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Abstract

We consider the class of conservative-dissipative ODE systems, which is a subclass of Lyapunov stable, 
linear time-invariant ODE systems. We characterize asymptotically stable, conservative-dissipative ODE 

systems via the hypocoercivity (theory) of their system matrices. Our main result is a concise characteri-
zation of the hypocoercivity index (an algebraic structural property of matrices with positive semi-definite 
Hermitian part introduced in Achleitner, Arnold, and Carlen (2018)) in terms of the short time behavior of 
the norm of the matrix exponential for the associated conservative-dissipative ODE system.
 2023 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we shall use hypocoercivity techniques to characterize the short time behavior 
of linear time-invariant ODE systems of the form

x′(t) = −Bx(t) , (1.1)
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with matrices B ∈ C
n×n whose Hermitian part BH := (B + B!)/2 is positive semi-definite,1

such that −B is a conservative-dissipative (or semi-dissipative) matrix, see Definition 1.1 below. 
An extension to stable systems of the form (1.1), i.e. matrices B having their spectrum in the 

closed right half plane where, additionally, purely imaginary eigenvalues are non-defective,2 are 

discussed in the parallel article [5].
Concerning the short time behavior of the propagator P(t) of (1.1), given by the fundamental 

matrix P(t) := e−Bt , we shall be interested in estimates on the spectral norm of the matrix 

exponential e−Bt of the form

‖P(t)‖2 = 1 − c ta +O(ta+1) for t → 0+ , (1.2)

where c > 0 and a ∈ N . For practical reason, we shall refer to the spectral norm of the matrix 

exponential e−Bt as the propagator norm. The large time behavior, including conditions guaran-
teeing exponential decay estimates of the form

‖P(t)‖2 ≤ c e−µt , t ≥ 0 , (1.3)

with some c ≥ 1, and µ > 0 will be discussed in the forthcoming article [3].
Following [18], the matrix B is called hypocoercive if (1.3) holds, and B is coercive if and 

only if ‖P(t)‖2 ≤ e−µt for some µ > 0 and all t ≥ 0. For the intermediate time regime we shall 
be interested in a waiting time t0 such that all solutions will have decayed (at least) by a factor 
1/e, i.e.

‖P(t)‖2 ≤
1

e
, t ≥ t0 . (1.4)

Here we shall include numerical evidence on this intermediate time regime; a detailed analysis 
will be provided in [3].

Our interest in systems (1.1) is motivated by non-equilibrium statistical physics and, in par-
ticular, kinetic theory. There, a frequently encountered class of linear equations has the form

∂

∂t
f (t, x, v) = −v · ∇xf (t, x, v) + Qf (t, x, v) ,

where Q is a linear operator, the so-called linearized collision operator, describing changes in 

velocity resulting from binary collisions. Take the domain of the x variable to be a d–dimensional 
torus T of side-length L. The operator v · ∇x , called the streaming operator is anti-Hermitian on 

a weighted L2-space on T × R
d , whereas Q is negative semi-definite on the same weighted L2-

space. Concerning examples we refer to [10, §1.4], [1,2] where a modal decomposition (in x) of 
kinetic BGK-type equations3 led to ODE systems like (1.1); in the case of continuous velocities 
it actually led to “infinite matrices” B . In the follow-up paper [9] a spectral decomposition of 
Fokker–Planck equations allowed for a precise analysis of their short time behavior in the spirit 
of (1.2).

1 We use the following notation: The conjugate transpose of a matrix B ∈ Cn×n is denoted by B! . Positive definiteness 
(resp. semi-definiteness) of Hermitian matrices is denoted by B > 0 (resp. B ≥ 0).

2 An eigenvalue is non-defective if its algebraic and geometric multiplicities coincide.
3 named after the physicists Bhatnagar–Gross–Krook.
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Very often, one is interested in initial data f0(x, v) for the equation that are nearly constant on 

spatial scales much smaller than L, where L is large, so that v ·∇xf (t, x, v) will be of order 1/L. 
Finite dimensional approximations of such systems result in systems of ODEs of the form (1.1), 
where its Hermitian part BH is positive semi-definite. Hence it is often natural to write (1.1) in 

the form

x′(t) = −εAx(t) − Cx(t) , (1.5)

where ε ∈ R, A ∈ C
n×n is anti-Hermitian, and C ∈ C

n×n is positive semi-definite Hermitian. 
The systems (1.1) and (1.5) are related via BA = εA and BH = C, where BA := (B − B!)/2
denotes the anti-Hermitian part of B . One is then led to study the asymptotics of the solution as 
ε → 0. This is often referred to as asymptotic limit.

The main goal of this paper is to give a concise interpretation of the hypocoercivity index (an 

algebraic structural property of the matrix B , introduced in [2]) in terms of the exponent a in 

short time estimate (1.2).
The rest of this paper is organized as follows: In the remainder of §1 we define and charac-

terize conservative-dissipative ODE systems and hypocoercive matrices. In §2.1 we give three 

equivalent definitions of the hypocoercivity index of a matrix and three corresponding Kalman 

rank conditions. Our main result, Theorem 2.7, gives a sharp characterization of the hypocoer-
civity index of a matrix B in terms of the short time decay of the spectral norm of the associated 

matrix exponential e−Bt . It is presented in §2.2, while technical parts of the proof are deferred to 

Appendix A. Finally, §2.3 gives a numerical illustration of Theorem 2.7.

1.1. Conservative-dissipative systems of ODEs

It is well known that the null solution x(t) + 0 of a linear system (1.1) is (Lyapunov) stable if 
all eigenvalues of −B have non-positive real part and the eigenvalues on the imaginary axis are 

non-defective, and the null solution x(t) + 0 of (1.1) is asymptotically stable if all eigenvalues 
of −B have negative real part. For practical reasons, if the null solution x(t) + 0 of a linear 
system (1.1) is (asymptotically) stable then we will call (1.1) an (asymptotically) stable system.

Consider a linear system of ODEs (1.1) with matrix B ∈ C
n×n. Then the derivative of the 

squared Euclidean norm of a solution x(t) satisfies

d

dt
‖x(t)‖2

2 = 〈−Bx(t),x(t)〉 + 〈x(t),−Bx(t)〉 = −2〈x(t),BH x(t)〉. (1.6)

Therefore a sufficient condition for B to generate a stable system (1.1) is that its Hermitian part is 
positive semi-definite.4 This fact and the importance of this subclass of stable systems in kinetic 

theory inspires the following definition:

Definition 1.1. A matrix −B ∈ C
n×n is called dissipative (resp. conservative-dissipative or semi-

dissipative) if the Hermitian part of −B is negative definite (resp. negative semi-definite).
For a (conservative-)dissipative matrix −B ∈ C

n×n, the associated system of ODEs (1.1) is 
called a (conservative-)dissipative ODE system.

4 However, the Hermitian part of a matrix B pertaining to a stable system does not have to be positive semi-definite; a 
different equivalent norm will generally yield a different sufficient condition.
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For practical reasons, a matrix B ∈ C
n×n is called positive conservative-dissipative if the 

Hermitian part of B is positive semi-definite.

This conservative-dissipative property of a matrix B is invariant under unitary transforma-
tions, but it is not invariant under similarity transformations (see [5] for details). Let λBH

min and 

λ
BH
max denote the least and the greatest eigenvalues of BH , respectively. By the Rayleigh-Ritz 

variational principle

λ
BH

min = min
‖x‖2=1

〈x,BH x〉 and λ
BH
max = max

‖x‖2=1
〈x,BH x〉 .

It follows immediately that

λ
BH

min ≤ min{.λ : λ ∈ σ (B)} ≤ max{.λ : λ ∈ σ (B)} ≤ λ
BH
max . (1.7)

1.2. Hypocoercive matrices

In the introduction, matrices B ∈ C
n×n are called hypocoercive if the associated propagator 

P(t) := e−tB satisfies (1.3) for some c ≥ 1 and µ > 0. In other words, B is hypocoercive if (the 

null-solution x(t) + 0 of) the associated linear system (1.1) is exponentially stable. For linear 
time-invariant systems (1.1), exponential stability is equivalent to asymptotic stability (i.e. all 
solutions approach the origin in the large time limit), which is equivalent to the condition that 
all eigenvalues of −B have negative real part. Starting with the classical notion of a coercive 

operator/matrix, we characterize hypocoercive matrices as follows (see e.g. [2]):

Definition 1.2. A matrix B ∈ C
n×n is called coercive if its Hermitian part BH is positive definite, 

and it is called hypocoercive if the spectrum of B lies in the open right half plane.

Hypocoercive matrices are often called positive stable. We use the notion of hypocoercivity 

to emphasize the link to the analogous situation in partial differential equations, see [2,8,18].
It is well-known, see (1.7), that for positive conservative-dissipative matrices B ∈ C

n×n, the 

spectrum of B lies in the closed right half plane, but there may be purely imaginary eigenvalues. 
In this case, the existence of purely imaginary eigenvalues can be characterized as follows:

Proposition 1.3 ([16, Lemma 3.1], [2, Lemma 2.4 with Proposition 1(B2), (B4)]). Let B ∈ C
n×n

be (positive) conservative-dissipative. Then, B has an eigenvalue on the imaginary axis if and 

only if BHv = 0 for some eigenvector v of BA.

Hence, a positive conservative-dissipative matrix B is hypocoercive if and only if no eigen-
vector of the anti-Hermitian part lies in the kernel of the Hermitian part. The latter condition 

is well known in control theory, and there exists a range of equivalent characterizations, see 

e.g. [2, Proposition 1] and [16, Lemma 3.1]: For example, positive conservative-dissipative ma-
trices B ∈ C

n×n are hypocoercive if and only if

“No non-trivial subspace of ker(BH ) is invariant under BA.” (1.8)

The characterization (1.8) implies the following result:
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Lemma 1.4. Let B ∈ C
n×n be positive conservative-dissipative. Then B = BA + BH is hypoco-

ercive if and only if εBA + BH is hypocoercive for all ε /= 0.

But even if hypocoercivity of B is known, it is not trivial to obtain an exponential decay es-
timate (1.3) with a quantitative (or even optimal) decay rate µ. Indeed, a simple energy estimate 

(i.e. pre-multiplying (1.1) by x!) or using Trotter’s product formula only yields conservative-
dissipativity of the system, but no decay: So, its propagator P(t) = e−Bt satisfies at least 
‖P(t)‖2 ≤ 1 for all t ≥ 0.

Let us also comment on the short time behavior. If a decay estimate (1.2) holds with some 

exponent a > 1, then an estimate of the form ‖P(t)‖2 ≤ e−µt (as it is typical for coercive matri-
ces B) is impossible (consider the Taylor expansion of ‖P(t)‖2 around t = 0). In such cases the 

system can only be hypocoercive, along with an estimate (1.3) with c > 1.
Our conditions for hypocoercivity lead naturally to the notion of an index of hypocoercivity, 

which is a non-negative integer whenever B is hypocoercive, and is zero if and only if B is 
coercive (see §2.1).

2. Hypocoercivity index and the short time decay of conservative-dissipative ODE systems

In this section we shall present our main result, i.e. a concise characterization of the hypoco-
ercivity index in terms of the short time behavior of conservative-dissipative ODE systems (1.1).

2.1. Hypocoercivity index

First we recall from [2, §2.2] the definition of the hypocoercivity index:

Definition 2.1. Let B ∈ C
n×n be positive conservative-dissipative. Its hypocoercivity index (HC-

index) mHC is defined as the smallest integer m ∈ N0 (if it exists) such that the matrix

Tm :=

m∑

j=0

B
j
ABH (B!

A)j (2.1)

is positive definite. The matrix B is coercive iff mHC = 0, hypocoercive iff mHC ∈ N0 (due to 

[2, Lemma 2.4]), and for non-hypocoercive matrices B we set mHC = ∞.

The Hermitian matrix Tm in Definition 2.1 readily shows that the hypocoercivity index of a 

positive conservative-dissipative matrix B is invariant under unitary congruence transformations 
but, in general, not under similarity transformations (see [4] for details).

In [7, Lemma 2.3] it was proven that this index equals the smallest integer m ∈ N0 such that

rank
{√

BH , BA

√
BH , . . . ,Bm

A

√
BH

}
= n , (2.2)

which is often called Kalman rank condition (see also [2, Proposition 1(B1)]).

Remark 2.2. When considering rather εBA + BH , its hypocoercivity property and its index of 
hypocoercivity are independent of ε /= 0, which follows trivially from (2.2). Due to the above 

mentioned equality of the indices, the positive definiteness of 
∑mHC

j=0 (εBA)jBH (εB!
A)j is hence 

also independent of ε /= 0.
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Next we shall present four (equivalent) variants of the Kalman rank condition:

Lemma 2.3. Let B ∈ C
n×n be positive conservative-dissipative. Consider the following four 

Kalman rank conditions:

∃m ∈ N0 : rank{
√

BH , BA

√
BH , . . . , Bm

A

√
BH } = n , (2.3a)

∃m ∈ N0 : rank{
√

BH , B
√

BH , . . . , Bm
√

BH } = n , (2.3b)

∃m ∈ N0 : rank{
√

BH , B!√BH , . . . , (B!)m
√

BH } = n , (2.3c)

∃m ∈ N0 : rank{C0,C1, . . . , Cm} = n

with C0 :=
√

BH ; Cj+1 := [Cj ,BA]= CjBA − BACj , j ∈ N0 . (2.3d)

The conditions (2.3a)–(2.3d) are equivalent in the sense that, if there exists m ∈ N0 such that one 

condition holds, then the other three conditions hold as well for the same m.

Proof. In fact, we prove that for all m ∈ N0 the ranges of all four matrices in (2.3) are equal,

range{
√

BH , BA

√
BH , . . . , Bm

A

√
BH } = range{

√
BH , B

√
BH , . . . , Bm

√
BH } (2.4a)

= range{
√

BH , B!√BH , . . . , (B!)m
√

BH }

(2.4b)

= range{C0,C1, . . . , Cm}, (2.4c)

which can be done inductively:
The base case m = 0 is trivial, since all four matrices in (2.4) are equal to 

√
BH . We start with 

the induction step for the equivalence of the first identity in (2.4): Assume (2.4a) holds for some 

m ∈ N0. Then, the following representations hold: (Bm+1 − Bm+1
A )

√
BH =

∑m
j=0 B

j

A

√
BH Xj , 

with appropriate matrices Xj ∈ C
n×n, and e.g., Xm = BH . Therefore

range
(
(Bm+1 − Bm+1

A )
√

BH

)
⊂ range{

√
BH , BA

√
BH , . . . , Bm

A

√
BH }

which implies

range{
√

BH , B
√

BH , . . . , Bm
√

BH , Bm+1
√

BH }

= range{
√

BH , BA

√
BH , . . . , Bm

A

√
BH , Bm+1

√
BH }

= range{
√

BH , BA

√
BH , . . . , Bm

A

√
BH , Bm+1

A

√
BH } .

Hence, range{
√

BH , BA

√
BH , . . . , Bm+1

A

√
BH } = range{

√
BH , B

√
BH , . . . , Bm+1√BH }

follows.
In the same way, for m ∈ N0, the identity

range{
√

BH , BA

√
BH , . . . , Bm

A

√
BH } = range{

√
BH , B!√BH , . . . , (B!)m

√
BH }

is proven.
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Since the equivalence of range{
√

BH , BA

√
BH , . . . , Bm

A

√
BH } and range{C0, C1, . . . , Cm}

follows very similarly, we only give the key steps: Note that the term of Cj+1 with the leading 

maximum exponent of BA is of the form (−BA)j+1
√

BH . This allows to compute Cm+1 −
(−BA)m+1√BH =

∑m
j=0 B

j

A

√
BH Xj , with appropriate matrices Xj ∈ C

n×n and, e.g., Xm =

(−1)m(m + 1)BA. Therefore

range
(
Cm+1 − (−BA)m+1

√
BH

)
⊂ range{

√
BH , BA

√
BH , . . . , Bm

A

√
BH }

and the rest of the proof is as before. !

Next we shall present two (equivalent) variants of Definition 2.1 for the hypocoercivity index 

that are related to similar concepts in the literature: In [8, §2], the definition of the hypocoercivity 

index of a degenerate Fokker–Planck equation with linear drift involves a positive stable matrix 

B and its Hermitian part BH ≥ 0 (rather than the Hermitian part and anti-Hermitian part of B as 
in Definition 2.1 here). In order to connect these two situations we shall establish the equivalence 

of these two definitions in the subsequent lemma.
The condition Tm > 0 from Definition 2.1 can also be related to Hörmander’s “rank r” 

bracket condition for hypoellipticity, cf. [13]. In particular, in [18] iterated commutators were 

used to establish hypocoercivity of kinetic PDEs by constructing an appropriate Lyapunov func-
tional. In Lemma 2.4, Equation (2.5d), below we shall mimic condition (3.5) of [18] for the 

ODE-system (1.1).

Lemma 2.4. Let B ∈ C
n×n be positive conservative-dissipative. Consider the following four 

hypocoercivity conditions:

∃m ∈ N0 : Tm :=

m∑

j=0

B
j

ABH (B!
A)j > 0 , (2.5a)

∃m ∈ N0 : T̃m :=

m∑

j=0

BjBH (B!)j > 0 , (2.5b)

∃m ∈ N0 : ˜̃T m :=

m∑

j=0

(B!)jBH Bj > 0 , (2.5c)

∃m ∈ N0 : T̂m :=

m∑

j=0

C!
j Cj > 0

with C0 :=
√

BH ; Cj+1 := [Cj ,BA]= CjBA − BACj , j ∈ N0 . (2.5d)

The conditions (2.5a)–(2.5d) are equivalent in the sense that, if there exists m ∈ N0 such that one 

condition holds, then the other three conditions hold as well for the same m.

Proof. According to [7, Lemma 2.3], each of these four matrix inequalities (2.5a)–(2.5d) is 
equivalent to the corresponding Kalman rank conditions (2.3a)–(2.3d) where we used in the 

last case that C!
j = Cj (verifiable by a simple induction). Moreover, the Kalman rank condi-

tions (2.3a)–(2.3d) are equivalent due to Lemma 2.3. !
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This lemma shows that the hypocoercivity index can equally be defined as the smallest integer 
m ∈ N0 such that T̃m > 0, ˜̃T m > 0, or T̂m > 0. Hence, it also gives the smallest necessary number 
of iterated commutators of BH ≥ 0 with the matrix BA such that their ranges span all of Cn — 

in the spirit of Hörmander’s hypoellipticity theorem.
As an example we consider two matrices with the same Hermitian part BH = diag(0, 0, 1, 1)

such that rank(ker(BH )) = 2 but two different anti-Hermitian parts such that one and, respec-
tively, two iterated commutators are needed:

Example 2.5. Consider

B(1) =




0 0 0 1
0 0 1 0
0 −1 1 0

−1 0 0 1


 such that B

(1)
A =




0 0 0 1
0 0 1 0
0 −1 0 0

−1 0 0 0


 ,

[√
B

(1)
H ,B

(1)
A

]
=




0 0 0 −1
0 0 −1 0
0 −1 0 0

−1 0 0 0


 ,

and

B(2) =




0 1 0 0
−1 0 1 0
0 −1 0 0
0 0 0 0


 such that B

(2)
A =




0 1 0 0
−1 0 1 0
0 −1 0 0
0 0 0 0


 ,

[√
B

(2)
H ,B

(2)
A

]
=




0 0 0 0
0 0 −1 0
0 −1 0 0
0 0 0 0


 .

Hence rank
{√

B
(1)
H , 

[√
B

(1)
H , B

(1)
A

]}
= 4, but rank

{√
B

(2)
H , 

[√
B

(2)
H , B

(2)
A

]}
= 3. Thus, by

Lemma 2.3, mHC(B(1)) = 1 and mHC(B(2)) = 2.

While finite dimensional positive conservative-dissipative matrices are hypocoercive if and 

only if they have a finite hypocoercivity index, this is not true in the infinite dimensional case:

Example 2.6. Consider a block-diagonal “ODE”, with each block of the form

Ek =




0 1

−1
. . .

. . .

. . .
. . . 1
−1 0 1

−1 1




∈ R
k×k ,

(Ek)H = diag(0,0, . . . ,0,1) , (Ek)A = toeplitz(−1,0,1) . (2.6)
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Then, the matrices Ek , k ∈ N are positive conservative-dissipative. Evidently, (Ek)H v = 0 if and 

only if v = (v1, . . . , vk−1, 0). For such a vector,

(Ek)Av = (v2, v3 − v1, . . . ,−vk−2,−vk−1) .

A simple inductive argument shows that if (Ek)Av = λv for any λ /= 0, then v = 0. By Proposi-
tion 1.3, Ek has no eigenvalue on iR. Hence, the matrices Ek , k ∈ N are hypocoercive, satisfying 

the estimate

‖e−Ek t‖2 ≤ cke
−λk t , t ≥ 0 , (2.7)

for constants ck ≥ 1 and µk > 0, k ∈ N . We now make a simple rescaling, defining Ẽk := rkEk

for rk > 0 to be chosen below, and consider the propagator P(t) for diag(Ẽ1, Ẽ2, . . .), and let 
‖ · ‖2 be the spectral norm on %2. By (2.7),

‖e−Ẽk‖2 = ‖e−rkEk‖2 ≤ cke
−rkµk ≤

1

e
for rk =

1 + log ck

µk

.

Therefore, making this choice of rk , ‖P(1)‖2 ≤ 1/e, so that (1.4) is satisfied for t0 = 1. Thus this 
infinite dimensional system is hypocoercive.

We now show that the combined system has an infinite hypocoercivity index. For this we can 

ignore the scaling and work with the original matrices Ek. Let ej denote the j -th standard basis 
vector in Ck . Then, (Ek)H = eke!

k and Tm as specified in (2.1) is given by

Tm =

m∑

j=0

(−1)j (Ek)
j
Aeke!

k(Ek)
j
A .

For m = 1, . . . , k − 1, it is evident that

|e!
m(Ek)

j

Aek|
2 = 0 for j < k − m but |e!

m(Ek)
k−m
A ek|

2 = 1 .

Hence, mHC(Ek) = k − 1. Thus, the combined system diag(E1, E2, . . .) can not have a finite 

mHC .

2.2. Short time decay of conservative-dissipative ODE systems

Here we shall prove that the hypocoercivity index of a conservative-dissipative ODE system 

characterizes the decay of its propagator norm for short time. We denote the solution semigroup 

pertaining to (1.1) by P(t) := e−Bt ∈ C
n×n, and its spectral norm by ‖P(t)‖2 := sup{‖P(t)x‖2 :

‖x‖2 = 1}, which is also the largest singular value of P(t). Its short time decay is related to the 

hypocoercivity index as follows:

Theorem 2.7. Let the ODE system (1.1) be conservative-dissipative with (positive conservative-

dissipative) matrix B ∈ C
n×n.
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(a) The (positive conservative-dissipative) matrix B is hypocoercive (with hypocoercivity index 

mHC ∈ N0) if and only if

‖e−Bt‖2 = 1 − cta +O(ta+1) for t ∈ [0, ε), (2.8)

for some a, c, ε > 0. In this case, necessarily a = 2mHC + 1.

(b) Moreover, for mHC ≥ 1, the optimal multiplicative factor c in (2.8) is given by

c =
1

(2mHC + 1)!
(2mHC

mHC

) min
x∈ker

(˜̃T mHC−1
)
, ‖x‖=1

〈x, (B!)mHC BH BmHC x〉

=
1

(2mHC + 1)!
(2mHC

mHC

) min
x∈ker

(˜̃T mHC−1
)
, ‖x‖=1

〈x, (B!
A)mHC BH B

mHC

A x〉,
(2.9)

and for mHC = 0 we have c = min‖x‖=1〈x, BH x〉.

Proof. Since the proof for the coercive case, i.e. mHC = 0, is trivial, we shall confine ourselves 
now to mHC ≥ 1:

Part (a): For sufficiently small time t0 > 0, there exists a real analytic function & : [0, t0] → R

such that

‖P(t)‖2 = &(t) for all t ∈ [0, t0] , (2.10)

e.g. see [15, Lemma 1]. Alternatively, the statement can be derived from [14, Part II.§6] or [12, 
Theorem 4.3.17].

For the forward direction we assume that B has a finite HC-index mHC ∈ N . Hence we are 

left to prove that the Taylor expansion of ‖P(t)‖2 has the form (2.8). This proof will be split into 

two separate parts, the lower and the (technically more subtle) upper bound.

Lower bound: First, we shall prove that there exists c1 > 0 such that

‖P(t)‖2 ≥ 1 − c1t
a +O(ta+1) as t → 0+ (2.11a)

or, equivalently,

‖P(t)‖2
2 ≥ 1 − 2c1t

a +O(ta+1) as t → 0+ (2.11b)

holds with a = 2mHC + 1.5 To this end suppose x0 is any unit vector such that for some m ∈ N

(not necessarily m = mHC ),

x0 ∈ ker




m−1∑

j=0

(B!)jBH Bj


 = ker

(˜̃T m−1
)
, (2.12)

5 In inequalities, such as (2.11), the Landau symbol O is used in the sense that there exist constants ε, M > 0 such that 
‖P(t)‖2 ≥ 1 − c1ta − M ta+1 for t ∈ [0, ε).
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which is equivalent to

‖
√

BH Bj x0‖2 = 0 for 0 ≤ j ≤ m − 1 . (2.13)

If such an x0 exists, we will show for the corresponding trajectory that

‖P(t)x0‖2
2 = 1 − t2m+1 2

(2m + 1)!

(
2m

m

)
〈x0, (B

!)mBH Bmx0〉 +O(t2m+2) . (2.14)

Note that our hypotheses allow the possibility that 〈x0, (B
!)mBH Bmx0〉 = 0 in which case we 

have simply ‖P(t)x0‖2
2 = 1 +O(t2m+2).

Now take x0 as in Equation (2.12) with ‖x0‖ = 1, and define q(t) := ‖P(t)x0‖2. Standard 

theory gives that (see also Equation (1.6))

q ′(t) = −2‖
√

BH P(t)x0‖2 = −2〈
√

BH P(t)x0,
√

BH P(t)x0〉. (2.15)

Using the assumption on x0, we have that 
√

BH P(t)x0 =
∑∞

k=m
tk

k!

√
BH (−B)kx0. Substituting 

this in (2.15) gives

q ′(t) = −2
t2m

m! · m!
〈
√

BH Bmx0,
√

BH Bmx0〉 +

∞∑

k=2m+1

ukt
k (2.16)

for some scalars uk . Since this sequence converges absolutely (The expression in (2.15) is real 
analytic), we can integrate this expression term-wise to obtain q(t). Using that q(0) = ‖x0‖2 = 1, 
we find

q(t) = 1 −
2

2m + 1

t2m+1

m! · m!
〈
√

BH Bmx0,
√

BH Bmx0〉 +

∞∑

k=2m+1

uk

k + 1
tk+1, (2.17)

which shows (2.14).
Now, since the positive conservative-dissipative matrix B is hypocoercive with HC-index 

mHC ∈ N0, there exists a normalized vector x0 such that

‖
√

BH Bj x0‖2 = 0 for 0 ≤ j ≤ mHC − 1, and
√

BH BmHC x0 /= 0 , (2.18)

but none that would satisfy instead also 
√

BH BmHC x0 = 0. Hence, for such x0 ∈ ker
(˜̃T mHC−1

)

the identity (2.14) holds with m = mHC . Finally, taking the supremum over all initial conditions 
x0 ∈ ker

(˜̃T mHC−1
)
, ‖x0‖2 = 1 (which is a closed set) yields the estimates (2.11a) and (2.11b)

with a = 2mHC + 1 and

c1 :=
1

2
min

x0∈ker
(˜̃T mHC−1

)
, ‖x0‖2=1

2
(2mHC+1)!

(
2mHC

mHC

)
〈x0, (B

!)mHC BH BmHC x0〉

=
1

(2mHC + 1)!

(
2mHC

mHC

)
min

x0∈ker
(˜̃T mHC−1

)
, ‖x0‖2=1

〈x0, (B
!
A)mHC BH B

mHC

A x0〉 .

(2.19)
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In the last step we used

BmHC x0 = BABmHC−1x0 = . . . = B
mHC

A x0 , (2.20)

since all other terms vanish due to x0 ∈ ker
(˜̃T mHC−1

)
. Due to (2.18), c1 > 0.

In the proof of Part (b) we shall actually improve this constant by the factor 
(2mHC

mHC

)−2
, see 

Lemma A.3.

Upper bound: Second, we prove that there exists c2 > 0 such that

‖P(t)‖2 ≤ 1 − c2t
a +O(ta+1) as t → 0+ (2.21a)

or, equivalently,

‖P(t)‖2
2 ≤ 1 − 2c2t

a +O(ta+1) as t → 0+ (2.21b)

holds with a = 2mHC + 1.6 Here, we consider the case mHC = 1 whereas the general case 

mHC ∈ N is treated in Appendix A.
If matrix B has hypocoercivity index mHC = 1, there exists κ > 0 such that

˜̃T mHC
=

mHC∑

j=0

(B!)jBH Bj = BH + B!BH B ≥ κI > 0 . (2.22)

Since mHC = 1, B!BH B is positive definite on ker(BH ). For x ∈ C
n with ‖x‖ = 1, we define

λx := 〈x,BH x〉 ≥ 0 , µx := 〈x,B!BH Bx〉 ≥ 0 , such that λx + µx ≥ κ > 0 . (2.23)

Note that ‖P(t)x0‖2
2 = 〈x0, Q(t)x0〉 where

Q(t) := P !(t)P (t) = e−B!t e−Bt =

∞∑

j=0

tj

j !

j∑

k=0

(
j

k

)
(−B!)k(−B)j−k . (2.24)

Since 
∥∥∑j

k=0

(
j
k

)
(−B!)k(−B)j−k

∥∥
2 ≤ (2‖B‖2)

j , the Taylor series for the matrix family Q(t)

converges uniformly on bounded t-intervals. Hence we have

‖P(t)‖2
2 = ‖Q(t)‖2 = ‖Qj (t)‖2 +O(tj+1) , (2.25)

where Qj (t) denotes the Taylor expansion (2.24), but truncated after the tj -term. Consider

Q3(t) =

3∑

j=0

tj

j !
Uj = I + tU1 +

t2

2!
U2 +

t3

3!
U3. (2.26)

6 In inequalities, such as (2.21), the Landau symbol O is used in the sense that there exist constants ε, M > 0 such that 
‖P(t)‖2 ≤ 1 − c2ta + M ta+1 for t ∈ [0, ε).
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Then, its spectral norm satisfies

‖Q3(t)‖2 := sup
‖x0‖=1

‖Q3(t)x0‖2 = sup
‖x0‖=1

〈x0,Q3(t)x0〉, (2.27)

for sufficiently small t ≥ 0. The latter identity holds, since the self-adjoint matrix Q3(t) satisfies 
Q3(0) = I .

Let x be a unit vector, we estimate each expression 〈x, Ujx〉, j = 1, 2, 3 separately as

〈x,U1x〉 = −2〈x,BH x〉 = −2λx using λx = 〈x,BH x〉 ≥ 0 .

Next, since U2 = 2(B!BH + BH B), so that by the Cauchy–Schwarz inequality,

〈x,U2x〉 = 2〈x, (B!BH + BH B)x〉 ≤ 4‖
√

BH x‖‖
√

BH Bx‖ = 4
√

λx
√

µx

using (2.23). In the same way, we derive for U3 = −2(BH B2 + 2B!BH B + (B!)2BH ) that

〈x,U3x〉 ≤ −4〈x,B!BH Bx〉 − 2〈x, (BH B2 + (B!)2BH )x〉

≤ −4µx + 4‖
√

BH x‖‖
√

BH B2x‖ = −4µx + 4
√

λx‖
√

BH B2x‖.

Altogether then,

〈x,Q3(t)x〉 ≤ 1 − 2λx t + 2
√

λx
√

µx t2 −
2

3
µx t3 +

2

3

√
λx‖

√
BH B2‖ t3

= 1 − 2t
(√

λx −
√

µx

2
t
)2

−
1

6
µx t3 +

2

3

√
λx‖

√
BH B2‖ t3.

(2.28)

To estimate (2.28), we will distinguish two cases for 
√

λx ∈ [0, ‖
√

BH ‖]: If 
√

λx is sufficiently 

small we will use the third term in (2.28) to compensate the non-negative fourth term in (2.28), 
while in the other case we will use the second term to do so.

Case a: If

√
λx ≤ ( with ( := min

(
1,

κ

2
(
1 + 4‖

√
BH B2‖

)
)

> 0, (2.29)

then the following estimates hold: Due to (2.23) and 
√

λx ≤ 1 we deduce that µx ≥ κ − λx ≥
κ −

√
λx which implies that

〈x,Q3(t)x〉 ≤ 1 −
1

6
µx t3 +

2

3

√
λx‖

√
BH B2‖ t3 ≤ 1 −

κ

12
t3, for t ≥ 0 . (2.30)

Case b: If ( ≤
√

λx ≤ ‖
√

BH ‖ then we restrict the time interval to obtain a similar estimate. 
Using ( from (2.29), define

t1 :=
(

√
‖B!BH B‖

. (2.31)
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For t ∈ [0, t1], we use 0 ≤ µx ≤ ‖B!BH B‖ to derive

√
λx −

√
µx

2
t ≥ ( −

√
µx

2
t1 ≥

(

2
> 0.

Consequently, the expression in (2.28) can be estimated as

〈x,Q3(t)x〉 ≤ 1 −
(

2

2
t +

2

3
‖
√

BH ‖ ‖
√

BH B2‖ t3

≤ 1 − t3
(
(

2

2

1

t2
1

−
2

3
‖
√

BH ‖ ‖
√

BH B2‖
)
.

Then, there exists t! ∈ (0, t1] such that

〈x,Q3(t)x〉 ≤ 1 −
κ

12
t3, for t ∈ [0, t!] . (2.32)

Together the estimates (2.30) and (2.32) as well as (2.25), (2.27) prove the upper bound (2.21b)
with a = 3 for mHC = 1, e.g. with c2 := κ/24. For mHC ≥ 2, see Lemma A.1 in Appendix A.

To sum up, due to (2.11a) and Lemma A.1, there exist constants c1, c2 > 0 such that a =

2mHC + 1 and

1 − c1t
a +O(ta+1) ≤ ‖P(t)‖2 ≤ 1 − c2t

a +O(ta+1) as t → 0+ , (2.33)

e.g. choosing c1 as in (2.19) and c2 as in Lemma A.1, respectively. Moreover, due to (2.10), 
‖P(t)‖2 is analytic on [0, t0]. This implies that the propagator norm satisfies (2.8) for some 

c ∈ R, which satisfies 0 < c2 ≤ c ≤ c1.

For the reverse direction suppose that (2.8) is satisfied for some constant c > 0 and 

an exponent a > 0. Then, as we shall show, for some least finite value of m ∈ N0, Tm =∑m
j=0 B

j

ABH (B!
A)j > 0 has to hold, or equivalently,

˜̃T m =

m∑

j=0

(B!)jBH Bj > 0 .

Otherwise, for arbitrarily large values of m̃ ∈ N , we could find unit vectors x0 such that 
˜̃T m̃−1x0 = 0, and then by the first part of this proof, we would have for such a vector ‖P(t)x0‖2

2 ≥
1 − cm̃t2m̃+1 +O(t2m̃+2) with some cm̃ ≥ 0, because of (2.17). But for sufficiently large m̃, this 
is incompatible with (2.8). Thus we conclude that, whenever (2.8) is valid for any a > 0, B has 
a finite hypocoercivity index mHC ∈ N0, and then necessarily, a ∈ 2N0 + 1.

Part (b): So far we have proved that the propagator norm satisfies (2.33), e.g. choosing c1
as in (2.19) and c2 as the lower bound of c in (A.2), respectively. Using the improved upper 
bound c1 in (A.34) and lower bound c2 in (A.2) for the multiplicative constant c we realize that 
c2 = c = c1 such that (2.9) holds. In the final identity of (2.9) we used again (2.20) to reveal that 
c is proportional to B

2mHC

A . This finishes the proof. !

For ε-dependent ODE systems of the form (1.5), Theorem 2.7(b) implies the following result:
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Corollary 2.8. Consider the ε-dependent ODE (1.5) with system matrix B = εA + C where ε ∈
R. If B = εA + C is hypocoercive for ε /= 0, then the coefficient c = cε in the Taylor expansion 

of the propagator norm (2.8) satisfies

c = cε = ε
2mHC

1

(2mHC + 1)!
(2mHC

mHC

) min
x0∈ker

(˜̃T mHC−1
)
, ‖x0‖2=1

〈x0, (A
!)mHC CAmHC x0〉 . (2.34)

Remark 2.9. As already briefly mentioned in Example 2 of [4], the hypocoercivity index mHC

is upper semicontinuous w.r.t. the matrix B: An arbitrarily small perturbation of B can lower 
but not increase the index. This is consistent with the result in (2.8): All Taylor coefficients are 

there of course continuous in B . But a small perturbation of B may lower, but not increase the 

number a of the first non-vanishing monomial in this Taylor series (beyond the constant 1).

Remark 2.10. Note that the leading exponent in (2.8) can only be odd. This is related to the local 
behavior of trajectories that decay the worst (in the vicinity of a stationary point t0 of ‖x(t)‖), see 

the yellow curve in Fig. 1, left. Since the system (1.1) is assumed to be conservative-dissipative, 
such a trajectory, of course, cannot behave locally like 1 − c(t − t0)

a with a even.

Remark 2.11. Special cases of the above theorem were pointed out to us by Laurent Miclo: 
In §1 of [17] the short time decay behavior of the Goldstein-Taylor model (a linear transport 

equation with relaxation term) was determined as 1 − t3

3 + o(t3). Actually, this model is a PDE. 
But since it is considered on a torus in x, each of its spatial Fourier modes (except of the 0-mode) 
satisfies a conservative-dissipative ODE system with hypocoercivity index 1 (see [1] for details 
of this modal decomposition). Hence, mode by mode, the result from [17] is an example for 
Theorem 2.7. For closely related BGK-models with hypocoercivity index 2 and 3 we refer to [2].

In [11] the short time decay behavior of a kinetic Fokker–Planck equation on the torus in x

was computed as 1 − t3

12 + o(t3). Again, in Fourier space and by using a Hermite function basis 
in velocity, this model can be written as an (infinite dimensional) conservative-dissipative system 

with hypocoercivity index 1 (see §2.1 of [11]). In that paper it was also mentioned that the decay 

exponent in (2.8) can be seen as some “order of hypocoercivity” of the generator.
For degenerate Fokker–Planck equations, the hypocoercivity index can also be related to the 

regularization rate for short times: In [18, Theorem A.12] the regularization of initial data from a 

weighted L2 space into a weighted H 1 space is derived, and in [18, Theorem A.15], [8, Theorem 

4.8] it is generalized to entropy functionals and their corresponding Fisher informations. In all 
these cases the regularization rate is t−a with a = 2mHC + 1 (somewhat related to Theorem 2.7
above).

By definition, the propagator norm of an ODE (1.1) is given as the envelope of the norm of a 

family of solutions, see e.g. [6] and Fig. 1. But, maybe surprisingly, even its precise short time 

behavior is not given by the norm of any specific solution. This is illustrated in the following 

example.

Example 2.12. We consider ODE (1.1) with matrix

B =

(
1 −3/10

3/10 0

)
. (2.35)
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The eigenvalues of B are λ1 = 1/10 and λ2 = 9/10, and the eigenvalues of BH are 0 and 1. Thus, 
matrix B is hypocoercive with hypocoercivity index mHC = 1. Following (the first part of) the 

proof of Theorem 2.7, solutions starting in x0 satisfying (2.18) are used to establish the desired 

lower bound of the propagator norm. The kernel of BH is one-dimensional and it is spanned by 

x0 =
(0

1

)
. The solution of (1.1) with initial condition x(0) = x0 is given by

x(t) = 1
8

(
3 −3
9 −1

)(
e−t/10

e−9t/10

)

and its squared norm satisfies

‖x(t)‖2
2 = 45

32e−t/5 − 9
16e−t + 5

32e−9t/5 ∼ 1 − 0.06 t3 +O(t4) for t → 0+.

By contrast, due to [6, Proposition 4.2], the squared propagator norm satisfies

‖e−Bt‖2
2 ≤e−t 1

16

(√
(25 cosh(8t/10) − 9)2 − 162 + 25 cosh(8t/10) − 9

)

∼ 1 − 0.015 t3 +O(t4) for t → 0+.

(2.36)

Thus the propagator norm decays slower than the solution starting at the vector x0 which satis-
fies (2.18) with mHC = 1, see also Fig. 1.

In fact, the sharp constant c = 0.015 in (2.36) cannot be obtained by any single trajectory, 
but rather by a family of trajectories starting at the one-parameter family of normalized initial 

conditions, x) , ) ≥ 0 emerging from x0: More concretely, using x) :=
(
− 3)

20 , 1
)5/√

1 + 9) 2

400
(as constructed in Lemma A.4 below) yields

‖e−Bt xt‖2
2 ∼ 1 − 0.015 t3 +O(t4) for t → 0+.

Note that we used here the initial conditions xt (i.e. ) = t), and that we have 
d

d)
x) () = 0) =(

− 3
20 , 0

)5
= 1

2Bx0.

2.3. Numerical illustration of the short time decay and the waiting time t0

Next we shall illustrate the decay behavior on two examples of dimension n = 4. In particular 
we shall consider the ε-dependence of the three phases, the asymptotic phase close to t = 0 (as 
characterized in Theorem 2.7), the intermediate phase (characterized by the waiting time t0 and 

the exponential decay for large time (see (1.3)).

Example 2.13. Consider the matrix family Bε := εA + C, ε /= 0 with

A =




0 0 0 1
0 0 1 0
0 −1 0 0

−1 0 0 0


 , C = diag(0,0,1,1) , (2.37)

which satisfies mHC(Bε) = 1.
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Fig. 1. Evolution of (1.1) with matrix B from (2.35): Comparison between the propagator norm (red line), its upper 
exponential envelope 1.25 exp(−t/10) (green line), and the norm of the solution with initial condition x(0) =

(0
1
)

(blue 

line) and that with initial condition x(0) =
( −0.1√

0.99

)
(yellow line), all plotted on two time scales. (For interpretation of the 

colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 2. The decay of ‖Pε(t)‖2 is given for six values of ε. Left: For t away from 0, this semigroup decays almost 
exponentially. With the logarithmic scale used here, the horizontal (black) line corresponds to 1/e. The waiting times 
(defined as intersection with the line 1/e) behave like O(ε−2). We remark that the kink in the leftmost (blue) curve is 
not a numerical artifact. Right: This double logarithmic plot shows 1 − ‖Pε(t)‖2 ∼ cε t3 for small time, more precisely 

for t ∈ [e−9, e5]. The curves have slope 3, and cε = c̃ ε
2 . The plot also shows the quite sharp transition from the initial 

algebraic behavior 1 − c̃ ε
2 t3 to the exponential behavior c!

ε e−µ̃ ε
2 t .

Fig. 2 shows the spectral norm of the semigroup Pε(t) := e−Bε t as a function of time and 

for several values of ε (differing from each other by the factor 
√

2). The numerically observed 

waiting times (to decrease the solution norm by the factor 1/e) are very close to t0 ∼ 1/ε2. They 

increase by a factor of about 2 when passing from ε to 
√

2ε, at least in the asymptotic regime 

ε → 0. A close-up of the same figure around t = 0 shows that the asymptotic behavior of the 

semigroup norm is like ‖Pε(t)‖2 ∼ 1 − cε t3 with cε = c̃ ε
2, and by recalling that mHC(Bε) =

1 implies a = 3 in (2.8). Following (2.34), the multiplicative factor is c̃ = 1
12 (compare with 

e.g. [6]).

Example 2.14. This example is analogous to Example 2.13, but for the matrix family Bε :=

εA + C, ε /= 0 with
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Fig. 3. The decay of ‖Pε(t)‖2 is given for six values of ε. Left: For t away from 0, this semigroup decays almost 
exponentially. With the logarithmic scale used here, the horizontal (black) line corresponds to 1/e. The waiting times 
(defined as intersection with the line 1/e) behave like O(ε−2). Right: This double logarithmic plot shows 1 −‖Pε (t)‖2 ∼
cε t7 for small time, more precisely for t ∈ [e−1.5, e4]. The curves have slope 7, and cε = c̃ ε

6 . The plot also shows the 

quite sharp transition from the initial algebraic behavior 1 − c̃ ε
6 t7 to the exponential behavior c!

ε e−µ̃ ε
2 t .

A =




0 1 0 0
−1 0 1 0
0 −1 0 1
0 0 −1 0


 , C = diag(0,0,0,1) , (2.38)

which satisfies mHC(Bε) = 3.
Fig. 3 shows the spectral norm of the semigroup Pε(t) := e−Bε t . The numerically observed 

waiting times (to decrease the solution norm by the factor 1/e) are very close to t0 ∼ 4/ε2. 
A close-up around t = 0 shows that the asymptotic behavior of the semigroup norm is like 

‖Pε(t)‖2 ∼ 1 − cε t7 with cε = c̃ ε
6, and by recalling that mHC(Bε) = 3 implies a = 7 in (2.8). 

Following (2.34), the multiplicative factor is c̃ = 1
100800 .
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Appendix A. Auxiliary results to prove short time decay of propagator norm

To finish the proof of Theorem 2.7, we shall prove the following upper bound for the propa-
gator norm:

Lemma A.1. Let the ODE system (1.1) be conservative-dissipative, and let the system matrix B

be (hypo)coercive with hypocoercivity index mHC ∈ N . Then, there exist constants c2, M, t2 > 0
such that

‖e−Bt‖2 ≤ 1 − c2t
a + Mta+1 for t∈ [0, t2] , (A.1)

where a = 2mHC + 1. Moreover, the multiplicative factor c in (2.8) satisfies

c ≥ c2 with c2 :=
1

(2mHC + 1)!
(2mHC

mHC

) min
x∈ker

(˜̃T mHC−1
)
, ‖x‖=1

〈x, (B!)mHC BH BmHC x〉. (A.2)

Proof of Lemma A.1. First we note that the hypocoercivity of B implies BH /= 0 due to (1.8). 
Following the proof of Theorem 2.7, we consider ‖e−Bt‖2

2 = λmax
(
Q(t)

)
for small t > 0, where

Q(t) = e−B!te−Bt =

∞∑

j=0

tj

j !
Uj (A.3)

with

Uj = (−1)j
j∑

k=0

(
j

k

)
(B!)kBj−k , satisfying ‖Uj‖2 ≤ (2‖B‖2)

j , j ∈ N0 . (A.4)

To compute λmax
(
Q(t)

)
= max‖x‖2=1 x!Q(t)x, we consider the t-dependent function g(x; t) :=

x!Q(t)x − 1 with x in the sphere S := {x ∈ C
n | ‖x‖2 = 1}. For a = 2mHC + 1, we denote the 

Taylor series for Q(t) and g(t) truncated after the ta/a! term with Qa(t) and ga(x; t), respec-
tively. We recall that U0 = I and U1 = −2BH .

Let the matrices Uj , j ∈ N0 denote the coefficients of tj/j ! in the Taylor expansion (2.24)
and (A.3), such that

Uj := (−1)j
j∑

k=0

(
j

k

)
(B!)kBj−k , j ∈ N0 , (A.5)

and note that each Uj is self-adjoint. By Pascal’s identity 
(
j
k

)
=

(
j−1
k−1

)
+

(
j−1
k

)
with the usual 

convention that 
(

j
−1

)
=

(
j

j+1

)
= 0,
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j∑

k=0

(
j

k

)
(B!)kBj−k

=

j∑

k=0

((
j − 1

k − 1

)
(B!)kBj−k +

(
j − 1

k

)
(B!)kBj−k

)

=

j∑

k=0

((
j − 1

k − 1

)
(B!)k−1B!Bj−k +

(
j − 1

k

)
(B!)kBBj−1−k

)

=

j−1∑

k=0

(
j − 1

k

)
(B!)k(B! + B)Bj−1−k = 2

j−1∑

k=0

(
j − 1

k

)
(B!)kBH Bj−1−k .

Consequently,

Uj = (−1)j 2
j−1∑

k=0

(
j − 1

k

)
(B!)kBH Bj−1−k , j ∈ N . (A.6)

First we outline the strategy of the proof, say for the case mHC = 1, i.e. a = 3: If x ∈
ker(U1) = ker(BH ) with ‖x‖2 = 1, then (2.18) with x0 = x holds. Since mHC = 1, B!BH B

is positive definite on ker(BH ). Consequently, x!U2x = 0, x!U3x < 0, such that ga(x; t) =
t3

3!
x!U3x < 0 for t > 0. By contrast, if x /∈ kerU1, we have x!U1x = −2x!BH x < 0. Hence, 

for x /∈ kerU1,

ga(x; t) = −ĉt +O(t2) ≤ −c̃t3 for t → 0+

follows for some ĉ, c̃ > 0 that depend on x. Since ga(x; t) depends continuously on x, it is 
possible to combine these two estimates with a constant c that is independent of x ∈ S . Since 

(kerU1)
c ∩ S is not compact, we do not obtain a uniform estimate “automatically”. So, the 

key aspect is here to obtain a uniform decay estimate for x “close to kerU1”, in the sense that 
−ε ≤ x!U1x ≤ 0.

Step 1. Matrices with hypocoercivity index mHC = 1. We suppose that matrix B has hypocoer-
civity index mHC = 1, i.e. there exists κ > 0 such that

˜̃T mHC
=

mHC∑

j=0

(B!)jBH Bj = BH + B!BH B ≥ κI > 0 . (A.7)

Since mHC = 1, B!BH B is positive definite on ker(BH ). Our goal is to estimate g(x; t) on S . 
For x ∈ S , we define

λx := 〈x,BH x〉 ≥ 0 , µx := 〈x,B!BH Bx〉 ≥ 0 , such that λx + µx ≥ κ > 0 . (A.8)

Step 1a. Consider x ∈ S with λx ≤ δ where δ ∈ (0, κ) will be chosen later and κ > 0 such 

that (A.7) holds. The key idea (to estimate g(x; t) for t ∈ [0, 1]) is to collect the terms tj of 
order j less than a = 2mHC + 1 = 3 in a quadratic form which is non-positive. Therefore, we 
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use (A.6) and Lemma A.2 with U = (−B)!, V = U1, W = −B and m = mHC −1 = 0, to rewrite 

g(x; t) as

g(x; t) = x!
( ∞∑

j=1

tj

j !
Uj

)
x

=

∞∑

j=1

tj

j !

j−1∑

k=0

(
j−1
k

)
((−B)kx)!U1(−B)j−k−1x

= t

( ∞∑

k=0

1

(k + 1)!
tk((−B)kx)!

)
U1

( ∞∑

%=0

1

(% + 1)!
t%(−B)%x

)

+
t3

3!

(2
1

) 1
4 ((−B)x)!U1(−B)x +

∞∑

j=4

tj

j !

j−2∑

k=1

(
j − 1

k

)
+

(1)
j,k((−B)kx)!U1(−B)j−k−1x.

The first term is non-positive since U1 = −2BH ≤ 0. The second term is retained. The third term 

can be estimated from above by M4 t4 with M4 :=
∑∞

j=4
1
j !

(2‖B‖2)
j by using (A.6), (A.4), and 

+
(1)
j,k < 1. Altogether, we derive the estimate

g(x; t) ≤
1

3! 2

(
(Bx)!U1Bx

)
t3 + M4 t4 = −

µx

3!
t3 + M4 t4. (A.9)

To establish a uniform negative upper bound for (Bx)!U1Bx for x ∈ S with λx ≤ δ, we use 

(A.8) to deduce µx ≥ κ − λx ≥ κ − δ > 0 since δ ∈ (0, κ). For δ ∈ (0, κ), define

µδ := min
x∈S with λx≤δ

µx = min
x∈S with λx≤δ

〈x,B!BH Bx〉 (A.10)

such that µδ ≥ κ − δ > 0 and

µ0 := lim
δ→0

µδ = min
x∈ker

(˜̃T 0
)
, ‖x‖=1

〈x,B!BH Bx〉. (A.11)

Then, we derive from (A.9) that

g(x; t) ≤ −
µδ

3!
t3 + M4 t4 for all x ∈ S with λx ≤ δ and t ∈ [0,1]. (A.12)

Step 1b. Consider x ∈ S with λx > δ where δ ∈ (0, κ) will be chosen later and κ > 0 such 

that (A.7) holds. For t ∈ [0, 1], we deduce

g(x; t) := x!
( ∞∑

j=1

tj

j !
Uj

)
x = tx!U1x +

∞∑

j=2

tj

j !
x!Uj x≤ −2λxt + M2 t2 , (A.13)
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since 
∣∣∑∞

j=2
tj

j !
x!Uj x

∣∣ ≤ t2M2 with M2 :=
∑∞

j=2
1
j !

(2‖B‖2)
j . Then, −2λxt + M2t

2 ≤ −λxt

for all 0 ≤ t ≤ λx/M2. For any given c > 0, the estimate −λxt ≤ −ct3 holds if 0 ≤ t ≤
√

λx/c. 
Define tδ := min{δ/M2, 

√
δ/c, 1}. Then, we derive

g(x; t) ≤ −ct3 for all x ∈ S with λx > δ and t ∈ [0, tδ]. (A.14)

To sum up, choosing any δ ∈ (0, κ), the estimate (A.12) is derived. Then, for c := µδ/3!, 
there exists a (sufficiently small) tδ > 0 (as defined in Step 1b) such that the estimate (A.14)
holds. Consequently, we obtain

g(x; t) ≤ −
µδ

3!
t3 + M4 t4 for all x ∈ S and t ∈ [0, tδ]. (A.15)

This shows (A.1) with c2 := c/2 = µδ/(3! 2) and a = 2mHC + 1 = 3.
Step 1c. To prove the second statement in Lemma A.1, we improve the estimate of c as follows: 
By definition, the time tδ satisfies limδ→0 tδ = 0. To derive (the sharp) lower estimate (A.2) on 

the multiplicative factor c, we consider the Taylor expansion (2.8) of the propagator norm, use 

estimate (A.15), and take the limit δ → 0:

−2c = lim
δ→0

‖e−B tδ‖2
2 − 1

t3
δ

= lim
δ→0

g(x; tδ)

t3
δ

≤ lim
δ→0

(
−

µδ

3!
+ M4 tδ

)
= −

µ0

3!
. (A.16)

Hence, we identified a lower estimate for the multiplicative factor c in (2.8) as

c ≥
µ0

3! 2
=

1

3! 2
min

x∈ker
(˜̃T 0

)
, ‖x‖=1

〈x,B!BH Bx〉. (A.17)

This finishes the proof of the second statement in Lemma A.1 in the case mHC = 1.

Step 2. Matrices with hypocoercivity index mHC ≥ 2. For matrices B with hypocoercivity in-
dex mHC ≥ 2, i.e. there exists κ > 0 such that

˜̃T mHC
=

mHC∑

j=0

(B!)jBH Bj ≥ κI > 0 , (A.18)

we generalize this procedure as follows: We define, for x ∈ S ,

λx := 〈x, ˜̃T mHC−1x〉 ≥ 0 , µx := 〈x, (B!)mHC BH BmHC x〉 ≥ 0 , such that λx + µx ≥ κ > 0 .

(A.19)
Step 2a. Consider x ∈ S with λx ≤ δ where δ ∈ (0, κ) will be chosen later and κ > 0 such 

that (A.18) holds. For t ∈ [0, 1], we derive as in Step 2b (see (A.27) below):

g(x; t) ≤
(BmHC x)!U1B

mHC x

(2mHC + 1)!
(2mHC

mHC

) t2mHC+1 + M2mHC+2 t2mHC+2

= −
2

(2mHC + 1)!
(2mHC

mHC

)µxt
2mHC+1 + M2mHC+2 t2mHC+2 ,

(A.20)
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with M2mHC+2 :=
∑∞

j=2mHC+2
1
j !

(2‖B‖2)
j > 0. To establish a uniform negative upper bound for 

−µx for x ∈ S with λx ≤ δ, we use (A.19) to deduce µx ≥ κ − λx ≥ κ − δ > 0 since δ ∈ (0, κ). 
For δ ∈ (0, κ), define

µδ := min
x∈S with λx≤δ

µx = min
x∈S with λx≤δ

〈x, (B!)mHC BH BmHC x〉 (A.21)

such that µδ ≥ κ − δ > 0 and

µ0 := lim
δ→0

µδ = min
x∈ker

(˜̃T mHC−1
)
, ‖x‖=1

〈x, (B!)mHC BH BmHC x〉. (A.22)

Then, we derive from (A.20) that

g(x; t) ≤ −c t2mHC+1 + M2mHC+2 t2mHC+2 for all x ∈ S with λx ≤ δ and t ∈ [0,1],

(A.23a)
where

c :=
2µδ

(2mHC + 1)!
(2mHC

mHC

) . (A.23b)

Step 2b. Next, we shall show the following statement: Consider x ∈ S with λx > δ where κ > 0
such that (A.18) holds. For given c > 0, there exists tδ > 0 such that

g(x; t) ≤ −c t2mHC+1 for all x ∈ S with λx > δ and t ∈ [0, tδ]. (A.24)

First, we decompose the sphere S into the (non-disjoint) closed subsets

C0 := {x ∈ S | x!U1x ≤ −ε} ,

C1 := {x ∈ S | − ε ≤ x!U1x ∧ (Bx)!U1Bx ≤ −ε} ,

C2 := {x ∈ S | − ε ≤ x!U1x ∧ −ε ≤ (Bx)!U1Bx ∧ (B2x)!U1B
2x ≤ −ε} ,

...

Cm := {x ∈ S | ∀k ∈ {0, . . . ,m − 1} : −ε ≤ (Bkx)!U1B
kx ∧ (Bmx)!U1B

mx ≤ −ε} ,

...

CmHC−1 := {x ∈ S | ∀k ∈ {0, . . . ,mHC − 2} : −ε ≤ (Bkx)!U1B
kx

∧ (BmHC−1x)!U1B
mHC−1x ≤ −ε} ,

(A.25)

as well as CmHC
:= {x ∈ S | ∀k ∈ {0, . . . , mHC − 1} : −ε ≤ (Bkx)!U1B

kx }, for some positive 

parameter ε to be determined next.
We show that there exists ε > 0 such that CmHC

⊆ {x ∈ S | λx ≤ δ}: Consider x ∈ CmHC
. Then, 

x satisfies
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ε/2 ≥ 〈x, (B!)kBH Bkx〉 for k = 0, . . . ,mHC − 1 ,

which (upon summing up) implies that

mHCε/2 ≥ 〈x,

mHC−1∑

k=0

(B!)kBH Bk x〉 = 〈x, ˜̃T mHC−1x〉 = λx .

Choosing

ε :=
2δ

mHC

implies CmHC
⊆ {x ∈ S | λx ≤ δ} . (A.26)

Hence, the already established estimate (A.23) holds in particular for x ∈ CmHC
and t ∈ [0, 1]. 

Using 
⋃mHC−1

j=0 Cj : {x ∈ S | λx > δ} (as the complementary inclusion of (A.26)), we are left to 

prove the estimate (A.24) for all x ∈
⋃mHC−1

j=0 Cj :

For all % ∈ {0, . . . , mHC − 1}, x ∈ C% and t ∈ [0, 1], the key idea (to estimate g(x; t)) is 
to collect the terms tj of order j less than 2% + 1 in a quadratic form which is non-positive. 
Therefore, we use again (A.6) and Lemma A.2 with U = −B!, V = U1, W = −B and m = % −1, 
to rewrite g(x; t) as

g(x; t) = x!
( ∞∑

j=1

tj

j !
Uj

)
x

=

∞∑

j=1

tj

j !

j−1∑

k=0

(
j−1
k

)
((−B)kx)!U1(−B)j−k−1x

=

%−1∑

j=0

t2j+1

(2j + 1)!

1
(2j

j

)
( ∞∑

k=0

(2j+1)!
(k+2j+1)!

(
k+j
j

)
tk((−B)k+j x)!

)

× U1

( ∞∑

k=0

(2j+1)!
(k+2j+1)!

(
k+j
j

)
tk(−B)k+j x

)

+
t2%+1

(2% + 1)!

(
2%

%

)
+

(%)
2%+1,%((−B)%x)!U1(−B)%x

+

∞∑

j=2%+2

tj

j !

j−%−1∑

k=%

(
j − 1

k

)
+

(%)
j,k((−B)kx)!U1(−B)j−k−1x.

(A.27a)

The first term is non-positive since U1 = −2BH ≤ 0. The second term is estimated using the 

assumption x ∈ C% and the identity +
(%)
2%+1,% =

(2%

%

)−2
. The third term can be estimated from above 

by M2%+2 t2%+2 with M2%+2 :=
∑∞

j=2%+2
1
j !

(2‖B‖2)
j > 0 by using (A.6), (A.4), and +

(%)
j,k ≤ 1

for 0 ≤ % ≤ k ≤ j − % − 1. Altogether, we obtain the estimate

g(x; t) ≤ −
ε

(2% + 1)!
(2%

%

) t2%+1 + M2%+2 t2%+2. (A.27b)
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For given c > 0 (e.g. as in (A.23b)), there exists t̃% > 0 (depending on ε, with limε→0 t̃% = 0) 
such that

g(x; t) ≤ −c t2mHC+1 for all x ∈ C% and t ∈ [0, t̃%]. (A.28)

Choosing ε = 2δ/mHC as in (A.26) (such that 
⋃mHC−1

j=0 Cj : {x ∈ S | λx > δ}) and

tδ := min{t̃% , % = 0, . . . ,mHC − 1} , (A.29)

implies the estimate (A.24).
To sum up, for any fixed δ ∈ (0, κ), the estimate (A.23) with multiplicative constant c

in (A.23b) is proven in Step 2a. Then, for ε = 2δ/mHC and c in (A.23b), there exists a (suf-
ficiently small) tδ > 0 (as defined in (A.29)) such that the estimate (A.24) holds. Consequently, 
we obtain

g(x; t) ≤ −
2µδ

(2mHC + 1)!
(2mHC

mHC

) t2mHC+1 + M2mHC+2 t2mHC+2 for all x ∈ S with t ∈ [0, tδ].

(A.30)
This shows (A.1) with c2 := c/2, c as defined in (A.23b) and a = 2mHC + 1. This finishes the 

proof of the first statement in Lemma A.1 for mHC ∈ N .
Step 2c. To prove the second statement in Lemma A.1, we improve the estimate of c as follows: 
By definition, the time tδ depends on δ (since ε = 2δ/mHC ) such that limδ→0 tδ = 0. To derive the 

(sharp) lower estimate (A.2) on the multiplicative factor c, we consider the Taylor expansion (2.8)
of the propagator norm, use estimate (A.30), and take the limit δ → 0 such that

−2c = lim
δ→0

‖e−B tδ‖2
2 − 1

t
2mHC+1
δ

≤ lim
δ→0

(
−

2µδ

(2mHC + 1)!
(2mHC

mHC

) + M2mHC+2 tδ

)

= −
2µ0

(2mHC + 1)!
(2mHC

mHC

) . (A.31)

This proves the lower estimate (A.2) for the multiplicative factor c in (2.8). !

The proof of Lemma A.1 uses the following identity:

Lemma A.2. Let U, V, W ∈ C
n×n. For all m ∈ N0, the following identity holds

∞∑

j=1

tj

j !

j−1∑

k=0

(
j−1
k

)
U kV W j−k−1

=

m∑

j=0

t2j+1

(2j + 1)!

1
(2j

j

)
( ∞∑

k=0

(2j + 1)!

(k + 2j + 1)!

(
k + j

j

)
tkU k+j

)
V

×

( ∞∑

%=0

(2j + 1)!

(% + 2j + 1)!

(
% + j

j

)
t%W %+j

)
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+

∞∑

j=2m+3

tj

j !

j−m−2∑

k=m+1

(
j − 1

k

)
+

(m+1)
j,k U kV W j−k−1 , (A.32)

where +
(m)
j,k :=

( k
m)(j−k−1

m )

(k+m
m )(j−k−1+m

m )
for all m ≤ k and m ≤ j − k − 1.

Proof. We will prove the identity by induction. For m = 0, we have to prove the identity

∞∑

j=1

tj

j !

j−1∑

k=0

(
j−1
k

)
U kV W j−k−1

= t

( ∞∑

k=0

1
(k+1)!

tkU k

)
V

( ∞∑

%=0

1
(%+1)!

t%W %

)
+

∞∑

j=3

tj

j !

j−2∑

k=1

(
j−1
k

) k(j−k−1)
(k+1)(j−k)

U kV W j−k−1

since +
(1)
j,k =

(k
1)(

j−k−1
1 )

(k+1
1 )(j−k

1 )
=

k(j−k−1)
(k+1)(j−k)

. The first term on the right hand side can be written by the 

Cauchy product formula as

t

( ∞∑

k=0

1
(k+1)!

tkU k

)
V

( ∞∑

%=0

1
(%+1)!

t%W %

)

= t

∞∑

j=0

tj
j∑

k=0

1
(k+1)!

U kV 1
(j−k+1)!

W j−k =

∞∑

j=0

tj+1
j∑

k=0

1
(k+1)!

U kV 1
(j−k+1)!

W j−k

=

∞∑

j=1

tj

j !

j−1∑

k=0

j !
(k+1)!(j−k)!

U kV W j−k−1 =

∞∑

j=1

tj

j !

j−1∑

k=0

(
j−1
k

) j
(k+1)(j−k)

U kV W j−k−1

=

2∑

j=1

tj

j !

j−1∑

k=0

(
j−1
k

)
U kV W j−k−1 +

∞∑

j=3

tj

j !

j−1∑

k=0

(
j−1
k

) j
(k+1)(j−k)

U kV W j−k−1 .

Therefore,

t

( ∞∑

k=0

1
(k+1)!

tkU k

)
V

( ∞∑

%=0

1
(%+1)!

t%W %

)
+

∞∑

j=3

tj

j !

j−2∑

k=1

(
j−1
k

) k(j−k−1)
(k+1)(j−k)

U kV W j−k−1

=

2∑

j=1

tj

j !

j−1∑

k=0

(
j−1
k

)
U kV W j−k−1 +

∞∑

j=3

tj

j !

j−1∑

k=0

(
j−1
k

) j
(k+1)(j−k)

U kV W j−k−1

+

∞∑

j=3

tj

j !

j−2∑

k=1

(
j−1
k

) k(j−k−1)
(k+1)(j−k)

U kV W j−k−1
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=

∞∑

j=1

tj

j !

j−1∑

k=0

(
j−1
k

)
U kV W j−k−1 .

We assume that the formula holds for m ∈ N0 and prove it for m + 1. First, we use again the 

Cauchy product formula to derive

t2m+3

(2m + 3)!

1
(2m+2

m+1
)
( ∞∑

k=0

(2m+3)!
(k+2m+3)!

(k+m+1
m+1

)
tkUk+m+1

)
V

( ∞∑

%=0

(2m+3)!
(%+2m+3)!

(
%+m+1
m+1

)
t%W %+m+1

)

=
t2m+3

(2m + 3)!

1
(2m+2

m+1
)

∞∑

j=0

tj
j∑

k=0

(2m+3)!
(k+2m+3)!

(k+m+1
m+1

)
Uk+m+1V

(2m+3)!
(j−k+2m+3)!

(j−k+m+1
m+1

)
W j−k+m+1

=

∞∑

j=0

tj+2m+3

(j + 2m + 3)!

j∑

k=0

(j+2m+3)!

(2m+3)!(2m+2
m+1 )

(2m+3)!
(k+2m+3)!

(k+m+1
m+1

)
Uk+m+1V

(2m+3)!
(j−k+2m+3)!

(j−k+m+1
m+1

)
W j−k+m+1

=

∞∑

j=2m+3

tj

j !

j−2m−3∑

k=0

j !

(2m+3)!(2m+2
m+1 )

(2m+3)!
(k+2m+3)!

(k+m+1
m+1

)
Uk+m+1V

(2m+3)!
(j−k)!

(j−k−m−2
m+1

)
W j−k−m−2

=

∞∑

j=2m+3

tj

j !

j−m−2∑

k=m+1

j !

(2m+3)!(2m+2
m+1 )

(2m+3)!
(k+m+2)!

( k
m+1

) (2m+3)!
(j−k+m+1)!

(j−k−1
m+1

)
UkV W j−k−1 .

Therefore,

m+1∑

j=0

t2j+1

(2j + 1)!

1
(2j

j

)
( ∞∑

k=0

(2j + 1)!

(k + 2j + 1)!

(
k + j

j

)
tkU k+j

)
V

×

( ∞∑

%=0

(2j + 1)!

(% + 2j + 1)!

(
% + j

j

)
t%W %+j

)

+

∞∑

j=2m+5

tj

j !

j−m−3∑

k=m+2

(
j − 1

k

)
+

(m+2)
j,k U kV W j−k−1

=

m∑

j=0

t2j+1

(2j + 1)!

1
(2j

j

)
( ∞∑

k=0

(2j + 1)!

(k + 2j + 1)!

(
k + j

j

)
tkU k+j

)
V

×

( ∞∑

%=0

(2j + 1)!

(% + 2j + 1)!

(
% + j

j

)
t%W %+j

)

+

∞∑

j=2m+3

tj

j !

j−m−2∑

k=m+1

j !

(2m+3)!(2m+2
m+1 )

(2m+3)!
(k+m+2)!

(
k

m+1

)
(2m+3)!

(j−k+m+1)!

(
j−k−1
m+1

)
U kV W j−k−1

+

∞∑

j=2m+5

tj

j !

j−m−3∑

k=m+2

(
j − 1

k

)
+

(m+2)
j,k U kV W j−k−1 . (A.33)
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Using +
(m+2)
j,k = +

(m+1)
j,k

(k−m−1)(j−k−m−2)
(k+m+2)(j−k+m+1)

we deduce that (A.33) equals:

=

m∑

j=0

t2j+1

(2j + 1)!

1
(2j

j

)
( ∞∑

k=0

(2j + 1)!

(k + 2j + 1)!

(
k + j

j

)
tkUk+j

)
V

( ∞∑

%=0

(2j + 1)!

(% + 2j + 1)!

(
% + j

j

)
t%W %+j

)

+

∞∑

j=2m+3

tj

j !

j−m−2∑

k=m+1

(j−1
k

)
+

(m+1)
j,k

(2m+3)j
(k+m+2)(j−k+m+1)

UkV W j−k−1

+

∞∑

j=2m+5

tj

j !

j−m−3∑

k=m+2

(j−1
k

)
+

(m+1)
j,k

(k − m − 1)(j − k − m − 2)

(k + m + 2)(j − k + m + 1)
UkV W j−k−1

=

m∑

j=0

t2j+1

(2j + 1)!

1
(2j

j

)
( ∞∑

k=0

(2j + 1)!

(k + 2j + 1)!

(
k + j

j

)
tkUk+j

)
V

( ∞∑

%=0

(2j + 1)!

(% + 2j + 1)!

(
% + j

j

)
t%W %+j

)

+

∞∑

j=2m+3

tj

j !

j−m−2∑

k=m+1

(
j − 1

k

)
+

(m+1)
j,k

UkV W j−k−1

=

∞∑

j=1

tj

j !

j−1∑

k=0

(j−1
k

)
UkV W j−k−1 ,

where we used the induction hypothesis, i.e. (A.32), in the final equality. This finishes the 

proof. !

To determine the optimal multiplicative factor c in (2.8) (see Theorem 2.7(b)), we shall next 
derive an improved upper estimate for c, compared to (2.19):

Lemma A.3. Let the ODE system (1.1) be conservative-dissipative, and let the system matrix B

be (hypo)coercive with hypocoercivity index mHC ∈ N . Then, the multiplicative factor c in (2.8)
satisfies

c ≤ c1 with c1 :=
1

(2mHC + 1)!
(2mHC

mHC

) min
x0∈ker

(˜̃T mHC−1
)
, ‖x0‖2=1

〈BmHC x0,BH BmHC x0〉.

(A.34)

Proof. As illustrated by Example 2.12, see also Fig. 1, the propagator norm is in general not 
determined by the norm of one specific solution. Instead we consider a parameterized family of 
solutions pertaining to initial values x) , ) ∈ [0, 1]:

Due to Lemma A.4 below, for x0 ∈ ker
(˜̃T mHC−1

)
(with ‖x0‖2 = 1), there exist real constants 

b%, % = 1, . . . , mHC such that

x) := x0 +

mHC∑

%=1

b%)
%B%x0

satisfies

g(x) ; ) ) = −2c1(x0))
2mHC+1 +O() 2mHC+2), for ) ∈ [0,1], (A.35)
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with c1(x0) defined in (A.40) and lim)→0 x) = x0. To normalize the family of vectors x) , ) ∈
[0, 1] we define

x̃) :=
x)

‖x)‖2
, (A.36)

still satisfying lim)→0 x̃) = x0. For ) ∈ [0, 1], we estimate the propagator norm as

∥∥e−B)
∥∥2

2 ≥
∥∥e−Bt x̃)

∥∥2
2

∣∣∣
t=)

=

∥∥e−B) x)

∥∥2
2

‖x)‖2
2

=
‖x)‖2

2 + g(x) ; ) )

‖x)‖2
2

= 1 − 2
c1(x0)

‖x)‖2
2

)
2mHC+1 +

O() 2mHC+2)

‖x)‖2
2

, (A.37)

where we used definition (A.20) and (A.35). To derive a bound for the multiplicative factor c

in (2.8), we consider the Taylor expansion (2.8) of the propagator norm, use estimate (A.37) for 
) > 0, and take the limit ) → 0 such that

−2c = lim
)→0

∥∥e−B)
∥∥2

2 − 1

) 2mHC+1 ≥ lim
)→0

g(x) ; ) )

‖x)‖2
2 ) 2mHC+1

= lim
)→0

(
− 2

c1(x0)

‖x)‖2
2

+
O() )

‖x)‖2
2

)
= −2c1(x0).

Hence, c ≤ c1(x0) for all normalized vectors x0 ∈ ker
(˜̃T mHC−1

)
. Taking the minimum of c1(x0)

over all normalized vectors x0 ∈ ker
(˜̃T mHC−1

)
yields the upper bound for the multiplicative 

factor c as given in (A.34). This finishes the proof. !

The proof of Lemma A.3 uses the following construction of a vector function:

Lemma A.4. Let the ODE system (1.1) be conservative-dissipative, and let the system matrix B

be hypocoercive with hypocoercivity index mHC ∈ N . Then, for each x0 ∈ ker
(˜̃T mHC−1

)
, there 

exists a polynomial vector function x) ∈ C
n, ) ∈ [0, 1] of the form

x) = x0 +

mHC∑

%=1

b%)
%B%x0, for a suitable choice of b% ∈ R, % = 1, . . . ,mHC, (A.38)

such that

g(x) ; ) ) := x!
)

( ∞∑

j=1

)
j

j !
Uj

)
x) = −2c1(x0))

a +O() a+1) for ) ∈ [0,1], (A.39)

where a = 2mHC + 1 and

c1(x0) :=

∥∥√
BH BmHC x0

∥∥2
2

(2mHC + 1)!
(2mHC

mHC

) . (A.40)
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Proof. For x ∈ C
n and ) ∈ [0, 1], consider g(x; ) ) := x!

(∑∞
j=1

)
j

j !
Uj

)
x using Uj in the 

form (A.6). Following Lemma A.2 with U = −B!, V = U1, W = −B , and m = mHC − 1, 
we rewrite g(x; ) ) as

g(x; ) ) =

∞∑

j=1

)
j

j !

j−1∑

k=0

(
j−1
k

)
((−B)kx)!U1(−B)j−k−1x

=

mHC−1∑

j=0

)
2j+1

(2j + 1)!

1
(2j

j

)
( ∞∑

k=0

(2j+1)!
(k+2j+1)!

(
k+j
j

)
)

k((−B)k+j x)!

)
U1

×

( ∞∑

k=0

(2j+1)!
(k+2j+1)!

(
k+j
j

)
)

k(−B)k+j x

)

+
)

2mHC+1

(2mHC + 1)!

(
2mHC

mHC

)
+

(mHC)
2mHC+1,mHC

((−B)mHC x)!U1(−B)mHC x

+

∞∑

j=2mHC+2

)
j

j !

j−mHC−1∑

k=mHC

(
j − 1

k

)
+

(mHC)
j,k ((−B)kx)!U1(−B)j−k−1x

= −2
mHC−1∑

j=0

)

(2j + 1)!

1
(2j

j

)
∥∥∥∥∥
√

BH

( ∞∑

k=0

(2j+1)!
(k+2j+1)!

(
k+j
j

)
)

k+j (−B)k+j x

)∥∥∥∥∥

2

2

− 2
)

2mHC+1

(2mHC + 1)!
(2mHC

mHC

)
∥∥√

BH BmHC x
∥∥2

2 +O() 2mHC+2) , (A.41)

using that U1 = −2BH is a negative semi-definite Hermitian matrix, and the identity

+
(mHC)
2mHC+1,mHC

=

(
2mHC

mHC

)−2

,

to rewrite the first and second term, respectively. The third term in (A.41) can be bounded by 

M2mHC+2 )
2mHC+2 with M2mHC+2 :=

∑∞
j=2mHC+2

1
j !

(2‖B‖2)
j > 0, using that +(mHC)

j,k ≤ 1 for 
0 ≤ mHC ≤ k ≤ j − mHC − 1 and ) ∈ [0, 1].
Step 1. To estimate the second term in the last identity of (A.41) for x = x) , we use a polynomial 
ansatz for x) :

For ) ∈ [0, 1], we consider the ansatz

x) :=

mHC∑

%=0

)
%x% with the given x0 ∈ ker

(˜̃T mHC−1
)

and some x% ∈ C
n, % = 1, . . . ,mHC to be chosen. (A.42)

Then, we observe that
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∥∥√
BH BmHC x)

∥∥2
2 =

∥∥√
BH BmHC

mHC∑

%=0

)
%x%

∥∥2
2 =

∥∥√
BH BmHC x0

∥∥2
2 +O() ), (A.43)

such that the second term in the last identity of (A.41) satisfies

− 2
)

2mHC+1

(2mHC + 1)!
(2mHC

mHC

)
∥∥√

BH BmHC x)

∥∥2
2

= −2
)

2mHC+1

(2mHC + 1)!
(2mHC

mHC

)
∥∥√

BH BmHC x0
∥∥2

2 +O() 2mHC+2). (A.44)

Step 2. To estimate the first term in the last identity of (A.41) for x = x) , we refine the 

ansatz (A.42) for x) as follows:
Consider (A.42) with

x% := b%B
%x0, with some b% ∈ R, % = 1, . . . ,mHC to be chosen. (A.45)

We shall construct the coefficients b% ∈ R, % = 1, . . . , mHC and set b0 := 1 such that the first 
term in the last identity of (A.41) satisfies

mHC−1∑

j=0

)

(2j + 1)!

1
(2j

j

)
∥∥∥∥∥
√

BH

( ∞∑

k=0

(2j+1)!
(k+2j+1)!

(
k+j
j

)
)

k+j (−B)k+j x)

)∥∥∥∥∥

2

2

= O() 2mHC+2). (A.46)

Each term in the outer sum is non-negative. Therefore, for j = 0, . . . , mHC −1, we consider each

Sj :=

∥∥∥∥∥
√

BH

( ∞∑

k=0

(2j+1)!
(k+2j+1)!

(
k+j
j

)
)

k+j (−B)k+j

mHC∑

%=0

b%)
%B%x0

)∥∥∥∥∥

2

2

(A.47)

separately, and construct b%, % = 1, . . . , mHC iteratively such that Sj = O() 2mHC+1).
Starting with % = 1, we determine b% = b1 by considering SmHC−% = SmHC−1: Using

√
BH x0 = . . . =

√
BH BmHC−1x0 = 0, (A.48)

we can rewrite SmHC−1 as

SmHC−1 =

∥∥∥∥∥
√

BH

( ∞∑

k=0

(2mHC−1)!
(k+2mHC−1)!

(
k+mHC−1
mHC−1

)
)

k+mHC−1(−B)k+mHC−1
mHC∑

%=0

b%)
%B%x0

)∥∥∥∥∥

2

2

=

∥∥∥
√

BH

(
)

mHC−1(−B)mHC−1b1)Bx0

+ (2mHC−1)!
(2mHC )!

(
mHC

mHC−1

)
)

mHC (−B)mHC x0 +O()mHC+1)
)∥∥∥

2

2

= )
2mHC

∥∥∥
√

BH

(
b1 − (2mHC−1)!

(2mHC )!

(
mHC

mHC−1

))
(−B)mHC x0

∥∥∥
2

2
+O

(
)

2mHC+1). (A.49)
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Choosing

b1 := (2mHC−1)!
(2mHC )!

(
mHC

mHC−1

)
= 1

2 (A.50)

yields SmHC−1 = O() 2mHC+1).
Subsequently, for % = 2, . . . , mHC , we determine b% by considering SmHC−% and using (A.48):

SmHC−% =

∥∥∥∥∥
√

BH

( ∞∑

k=0

(2mHC−2%+1)!

(k+2mHC−2%+1)!

(k+mHC−%

mHC−%

)
)
k+mHC−%(−B)k+mHC−%

mHC∑

p=0

bp)
pBpx0

)∥∥∥∥∥

2

2

=

∥∥∥∥∥
√

BH

(
%∑

k=0

(2mHC−2%+1)!

(k+2mHC−2%+1)!

(k+mHC−%

mHC−%

)
)
k+mHC−%(−B)k+mHC−%b%−k)

%−kB%−kx0

)∥∥∥∥∥

2

2

+O()2mHC+1)

= )
2mHC

∥∥∥∥∥
√

BH

(
%∑

k=0

(2mHC−2%+1)!

(k+2mHC−2%+1)!

(k+mHC−%

mHC−%

)
b%−k(−1)%−k

)
(−B)mHC x0

∥∥∥∥∥

2

2

+O()2mHC+1).

Using bp , p = 0, . . . , % − 1 from the previous steps, and choosing

b% := −(−1)%
%∑

k=1

(2mHC−2%+1)!
(k+2mHC−2%+1)!

(
k+mHC−%

mHC−%

)
b%−k(−1)%−k (A.51)

yields SmHC−% = O() 2mHC+1). Choosing these b%, we have verified (A.46). Thus, using the 

ansatz (A.38) for x) implies that g(x) ; ) ) from (A.41) equals the r.h.s. of (A.44). This proves 
that the identity (A.39) holds for ) ∈ [0, 1]. !
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