; (i.e. T = t), and that we have %x, (t=0)=
3 0\ —1
(- 2.0 = 1Bx,.
2.3. Numerical illustration of the short time decay and the waiting time to
Next we shall illustrate the decay behavior on two examples of dimension n = 4. In particular
we shall consider the e-dependence of the three phases, the asymptotic phase close to r = 0 (as
characterized in Theorem 2.7), the intermediate phase (characterized by the waiting time #y and

the exponential decay for large time (see (1.3)).

Example 2.13. Consider the matrix family B, := €A + C, € # 0 with

0O O 0 1
0 0 10 i

A=l 2| o ol ¢=dago.0.1.1), (2.37)
-1 0 0 O

which satisfies mgc(Be) = 1.
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Fig. 1. Evolution of (1.1) with matrix B from (2.35): Comparison between the propagator norm (red line), its upper
exponential envelope 1.25exp(—t/10) (green line), and the norm of the solution with initial condition x(0) = (?) (blue

line) and that with initial condition x(0) = (J(%) (yellow line), all plotted on two time scales. (For interpretation of the
colors in the figure(s), the reader is referred to the web version of this article.)
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< \ Y = y
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" \ N\ /
25t | | 5 225 ///
| \ YV
. “ N €=0.70711 V% €=0.70711
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\ . =025 €=025
35 |\ \J €=017678 35 £=017678
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4 - A -40
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log t

Fig. 2. The decay of || Pe(t)||> is given for six values of €. Left: For ¢ away from 0, this semigroup decays almost
exponentially. With the logarithmic scale used here, the horizontal (black) line corresponds to 1/e. The waiting times
(defined as intersection with the line 1/e) behave like 0(672)4 We remark that the kink in the leftmost (blue) curve is
not a numerical artifact. Right: This double logarithmic plot shows 1 — || P¢(t) |2 ~ ce 13 for small time, more precisely
for t € [¢~, €7]. The curves have slope 3, and ce = Ze?. The plot also shows the quite sharp transition from the initial
algebraic behavior 1 — &e2 13 to the exponential behavior ct i€t

Fig. 2 shows the spectral norm of the semigroup Pc(¢) := e B! a5 a function of time and
for several values of € (differing from each other by the factor +/2). The numerically observed
waiting times (to decrease the solution norm by the factor 1/¢) are very close to fo ~ 1/€>. They
increase by a factor of about 2 when passing from € to +/2¢, at least in the asymptotic regime
€ — 0. A close-up of the same figure around ¢t = 0 shows that the asymptotic behavior of the
semigroup norm is like || Pc(¢)]|2 ~ 1 — ce 3 with ¢. = €2, and by recalling that mpgc(Be) =
1 implies a = 3 in (2.8). Following (2.34), the multiplicative factor is ¢ = % (compare with
e.g. [6]).

Example 2.14. This example is analogous to Example 2.13, but for the matrix family B, :=
€A+ C, € #0 with

99



F. Achleitner, A. Arnold and E.A. Carlen Journal of Differential Equations 371 (2023) 83115

0 B
/ , o
5 // / ///
A
1 P /
-10 o
>4 //
_-15 = P, o
i 2 s Y s
= / /
= 2 e A o
& 20 S KA
25 B & |# /
7y A
€=070711 25+, A ———¢=070711
3 \ =05 P =05
=0.35355 4 =0.35355
———¢=025 30 7 ——e=025
90 €=017678 €=017678
\ €=0125 =0.125
4 \ \ > -35
0 50 100 150 200 250 300 -1 0 1 2 3 4

t log t

Fig. 3. The decay of || Pe(t)||> is given for six values of €. Left: For ¢t away from 0, this semigroup decays almost
exponentially. With the logarithmic scale used here, the horizontal (black) line corresponds to 1/e. The waiting times
(defined as intersection with the line 1/¢) behave like O (€72). Right: This double logarithmic plot shows 1 — || P¢ (£)]| ~
cet’ for small time, more precisely for ¢ € [e~ 1, ¢*]. The curves have slope 7, and ce = Z€%. The plot also shows the
6,7

. .. . . . ~ . . —fie2
quite sharp transition from the initial algebraic behavior 1 — ce to the exponential behavior ¢¥ e™#€7 1.

0 1 0 O
-1 0 1 0 ,

A=l o | o 1| ¢=diago,0.0.1), (2.38)
0 0 -1 0

which satisfies mgc(Be) = 3.

Fig. 3 shows the spectral norm of the semigroup Pe(t) := ¢~ B¢/, The numerically observed
waiting times (to decrease the solution norm by the factor 1/e) are very close to fo ~ 4/€2.
A close-up around ¢t = 0 shows that the asymptotic behavior of the semigroup norm is like
| Pc(@)|l2 ~ 1 — cc t” with ¢, =¢€®, and by recalling that mgc(Be) = 3 implies a = 7 in (2.8).
Following (2.34), the multiplicative factor is ¢ = m.
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Appendix A. Auxiliary results to prove short time decay of propagator norm

To finish the proof of Theorem 2.7, we shall prove the following upper bound for the propa-
gator norm:

Lemma A.1. Let the ODE system (1.1) be conservative-dissipative, and let the system matrix B
be (hypo)coercive with hypocoercivity index mpyc € N. Then, there exist constants ¢y, M, tr > 0
such that

le 82 < 1—cot® + Mttt forte[0,n], (A.1)
where a =2mpyc + 1. Moreover, the multiplicative factor c in (2.8) satisfies

1
c>o0 with ¢ := min (x, (B*)™HC By B™HCx), (A.2)

Cmpc + 1)!(2,Z’:CC) xeker (T , Ixll=1

ch*l)

Proof of Lemma A.1. First we note that the hypocoercivity of B implies By # 0 due to (1.8).
Following the proof of Theorem 2.7, we consider ||e~ 5! ||% = Amax(Q(t)) for small ¢ > 0, where

e¢]

e, t
0@) =eBe BtzzﬁUj (A.3)
j=0
with
Uj=<—1>fZ(k)<B*>"Bf’<, satisfying [|Ujll2 < Q[IBll2)/ . j€No. (A4

k=0

To compute Amax(Q(t)) = max|x|,=1 X" Q(¢)X, we consider the r-dependent function g(x; t) :=
x*Q(t)x — 1 with x in the sphere S := {x € C" | ||x||2 = 1}. For a = 2mpg¢ + 1, we denote the
Taylor series for Q(¢) and g(¢) truncated after the ¢ /a! term with Q,(¢) and g,(x; t), respec-
tively. We recall that Up = I and U; = —2By.

Let the matrices U;, j € No denote the coefficients of t//j! in the Taylor expansion (2.24)
and (A.3), such that

i .
Uji= (—l)fZ<J>(B*>"Bf—’<, j €No, (A.5)
’ k
k=0
and note that each U; is self-adjoint. By Pascal’s identity (i) = (i:}) + (j ;1) with the usual
convention that (_Jl) = (j_{l) =0,
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i .
Z(J)(B*)kBj—k

k=0

J 1 '
Bllere e

P k

k 0 k

j—1 j— j—1 i1
— EN2°% j—1—k __ - #\k j—1—k
=2 < ' )(B)(B + B)BJ _2;;< . )(B)BHBJ :

Consequently,

j—1 .
. —1 ,
Uj=(-1)72) :(J . )(B*)kBHBJ—‘—k, jeN. (A.6)
k=0

First we outline the strategy of the proof, say for the case myc =1, i.e. a=3: If x €
ker(U;) = ker(By) with x|l = 1, then (2.18) with xg = x holds. Since mpyc =1, B*By B
is positive definite on ker(Bg). Consequently, x*Upx = 0, x*Usx < 0, such that g,(x;t) =
;—S!X*ng < 0 for t > 0. By contrast, if x ¢ ker U;, we have x*U;x = —2x*Byx < 0. Hence,
for x ¢ ker Uy,

ga(x;1) = —ét + O@?) < —ét® fort — 0T

follows for some ¢, ¢ > 0 that depend on x. Since g,(x;t) depends continuously on x, it is
possible to combine these two estimates with a constant ¢ that is independent of x € S. Since
(kerUp)¢ N S is not compact, we do not obtain a uniform estimate “automatically”. So, the
key aspect is here to obtain a uniform decay estimate for x “close to ker U;”, in the sense that
—e <x*U;x<0.

Step 1. Matrices with hypocoercivity index mpyc = 1. We suppose that matrix B has hypocoer-
civity index mgc = 1, i.e. there exists x > 0 such that

myc
muc = (B ByB/ =By + B*ByB >xI>0. (A7)
j=0

~R

Since mpyc = 1, B* By B is positive definite on ker(Bg). Our goal is to estimate g(x;¢) on S.
For x € S, we define

Axi=(X,Bpx) >0, pux:=(x,B*ByBx)>0, suchthatiy+pux>x>0. (A.8)

Step la. Consider |X eSwith Ay <6 | where § € (0, k) will be chosen later and ¥« > O such

that (A.7) holds. The key idea (to estimate g(x; ) for ¢ € [0, 1]) is to collect the terms ¢/ of
order j less than a = 2mpyc + 1 = 3 in a quadratic form which is non-positive. Therefore, we
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use (A.6)and Lemma A2 withU = (—B)*,V=U|, W =—Bandm =mpygc — 1 =0, to rewrite
g(x;1) as

o]

g(x; t)_x*(zt—j U,)

!
=1/

~.

j -1

=Y S R U =By

j=1 k:O
- k - 1 Lo pyt
(g(kJrl)'t (—B)*x) )Ul(gmmr( B) x)

3 o0 ] j*2 _1
+%@‘l‘((_B)X)*UI(_B)HZﬁ;(Jk )A“i« B Uy (—BY 1
J= =

The first term is non-positive since U} = —2By < 0. The second term is retained. The third term
can be estimated from above by My t* with My := 2?14 %(2||B||2)J by using (A.6), (A.4), and

A(l) < 1. Altogether, we derive the estimate

1
g(x: 1) < = ((BX)"U1 BY) B4 Myt = —% B4 Myt (A.9)

To establish a uniform negative upper bound for (Bx)*U; Bx for x € S with Ay < J, we use
(A.8)todeduce ux >k —Ax >k — 6 > 0since é € (0, k). For § € (0, k), define

W= min  pux= min (X, B*By BX) (A.10)
xS with Ax <8 x€S with Ax<§

such that s >k — 8§ > 0 and

po = lim ugs = min (x, B* By Bx). (A11)
80 xeker (To), [|x[|=1

Then, we derive from (A.9) that

g(x;1) < —%ﬁ + My t* forall x € S with Ax <8 and 7 € [0, 1]. (A.12)

Step 1b. Consider |X € S with Ax > 8| where § € (0, «) will be chosen later and x > 0 such
that (A.7) holds. For r € [0, 1], we deduce

e¢]

t '
e(x; 1) ::X*(Z U,)x_tx U1X+Z—x Ujx< 2ot + My 12, (A.13)
£ j1 j!
j=1 j=2
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since |Zj<;2'j—"! X*U;x| < t*M, with M, := 2712% || Bll2)7. Then, —2Axt + Mat? < —Axt
for all 0 <t < Ax/M5. For any given ¢ > 0, the estimate —Axt < —ct3 holds if 0 <t < JAx/c.
Define 5 := min{d/ M3, </§/c, 1}. Then, we derive

g(x;t) < —ct®  forallx € S with Ax > 8 and ¢ € [0, 75]. (A.14)

To sum up, choosing any § € (0, k), the estimate (A.12) is derived. Then, for ¢ := pu;s/3!,
there exists a (sufficiently small) #5 > O (as defined in Step 1b) such that the estimate (A.14)
holds. Consequently, we obtain

g(x;1) < —%ﬁ £ Myr* forallxeSandr €0, 1], (A.15)

This shows (A.1) with ¢3 :=¢/2=pus/(3!2) and a =2mpgc + 1 =3.

Step 1c. To prove the second statement in Lemma A.1, we improve the estimate of ¢ as follows:
By definition, the time f; satisfies limgs_, o f5 = 0. To derive (the sharp) lower estimate (A.2) on
the multiplicative factor ¢, we consider the Taylor expansion (2.8) of the propagator norm, use
estimate (A.15), and take the limit § — O:

—Bts2 _ 1 .
e i .
e tim ) 3”2 = lim g(Xz L (— LIy Y ta) S (A.16)
5§—0 15 8=0 13 §—0 3! 3!
Hence, we identified a lower estimate for the multiplicative factor c in (2.8) as
Ho 1 . N
c>—=— min (x, B* By Bx). (A.17)

T2 32 sk (T). Ixl=1
This finishes the proof of the second statement in Lemma A.1 in the case mpyc = 1.

Step 2. Matrices with hypocoercivity index mgc > 2. For matrices B with hypocoercivity in-
dex mpyc > 2, i.e. there exists « > 0 such that

mpc ) )
muc = (B ByB/ >kl >0, (A.18)
j=0

~a

we generalize this procedure as follows: We define, for x € S,

Ax = (% oo 1X) =0, pix = (X, (B¥)™HC By B™HCx) > 0,  such that Ay + x> & > 0.
(A.19)

Step 2a. Consider |x eSS with iy <4 | where § € (0, k) will be chosen later and ¥« > 0 such
that (A.18) holds. For ¢ € [0, 1], we derive as in Step 2b (see (A.27) below):

(B™HEX)* U1 B"HCX 5,41

g(x;1) < + Moy ey t2mHCT2
@muc + 1)!(3e) A20)
2 2 1 2 +2 .
__ Ut myc+ + Mo oa t MHCTZ
2 HC
@muc+ ()
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with Moy 042 1= Z(/)'iZchH %(2” Bll2)/ > 0. To establish a uniform negative upper bound for

—ux for x € § with Ax < §, we use (A.19) to deduce ux >k — Ax >« — & > 0 since § € (0, k).
For § € (0, k), define

s = min g = min  (x, (B*)"HC By B™HCx) (A.21)
xS with Ax <8 XS with Ax <8

such that us >k — 8§ > 0 and

o = alg% s = min (x, (B*)™HC By BHCK) (A.22)

xeker (T py0-1)- [IX[|=1

Then, we derive from (A.20) that

g(x; 1) < —c t2MHCT L My, o tPMHET2 forall x € S with Ay < 8 and 7 € [0, 1],
(A.23a)
where
2
ci= TR (A.23b)
Qmpc +1)! (ch)

Step 2b. Next, we shall show the following statement: Consider | x €S with Ay > 8 | where k > 0
such that (A.18) holds. For given ¢ > 0, there exists #5 > 0 such that

g(x;t) < —c ™t forall x € S with Ax > 8 and 7 € [0, 15]. (A.24)
First, we decompose the sphere S into the (non-disjoint) closed subsets

Co:={xeS|x*Ux < —¢},
Ci:={xe8S| —e<x*Uix A (BX)*U;Bx < —¢},

Cr={xeS| —e <x*Uix A —e < (BX)*U;1Bx A (B>X)*U;B*x < —¢},

Cp:={xeS|Vkef0,....m—1}: —e < (B*X)*U B*x A (B"Xx)*UB"x < —¢},

Conype—1:={x€S |Vke{0,...,mpc —2): —e < (B*x)*U; B*x

A (BMHCTIxy*y BT g < e},
(A.25)

aswell as Cpppye :i={x€S | Vke{0,...,mpugc —1}: —€ < (B¥x)*U\ B*x }, for some positive
parameter € to be determined next.

We show that there exists € > 0 such that C,, ;. € {x € S | Ax < é}: Consider x € Cy, ;.. Then,
X satisfies
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€/2> (x, BBy B*x) fork=0,...,mpc—1,

which (upon summing up) implies that

ch—l ~
muce/2= (x, ) (B ByB* %) = (x, Tiyc—1%) =x .
k=0
Choosing
268 .
€:=—— implies Cpp S{xX€S | Ax <6}. (A.26)
muyc

Hence, the already established estimate (A.23) holds in particular for x € C,,,, and ¢ € [0, 1].
Using Uch—l C; 2 {x eS| Ax > &} (as the complementary inclusion of (A.26)), we are left to

prove the estimate (A.24) for all x € UmHC ! Cj:

For all £ € {0,...,myc — 1}, m and t € [0, 1], the key idea (to estimate g(x;t)) is
to collect the terms tJ of order j less than 2¢ + 1 in a quadratic form which is non-positive.
Therefore, we use again (A.6) and Lemma A2 withU = —B*,V =U|,W=—Bandm =¢—1,
to rewrite g(x; t) as

s = (L5 0
Zt—,i TR ) Ui (-By T x
purl et
{—

Z [2]+1 1 ( o0 2j+D! (k-l—j)t (( B)k+jx) )
2j (k+2j+1)!
= G+ )\

(A.27a)
oo
2j+D! (k+ k+
X Ul( (k+/2]+1)'( j)t (=B) JX)
k=0
20+1
! 26\ A © ¢ ¢
+m<g> 20410 ((—B) x)"Ui(—B)°x
° [J - ) ,
— Z ( )A};{((—B)kx)*Ul(—B)f—k—lx.
j=2e42 77 k=
The first term is non-positive since Uy = —2By < 0. The second term is estimated using the

. . . -2 . .
assumption x € C; and the identity Ag? Te= (2@2) . The third term can be estimated from above

by Maeya 1242 with Magya := 335, (21 Bll2)7 > 0 by using (A.6), (A.4), and Af,‘f,{ <1
for 0 <€ <k < j— £ — 1. Altogether, we obtain the estimate

. € 2041 2042
L0 ) e —— T YR (A.27b)
e+ 1% i
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For given ¢ > 0 (e.g. as in (A.23b)), there exists 7y > 0 (depending on €, with lim._,of, = 0)
such that

g(x;t) < —c 2™t forallx e Cpand 1 € [0, 7). (A.28)
Choosing € = 28/mpgc as in (A.26) (such that UmHC IC' D{xeS|Ax>38})and
ts ::min{fg, £=0,....,mygc—1}, (A.29)

implies the estimate (A.24).

To sum up, for any fixed § € (0,«), the estimate (A.23) with multiplicative constant ¢
in (A.23b) is proven in Step 2a. Then, for € = 25/mpyc and c in (A.23Db), there exists a (suf-
ficiently small) z5 > O (as defined in (A.29)) such that the estimate (A.24) holds. Consequently,
we obtain

215
Qmpc + DI(rHC)

myc

g(x;1) < — MHET L My o tPMHET2 forall x € S with 7 € [0, £5].
(A.30)
This shows (A.1) with ¢ := ¢/2, ¢ as defined in (A.23b) and a = 2myc + 1. This finishes the
proof of the first statement in Lemma A.1 for mpyc € N.
Step 2c. To prove the second statement in Lemma A.1, we improve the estimate of ¢ as follows:
By definition, the time 5 depends on & (since € = 2§/m g ¢) such that lims_, o 5 = 0. To derive the
(sharp) lower estimate (A.2) on the multiplicative factor ¢, we consider the Taylor expansion (2.8)
of the propagator norm, use estimate (A.30), and take the limit § — O such that

pe— tim MM = L _ 215 M y
—Z2c=1m —— m —
50 t62m1-1c+l ~ 50 Qmuc + 1)'(221::) 2mpc+2 15
2
- “0' — (A31)
QCmpyc +1)! (ch)

This proves the lower estimate (A.2) for the multiplicative factor ¢ in (2.8). O
The proof of Lemma A.1 uses the following identity:

Lemma A.2. Let U, V, W € C"*". For all m € Ny, the following identity holds

j il

t .

j 1 k j—k—1
_j' kE U Vw
J:] =0

Mg

l‘2]+1

=z o (2j+ D! (k4N ke
Z<2J+1)' g (Z<k+2]+1)'( j )tU Y

j=0
: Tzt
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t R NS S
+ > 3 > < L )Aj,k ukvw , (A.32)
j=2m+3 k=m+1
Ky (j—k—1
where AY'Z) %forallmﬁkandm <j—k—1

Proof. We will prove the identity by induction. For m = 0, we have to prove the identity

oo i j—1

tj
305wt
]=1‘] k=0

00 00 00 lj j—2
_ 1 L kyk 1 byt t jlk(]kl)k k-1
—’<Z<k_+1)!f U )V(Z(un!t W>+Z]| Jwing-mU VW

k=0 (=0 =37 k=

since AV = GO — KU—k=D_ The first term on the right hand side can be written by the
T EYEH T @GR & y

Cauchy product formula as

o0 o0
1 krrk 1 Lyl
t(Z(k_+l)!t U )V<Z<£_+1>!t W)
=0

k=0
J 00 J

= J - j+1 1 k 1 j—k

’Zt Z<k+1>' Vg W 7 =20 U gt

j=0 k=0 j=0 k=0

> 1 ko j—k—1 _ o 1/ 1_1 J—k—1
:Z_. &= U VW Zj Vg U VYW

j=17" k=0 k=0

2 g o -l
_ o ] 1\ 77k j—k—1 k Jj—k— 1
=> T JUrVW +Z]|Z )@l VW

=17 k= j=3"7" k=0

Therefore,

00 o0 J
k ¢ t/ 1 RS SN k-1
(z) (ZW)Z 2f skt ity
k=0

—_

2 - © j—1

j 1\ g7k —k—1 j—1 k j—k—1
ZT Jutvwi= +ZFZ( V@G U VW
j=1 k=0 j=3""k=0

~

o0 j]—2

t
+ 25 2 U adsn vt v
k=1
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i X_: j—1 UkVW] —k— 1

We assume that the formula holds for m € Ny and prove it for m + 1. First, we use again the
Cauchy product formula to derive

£2m+3 1 0 s

2m+3)! (k+m+l)t Uk+m+1 v (2m+3)! (Z+m+1)t WZ+m+1

2m +3)! (2m+2) (k+2m+3)I'\ m+1 @+2m+3)!1\ m+1
m+1 k=0 =

2m+3

£2m=-3 Z Z _(@2m+3)! k+m+l)Uk+m+1V _(@m+3)! (/ k+m+l)Wj —k+m+1
(2m+3)v 2m+2 (k+2m+%)' m+1 G—k+2m+3)I\ m+1
J =0 k=

00 i+ J

Z poms Z (+2m+3)!  (2m+3)! (k+m+l)Uk+m+1V (2m+3)! (J k+m+1)W1 —k+m+1
(j +2m+3)| (2m+3)'(2’"+2) (k+2m+3)! (j—k+2m+3)! m+1

=0

~.

00 j j—2m-3
_ Z t Z ! 2m+3)! (k+m+l)Uk+m+1 (2m+%)'(j —k—m— Z)Wj—k—m—2
- j! (2m+3),(2m+2) k+2m+3)'\ m+1 G—h)! m+1
Jj=2m+3 k=0

len2

(2m+3)! (2m+3)! J—k—1\; 7k —k— 1
Z ]| Z (2m+3),(2m+2) (k+m+2)'(m+]) (G- k+m+1)'( m—+1 )U VWJ
j=2m+3 k=m+1

Therefore,
27 (s LD (kg )y
par (21+1)|(21) —~ k+2j+ 1! J

y i 2j+D! (z‘i‘j)tzweﬂ
L@t 2j+ DI\

00 —m—
Ly

o7 3j_1 (m+2) 7 7k i—k—1
- > (k:>ALk utvwi—*=

il
j=amts ! k=mi2
2j+1 00 ; ;
t 1 2j+ D! [k .
ereanrerl P e W A
Z Qi+ Y\ G h+2j+ DI\

0
N QDY (G g
(S (7w
—~(E+2j+ DI\

t i
r j! @m+3)! @m3)!_ (j—k=1\ kv i—k=1
+ Z ]' Z (2m+'§)'(2m+2) (k+m+2)'(m+l) (j— k+m+l)‘( m+1 )U Vw
j=2m+3 k=m+1
00 lj j—m-=3 ,. 1 .
P 58 (e a5

|
j=2m+5J k=m+2
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+2 +1) (k—=m—1)(j—k 2
Using A(m ) = AY’;C ) Ek+2+2;8 k+$+1; we deduce that (A.33) equals:

_i 20 i (2j-i.-1)! (k-',.-j>tkUk+j v i (2,'7.;1)! (HJ)#WH]-
(2]+1)'(21) S k+2j+ DI S E+2j+ DI\

[ i j—m—=2 '
11 (m+) (2m+3)j k j—k—1
> il Y U ot U v w
j=2m+3 """ k=m+1
o) j—m=3
Z t Z jl (rr;j—l)(k m—1(—k—m-— Z)UkVWj_k_l
l Js —
P k+m+2)(j—k+m+1)
% 20+ (% Q)+ 1! <k+1)l U"*J)v(i Q)+ 1) (z+j>tewe+j)
! 2/ i | : | .
S i+ A\ k2 + DI S @+2j+ DI\
Z f’jz (m+1)Ukij k=1
ll
j=2m+3 k=m+1
oo j—1
[J . .
SO NINRTT
J!
i=1 k=0

where we used the induction hypothesis, i.e. (A.32), in the final equality. This finishes the
proof. O

To determine the optimal multiplicative factor ¢ in (2.8) (see Theorem 2.7(b)), we shall next
derive an improved upper estimate for ¢, compared to (2.19):

Lemma A.3. Let the ODE system (1.1) be conservative-dissipative, and let the system matrix B
be (hypo)coercive with hypocoercivity index mgc € N. Then, the multiplicative factor c in (2.8)
satisfies

1 .
c<cy with ¢y := min (BM™HCxq, By B™HCXq).

QCmpc + 1)'(,21:(30) xoeker (T pye—1)s IXoll2=1

(A.34)

Proof. As illustrated by Example 2.12, see also Fig. 1, the propagator norm is in general not
determined by the norm of one specific solution. Instead we consider a parameterized family of
solutions pertaining to initial values x;, 7 € [0, 1]:

Due to Lemma A .4 below, for xq € ker( m Hc—l) (with ||xg||2 = 1), there exist real constants
by, £=1,...,mygc such that

mpc
X; :=Xo + Z b[‘L’eBeX()
(=1
satisfies
g(X¢; T) = —2¢1 (Xo) T L Oty for T €0, 1], (A.35)
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with ¢1(xo) defined in (A.40) and lim;_,¢ X; = Xg. To normalize the family of vectors x;, T €
[0, 1] we define

%, = (A.36)
Ixz[l2

still satisfying lim;_,0X; = Xg. For t € [0, 1], we estimate the propagator norm as

2
—Br |2 —Bry |2 _ Heigrxf ”2
e = el =
=||Xr||§+g(xr;f)= _ 5 C1X0) omyet w (A.37)
1% 112 Ix. |13 Ixc 13

where we used definition (A.20) and (A.35). To derive a bound for the multiplicative factor ¢
in (2.8), we consider the Taylor expansion (2.8) of the propagator norm, use estimate (A.37) for
T > 0, and take the limit T — O such that

—_Br |2
. e -1 . X3 T
—2c=1Ilim —” ”2 > li —g( k)
>0 Tl T s |x |3 o2mact]
. c1(xo)  O(1)
= lim (—2 7+ 3 = —2c1(xp).
=0 ”Xr”z ”Xr”z

~

Hence, ¢ < c¢;(Xg) for all normalized vectors x( € ker (Tm Hc—l)- Taking the minimum of ¢ (Xp)

over all normalized vectors Xg € ker (Tm He— 1) yields the upper bound for the multiplicative
factor ¢ as given in (A.34). This finishes the proof. O

The proof of Lemma A.3 uses the following construction of a vector function:

Lemma A.4. Let the ODE system (1.1) be conservative-dissipative, and let the system matrix B

be hypocoercive with hypocoercivity index mgc € N. Then, for each X € ker (fm He— 1), there
exists a polynomial vector function x; € C", t € [0, 1] of the form

myc

X; =X + Z b(fe Bexo, for a suitable choice of by e R, £=1,...,myc, (A.38)
=1
such that
o
* v/ a a+1
¢(Xp: 7) 1= x,(z = Uj)x, — 201 (x0)T + Oy forTel0,1], (A.39)

j=1
where a =2mpyc + 1 and

|v/BaB" x5
Q@mpc + D! (27HC)

mgc

c1(xq) := . (A.40)
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Proof. For x € C" and t € [0, 1], consider g(x; 1) := x*(ZC;OI il Uj>x using U; in the

form (A.6). Following Lemma A.2 with U = —B*, V =U;, W = —B, and m = mpg¢c — 1,
we rewrite g(X; ) as

g(x; 1) = Z Z (e NE=B 0 Ui (=B ™ x

j=1 k=0
myc—1 2j+1 ( o0

T 1
_ Z L 2j+1)! (k+j) k(( B)k+jx)*>
- i | (2] Z (k+2j+DI\
j=0 (2]+1)(1) k=0

o

Qj+D!  (k+ k+
X( o )t (—B) ]X)

k=0

2mpc+1 2
T mgc
* QCmpyc +1)! <mHC )Agsfllicc)ﬂ,mﬂc (=B)Y™x)* U (=B)""x

00 j Jj—mpgc—1 -1 .
+ > > ( L )Agﬁﬂc)((—B)kx)*Ul(—B)J—"—lx
J=2mpc+2 k=mpgc

Jt

00 2

@ADL (k+7y ki gykt
vBH( a7 EB ’X)

k=0

ch—l 1

T
JZ=(:) 2j+ 1! (2]/) 5

PSSl |VBuB x| + O mHe ) (A41)
(2m 1)' (zch) 2 ’ :

mgc

using that U; = —2Bp is a negative semi-definite Hermitian matrix, and the identity

-2
AbmHC) _ 2muc
2myc+1l,myc myc ’

to rewrite the first and second term, respectively. The third term in (A.41) can be bounded by
Mo e 2 THCH2 with Mopye 2 3= 330,010 71 2IBII2) > 0, using that AV} <1 for
O<mpyc<k<j—mpygc—1landrt€[0,1].
Step 1. To estimate the second term in the last identity of (A.41) for x = x;, we use a polynomial
ansatz for x;:

For 7 € [0, 1], we consider the ansatz

myc ~

X; 1= Z ‘L'eX[ with the given xq € ker( myc— 1)

andsomex; € C", £ =1, ..., mpyc to be chosen. (A.42)

Then, we observe that

112



F. Achleitner, A. Arnold and E.A. Carlen Journal of Differential Equations 371 (2023) 83115

mgc

[VBuB x|y = [VBuB" ¢ 3 w'xelly = [VBuB ™ <x0[;+0().  (A43)
£=0

such that the second term in the last identity of (A.41) satisfies

1.2ch+1

-2 ey VBB oxe

Cmpyc +1)! (

r2myc+l

ch)

=2
Q@mpc + 1! (2HC)

myc

|v/Br B"Hexo |2 + O (e ), (A44)

Step 2. To estimate the first term in the last identity of (A.41) for x = x,, we refine the
ansatz (A.42) for x; as follows:
Consider (A.42) with

x¢ :=beB%xg, withsome b, € R, £=1,...,mpc to be chosen. (A.45)

We shall construct the coefficients by € R, £ =1, ..., mgc and set by := 1 such that the first
term in the last identity of (A.41) satisfies

myc—1 - 1 00 2
./ @j+D! (ki k+j_ pyk+) _ 2myc+2
2 2j+ D! (¥) BH( a8 x,) =0T, (A46)
j=0 j k=0 2
Each term in the outer sum is non-negative. Therefore, for j =0, ..., mpyc — 1, we consider each
oo mgc 2
2j+D)! (k+j i i
Sj = ”,/BH ( abrm (T =By ber‘B%) (A47)
k=0 =0 2
separately, and construct by, £ =1, ..., mpy iteratively such that §; = (’)(rzmH ¢ ‘H).
Starting with £ = 1, we determine by = by by considering S;,,-—¢ = Smyc—1: Using
VBuxo=...=~ByB" " xy =0, (A.48)

we can rewrite Sy, -—1 as

o0 myc 2
_ Cmyc—1)! (k+mpyc—1\_k+mpyc—1 k+mpgc—1 L pt
Smnc=1 = |V B\ ) @¥zmge=tn  myet1 )7 (=B) D bet'Bixo
k=0 £=0 2

- H v BH<thcil(—B)chflb1fBX0

2
@mpc=1)( m +1
+ G (i€ )T HE (= B)"HCx0 + O ("€ )) H2

— p2muc
- @mpc)! \mpc—1

VB (b — ey ( me ))(—B)mHCXOHE—FO(‘EzmHC'H). (A.49)
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Choosing
. @myc—D!'( mpc \ _ 1
by = Q@mpc)! (mHC—l) =2 (A.50)
yields Sy, o1 = O(z¥mHctl),
Subsequently, for £ =2, ..., mpc, we determine by by considering S, ,.—¢ and using (A.48):
S @mye—20+D)! ket ok O ik e ?
- - m — — —
SmHC,g=‘\/BH<Z 7(“2'71&_%“)!( mHIéC—z JyritmHC—t(—pytmCc =t 3 bprPBPx())
=0 p=0 2
2 2¢+1)! 2
‘ (Z (k(+';r715c 27+)1)' (k;:[é(i )t k+mHC_e(—B)k+mHC_ebe—kf[_kBe_kX()) +OEmHCH)
2
¢ 2, 20+1)! ?
= ¢2MHC \/E( Z J—(k(-#r;riIHg—Zz%—)l')! (kjnylr;léc_;e)bsz(—l)eik>(—B)mHCxo +O@EMMHCT]),
=0 2
Using b, p =0, ..., £ — 1 from the previous steps, and choosing
¢
— (10 Cmpyc—=2¢+1)! (k+mpc—L _1\¢{—k
=—(=D Z (k+2ch—2£+1)!( myc—t )bl—k( D (A5
k=1

yields Sy, yc—¢ = O(z¥mactly, Choosing these by, we have verified (A.46). Thus, using the
ansatz (A.38) for x; implies that g(x;; ) from (A.41) equals the r.h.s. of (A.44). This proves
that the identity (A.39) holds for t € [0, 1]. O
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