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Spectrum for some quantum Markov semigroups describing

N -particle systems evolving under a binary collision

mechanism

Eric A. Carlen and Michael Loss

Abstract. We compute the spectrum for a class of quantum Markov semigroups describing

systems ofN particle interacting through a binary collision mechanism. These quantum Markov

semigroups are associated to a novel kind of quantum random walk on a graph, with the graph

structure arising naturally in the quantization of the classical Kac model, and we show that the

spectrum of the generator of the quantum Markov semigroup is closely related to the spectrum

of the Laplacian on the corresponding graph. For the direct analog of the original classical Kac

model, we determine the exact spectral gap for the quantum generator. We also give a new and

simple method for studying the spectrum of certain graph Laplacians.

1. Introduction

We study the rate of approach to equilibrium in a quantum version of the classical

Kac model that was developed in [9]. The original Kac model [20, 21] concerns

a dilute gas of N molecules interacting through pair-wise collision that conserve

the energy, and in this model, the collision mechanism gives rise to a jump pro-

cess on a continuous state space, the “energy sphere” of the N particles, and the

Kolmogorov forward equation for this jump process is known as the Kac Master

Equation.

Interactions between molecules are properly described by quantum mechanics,

and the model introduced in [9] is a natural adaptation of Kac’s classical model to the

quantum setting, in which the Kac Master Equation becomes an equation of Lindblad

type, the Quantum Kac Master Equation (QKME). The assumptions on the collision

mechanism in [9] were rather general, and the paper concentrated on general features

such as classifying the equilibrium states, proving propagation of chaos (see [9]) and

studying the resulting non-linear quantum Boltzmann equation. Little was said about
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the actual evolution and about the spectral properties of the generator of the quantum

Markov semigroup, which is the subject of this paper.

In the present work, we consider a special collision rule that is described below

and which is the direct analog of the one first considered by Kac. This specificity

allows a much more detailed analysis. As we show, the quantization leads to a graph

structure on an orthonormal basis of eigenstates of the N -particle energy operator.

We will give a complete description of the spectrum of the QKME generator in terms

of spectrum of the graph Laplacian on this graph. This yields a description of the

quantum evolution in terms of the eigenvectors of these graph Laplacians.

One may view the QKME as a quantum Kolmogorov forward equation for a sort

of quantum random walk on the graph associated to the collision mechanism. How-

ever, this sort of quantum random walk is different from the class of random walks

on graphs introduced by Aharonov, Ambainis, Kempe, and Vazirani [1]. In particu-

lar, the graph structure emerges naturally from the dynamics and is not present from

the beginning. Of course, it is not surprising to see discrete mathematical structures

emerging from quantization. Quantum Master Equations of the general type we inves-

tigate here do not only arise in quantum models of a gas of particles; they also arise

in random circuits [17] and in the context of measurement-only dynamics [19].

In the model we focus on here, the graphs that arise turn out to be the closely con-

nected with the multislice (see [16]), a natural generalization of the sliced Boolean

cube. Recently proved ergodic properties of the random walk on slices of the multi-

slice [15,16,24] then become relevant to QKME. However, the Kac model perspective

sheds light on spectral analysis of Laplacians on graphs: we give a simple proof of the

result of Caputo, Liggett, and Richthammer [5] that the spectral gap of the Laplacian

on the multislice for N particles has the same value, namely, N , for all non-trivial

connected components of the graph. This leads to an exact determination of the spec-

tral gap for our quantum Kac model.

Section 2 gives an overview of classical and the quantum mechanical Kac model.

In Section 3, the graph structure of the collision rules is explained, and here, we state

our main result on the spectral gap of the QKME, giving an overview of the approach

we will take. In Section 4, we work out the action of the QKME generator on a conve-

nient orthonormal basis, which, while it does not consist of eigenvectors, leads to the

identification of a family of invariant subspaces. The main result here is Theorem 4.1.

Then, in Section 5, we apply Theorem 4.1 to reduce the spectral decomposition to

the diagonalization of a graph Laplacian. In Section 6, the spectrum of the Laplacian

on the collision graph is analyzed in detail, using methods adapted from our previous

work in classical Kac Master Equations [6, 8, 9]. Finally, in Section 7, we briefly dis-

cuss some open problems concerning the use of relative entropy inequalities to control

the rate of approach to equilibrium rather than spectral gaps.
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2. Background on the quantum Kac model

2.1. The classical Kac model

The model investigated here is a quantum analog of a classical probabilistic model

concerning a Markov jump process in a continuous state space. When the quantum

analog is investigated, the “quantization” leads to interesting problems in discrete

mathematics. To explain how these arise, we preface our investigation with a synopsis

of the classical model.

The study of systems of colliding particles using master equations was initiated

in 1956 by Mark Kac [20]. He invented a master equation describing a system of

N particles in one dimension undergoing elastic pair collisions. The gas is spatially

homogeneous which means that the state of the system is entirely described by the

velocities of the N particles, given in Ev D .v1; : : : ; vN /.

When a collision occurs, a random pair 1 ! m < n ! N is selected, and then, the

velocities of particles m; n change from .vm; vn/ to .v!
m; v

!
n/, where

v!
m D vm cos ! C vn sin !; v!

n D "vm sin ! C vn cos !;

and all other velocities remain the same. The energy, m
2

PN
nD1 v

2
n, is conserved by the

collisions. Let !N;E denote the sphere radius
p
E in R

N .

The “Kac walk” described below is a continuous time jump process in R
N with

the jumps corresponding to collisions. Because of energy conservation, the collisions

take points in !N;E to points in !N;E , and hence, we may also consider it as a contin-

uous time Markov jump process in !N;E , and if we seek ergodicity, we must restrict

the process to an energy shell.

For 1 ! m; n ! N , and 0 ! ! < 2" , define the map Rm;n.!/ on !N;E :

!

Rm;n.!/Ev
"

k
D

8

ˆ

ˆ

<

ˆ

ˆ

:

vi cos ! C vj sin !; k D i;

"vi sin ! C vj cos !; k D j;

vk; k ¤ i; j:

(2.1)

In the original version of the Kac model, the angle ! is random with uniform distribu-

tion for simplicity. For 1 ! m < n ! N , define an operator on continuous functions

F on !N;E by

Qm;nF.Ev/ D 1

2"

Z 2!

0

F
!

Rm;n.!/Ev
"

d!: (2.2)

The collision times arrive in a Poisson stream with mean waiting time 1=N which

ensures that the mean waiting time for any particular particle to collide is of order

one, uniformly in N . The evolution of the distribution of the particle velocities,
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F.v1; : : : ; vN ; t /, is given by the Kac Master Equation (KME)

@tF D LNF; F.#; 0/ D F0.#/;

where

LNF D N

#

N

2

$"1
X

m<n

.Qm;n " 1/F:

Moreover, it is easy to see that this walk is ergodic; i.e., the only equilibrium dis-

tribution is the uniform measure on !N;E , and that LN is self-adjoint on L2.!N;E /,

the Hilbert space of functions on !N;E that are square integrable with respect to the

uniform probability measure on !N;E .

It follows that if F
.N /
0 .v1; : : : ; vN / is a probability density on !N;E , then

lim
t!1

etLNF
.N /
0 D 1; (2.3)

the uniform probability density on !N;E . The rate at which this limit is approached is

related to the rate of relaxation to equilibrium in a model Boltzmann equation, as Kac

showed; see [9] for discussion. The rate of approach to equilibrium in (2.3) can be

investigated by analyzing the spectral gap of the generator LN (see [8]), as Kac orig-

inally proposed, or using entropy production inequalities (see [7, 25]). For the simple

Kac model discussed here, the spectral gap is very well understood, though even in

this case, there are still a number of open questions concerning entropy production.

2.2. The quantum Kac model

Here, we are concerned with a quantum analog of the classical Kac model described

above. The state of a quantum system of N identical particles with finitely many

degrees of freedom is given by a unit vector ‰N in the N -fold tensor product HN WD
˝N

H of a finite-dimensional Hilbert space H , which is the state space for a single

particle. Properly speaking, the state is actually the rank one projector onto the span

of ‰ which is usually denoted by j‰ih‰j. Such a state is called a pure state. More

generally, the state may be described by an ensemble of pure states, that is, a convex

combination

% D
n
X

j D1

pj j‰j ih‰j j;

where each pj $ 0, and
Pn

j D1 pj D 1 and each ‰j is a unit vector in HN . We do not

assume that they are orthogonal, and there is no bound imposed on n. (One can even

replace the sum by an integral.) The idea is that the actual state of the system is one

of the pure states, but we do not know which one. We only know that it is ‰j with

probability pj . Evidently, the self-adjoint operator % is positive semi-definite, and has
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unit trace, that is, TrŒ#$ D 1. Such operators are known as density matrices, and by the

spectral theorem, every density matrix can be written in terms of an ensemble of pure

states.

We now consider a random evolution of the quantum state % corresponding to ran-

dom binary collisions that conserve energy, as in the classical Kac model. The energy

in the quantum setting is given by a self-adjoint operator known as the Hamiltonian.

Suppose that the single particle Hamiltonian on H is given by a self-adjoint operator

h. Define the N -particle Hamiltonian HN on HN as a sum of N terms

HN D .h˝ 1˝ # # # ˝ 1/C # # # C .1˝ # # # ˝ h˝ # # # ˝ 1/C # # # C .1˝ # # # ˝ 1˝ h/;

where 1 is the identity on H , and where in the nth term, there is a single h which is

in the nth position.

Now, we seek the quantum analog of the change in state corresponding to a sin-

gle binary energy conserving collision such as Ev 7! Rm;n.!/Ev with Rm;n.!/ given

by (2.1). Suppose that, before the collision, the state of the system is given by a unit

vector‰ 2 HN such thatHN‰N DE‰N ; that is,‰N is an eigenstate of Hamiltonian

with eigenvalue E. Physically, this means that ‰ is a state with a precisely defined

energy E.

Though we are not keeping track of positions, one should imagine that, at some

random time, particles m and n pass close to each other and interact. (This would

be described by another part of the Hamiltonian, active only when two particles are

sufficiently close.) After the collision, the new state has the form Um;n‰, where

Um;n is a unitary operator on HN that could in principle be obtained by solving

Schrödinger’s equation for the full interacting Hamiltonian. The unitary Um;n will

also depend on certain collision parameters corresponding to the relative positions of

the particles during the collision, for example, whether it was merely a “grazing col-

lision” or a “head on collision” or something in between. Position information is not

encoded into ‰, so these collision parameters will be external classical parameters.

Hence, there will be a variety of possible unitaries Um;n.%/, % belonging to some

parameter space C . Each U.%/ is required to conserve the energy in the sense that

Um;n.%/HN D HNUm;n.%/, which as usual we denote by writing

ŒUm;n.%/;HN $ D 0:

Then, Um;n.%/‰ will be an eigenvector of HN with eigenvalue E whenever ‰ is.

We also require each Um;n to act non-trivially only on the mth and nth factors of H

in HN .

To make this precise, first, consider the case m D 1 and n D 2. We begin with

N D 2 and will then “lift” our constructions to the fullN -particle model. Let C denote

the group of unitaries on the 2 particle space H2 that commute with H2. Throughout
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the paper, we refer to C as the collision group of the model. Note that C is a compact

Lie group. We regard the elements % of C as representing all kinematically possible

collisions of two particles. We now “lift” these collisions to the N -particle system.

Define U1;2.%/ to be the unitary operator on HN given by

U1;2.%/.&1 ˝ &2 ˝ &3 ˝ # # # ˝ &N / D U.%/.&1 ˝ &2/˝ &3 ˝ # # # ˝ &N ;

where U.%/ is the natural representation of % 2 C on H2. In the same way, for 1 !

m < n ! N , we define Um;n so that it acts on the mth and nth factors of H . The

unitary Um;n describes the effects of a particular type of collision between particles

m and n. Note that since U.%/ commutes with H2, Um;n.%/ commutes with HN .

The quantum analog of Ev 7! Rm;n.!/Ev is then ‰ 7! Um;n.%/‰. Then, of course,

j‰ih‰j 7! Um;n.%/j‰ih‰jU !
m;n.%/, or more generally,

# 7! Um;n.%/#U
!
m;n.%/:

To define the quantum analog of (2.2), we need to specify a probability law on

the collision parameters % . For some probability measure ' on C , we define, for each

1 ! m < n ! N , the operator Qm;n on B.HN / by

Qm;n.X/ D
Z

C

Um;n.%/XU
!
m;n.%/d'.%/: (2.4)

Throughout the paper, we refer to ' as the collision law, in the sense of a probability

law, since it specifies the likelihood of the different possible collisions. The collision

law may be supported on a measurable subset, in particular on a subgroup, of the

collision group C .

Equation (2.4) is the quantum analog of (2.2) except that of course ' needs to

be specified. In the model actually investigated here, we take ' to be the normalized

Haar measure on C , which is the analog of the uniform measure on the planar rotation

group that appears in (2.2). We can also consider other choices of ', but they should

have certain properties: we require that ' is invariant under the map % 7! %"1 because

this ensures time reversal symmetry; Um;n.%/ and its inverse Um;n.%/
! should have

the same probabilities. This condition also ensures that the operator Qm;n defined

in (2.4) is self-adjoint on the Hilbert space yB.HN / consisting of B.HN / equipped

with the Hilbert–Schmidt inner product hA;Bi WD TrŒA!B$. Note that the normalized

Haar measure has this property. For more discussion, see [9]. This brings us to the

following definitions from [9].

Definition 2.1. Define the operators QN and LN on B.HN / by

QN D
#

N

2

$"1
X

m<n

Qm;n and LN D N.QN " 1HN
/: (2.5)
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Definition 2.2 (Quantum Kac Master Equation (QKME)). The Quantum Kac Master

Equation is the evolution equation on S.HN / given by

d

dt
%.t/ D LN%.t/:

The QKME is solved by exponentiation: for each t $ 0, we may define an operator

PN;t on each B.HN / by

PN;tA D
1
X

kD1

e"Nt .N t/
k

k(
Q

k
NA D etLNA:

Then, the unique solution %.t/ of the QKME satisfying %.0/ D %0 2 S.HN / is

%.t/ D PN;t%0:

The operators Qm;m defined in (2.4) are completely positive as are all linear com-

binations of operators of the formX 7! VXV ! forX;V 2 B.K/, K a Hilbert space.

Conversely, by theorems of Kraus and Choi [10, 22], every completely positive oper-

ator ˆ on K , K a Hilbert space of finite dimension d , has the from

ˆ.X/ D
n
X

j D1

VjXV
!

j ;

where n ! d2. The reader unfamiliar with complete positivity may take this as the

definition for present purposes.

It follows that the semigroup %Ptºt#0 is a semigroup of completely positive oper-

ators, and moreover, each Pt is unital, meaning that Pt1 D 1, where 1 is the identity

in B.HN /. Such semigroups are called quantum Markov semigroups, and they arise

also in the quantum theory of open systems [11] for somewhat different reasons, and

there is an extensive literature on them. In particular, there is a structure theorem due

to Lindblad [23] and independently to Gorini, Kossakowski, and Sudershan [18] that

gives a canonical form for the generator. They proved that generator L of a quantum

Markov semigroup always has the form

LX D i ŒH;X $ C
n
X

j D1

#

LjXL
!
j "

1

2
LjL

!
jX "

1

2
XLjL

!
j

$

for some self-adjoint operator H on K (which will be zero in our case) and some

finite set %L1; : : : ; Lnº of operators on K . To write our generator in this form, let

QN .X/ D
n
X

j D1

VjXV
!

j (2.6)
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be a Kraus representation of QN . Then, since QN .1/ D 1,
Pn

j D1 VjV
!

j D 1. There-

fore,

LNX D N

n
X

j D1

#

VjXV
!

j "
1

2
VjV

!
j X "

1

2
XVjV

!
j

$

: (2.7)

Because QN is self-adjoint on yB.HN /, we also have QN .X/ D Pn
j D1 V

!
j XVj , and

hence, we may arrange that %V1; : : : ; Vnº D %V !
1 ; : : : ; V

!
n º. Then, LN can be written

in terms of commutators as

LN D N

2

n
X

j D1

ŒV !
j ; ŒVj ; X $$: (2.8)

The operation X 7! ŒV; X $ is a derivation on B.HN /, and hence, (2.8) displays LN

as a sort on non-commutative Laplace operator since X 7! ŒVj ; X $ is a derivation on

B.HN /.

We will investigate the spectral gap of LN (the least non-zero eigenvalue of

"LN ), and in fact, we will determine it exactly. This involves relating the spectrum

of LN to the spectra of the graph Laplacians )GM
on a family of graphs GM ,M 2 N,

associated to the Kac model. In the next section, we explain the quantum dynamical

origin of these graphs. The connection between the spectrum of LN and the spectra of

)GM
, M 2 N, will emerge when we rewrite the generator in the form (2.7) or (2.8).

The key to this will be to replace the formula (2.5) with Kraus representation (2.6)

of QN .

3. Discrete structures associated to the quantum Kac model

3.1. The collision graph

To obtain a more detailed picture of the dynamics, we start from the N particle

Hamiltonian HN and the single particle Hamiltonian h out of which it is constructed.

Suppose thatH is a d -dimensional Hilbert space and h has d eigenvalues e1; : : : ; ed .

Let % 1; : : : ;  d º be an orthonormal basis for H with h j D ej j for all 1 ! j ! d .

The eigenvalues of HN are indexed by the multi-indices ˛ D .˛1; : : : ; ˛N / 2
%1; : : : ; dºN and are given by

e.˛/ D e˛1
C # # # C e˛N

: (3.1)

We introduce the notation VN for the set %1; : : : ; dºN of multi-indices because soon

it will be the set of vertices on a graph. Defining

‰˛ WD  ˛1
˝ # # # ˝  ˛N

;
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%‰˛ W ˛ 2 VN º is an orthonormal basis of HN consisting of eigenvectors of HN . For

a multi-index ˛ and k 2 %1; : : : ; dº, define the “occupation numbers”

k.˛/ D .k1.˛/; : : : ; kd .˛//; kj .˛/ D j%1 ! m ! N W ˛m D j ºj;

where, for a set A, jAj denotes the cardinality of A. Thus, an alternate to the for-

mula (3.1) for e.˛/ is

e.˛/ D
d
X

j D1

kj .˛/ej :

We also define, for all 1 ! m < n ! N ,

em;n.˛/ D e˛m
C e˛m

:

The quantum dynamics specified by the QKME induces a non-oriented graph struc-

ture on VN

Definition 3.1. For ˛ 2 VN , let P˛ denote the orthogonal projection onto the span

of ‰˛. Two vertices ˛;ˇ 2 VN are adjacent in case ˛ ¤ ˇ:

TrŒP˛QN .Pˇ/$ > 0; (3.2)

Since QN is self-adjoint, TrŒP˛QN .Pˇ/$ D TrŒPˇQN .P˛/$, and the adjacency relation

is symmetric in ˛ and ˇ. Any such pair of adjacent vertices defines an edge, and we

denote the set of all edges by EN . If ! is adjacent to ı, we write Œ!; ı$ to denote the

corresponding edge. Note that Œ!; ı$ D Œı;!$. We denote this graph by GN .

The following lemma simplifies the description of adjacency, and its proof ex-

plains the origins of the definition.

Lemma 3.2. Two vertices ˛;ˇ 2 VN are adjacent if and only if, for some 1 ! m <

n ! N ,

p̌ D p̨ for p ¤ m; n; (3.3)

and

em;n.˛/ D em;n.ˇ/; (3.4)

Proof. Using a common mathematical physics notation for P˛ and Pˇ , one can write

(3.2) as

h‰˛;QN .j‰ˇih‰ˇj/‰˛i > 0: (3.5)

By (2.4) and (2.5), this is the case if and only if, for some 1 ! m < n ! N and some

% 2 C ,

jh‰ˇ; Um;n.%/‰˛ij2 > 0: (3.6)
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Since Um;n.%/ acts non-trivially only on factors m and n of HN , (3.6) is possible

only in case (3.3) is satisfied. Moreover, since Um;n.%/ commutes with HN so that

the collisions conserve energy, (3.6) is possible only in case (3.4) is satisfied.

On the other hand, if (3.3) and (3.4) are satisfied, there will be some U.%/ 2 C

such that (3.6) is satisfied. Then, when the probability measure ' has a strictly positive

density with respect to normalized Haar measure on C , (3.5) is satisfied since % 7!
jh‰ˇ; Um;n.%/‰˛ij2 is continuous.

It is evident that if Œ!;ı$ 2 EN , then e.!/D e.ı/, but the converse need not be true,

even when the probability measure ' on C is normalized Haar measure. However,

as we now explain, a simple non-degeneracy condition on the spectrum of H2 will

guarantee this.

Definition 3.3. The spectrum of h is strongly non-degenerate when the following two

conditions are satisfied.

(1) The spectrum of h is such that the spectrum of H2 is non-degenerate on the

symmetric subspace of H2 D H ˝ H . That is, for any 1 ! j1, j2; j3; j4 ! d ,

ej1
C ej2

D ej3
C ej4

” %j1; j2º D %j3; j4º: (3.7)

(2) For each N $ 3 and each E 2 %.HN /, the pair of equations

d
X

mD1

kmen D E and

d
X

mD1

km D N (3.8)

has exactly one solution for each E in the spectrum of HN .

Note that when (3.7) is satisfied, the spectrum of h is necessarily non-degenerate.

The condition (3.7) has the consequence that if Œ!; ı$ 2 EN , then ! and ı differ by

a pair transposition. In particular, k.!/ D k.ı/, and thus, under condition (3.7), both

the occupation number function k and the energy e are constant on every connected

component of GN .

The further condition (3.8) ensures that if e.!/ D e.ı/, then ! and ı belong to

the same connected component of GN . Suppose that the pair of equations (3.8) has

exactly one solution for each E in the spectrum of HN . Then, e.!/ D e.ı/ if and

only if k.!/ D k.ı/, which in turn is the case if and only if ! and ı are related by a

finite sequence of pair transpositions. Then, Œ!; ı$ 2 EN if and only if ! and ı differ

by a pair transposition. That is, under conditions (3.7) and (3.8), the eigenspaces HE

of HN may be identified with the connected components of the graph GN .

When %e1; : : : ; ed º is linearly independent over the rationals, both conditions (3.7)

and (3.8) are evidently satisfied. Moreover, (3.7) does not imply (3.8).
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Example 3.4. Assume that the single-particle Hamiltonian has the eigenvalues 1;2;4,

each with multiplicity one. Then, (3.7) is satisfied:H2 has the 6 eigenvalues 2, 3, 4, 5,

6, and 8 on H ˝sym H . However, (3.8) is not always satisfied. To see this, let N $ 9

so that there are at least two positive even integers n1 such that 2n1 ! N . Pick such

an n1 and then define

n2 WD N "
3

2
n1; n3 WD 1

2
n1:

Then,

n1 C 2n2 C 4n3 D 2N and n1 C n2 C n3 D N:

The number e D 2N is an eigenvalue of the HamiltonianHN , but there are !; ı 2 V3

such that k.!/¤ k.ı/. For example, takeN D 9. Then, the construction above yields

!;ı 2 V3 such that e.!/D e.ı/D 18, but k1.ı/D 2 and k1.!/D 4. In such examples,

there are eigenvalues of HN such that the corresponding eigenspaces are spanned by

vectors ‰˛ belonging to different connected components of GN .

In summary, under conditions (3.7) and (3.8), ! and ı are adjacent if and only if

they differ by a pair transpositions, and the connected components of GN are indexed

by the eigenvaluesE ofHN . ForE 2 Spec.HN /, write GN;E to denote the connected

component of GN on which e.!/ D E for all ! in its vertex set, VM;E .

Let k be the occupation vector given by the unique solution of (3.8) for N and E.

Then, evidently the cardinality of VN;E is

dk WD N (

k1( # # # kd (
:

For each ˛ 2 VN , let v.˛/ denote the valency of ˛, i.e., the number of vertices in

GN that are adjacent to ˛.

Assume strong non-degeneracy. For each ˛, there are either one or zero vertices

that are adjacent to ˛ through collision involving particles m and n according to

whether ˛m and ˛n are distinct or not. Summing over m < n, the valency of ˛ is

given by

v.˛/ D
X

m<n

D.1 " ı˛m;˛n
/ D

d
X

i<j

ki .˛/kj .˛/:

Hence, under the assumption of strong non-degeneracy, GN is a regular graph.

3.2. The graph Laplacian

Given a finite undirected graph G with vertex set V and edge set E , the graph Lapla-

cian )G is the operator on functions f on V given by

)Gf .x/ D
X

y2V W$x;yº2E

.f .x/ " f .y//:
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Note that
X

x2V

f .x/)Gf .x/ D
X

y2V W$x;yº2E

1

2
.f .x/ " f .y//2: (3.9)

This computation shows that if *V denotes the uniform probability measure on V ,

LG is a positive semi-definite operator on L2.*V /, and that the constant function

f .x/ D 1 for all x 2 V is an eigenfunction with eigenvalue 0. (This is the standard

sign convention for the Laplacian in graph theory.)

It follows from (3.9) that )Gf D 0 if and only if f is constant on each connected

component of G . Hence, on a connected graph G , 0 is an eigenvalue of multiplicity

one, and the eigenspace is spanned by the constant vector. The quadratic form on the

right in (3.9) is called the Dirichlet form of the graph Laplacian.

One of the main results of this paper is that there is a very close connection

between the spectrum of )GN
and the spectrum of LN . In fact, if one knows the

full spectrum of )GN
for every N , then Theorem 5.3 proved below yields the full

spectrum of "LN for all N under the assumption that the spectrum of h is strongly

non-degenerate, and the collision law ' is the uniform Haar measure on C .

Definition 3.5. Let G be a finite connected graph with vertex set V . The spectral gap

of G , +G , is the least non-zero eigenvalue of )G .

By the Rayleigh–Ritz variational principle,

+G D inf

%Z

V

f .x/)Gf .x/d*V W
Z

V

f .x/d*V D 0;

Z

V

jf .x/j2d*V D 1

&

:

3.3. Equilibrium states

The set of equilibrium states for the QKME is considerably richer than for the classical

Kac model. We present here a summary of some relevant results obtained in [9].

A density matrix % on HN is an equilibrium state if and only if LN% D 0 so that

Pt% D % for all t > 0. By Definition 2.1,

LN% D 0 ” QN .%/ D %:

Thus, the problem of identifying all equilibrium states is the problems of identifying

all fixed-point states under the completely positive, unital, and self-adjoint operator

QN .

For the classical Kac model, thought of in terms of a stochastic process on R
N , the

equilibrium states are precisely the probability densities % on R
N that are functions

of the energy 1
2

PN
j D1 v

2
j . This is because any function on R

N that is invariant under

all planar rotations is constant on each level-surface of the energy due to the fact that

averaging a function over all planar rotations has the same effect as averaging the

function over all rotations.
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In the quantum setting, things are somewhat more complicated. Consider an N

particle quantum Kac model in which the collision law ' is normalized Haar measure.

Let E 2 Spec.HN /, the spectrum of HN , and let KN;E denote corresponding

eigenspace. Let PN;E denote the orthogonal projection onto KN;E . Then,

HN D
M

E2Spec.HN /

KN;E :

The Hilbert spaces KN;E are the analogs of the energy shells !N;E in the classical

Kac model. Define the density matrix %E by

%N;E WD 1

dim.KE /
PN;E :

This is the direct analog of the uniform probability measure on !N;E in the classical

Kac model. Then, each %N;E is an equilibrium state for the Kac model. That is, for

all E,

QN .%N;E / D %N;E ;

which is true because each %N;E is a polynomial in HN , and hence, %N;E commutes

with every Um;n.%/, % 2 C .

However, as explained in [9], at this level of generality, it may be that PN;E can

be decomposed as the sum of two (or more) non-trivial orthogonal projections

PN;E D P CQ

satisfying QN .P / D P and Q.Q/ D Q. Then, 1
TrŒP "

P and 1
TrŒQ"

Q are equilibrium

states, and they are not normalized projections onto energy eigenspaces. This is ex-

actly what happens in Example 3.4. We can decide whether or not this happens based

on the structure of the graph GN .

The following result is proved in [9], although it is stated in somewhat different

terms, not explicitly mentioning the graph GN , but using the same notion of “con-

nected component”.

Theorem 3.6. The set density matrices % 2 B.HN / satisfying QN .%/D % is precisely

convex hull of the set

%%N;E W E 2 spec.HN /º (3.10)

if and only if all ! and ı such that e.!/ D e.ı/ belong to the same connected com-

ponent of GN .

As we have seen above, if we make the assumption that the spectrum of h is

strongly non-degenerate (in addition to the assumption that ' is normalized Haar

measure), then all ! and ı such that e.!/ D e.ı/ do belong to the same connected
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component of GN . Thus, under this condition, the set of equilibrium states is pre-

cisely the convex hull of the set in (3.10). For the rest of this paper, we assume that

the spectrum of h is strongly non-degenerate.

Write B.KN;E / to denote the subalgebra PN;E B.HN /PN;E consisting of oper-

ators on B.HN / that act non-trivially only on KN;E . Because PN;E , being a function

of HN , commutes with every unitary that commutes with HN , for all X 2 B.HN /,

PN;EQN .X/PN;E D QN .PN;EXPN;E /:

It follows that each B.KN;E / is invariant under PN;t for each t > 0, and the generator

LN . Define

LN;E WD LN

ˇ

ˇ

B.KN;E/
:

In this finite-dimensional setting, it is easy to show that, for any density matrix % 2
B.KN;E /, limt!1 Pt% exists and is an equilibrium state in B.KN;E /. Since there

is exactly one equilibrium state in B.KN;E /, namely, %N;E ,

lim
t!1

Pt% D %N;E ; (3.11)

as shown in [9]. This is the analog of the convergence to the uniform distribution on

each !N;E in the classical Kac model.

3.4. Main results and methods

Let % be a density matrix in B.KN;E /. In this paper, we are concerned with deter-

mining the rate of convergence in (3.11) in terms of the spectral gap, +LN;E
, for the

generator LN;E of the QKME on B.KN;E /. Since the nullspace of LN restricted to

B.KN;E / is spanned by %N;E , this spectral gap is the smallest positive eigenvalue of

"LN restricted to B.KN;E /. We will prove the following theorem.

Theorem 3.7. Consider a quantum Kac model based on a single-particle Hamilto-

nian h whose spectrum is strongly non-degenerate, and in which the collision measure

' is the normalized Haar measure on the collision group C . Then, for all N $ 2, all

d $ 2, and all E 2 Spec.HN / such that dim.KN;E / > 1, the spectral gap of LN;E ,

+LN;E
is given by

+LN;E
D N

N " 1
:

As a consequence of Theorem 3.7 and the spectral theorem, for anyX 2 B.KN;E /

such that TrŒ%EX $ D 0,

kPt .X/k2 ! e"t N
N !1 kXk2;
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where k # k2 denotes the Hilbert–Schmidt norm on B.KN;E /. The fact that this rate

of equilibration does not decrease to zero as N increases to infinity is significant for

the applications developed in [9]. (Note that if dim.KN;E / D 1 and X 2 B.KN;E /,

TrŒX $ D 0 implies X D 0.)

In this paper, we focus on the graph theoretical results that are basic to the proof

of Theorem 3.7. As we have already seen in Theorem 3.6, there is a close connection

between the generator LN and the graph GN . In Theorem 5.3, we prove a formula that

expresses the entire spectrum of LN in terms of the spectrum of )GM
for allM ! N .

Once this is in hand, the remaining problem is to determine the spectrum of )GM

for all M . Under our conditions on the Kac model, GN turns out to be a graph known

as the multislice, and the full spectrum of the graph Laplacian for the multislice is

known. However, for the purpose of proving Theorem 3.7, we need much less than

knowledge of the full spectrum of )GM
for all M .

In fact, the ideas we have developed for determining the spectral gap in the clas-

sical Kac model [6, 8, 9] are relevant to determining the spectral gap of )GM
for all

M , and we develop this approach here. The approach is quite robust, and we expect

it be applicable to a range of problems that will arise when other collision models are

investigated in which the graphs are more complicated and the edges are weighted.

4. The Lindblad form of the QKME

When the collision law ' is normalized Haar measure, the operators Qmn specified

in (2.4) are not only self-adjoint; they are orthogonal projections since, due to the

invariance properties of Haar measure,

Umn.%/QmnU
!
mn.%/ D Qmn

for all % and hence Q2
mn D Qmn. It is easy to pass from an explicit form of these

projections to the Lindblad form of the QKME.

Consider first the case N D 2. The subalgebra M of B.H2/ consisting of func-

tions ofH2 is a von Neumann subalgebra of B.H /, as is its commutant M
0. Any von

Neumann algebra is spanned by the unitaries it contains, and hence, M
0 is spanned by

the unitaries that commute with H2, which is, by definition, C . By von Neumann’s

double commutant theorem,

M D M
00 D C

0:

Evidently, the range of the projection Q12 is precisely C
0 D M. Therefore, if

H2 D
X

E2†2

EPE
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is the spectral decomposition of H2,

Q12.X/ D
X

E2†2

1

D.E/
TrŒXPE $PE ; (4.1)

where

D.E/ D TrŒPE $

is the degeneracy of the eigenvalue E. From here, it is easy to write down a Kraus

representation of Q12 in terms of the orthonormal basis % ˛1
˝ ˛2

W 1! ˛1; ˛2 ! dº
of H2. Since

TrŒXPE $ D
X

e˛1
Ce˛2

DE

h ˛1
˝  ˛2

; X ˛1
˝  ˛2

i

and

PE WD
X

eˇ1
Ceˇ2

DE

j ˇ1
˝  ˇ2

ih ˇ1
˝  ˇ2

j;

if we define

F˛1˛2Iˇ1ˇ2
WD j ˛1

˝  ˛2
ih ˇ1

˝  ˇ2
j;

then

Q12.X/ D
X

E2†2

1

D.E/

'

X

e˛1
Ce˛2

Deˇ1
Ceˇ2

DE

F !
˛1˛2Iˇ1ˇ2

XF˛1˛2Iˇ1ˇ2

(

:

Evidently, QN;m;n is completely positive. Since Haar measure on U is invariant

under the map U 7! U !, QN;m;n is self-adjoint with respect to the Hilbert–Schmidt

inner product on B.HN /. It is evidently unital and trace preserving.

We now lift Q12 to HN as described in the beginning of this section by fixing

1 ! m < n ! N and replacing each U by Um;n, and thus obtaining Qm;n, which

now describes the averaged effect of a collision between particles m and n. For every

1 !m < n ! N , Qm;n is completely positive, self-adjoint with respect to the Hilbert–

Schmidt inner product on B.HN /, unital, and trace preserving because it inherits

these properties from Q12.

In lifting Q up to HN as described, the trace in (4.1) becomes the partial trace over

the mth and nth factors in HN . For .m; n/ D .1; 2/, one easily finds

Q1;2.X/ D
X

˛1;˛2;ˇ1;ˇ2Ie˛1
Ce˛2

Deˇ1
Ceˇ2

1

D.e˛1
C e˛2

/
E!

˛1˛2Iˇ1ˇ2
XE˛1˛2Iˇ1ˇ2

;

where

E˛1˛2Iˇ1ˇ2
D j ˛1

˝  ˛2
ih ˇ1

˝  ˇ2
j ˝ 1N "2

D j ˛1
ih ˇ1

j ˝ j ˛2
ih ˇ2

j ˝ 1N "2;
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and 1N "2 is the identity operator on the remaining factor. For generalm< n, the rank

one operators j ˛1
ih ˇ1

j and j ˛2
ih ˇ2

j should be inserted as factors m, respec-

tively, n in the tensor product and the remaining factors are the identity matrices.

Therefore, for 1 ! m < n ! N ,

Qm;n.X/D
X

˛m;˛n;ˇm;ˇnIe˛m Ce˛n Deˇm Ceˇn

1

D.e˛m
C(e˛n

/
E!

˛m˛nIˇmˇn
XE˛m˛nIˇmˇn

;

(4.2)

where

E˛m˛nIˇmˇn
D j ˛m

ih ˇm
j ˝ j ˛n

ih ˇn
j ˝ 1N "2;

with the subscripts indicating the factors on which the first two terms operate. Finally,

define

Q.X/ D
#

N

2

$"1
X

m<n

Qmn.X/:

Note that (4.2) gives the Kraus form [22] of the completely positive operator Qm;n,

and then summing, we have the Kraus form of Q. From this, one can easily write down

the Lindblad form [23] of the generator LN , but here it turns out to be more convenient

to work directly with (4.2).

To make use of (4.2), we introduce a natural orthonormal basis for B.HN /: for

˛;ˇ 2 VN , define

F˛ˇ WD j‰˛ih‰ˇj:

Since %‰˛º˛2VN
is an orthonormal basis for HN , %F˛ˇ W ˛;ˇ 2 VN º is an orthonor-

mal basis of B.HN /.

The operator Q turns out to have a fairly simple matrix representation in the %F˛;ˇº
basis, as we now show. It will be useful to define

f˛ˇ D j ˛ih ˇ j:

We will also make use of the swap map, both as a map from VN into itself and as

a unitary operator on HN . First, we use a map from VN into itself; for m < n, and

˛ 2 VN , Smn.˛/ is defined by

.Smn.˛//j D

8

ˆ

ˆ

<

ˆ

ˆ

:

˛n; j D m;

˛m; j D n;

j̨ ; j ¤ m; n:

The swap operator is the unitary operator on HN defined by

Smn‰˛ D ‰Smn.˛/:
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The following theorem says that QN .F!;ı/ is a linear combination of the F˛;ˇ in

which for some 1 ! m < n ! N , ˛ D Sm;n! and ˇ D Sm;nı, and also for this same

m and n, ,m D ım and ,n D ın. In particular, if

D!;ı WD %n W ,n ¤ ınº

and hF˛;ˇ;QN .F!;ı/i ¤ 0, thenD˛;ˇ DD!;ı . This provides a large number of invari-

ant subspaces of QN that greatly facilitates the determination of its spectrum, and

moreover, it says that the only “active indices” in ! and ı are those in the complement

of D!;ı , and these change on lockstep through pair transpositions. This is the origin

on the close link between LN and the operators )GM
, whereM ! N will correspond

to the number of “active indices”.

Theorem 4.1. For all N $ 2 and all !; ı 2 VN ,

#

N

2

$

QN .F!ı/ D 1

2

X

m<n

ı#mım
ı#nın

ŒF!ı C SmnF!ıSmn$

D 1

2

X

m<n

ı#mım
ı#nın

ŒF!ı C FSmn.!/Smn.ı/$:

Proof. For simplicity, we pick the pair .m; n/ D .1; 2/. Then,

E!
˛1˛2Iˇ1ˇ2

F!ıE˛1˛2Iˇ1ˇ2

D Œfˇ1˛1
˝ fˇ2˛2

˝ IN "2$

"

N
O

j D1

f#j ıj

#

Œf˛1ˇ1
˝ f˛2ˇ2

˝ IN "2$

D fˇ1˛1
f#1ı1

f˛1ˇ1
˝ fˇ2˛2

f#2ı2
f˛2ˇ2

N
O

j D3

f#j ıj

D ı˛1#1
ıı1˛1

ı˛2#2
ıı2˛2

fˇ1ˇ1
˝ fˇ2ˇ2

N
O

j D3

f#j ıj
:

The sum

X

˛1;˛2;ˇ1;ˇ2Ie˛1
Ce˛2

Deˇ1
Ceˇ2

1

D.e˛1
C e˛2

/
E!

˛1˛2Iˇ1ˇ2
F!ıE˛1˛2Iˇ1ˇ2

has a contribution from the non-degenerate eigenvalues of H2 given by 2e; e 2 %.h/

E!
˛1˛1I˛1˛1

F!ıE˛1˛1I˛1˛1
D ı#1ı1

ı#2ı2
ı#1#2

f#1#1
˝ f#1#1

N
O

j D3

f#j ıj

D ı#1ı1
ı#2ı2

ı#1#2
F!ı:
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and a contribution from the doubly degenerate eigenvalues of h, ei C ej , i 6D j ,

1

2

X

˛1;˛2;ˇ1;ˇ2Ie˛1
Ce˛2

Deˇ1
Ceˇ2

E!
˛1˛2Iˇ1ˇ2

F!ıE˛1˛2Iˇ1ˇ2
;

which for ,1 6D ,2 equals

ı#1ı1
ı#2ı2

2

"

f#1#1
˝ f#2#2

N
O

j D3

f#j ıj
C f#2#2

˝ f#1#1

N
O

j D3

f#j ıj

#

D ı#1ı1
ı#2ı2

2

"

f#1ı1
˝ f#2ı2

N
O

j D3

f#j ıj
C f#2ı2

˝ f#1ı1

N
O

j D3

f#j ıj

#

D ı#1ı1
ı#2ı2

2
ŒF!ı C S12F!ıS12$:

Hence, we have

Q12.F!ı/ D

8

<

:

ı#1ı1
ı#2ı2

ı#1#2
F!ı if ,1 D ,2

ı!1ı1
ı!2ı2

2
ŒF!ı C S12F!ıS12$ if ,1 6D ,2

D ı#1ı1
ı#2ı2

2
ŒF!ı C S12F!ıS12$

since for ,1 D ,2 the swap operator S12 acts trivially. The same reasoning yields

the analogous result for all other m < n. Summing and then using (2.5) prove the

theorem.

5. The spectrum of the Kac generator LN

5.1. Direct sum decomposition of B.HN /

As explained in the paragraph above Theorem 4.1, this theorem gives rise to a direct

sum decomposition of B.HN / into subspaces that are invariant under LN .

Definition 5.1. For any ı; ! 2 VN , define Cı! & %1; : : : ; N º to be the coincidence

set of this pair of vertices. That is,

Cı! D %j W ıj D ,j º:

Next, let S ¨ %1; : : : ; N º.

(1) Define the set of exterior pair configurations ES to be the set of pairs "; # 2
%1; : : : ; dºSc

such that, for all j 2 Sc , -j ¤ .j .
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(2) For each S ¨ %1; : : : ; N º and each ."; #/ 2 ES , define BS I";# to be the sub-

space of B.HN / spanned by the operators Fı;! such that Cı! D S , and such

that for j 2 Sc , ıj D -j and ,j D .j .

(3) For S D %1; : : : ; N º, define CN D span.%F!;! W ! 2 VN º/. That is, CN is

the span of the Fı;! such that Cı! D %1; : : : ;Nº in which case there are no

exterior configurations to be considered. Note that CN is not only a subspace

of B.HN /, it is a commutative subalgebra of B.HN /. It is called the classical

subalgebra of B.HN /.

Lemma 5.2. The N -particle space HN is the direct sum of the subspaces BS I";#;

that is,

B.HN / D CN ˚
'

M

S¨$1;:::;N º; .";#/2ES

BS I";#

(

: (5.1)

Proof. It is evident that, for each ı; ! 2 VN , Fı;! belongs to BS I";# if and only if

S D Cı! and for each j … S ,ıj D -j and ,j D .j . Thus, each of the basis vectors

Fı;! belongs to exactly one of the spaces BJ I";#, and this proves (5.1).

ForM 2 N, let L2.GM / denote the Hilbert space obtained by equipping GM with

counting measure. For each multi-index ˛ D .˛1; : : : ; ˛M /, define a function gˇ on

VM by gˇ.˛/ D ı˛;ˇ . Then, %gˇº˛2VM
is an orthonormal basis for L2.GM /.

Fix some S ¨ %1; : : : ; N º with cardinality jS j D M , and write it in the form

%j1; : : : ; jM º. Define the map kS W S ! %1; : : : ;M º by kS .jk/ D k. In addition, for

M < N , fix some ."; #/ 2 ES . Then, define a unitary map US I"# from L2.GM / to

BS I";# by linearly extending

US I"#.gˇ/ D F!;ı; where

´

,j D ıj D ˇkS .j /; j 2 S
,j D -j ; ıj D .j ; j … S:

(5.2)

This map is unitary because it takes an orthonormal basis of L2.GM / to an orthonor-

mal basis of BS I";#. For S D %1; : : : ; N º, there is the simpler unitary map UCN
from

L2.GM / onto CN defined by UCN
.gˇ/ D Fˇˇ .

Theorem 5.3. Let S ¨ %1; : : : ; N º with jS j D M , and let ."; #/ 2 ES . Define r WD
N "M . For all f 2 L2.GM /, and all ˛;2 VM ,

U !
S I"#."LN /US I"#f .˛/ D 1

N " 1
)GM

f .˛/C
#

2r
N

N " 1
"
r.r C 1/

N " 1

$

f .˛/:

For S D %1; : : : ; N º, we have

U !
CN
."LN /UCN

D 2

N " 1
)GN

f .˛/:
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Theorem 5.3 reduces the study of the spectrum of LN to the study of the spectrum

of the graph Laplacians )GM
,M ! N . The rest of this section is devoted to the proof

of Theorem 5.3. In the next section, we turn to the analysis of the spectrum of )GM
,

M ! N . We give a new a relatively simple proof of some known relevant facts about

the spectrum, and in particular, the determination of the spectral gap.

Proof of Theorem 5.3. Fix ˇ 2 GM , and let F!;ı D US I"#.gˇ/ so that ! and ı are

given by (5.2). Then, C!;ı D M , and from Theorem 4.1,

N"1

#

N

2

$

LN .F!ı/ D 1

2

X

m<n

ı#mım
ı#nın

ŒF!ı C FSmn.!/Smn.ı/$ " F!ı

D 1

2

X

m<n

ı#mım
ı#nın

ŒFSmn.!/Smn.ı/ " F!ı$

"

##

N

2

$

"

#

M

2

$$

F!ı:

Now, observe that

US I"#

#

1

2

X

m<n

ı#mım
ı#nın

ŒFSmn.!/Smn.ı/ " F!ı$

$

U !
S I"#.˛/

D
X

$˛0WŒ˛;˛0"2EM º

gˇ.˛
0/ " v.˛/gˇ.˛/ D ")GM

gˇ.˛/;

and
#

N

2

$

"

#

M

2

$

D .N 2 "N/ " .N 2 " .2r C 1/N C r.r C 1//

2
D rN "

r.r C 1/

2
:

6. The spectrum of the Graph Laplacian on the multislice

6.1. The multislice

The graph GN is known as the multislice in analogy with the sliced Boolean cube

%0; 1ºN . The pair-transposition random walk on the vertices of the Boolean cube pre-

serves the sum of the coordinates belonging to a vertex in %0; 1ºN , and hence, the

paths of the walk stay in, and eventually cover, the “slices” of %0; 1ºN corresponding

to the N C 1 possible values of the sum of the coordinates.

When h is non-degenerate, we identify VN D %1; : : : ; dºN with %e1; : : : ; ed ºN .

Then, due to energy conservation, our pair transposition walk on VN conserves the

value of the sum of the coordinates. The possible values of this sum are the eigenval-

ues of HN , and we have seen that these are indexed by the occupation vectors k.˛/,
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˛ 2 GN . Under the strong non-degeneracy condition, there is a one-to-one correspon-

dence between eigenvalues E of HN , and occupation vectors k D .k1; : : : ; kd / such

that each kj is a non-negative integer and
Pd

j D1 kj DN . For each such k, define GN;k

to be the subgraph of GN consisting of those vertices ˛ 2 GN for which k.˛/ D k.

(This is a slight shift from our previous notation GN;E , but in this purely graph theo-

retic context, notation referring to k instead ofE is natural.) It is easy to see that these

are precisely the connected components of GN . Thus, )GN
is the direct sum of the

operators )GN ;k.

Theorem 6.1. For all N $ 2, all d $ 2, and all k D .k1; : : : ; kd / 2 Z
d
#0 with

d
X

mD1

km D N and max%k0; : : : ; kr"1º < N

so that GN;k is not trivial, the spectral gap +N;k of )GN;k
is given by

+N;k D N:

Granted this, we now prove Theorem 3.7.

Proof of Theorem 3.7. To show that for allE 2 Spec.HN /, such that dim.KN;E / > 1,

+LN;E
$ N

N "1
, it suffices to prove that the least non-zero eigenvalue of "LN is N

N "1
.

By Lemma 5.2 and Theorem 5.3, every eigenvalue of LN is of the form

1

N " 1
/ C 1

N " 1
.2rN " r.r C 1//;

where / $ 0 is an eigenvalue of )GM
f .˛/ and r is an integer in %0; : : : ; N " 1º. By

concavity,

min%.2rN " r.r C 1// W r 2 %1; : : : ; N " 1ºº D min%2.N " 1/;N.N " 1/º
D 2.N " 1/:

Therefore, the least eigenvalue in the subspaces corresponding to r > 0 is 2N "1
N

.

Next, consider r D 0. By Lemma 5.2, this corresponds to invariant subspace CN ;

that is the classical sector, since CN is a commutative subalgebra of B.HN /. For the

classical sector, Theorem 5.3 says that "LN is unitarily equivalent to 1
N "1

)GN
. It

then follows immediately from Theorem 6.1 that, on this sector, the smallest non-

zero eigenvalue of "LN is N
N "1

< 2N "1
N

. Therefore, the gap is N
N "1

, and all gap

eigenvectors lie in the classical sector.

Remark 6.2. The proof of Theorem 3.7 not only yields the exact spectral gap for

the QKME; it shows that all truly quantum modes decay at least twice as fast as the

slowest classical mode.
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Turning to the proof of Theorem 6.1, it is easy to write down a set of eigenfunc-

tions of )GN;k
that have eigenvalue N . This will be very useful in the proof that N is

in fact the spectral gap.

Definition 6.3. Let KN;k denote the set of real-valued functions g on %e1; : : : ; ed º
such that

d
X

mD1

kmg.em/ D 0:

Lemma 6.4. Let g be any non-zero function in KN;k as specified in Definition 6.3.

Fix 1 ! ` ! N and define a function f on VN;k by f .x/ D g.x`/. Then,

)GN;k
f .x/ D Nf .x/: (6.1)

Proof. Note that f .x/ " f ."i;jx/ D 0 unless i D ` or j D `; hence, we need only

consider such pair permutations when computing LGN;k
f .x/. For any 0!m! r " 1,

consider x 2 VN;k such that x` D em. For each n¤ m, there are kn pair permutations

such that when applied to x yield the value en in the `th place. Therefore,

)GN;k
f .x/ D

X

n¤m

kn.g.em/ " g.en//

D .N " km/g.em/ "
X

n¤m

kng.en/

D .N " km/g.em/C kmg.ex/ D Ng.em/ D Nf .x/;

where in the last line we have used

r"1
X

nD0

kng.en/ D 0:

Since m is arbitrary, (6.1) is proved.

Remark 6.5. Fix any function g on %e1; : : : ; ed º such that
Pd

nD1 kng.en/D 0. Then,

the N functions %g.x1/; : : : ; g.xN /º are not linearly independent since, for any x 2
VN;k,

N
X

`D1

g.x`/ D
d
X

nD1

kng.en/ D 0: (6.2)

Now, consider any %g1; : : : ; gN º ' KM;k, not all zero, and define the function

f .x/ D
N
X

`D1

g`.x`/:
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By Lemma 6.4, LGN;k
f D Nf . However, we can express f in a simpler way: since

by (6.2),
PN

`D1 gN .x`/ D 0,

f .x/ D f .x/ "

 

N
X

`D1

gN .x`/

!

D
N "1
X

`D1

h`.x`/;

where, for 1 ! ` ! N " 1, h` D g` " gN .

6.2. Spectral properties of the graph Laplacian on the multislice

For each N , there is a natural partial order on the set of vectors k D .k1; : : : ; kd /

induced by the “coarsening operation” of “merging” energy levels [24]. For any d 0 >

d $ 2, let & W %0; : : : ; d 0º ! %0; : : : ; dº be any surjection. For k D .k0; : : : ; kd 0/ with
Pd 0

nD0 kn D N , define

&.k/m WD
X

nW$.n/Dm

kn and &.k/ D .&.k/1; : : : ;&.k/d /:

Then, & induces a map, also denoted by &, from %e1; : : : ; ed 0º into itself by

&.en/ D e$.n/; 1 ! n ! d 0: (6.3)

We say that one multislice VN;k is coarser than another VN;k0 if, for some 2 !

d < d 0 ! N , there is a surjection & W %1; : : : ; d 0º ! %1; : : : ; dº such that &.k0/ D k.

In this case, & induces a map from VN;k onto VN;k0 given by

.&.x//` WD &.x`/ (6.4)

with &.x`/ defined by (6.3).

The relevance of such coarsenings to spectral problems was pointed out and ex-

ploited in [12,13]. In our setting, suppose that for some & as above we have k D &.k0/.

It is easy to see that, for any real-valued function f on VN;k,

.)VN;k
f / ı & D )VN;k0

.f ı &/:

Let f be an eigenfunction of )GN;k
with eigenvalue /. Then,

/f ı & D .)VN;k
f / ı & D )VN;k0

.f ı &/:

Since the map & defined in (6.4) is surjective, f ı & is not identically zero, and hence,

/ is also an eigenvalue of )VN;k
. Therefore, when the multislice VN;k is coarser than

the multislice VN;k0 , the spectrum of )GN;k
is contained in the spectrum of )GN;k0

. In

particular,

+N;k0 $ +N;k: (6.5)
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Whenever GN;k is not trivial, i.e., has at least one edge, it is known that +N;k D N ,

independent of k. This result can be found in [24, Lemma 1], in which the proof refers

to the deep proof by Caputo, Liggett, and Richthammer [5] of a famous conjecture of

Aldous [2]. This fact about the gap also follows from (6.5) and some computations

that follow. Because of (6.5), it suffices to know +N;k for a few special choices of k.

Among the graphs considered here, some are absolutely trivial. For example, if

km D N for some 0 ! m ! r " 1, then VN;k is a singleton, and the edge set EN;k is

empty. In this case, the graph Laplacian is 0, and there is only this one eigenvalue,

and hence no gap.

Somewhat less trivial is the case in which km0
DN " 1 for somem0. Then, km D

1 for one value of m ¤ m0, and kn D 0 for all n ¤ m;m0. In this case, every vertex

is related to every other by a pair transposition, and hence, the graph is a complete

graph with N vertices, and therefore, the spectral gap is N .

For r D 2, we might as well take %e0; e1º D %0; 1º, and then,

%e0; : : : ; er"1º D %0; 1ºN ;

the Boolean N -cube. Take G D %0; 1ºN with adjacency defined as above. The con-

nected components GN.k0;k1/ are known as Johnson Graphs, and the full spectrum

of the Laplacian LGN;.k0;k1/
is known [3, 15]. In particular, it is known that the spec-

tral gap is always N independent of k D .k0; k1/, assuming that both k0 and k1 are

non-zero.

Finally, consider the case in which r D N and k D .1; : : : ; 1/, i.e., km D 1 for

all m. Then, evidently, VN;.1;:::;1/ has N ( vertices and may be identified with SN , the

symmetric group on N letters. The spectrum of the corresponding graph Laplacian

LVN;.1;:::;1/
has been studied using methods from group representation theory by Dia-

conis and Shahshahani [14]. Their results provide complete information on all of the

eigenvalues, and this is essential for their applications. One of their results is that, for

all N , the spectral gap is N . For this alone, one does not need so much machinery,

and a simple proof is given in [8, Theorem 5.1].

Now, consider any k such that GN;k is non-trivial. Evidently, k is coarser than

k1 WD .1; : : : ; 1/;

and going in the opposite direction, reducing to just two energies, there is a k0 D
.k0; k1/ such that

+N;k0
! +N;k ! +N;k1

:

Since GN;k0
is a Johnson graph, +N;k0

D N [3]. Then, since +N;k1
D N , +N;k D N .

This result is explicitly noted in [24, Lemma 1], with an argument based on the proof

of Aldous’ conjecture [2] by Caputo, Liggett, and Richthammer [5].
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We now give a simple proof of Theorem 6.1 and somewhat more use ideas devel-

oped in [8], applied there to the case of the sliced Boolean cube.

6.3. The induction for the lower bound on the gap

Define *N;k to be the uniform probability measure on VN;k. The Dirichlet form for

)GN;k
on L2.*N;k/ is

1

2

X

x2VN;k

X

i<j

.f .x/ " f ."i;jx//
2*N;k: (6.6)

It greatly simplifies the induction we will carry out if we normalize so that the sum

over pairs becomes an average. Therefore, we will work with the Dirichlet form of
!

N
2

""1
)GN;k

:

1

2

#

N

2

$"1
X

x2VN;k

X

i<j

.f .x/ " f ."i;jx//
2*N;k: (6.7)

The key to our induction is the identity

#

N

2

$"1
X

i<j

.f ."i;jx/ " f .x//2

D 1

N

N
X

`D1

##

N " 1

2

$"1
X

i<j;i;j ¤`

.f ."i;jx/ " f .x//2
$

: (6.8)

On the right, we have an average ofN terms, each of which leaves one coordinate, x`,

unchanged since transpositions "i;j in which either i D ` or j D ` are not included.

If one thinks in terms of processes defined by the Dirichlet forms, this identity will

relate the dynamics for N particles to the dynamics for N " 1 particles.

First, we make one more adjustment to the N particle dynamics. The Dirichlet

form (6.7) is associated to a continuous-time Markov jump process on VN;k of the

following description: a Poisson clock is running with expected times between “rings”

equal to 2. When a “ring” occurs, a pair .i; j /, i < j , is chosen uniformly at random,

and the state jumps from vertex x to vertex "i;jx. For any given 1 ! ` ! N , the

number of pairs i < j containing ` is N " 1, and hence, the fraction of the jumps

that change the state of the `th particle is 2=N . In order to have that all particles

update with an expected time of order 1, independent of N , we therefore multiply the

Dirichlet form in (6.7) by N to obtain a family of processes, indexed by N , in which

the expected waiting times for updates of each particle are of order 1, independent

of N . This is physically motivated, but as we will see, it is also convenient for the

induction.
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Definition 6.6. Define the Dirichlet form

DN;k.f; f / D N

2

#

N

2

$"1
X

x2VN;k

X

i<j

.f ."i;jx/ " f .x//2*N;k.x/

D 1

N " 1

X

x2VN;k

X

i<j

.f ."i;jx/ " f .x//2*N;k.x/; (6.9)

where the pair permutations "i;j acts on x by swapping the i and j th entries. Also,

define y+N;K to be the spectral gap associated to this Dirichlet from; that is,

y+N;k D inf
®

DN;k.f; f / W kf kL2.%N;k/ D 1; hf; 1iL2.%N;k/ D 0
¯

:

Remark 6.7. Comparing with (6.6) which gives the Dirichlet form of the graph

Laplacian )N;k, we see that its gaps +N;k and y+N;k, are related by

y+N;k D 2

N " 1
+N;k: (6.10)

To make use of (6.8), we first consider a graph GN;k, where k D .k1; : : : ; kd / is

such that

km $ 1 for each 1 ! m ! d: (6.11)

Then, GN;k is a graph for N particles that truly have d different energy levels. If it

were the case that km D 0 for some m, the energy em would play no role, and the

graph would be identical to another graph with a reduced set of r 0 < r energy levels

and a net k0 such that, for all 0 ! m ! r 0 " 1, k0
m $ 1. Evidently, GN;k and GN;k0 are

isomorphic and in particular have the same spectral gap.

Now, considering GN;k such that (6.11) is satisfied, we specify a bijection of VN;k

with a union of vertex sets of graphs for N " 1 particles: for 0 ! m ! r " 1, define

k.m/ to be obtained from k by replacing km with km " 1. For each 1 ! ` ! N , we

define a map

T` W
 

r"1
[

mD0

VN "1;k.m/

!

! VN;k

by

T`.x/ D .x1; : : : ; x`"1; em; x`; : : : ; xN "1/ for x 2 VN "1;k.m/

with the obvious modifications for ` D 1 or ` D N " 1. In other words, for x 2
VN "1;k.m/ , one simply inserts em in the `th place, keeping the order of the remain-

ing entries unchanged, and thus obtains an element of VN;k. It is evident that this

does indeed yield a bijection. The set %x 2 VN;k W x` D emº is precisely the image of

VN "1;k.m/ under T`. We will prove the following theorem.
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Theorem 6.8. Let %e1; : : : ; ed º be given along with k D .k0; : : : ; kr"1/, where each

km is a strictly positive integer and
P

mD1 km D N . Then, the spectral gap )N;k for

the corresponding Dirichlet form specified in (6.9) satisfies

y+N;k $
N.N " 2/

.N " 1/2
min%y+N "1;k.m/ W 0 ! m ! r " 1º:

We will prove this to be a consequence of several lemmas and begin by explaining

how we make use of (6.8)

For each 1 ! ` ! N , and each m 2 %0; : : : ; r " 1º, define

D
`;m
N;k .f; f /

D N " 1

2

#

N " 1

2

$"1
X

x2VN;k;x`Dem

'

X

i<j;i;j ¤`

.f ."i;jx/ " f .x//2
(

*N "1;k.m/

D 1

N " 2

X

x2VN;k;x`Dem

'

X

i<j;i;j ¤`

.f ."i;jx/ " f .x//2
(

*N "1;k.m/ :

Next, for each 1 ! ` ! N , define the operator P` on L2.VN;k/ as follows: on the

set %x W x` D emº,

P`f .x/ WD *N;k.m/

X

y2VN;kWy`Dem

f .y/:

The operator P` is just the orthogonal projection in L2.*N;k/ onto the subspace of

functions that depend only on x`. Therefore, for each m 2 %0; : : : ; r " 1º,

D
`;m
N;k .f; f / D D

`;m
N;k .f " P`f; f " P`f /: (6.12)

Also, note that

*N;k D
r"1
X

mD0

km

N
*N "1;k.m/ : (6.13)

Therefore, using the key identity (6.8), together with (6.12) and (6.13),

DN;k.f; f / D 1

N

N
X

`D1

N

N " 1

r"1
X

mD0

D
`;m
N;k .f " P`f; f " P`f /

km

N
: (6.14)

Recall that y+N;k is the spectral gap of the Dirichlet form defined in (6.9). Since for

each m D 0; : : : ; r " 1, f " P`f is constant on the image of each VN "1;k.m/ under

T`,

D
`;m
N;k .f " P`f; f " P`f / $ )N "1;k.m/k.f " P`f / ı T`k2

L2.%
N !1;k.m/ /

:
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By (6.13), and the fact that each P` is an orthogonal projection,

r"1
X

mD1

k.f " P`f / ı T`k2
L2.%

N !1;k.m/ /

km

N
D kf " P`f kL2.%N;k/

D kf k2
L2.%N;k/

" hf; P`f iL2.%N;k/:

Then, taking f to be a normalized gap eigenfunction for )N;k, we have from (6.14)

that

y+N;k $ min
®y+N "1;k.m/ W 0 ! m ! r " 1

¯ N

N " 1
.1 " hf; Pf iL2.%N;k//; (6.15)

where

P D 1

N

N
X

`D1

P`:

Note that P is an average of orthogonal projections, and hence, its spectrum lies in

Œ0; 1$. Any function f that is an eigenvalue of P with the eigenvalue 1 must be in the

range of each of the projections P`. However, the range of P` consists of functions

f that depend on x only through x`. For N $ 3, the only functions f on VN;k that

have this property for all ` are the constant functions since, for every x; y 2 VN;k,

there is a sequence of pair transpositions that takes x to y, and since N $ 3, each

such transposition leaves one coordinate unchanged, and hence leaves the value of f

unchanged. Hence,

f .x/ D f .y/:

Therefore, for N $ 3, 1 is an eigenvalue of P of multiplicity one with the eigenspace

being the constant functions. Since the gap eigenfunction f is orthogonal to the con-

stants in L2.*N;k/, we must have

hf; Pf i < 1:

In fact, this quantity can be no larger than the next largest eigenvalue of P .

Definition 6.9. Let N $ 3, and let /N;k denote the second largest eigenvalue of P

/N;k D sup
®

hh; PhiL2.%N;k/ W khkL2.%N;k/ D 1; hh; 1iL2.%N;k/ D 0
¯

:

Therefore, (6.15) becomes

y+N;k $ min
®y+N "1;k.m/ W 0 ! m ! r " 1

¯ N

N " 1
.1 " /N;k/: (6.16)

The next lemma renders (6.16) completely explicit and yields the proof of Theo-

rem 6.8.
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Lemma 6.10. LetN $ 3. The spectrum ofP is the set %0;.N " 1/"1;1º. In particular,

/N;k D 1

N " 1
: (6.17)

Moreover, the eigenspace corresponding to 1 consists of the constant functions, and

the eigenspace corresponding to .N " 1/"1 has dimension .r " 1/.N " 1/ and a

basis for it is the set of functions of the form

fm;`.x/ D gm.x`/; 1 ! m ! r " 1; and 1 ! ` ! N " 1;

where %g1; : : : ; gr"1º is a basis for KN;k.

The proof of Lemma 6.10 that we give is patterned on the proof of [6, Lemma

2.16]. It involves a simpler operator K that, like P , is constructed out of the projec-

tions P`. K is an operator on functions of a single variable in %e1; : : : ; ed º: let 'N;k

denote the probability measure on %e1; : : : ; ed º that is the image of the uniform prob-

ability measure on VN under the map "N W .x1; : : : ; xN / 7! xN . It is easy to see

that

'N;k.%emº/ D km

N
:

Define the operatorK on L2.'N;k/ byKh D P1h ı "N . Note that, for any function h

on %e1; : : : ; ed º, h ı "N is a function on VN , depending only on the N th coordinate,

and then, P1h ı "N , which is a function of the first coordinate only, may be identified

with a function on %e1; : : : ; ed º, and this function is, by definition, Kh. There is

nothing special about 1 and N , and pairs of distinct indices yield the same operator

by symmetry.

By the definition of 'N;k in terms of *N;k, we have the following formula for K

which shows that it is self-adjoint on L2.'N;k/:

hg;KhiL2.&N;k/ WD
X

x2VN;k

g.x1/h.xN /*N;k.x/: (6.18)

Lemma 6.11. The spectrum of theK onL2.'N;k/ is %1;"1=.N"1/º. The eigenspace

corresponding to the eigenvalue 1 consists of the constant functions on %e0; : : : ; er"1º,

and the eigenspace corresponding to the eigenvalue "1=.N " 1/ is the space consist-

ing of functions g on %e0; : : : ; er"1º such that

r"1
X

mD1

kmg.em/ D 0:

Proof. Since, form¤ n, there are
.N "2/'

k0'%%%kr!1'
kmkn vertices with x1 D em and xN D en,

and there are
.N "2/'

k0'%%%kr!1'
km.km " 1/ vertices with x1 D xN D em, working from the
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right-hand side of (6.18), we find

X

x2VN;k

g.x1/h.xN /*N;k.x/ D 1

N.N " 1/

r"1
X

mD0

g.em/h.em/km.km " 1/

C 1

N.N " 1/

X

m¤n

g.em/h.en/kmkn:

From here, it follows easily that Kh.em/ D Pr"1
nD0Km;nh.en/, where

.N " 1/Km;n D
´

kn " 1; n D m;

kn; n ¤ m:

Therefore, .N " 1/K D "1CL, where L is the rank one matrix, each of whose rows

is .k0; : : : ; kr"1/. Evidently, the non-zero constant vectors are eigenvectors ofK with

eigenvalue 1, and every non-zero vector orthogonal to the constants in L2.'N;k/ is an

eigenvector with eigenvalue "1=.N " 1/.

Note that the space KN;k that figures in Theorem 6.1 is precisely the eigenspace

of K corresponding to the eigenvalue "1=.N " 1/.

We have seen in Remark 6.5 that, for %g1; : : : ;gN º ' KN;k, %g1.x1/; : : : ;gN .xN /º
need not be linearly independent even if each g` is non-zero. The following lemma

shows that the only way linear independence can fail is the way indicated in Remark

6.5

Lemma 6.12. Let %g1; : : : ; gN º ' KN;k Then,
PN

`D1 g`.x`/ D 0 for all x 2 VN;k if

and only if all of the functions g1; : : : ; gN are the same.

Proof. By what is explained in Remark 6.5, it suffices to show that if
PN

`D1 g`.x`/D
0 for all x 2 VN;k, then all of the functions g1; : : : ;gN are the same. Hence, we assume
PN

`D1 g`.x`/ D 0 and compute

0 D
)

)

)

)

)

N
X

`D1

g`.x`/

)

)

)

)

)

2

L2.%N;k/

D
N
X

iD1

'

kgik2
L2.&N;k/

C
X

`¤i

hgi ; Kg`iL2.&N;k/

(

D
N
X

iD1

#

kgik2
L2.&N;k/

"
1

N " 1

X

`¤i

hgi ; g`iL2.&N;k/

$

$

N
X

iD1

#

kgik2
L2.&N;k/

"
1

N " 1

X

`¤i

kgikL2.&N;k/kg`kL2.&N;k/

$

$

N
X

iD1

#

kgik2
L2.&N;k/

"
1

N " 1

X

`¤i

1

2
.kgik2

L2.&N;k/
C kg`k2

L2.&N;k/
/

$

D 0:
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Hence, both inequalities must be equalities. The first inequality is the Schwarz in-

equality and a worst-case assumption on the signs, and equality here entails that the

functions g1; : : : ; gN are all positive multiples of one another. The second inequality

is the arithmetic-geometric mean inequality, and equality here entails that

kgikL2.&N;k/ D kg`kL2.&N;k/

for all i and `.

Proof of Lemma 6.10. Suppose that f is an eigenfunction ofP with eigenvalue />0.

Write

P`f .x/ DW h`.x`/ D h` ı "`.x/;

where "`.x/D x`. Define Eh WD .h1; : : : ;hN / viewed as an element of C
N ˝L2.'N;k/.

Since f is an eigenfunction of P , f ¤ 0 and N/
PN

`D1 h`.x`/ D f .x/. Therefore,

Eh ¤ 0, and the map f 7! Eh is injective from the eigenspace of P corresponding to

eigenvalue / > 0 into C
N ˝ L2.'N;k/. Since this is true for every eigenvalue / > 0

of P , the map f 7! Eh is injective from ker.P /? into C
N ˝ L2.'N;k/.

Applying Pi to both sides of /f D Pf , and using the formulaKh` D Pih` ı "`,

.N/ " 1/hi D
X

`¤i

Kh`: (6.19)

Define M to be the N ( N matrix with Mi;` D
´

0 i D `

1 i ¤ `
. Then, since (6.19) is

valid for each i , we have

.N/ " 1/Eh D M ˝K Eh:
Since Eh ¤ 0, .N/ " 1/ is an eigenvalue of M ˝K. Evidently, the spectrum of M is

%"1; N " 1º, and by Lemma 6.11, the spectrum of K is %1;"1=.N " 1/º. Then, the

spectrum of M ˝K is %"1; 1=.N " 1/; N " 1º. It follows that if / > 0, then either

/ D 1 or / D 1=.N " 1/. Since .N/ " 1/ 2 %"1; 1=.N " 1/;N " 1º is equivalent to

/ 2 %0; 1=.N " 1/; 1º;

this proves that the only eigenvalue / of P with 0 < / < 1 is / D 1=.N " 1/, and

hence, (6.17) is proved.

Moreover, we have seen that the map f 7! Eh D .h1; : : : ; hN / is injective from

the 1=.N " 1/ eigenspace of P into the 1=.N " 1/ eigenspace of M ˝K, and this

eigenspace is the product of the "1 eigenspace ofM and the "1=.N " 1/ eigenspace

of K. Evidently, the dimension of this eigenspace is .N " 1/.r " 1/. Hence, the

dimension of the 1=.N " 1/ eigenspace of P cannot have a dimension any higher

than this.
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To see that it is not any lower, consider any non-zero g 2 KN;k, and any 1! `!N ,

and let f .x/ D g.x`/. We then compute

Pf .x/ D 1

N

'

g.x`/C
X

i¤`

Kg.xi /
(

D 1

N

#

g.x`/ "
1

N " 1

X

i¤`

g.xi /

$

D 1

N

 

N

N " 1
g.x`/ "

1

N " 1

N
X

iD1

g.xi /

!

D 1

N " 1
g.x`/ D 1

N " 1
f .x/:

Hence, all such functions belong to the eigenspace corresponding to the eigen-

value 1=.N " 1/. Choose a basis %g1; : : : ; gr"1º of KN;k. Let f be a non-trivial

linear combination of the .N " 1/.r " 1/ functions fm;` D gm.x`/, 1 ! m ! r " 1

and 1 ! ` ! N " 1. The result is a function of the form
P

`D0 h`.x`/ with each

h` 2 KN;k, at least one of which is non-zero. Then, by Lemma 6.12, this cannot van-

ish identically, and hence, the specified set of .N " 1/.r " 1/ functions is linearly

independent. Hence, they constitute a basis for the eigenspace corresponding to the

eigenvalue 1=.N " 1/ eigenspace corresponding to the eigenvalue 1=.N " 1/

Proof of Theorem 6.8. This now follows directly from (6.16) and (6.17).

6.4. Proof of Theorem 6.1

To use our inductive relation (6.16), we need to know the values of +N;k for small N .

For some values of k, this is trivial even for large N : if max%km W 0 ! m ! r " 1º D
N , GN;k has a single vertex and no edges. We exclude these trivial cases, and going

forward suppose that

max%km W 0 ! m ! r " 1º ! N " 1: (6.20)

If there is equality in (6.20), then every vertex x D .x1; : : : ; xN / in VN;k has all but

one of the entries xj the same, and exactly one that is not. All of these are related to

one another by a pair transposition, and hence, in this case, GN;k is a complete graph

with N vertices, and hence,

+N;k D N and y+N;k D 2N

N " 1

for all such k.

Finally, as we have observed before, it suffices to consider graphs GN;k for which

km $ 1 for 0!m! r " 1, since otherwise the graph is the same as one with a smaller

set of energies that does satisfy such a condition.

Consider N D 2. The only non-trivial choice for k is with r D 2 and k D .1; 1/.

There are two vertices .e0; e1/ and .e1; e0/ and the single edge connects them. This is
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a complete graph, and hence, +2;.1;1/ D 2 and y+2;.1;1/ D 4. In summary, for N D 2,

there is only one non-trivial choice of k, and for this choice, y+2;k D 4.

Next, consider N D 3. The non-trivial choices for k are, with r D 2, k D .1; 2/

and k D .2; 1/, both of which are complete graphs, and for r D 3, k D .1; 1; 1/. By

Theorem 6.8,

y+3;.1;1;1/ $
3

4
min%y+2;.0;1;1/; y+2;.1;0;1/; y+2;.1;1;0/º:

But evidently, y+2;.0;1;1/ D y+2;.1;0;1/ D y+2;.1;1;0/ D y+2;.1;1/ D 4. Therefore,

y+3;.1;1;1/ $
3

4
4 D 3:

Since G3;.2;1/ and G3;.1;2/ are complete, +3;.2;1/ D +3;.1=2/ D 3, and since

2=.N " 1/ D 1

for N D 3, we also have y+3;.2;1/ D y+3;.1;2/ D 3. In summary, for N D 3 and all

non-trivial choices of k, y+3;k D 3.

Proof of Theorem 6.1. Let N $ 3 be an integer. We make the inductive hypothesis

that, forM D N " 1, y+M;k D 2M=.M " 1/ for all k such that GM;k is non-trivial. By

the remarks made above, this is valid for M D 2 and M D 3. Now, consider k such

that GN;k is non-trivial and such that km $ 1 for 0 ! m ! r " 1 which, as explained

above, we may assume without loss of generality. Then, by Theorem 6.8, (6.16) and

the inductive hypothesis yield

y+N;k $
N.N " 2/

.N " 1/2
2.N " 1/

N " 2
D 2N

N " 1
:

However, by Lemma 6.4 and (6.10),

y+N;k !
2N

N " 1
and hence y+N;k D 2N

N " 1

for all N and all k such that GN;k is non-trivial. By (6.10) once more, this proves that

+N;k D N for all N and all k such that GN;k is non-trivial.

Now, take f to a normalized gap eigenfunction for y+N;k. We have from (6.15)

that if f is not a gap eigenfunction of P , there is strict inequality in (6.16), and this

in turn would yield

y+N;k >
N.N " 2/

.N " 1/2
2.N " 1/

N " 2
D 2N

N " 1
:

This contradiction shows that every gap eigenfunction for LN;k is a gap eigenfunction

of P . However, Lemma 6.10 provides a complete description of the gap eigenspace

of P , and Lemma 6.4 shows that every gap eigenfunction of P is a gap eigenfunction

of LN;k.
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7. Relative entropy dissipation

Again, consider our Kac model with strongly non-degenerate spectrum and uniform

collision law. LetE 2 Spec.HN /, and let 0N;E denote the normalized trace on KN;E .

That is, for X 2 B.HN;E /,

0N;E .X/ WD 1

dim.HN;E /
TrŒX $:

We say that % 2 B.HN;E / is a normalized density matrix in case % $ 0 and

0N;E .%/ D 1:

Every quantum state on B.HN;E / has a representation of the form X 7! 0N;E .X%/

for some uniquely determined normalized density matrix %.

Recall that PN;E is the orthogonal projection onto KN;E . Then, PN;E is a nor-

malized density matrix in B.HN;E /, and as we have seen, LN;E .PN;E / D 0. That is,

PN;E is the equilibrium normalized state in the sector B.HN;E /.

The relative entropy of % with respect to the equilibrium state PN;E is the quantity

D.%jjPN;E / WD 0N;E .%.log % " logPN;E // D 0N;E .% log %/:

The are entropy inequalities that are very useful for studying the approach to

equilibrium and that which imply a spectral gap inequality. In our context, these

inequalities take the following form: let CN;E be the such that

TrŒ% log %$ ! "CN;E TrŒlog %LN;E%$ (7.1)

for all normalized density matrices % in B.HN;E /.

In this case, we have that, for any normalized density matrix %0,

D.etLN;E%0jjPN;E / ! e"tCN;ED.%0jjPN;E /:

The inequality (7.1) is known as a modified logarithmic Sobolev inequality.

The existence of a finite constant CN;E such that (7.1) holds is trivial, but deter-

mining the dependence on E and N is not. In the classical sector, or, what is the

same thing, for the corresponding walk on slices of the multislice, it is known that

1=2 ! CN;E ! 1 for all non-trivial E and N . See [24, Section 3.4], where this is

deduced from a comparison argument and a result of Caputo, Dai Pra, and Posta [4].

It is natural to conjecture that a similar result is valid for the quantum model, and this

is the subject of current research.
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