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Spectrum for some quantum Markov semigroups describing
N -particle systems evolving under a binary collision
mechanism

Eric A. Carlen and Michael Loss

Abstract. We compute the spectrum for a class of quantum Markov semigroups describing
systems of N particle interacting through a binary collision mechanism. These quantum Markov
semigroups are associated to a novel kind of quantum random walk on a graph, with the graph
structure arising naturally in the quantization of the classical Kac model, and we show that the
spectrum of the generator of the quantum Markov semigroup is closely related to the spectrum
of the Laplacian on the corresponding graph. For the direct analog of the original classical Kac
model, we determine the exact spectral gap for the quantum generator. We also give a new and
simple method for studying the spectrum of certain graph Laplacians.

1. Introduction

We study the rate of approach to equilibrium in a quantum version of the classical
Kac model that was developed in [9]. The original Kac model [20, 21] concerns
a dilute gas of N molecules interacting through pair-wise collision that conserve
the energy, and in this model, the collision mechanism gives rise to a jump pro-
cess on a continuous state space, the “energy sphere” of the N particles, and the
Kolmogorov forward equation for this jump process is known as the Kac Master
Equation.

Interactions between molecules are properly described by quantum mechanics,
and the model introduced in [9] is a natural adaptation of Kac’s classical model to the
quantum setting, in which the Kac Master Equation becomes an equation of Lindblad
type, the Quantum Kac Master Equation (QKME). The assumptions on the collision
mechanism in [9] were rather general, and the paper concentrated on general features
such as classifying the equilibrium states, proving propagation of chaos (see [9]) and
studying the resulting non-linear quantum Boltzmann equation. Little was said about
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the actual evolution and about the spectral properties of the generator of the quantum
Markov semigroup, which is the subject of this paper.

In the present work, we consider a special collision rule that is described below
and which is the direct analog of the one first considered by Kac. This specificity
allows a much more detailed analysis. As we show, the quantization leads to a graph
structure on an orthonormal basis of eigenstates of the N -particle energy operator.
We will give a complete description of the spectrum of the QKME generator in terms
of spectrum of the graph Laplacian on this graph. This yields a description of the
quantum evolution in terms of the eigenvectors of these graph Laplacians.

One may view the QKME as a quantum Kolmogorov forward equation for a sort
of quantum random walk on the graph associated to the collision mechanism. How-
ever, this sort of quantum random walk is different from the class of random walks
on graphs introduced by Aharonov, Ambainis, Kempe, and Vazirani [1]. In particu-
lar, the graph structure emerges naturally from the dynamics and is not present from
the beginning. Of course, it is not surprising to see discrete mathematical structures
emerging from quantization. Quantum Master Equations of the general type we inves-
tigate here do not only arise in quantum models of a gas of particles; they also arise
in random circuits [17] and in the context of measurement-only dynamics [19].

In the model we focus on here, the graphs that arise turn out to be the closely con-
nected with the multislice (see [16]), a natural generalization of the sliced Boolean
cube. Recently proved ergodic properties of the random walk on slices of the multi-
slice [15,16,24] then become relevant to QKME. However, the Kac model perspective
sheds light on spectral analysis of Laplacians on graphs: we give a simple proof of the
result of Caputo, Liggett, and Richthammer [5] that the spectral gap of the Laplacian
on the multislice for N particles has the same value, namely, N, for all non-trivial
connected components of the graph. This leads to an exact determination of the spec-
tral gap for our quantum Kac model.

Section 2 gives an overview of classical and the quantum mechanical Kac model.
In Section 3, the graph structure of the collision rules is explained, and here, we state
our main result on the spectral gap of the QKME, giving an overview of the approach
we will take. In Section 4, we work out the action of the QKME generator on a conve-
nient orthonormal basis, which, while it does not consist of eigenvectors, leads to the
identification of a family of invariant subspaces. The main result here is Theorem 4.1.
Then, in Section 5, we apply Theorem 4.1 to reduce the spectral decomposition to
the diagonalization of a graph Laplacian. In Section 6, the spectrum of the Laplacian
on the collision graph is analyzed in detail, using methods adapted from our previous
work in classical Kac Master Equations [6, 8, 9]. Finally, in Section 7, we briefly dis-
cuss some open problems concerning the use of relative entropy inequalities to control
the rate of approach to equilibrium rather than spectral gaps.
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2. Background on the quantum Kac model

2.1. The classical Kac model

The model investigated here is a quantum analog of a classical probabilistic model
concerning a Markov jump process in a continuous state space. When the quantum
analog is investigated, the “quantization” leads to interesting problems in discrete
mathematics. To explain how these arise, we preface our investigation with a synopsis
of the classical model.

The study of systems of colliding particles using master equations was initiated
in 1956 by Mark Kac [20]. He invented a master equation describing a system of
N particles in one dimension undergoing elastic pair collisions. The gas is spatially
homogeneous which means that the state of the system is entirely described by the
velocities of the N particles, givenin ¥ = (vq,...,vy).

When a collision occurs, a random pair 1 <m < n < N is selected, and then, the
velocities of particles m, n change from (v,,, v,) to (v}, v,;), where

*

= Umcosf + v, sinf, vy = —vpsinb + v, cosb,

v n

and all other velocities remain the same. The energy, % Zr]zv=1 v2, is conserved by the
collisions. Let Sy, g denote the sphere radius VE inRY,

The “Kac walk” described below is a continuous time jump process in RY with
the jumps corresponding to collisions. Because of energy conservation, the collisions
take points in Sy, g to points in Sy, g, and hence, we may also consider it as a contin-
uous time Markov jump process in Sy, g, and if we seek ergodicity, we must restrict
the process to an energy shell.

For1 <m,n < N,and 0 < 6 < 2m, define the map R, ,(6) on Sy E:

v; cos 0 + v; sin 6, k=i,
(Rm.n(0)V), = 1 —visin® +v;cosb, k = j, (2.1
Uk, k#£1,j.

In the original version of the Kac model, the angle 6 is random with uniform distribu-
tion for simplicity. For 1 <m < n < N, define an operator on continuous functions
Fons N,E by

- 1 [ .
QunF(¥) = — / F (R (0)v)do. (2.2)
2 0
The collision times arrive in a Poisson stream with mean waiting time 1/N which

ensures that the mean waiting time for any particular particle to collide is of order
one, uniformly in N. The evolution of the distribution of the particle velocities,
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F(vy,...,vN,1),is given by the Kac Master Equation (KME)
0:F =LNF, F(.,0) = Fy(),

where

N -1
LyF = N(z) > Qma—DF.

m<n
Moreover, it is easy to see that this walk is ergodic; i.e., the only equilibrium dis-
tribution is the uniform measure on Sy, g, and that £ is self-adjoint on L*(S N.E)
the Hilbert space of functions on Sy, £ that are square integrable with respect to the
uniform probability measure on Sy £ .

It follows that if FO(N) (v1,...,vy) is a probability density on Sy, g, then
lim '~ FV) = 1, (2.3)
t—00

the uniform probability density on Sy, g. The rate at which this limit is approached is
related to the rate of relaxation to equilibrium in a model Boltzmann equation, as Kac
showed; see [9] for discussion. The rate of approach to equilibrium in (2.3) can be
investigated by analyzing the spectral gap of the generator £y (see [8]), as Kac orig-
inally proposed, or using entropy production inequalities (see [7,25]). For the simple
Kac model discussed here, the spectral gap is very well understood, though even in
this case, there are still a number of open questions concerning entropy production.

2.2. The quantum Kac model

Here, we are concerned with a quantum analog of the classical Kac model described
above. The state of a quantum system of N identical particles with finitely many
degrees of freedom is given by a unit vector Wy in the N -fold tensor product #y :=
®N J of a finite-dimensional Hilbert space #, which is the state space for a single
particle. Properly speaking, the state is actually the rank one projector onto the span
of W which is usually denoted by |¥)(W|. Such a state is called a pure state. More
generally, the state may be described by an ensemble of pure states, that is, a convex
combination

n
0= pil¥) (¥l
j=1

where each p; > 0, and Z;'l=1 p;j = 1 and each W; is a unit vector in #. We do not
assume that they are orthogonal, and there is no bound imposed on n. (One can even
replace the sum by an integral.) The idea is that the actual state of the system is one
of the pure states, but we do not know which one. We only know that it is ¥; with
probability p;. Evidently, the self-adjoint operator g is positive semi-definite, and has
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unit trace, that is, Tr[p] = 1. Such operators are known as density matrices, and by the
spectral theorem, every density matrix can be written in terms of an ensemble of pure
states.

We now consider a random evolution of the quantum state o corresponding to ran-
dom binary collisions that conserve energy, as in the classical Kac model. The energy
in the quantum setting is given by a self-adjoint operator known as the Hamiltonian.
Suppose that the single particle Hamiltonian on # is given by a self-adjoint operator
h. Define the N -particle Hamiltonian Hy on #x as a sum of N terms

Hy=h®1®@- 1)+ +(1® - h®- -+ -+ (1®---®1LRh),

where 1 is the identity on J¢, and where in the nth term, there is a single & which is
in the nth position.

Now, we seek the quantum analog of the change in state corresponding to a sin-
gle binary energy conserving collision such as v + Ry, ,(0)v with R, »(6) given
by (2.1). Suppose that, before the collision, the state of the system is given by a unit
vector W € Hy such that Hy Wy = EWy; thatis, Wy is an eigenstate of Hamiltonian
with eigenvalue E. Physically, this means that W is a state with a precisely defined
energy E.

Though we are not keeping track of positions, one should imagine that, at some
random time, particles m and n pass close to each other and interact. (This would
be described by another part of the Hamiltonian, active only when two particles are
sufficiently close.) After the collision, the new state has the form U, , W, where
Um,n 1s a unitary operator on Jn that could in principle be obtained by solving
Schrodinger’s equation for the full interacting Hamiltonian. The unitary Uy, , will
also depend on certain collision parameters corresponding to the relative positions of
the particles during the collision, for example, whether it was merely a “grazing col-
lision” or a “head on collision” or something in between. Position information is not
encoded into W, so these collision parameters will be external classical parameters.
Hence, there will be a variety of possible unitaries U, ,(0), o belonging to some
parameter space €. Each U(0) is required to conserve the energy in the sense that
Unn(0)Hy = HyUy (o), which as usual we denote by writing

[Um,n(a)a HN] =0.

Then, Uy, , (o)W will be an eigenvector of Hy with eigenvalue £ whenever W is.
We also require each Uy, , to act non-trivially only on the mth and nth factors of #
in Hy.

To make this precise, first, consider the case m = 1 and n = 2. We begin with
N = 2 and will then “lift” our constructions to the full N -particle model. Let € denote
the group of unitaries on the 2 particle space #, that commute with H,. Throughout
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the paper, we refer to € as the collision group of the model. Note that € is a compact
Lie group. We regard the elements o of € as representing all kinematically possible
collisions of two particles. We now “lift” these collisions to the N -particle system.
Define U; 2(0) to be the unitary operator on # given by

U1200) (01 @23 @ Q@ ¢dn) =U(0)(¢1 R ¢2) RP3 R+ ® ¢,

where U(0) is the natural representation of 6 € € on #5. In the same way, for 1 <
m <n < N, we define Uy, , so that it acts on the mth and nth factors of J. The
unitary Uy, , describes the effects of a particular type of collision between particles
m and n. Note that since U(o) commutes with H,, Uy, ,(0) commutes with Hy.
The quantum analog of U > R, ,(0)V is then ¥ +— Uy, ,(0)W. Then, of course,
WY (W] = U n(0) W) (¥|U,, ,(0), or more generally,

p > Unn(0)pU ().

To define the quantum analog of (2.2), we need to specify a probability law on
the collision parameters o. For some probability measure v on €, we define, for each
1 <m <n < N, the operator Q, , on B(Hy) by

Qn(X) = /f Unn(0) XUy (0)dv (o). 2.4)

Throughout the paper, we refer to v as the collision law, in the sense of a probability
law, since it specifies the likelihood of the different possible collisions. The collision
law may be supported on a measurable subset, in particular on a subgroup, of the
collision group €.

Equation (2.4) is the quantum analog of (2.2) except that of course v needs to
be specified. In the model actually investigated here, we take v to be the normalized
Haar measure on €, which is the analog of the uniform measure on the planar rotation
group that appears in (2.2). We can also consider other choices of v, but they should
have certain properties: we require that v is invariant under the map o — o~ ! because
this ensures time reversal symmetry; Uy, ,(0) and its inverse Uy, ,(0)* should have
the same probabilities. This condition also ensures that the operator Q, , defined
in (2.4) is self-adjoint on the Hilbert space £A(J€N) consisting of B(H ) equipped
with the Hilbert-Schmidt inner product (A, B) := Tr[A* B]. Note that the normalized
Haar measure has this property. For more discussion, see [9]. This brings us to the
following definitions from [9].

Definition 2.1. Define the operators Qn and £ on B(Hy) by

N —1
QN:(Z) > Qun and Ly = N(Qy — Lyy). (2.5)

m<n
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Definition 2.2 (Quantum Kac Master Equation (QKME)). The Quantum Kac Master
Equation is the evolution equation on G(H ) given by

< ott) = L.

The QKME is solved by exponentiation: for each ¢t > 0, we may define an operator
Py, oneach B(Hy) by

o k
Nt
PriA= N VO ') kA =etN A,

k=1 k
Then, the unique solution o(¢) of the QKME satisfying 0(0) = g¢ € &(Hy) is
o(t) = Pn,00-

The operators Qy, ,, defined in (2.4) are completely positive as are all linear com-
binations of operators of the form X — VX V* for X,V € 8(K), KX a Hilbert space.
Conversely, by theorems of Kraus and Choi [10,22], every completely positive oper-
ator ¢ on K, K a Hilbert space of finite dimension d, has the from

n
O(X) =Y Vi XV},
j=1

where n < d?. The reader unfamiliar with complete positivity may take this as the
definition for present purposes.

It follows that the semigroup {P;};>¢ is a semigroup of completely positive oper-
ators, and moreover, each P, is unital, meaning that P, 1 = 1, where 1 is the identity
in B(Hn). Such semigroups are called quantum Markov semigroups, and they arise
also in the quantum theory of open systems [11] for somewhat different reasons, and
there is an extensive literature on them. In particular, there is a structure theorem due
to Lindblad [23] and independently to Gorini, Kossakowski, and Sudershan [18] that
gives a canonical form for the generator. They proved that generator £ of a quantum
Markov semigroup always has the form

n
1 1
LX =i[H.X]+ ) (L,-XL;‘ —SLiLjX — EXL,»L;‘)

j=1
for some self-adjoint operator H on K (which will be zero in our case) and some
finite set {L1, ..., L,} of operators on K. To write our generator in this form, let

n

v (X) =Y VXV (2.6)
j=1
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be a Kraus representation of Qu . Then, since Qn (1) = 1, Z?:l V; V]* = 1. There-
fore,
- 1 1
*
LNX:NZ(VJ-XVJ_*_EVJ.VJ*X_EXVJ-VJ.), (2.7)
Jj=1

Because Qy is self-adjoint on ﬁ(é‘fN), we also have Qn (X) = Z;-’Zl V]*XV] and
hence, we may arrange that {V;, ..., V,} = {V}",..., V,*}. Then, Ly can be written
in terms of commutators as

N .
Ly = 5;[@ V7 XN, (2.8)

The operation X +— [V, X] is a derivation on B(H ), and hence, (2.8) displays L x
as a sort on non-commutative Laplace operator since X +— [V}, X] is a derivation on
B(Hn).

We will investigate the spectral gap of Ly (the least non-zero eigenvalue of
—L ), and in fact, we will determine it exactly. This involves relating the spectrum
of L to the spectra of the graph Laplacians Ag,, on a family of graphs §)/, M € N,
associated to the Kac model. In the next section, we explain the quantum dynamical
origin of these graphs. The connection between the spectrum of £y and the spectra of
Ag,,, M € N, will emerge when we rewrite the generator in the form (2.7) or (2.8).
The key to this will be to replace the formula (2.5) with Kraus representation (2.6)
of Q N.

3. Discrete structures associated to the quantum Kac model

3.1. The collision graph

To obtain a more detailed picture of the dynamics, we start from the N particle
Hamiltonian Hy and the single particle Hamiltonian 4 out of which it is constructed.
Suppose that H is a d-dimensional Hilbert space and & has d eigenvalues eq, ..., e .
Let {{1,..., ¥4} be an orthonormal basis for # with hyy; = e;y; forall1 < j <d.

The eigenvalues of Hy are indexed by the multi-indices &« = (1, ...,0y) €
{1,...,d}" and are given by

e(o) =eq, + -+ eqy. (3.1)

We introduce the notation Vy for the set {1,...,d }N of multi-indices because soon
it will be the set of vertices on a graph. Defining

\Ija = wal ®"'®WDJN7
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{Wq : @ € Vy} is an orthonormal basis of #x consisting of eigenvectors of Hy . For
a multi-index & and k € {1, ..., d}, define the “occupation numbers”

k(a) = (ki(@),.... k(). kj(@)={l=m =N :am=jj}l.

where, for a set A, |A| denotes the cardinality of A. Thus, an alternate to the for-
mula (3.1) for e(e) is

d
ela) = kj(ae;.
j=1
We also define, foralll <m <n < N,

€m,n () = €q,, T €q,,-

The quantum dynamics specified by the QKME induces a non-oriented graph struc-
ture on Vy

Definition 3.1. For « € Vy, let P, denote the orthogonal projection onto the span
of Wy. Two vertices &, B € Vi are adjacent in case o # f:

Tr[PoQn (Pg)] > O, (3.2)

Since Qy is self-adjoint, Tr[ P Qn (Pg)] = Tr[PgQn (Pg)], and the adjacency relation
is symmetric in & and . Any such pair of adjacent vertices defines an edge, and we
denote the set of all edges by &y. If p is adjacent to §, we write [y, §] to denote the
corresponding edge. Note that [y, §] = [, y]. We denote this graph by Gy .

The following lemma simplifies the description of adjacency, and its proof ex-
plains the origins of the definition.

Lemma 3.2. Two vertices o, 8 € Vn are adjacent if and only if, for some 1 <m <
n<N,
Bp =0p forp#m,n, (3.3)

and

em,n(a) = em,n(ﬂ)’ 3.4)

Proof. Using a common mathematical physics notation for Py and Pg, one can write
(3.2) as
(Wer, Qv (W) (W) We) > 0. (3.5)

By (2.4) and (2.5), this is the case if and only if, for some 1 <m < n < N and some
o€t
[(Wg, Un.n(0)¥a)|* > 0. (3.6)
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Since Uy, »(0) acts non-trivially only on factors m and n of Hp, (3.6) is possible
only in case (3.3) is satisfied. Moreover, since U, ,(0) commutes with Hy so that
the collisions conserve energy, (3.6) is possible only in case (3.4) is satisfied.

On the other hand, if (3.3) and (3.4) are satisfied, there will be some U(c) € €
such that (3.6) is satisfied. Then, when the probability measure v has a strictly positive
density with respect to normalized Haar measure on €, (3.5) is satisfied since o
|(Wg, Un.n(0)We)|? is continuous. [

Itis evident that if [y, 8] € En, then e(y) = e(8), but the converse need not be true,
even when the probability measure v on € is normalized Haar measure. However,
as we now explain, a simple non-degeneracy condition on the spectrum of H, will
guarantee this.

Definition 3.3. The spectrum of / is strongly non-degenerate when the following two
conditions are satisfied.

(1) The spectrum of % is such that the spectrum of H is non-degenerate on the
symmetric subspace of #, = # ® J. Thatis, forany 1 < ji, ja, j3, ja <d,

ej, ey, =ej; +ej, < {j1.j2} = {j3, ja}. 3.7

(2) Foreach N > 3 and each E € o(Hy), the pair of equations
d d
Y kmen=E and Y kpy=N (3.8)
m=1 m=1

has exactly one solution for each E in the spectrum of #y .

Note that when (3.7) is satisfied, the spectrum of % is necessarily non-degenerate.
The condition (3.7) has the consequence that if [y, §] € &y, then y and § differ by
a pair transposition. In particular, k(y) = Kk(§), and thus, under condition (3.7), both
the occupation number function Kk and the energy e are constant on every connected
component of Gy .

The further condition (3.8) ensures that if e(y) = e(8), then y and § belong to
the same connected component of §y. Suppose that the pair of equations (3.8) has
exactly one solution for each E in the spectrum of . Then, e(y) = e(8) if and
only if k(y) = Kk(§8), which in turn is the case if and only if y and § are related by a
finite sequence of pair transpositions. Then, [y, §] € &y if and only if y and § differ
by a pair transposition. That is, under conditions (3.7) and (3.8), the eigenspaces # g
of Hy may be identified with the connected components of the graph Gy .

When {ey,...,es} is linearly independent over the rationals, both conditions (3.7)
and (3.8) are evidently satisfied. Moreover, (3.7) does not imply (3.8).
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Example 3.4. Assume that the single-particle Hamiltonian has the eigenvalues 1,2, 4,
each with multiplicity one. Then, (3.7) is satisfied: H, has the 6 eigenvalues 2, 3, 4, 5,
6, and 8 on H ®gym J. However, (3.8) is not always satisfied. To see this, let N > 9
so that there are at least two positive even integers n; such that 2n; < N. Pick such

an n; and then define

N ) :
ny:=N——ny, nz:=_-nj.
2 >m 37= oM

Then,
ny+2ny+4n3 =2N and ny +n,+ nz = N.

The number e = 2N is an eigenvalue of the Hamiltonian H y, but there are y,8 € V3
such that k(y) # k(8). For example, take N = 9. Then, the construction above yields
y,8 € Vazsuchthate(y) =e(8) = 18,but k1(8) =2 and k1 (y) = 4. In such examples,
there are eigenvalues of Hpy such that the corresponding eigenspaces are spanned by
vectors W, belonging to different connected components of Gy .

In summary, under conditions (3.7) and (3.8), y and § are adjacent if and only if
they differ by a pair transpositions, and the connected components of §x are indexed
by the eigenvalues E of Hy . For E € Spec(Hy ), write §x g to denote the connected
component of ¥y on which e(y) = E for all y in its vertex set, Vs k.

Let k be the occupation vector given by the unique solution of (3.8) for N and E.
Then, evidently the cardinality of Vy g is

N1
kil kgl

For each @ € Vy, let v(a) denote the valency of a, i.e., the number of vertices in
Gy that are adjacent to «.

dk =

Assume strong non-degeneracy. For each «, there are either one or zero vertices
that are adjacent to e through collision involving particles m and n according to
whether «,, and «, are distinct or not. Summing over m < n, the valency of « is
given by

d
v(@) =Y D(1=8uya,) = > ki(@k; ().

m<n i<j

Hence, under the assumption of strong non-degeneracy, §y is a regular graph.

3.2. The graph Laplacian

Given a finite undirected graph § with vertex set 'V and edge set &, the graph Lapla-
cian Ag is the operator on functions f on V given by

Agfx)= > (&)= f).

yeVi{x,y}eé
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Note that 1
D S@As )= Y S-S0 (3.9)
xeV yeVi{x,y}eé
This computation shows that if ©y denotes the uniform probability measure on V,
Lg is a positive semi-definite operator on L?(u+y), and that the constant function
f(x) =1 for all x € V is an eigenfunction with eigenvalue 0. (This is the standard
sign convention for the Laplacian in graph theory.)

It follows from (3.9) that Ag f = 0 if and only if f is constant on each connected
component of §. Hence, on a connected graph &, 0 is an eigenvalue of multiplicity
one, and the eigenspace is spanned by the constant vector. The quadratic form on the
right in (3.9) is called the Dirichlet form of the graph Laplacian.

One of the main results of this paper is that there is a very close connection
between the spectrum of Ag, and the spectrum of L. In fact, if one knows the
full spectrum of Ag, for every N, then Theorem 5.3 proved below yields the full
spectrum of —L for all N under the assumption that the spectrum of / is strongly
non-degenerate, and the collision law v is the uniform Haar measure on €.

Definition 3.5. Let § be a finite connected graph with vertex set V. The spectral gap
of §, I'g, is the least non-zero eigenvalue of Ag.

By the Rayleigh—Ritz variational principle,

ro =i [ 180 ey [ ooy o, [ 1f0oPaey =1},

3.3. Equilibrium states

The set of equilibrium states for the QKME is considerably richer than for the classical
Kac model. We present here a summary of some relevant results obtained in [9].

A density matrix g on Hy is an equilibrium state if and only if £yo = 0 so that
P;0 = o forall t > 0. By Definition 2.1,

Lyo=0 < Qn(0) = 0.

Thus, the problem of identifying all equilibrium states is the problems of identifying
all fixed-point states under the completely positive, unital, and self-adjoint operator
Qp.

For the classical Kac model, thought of in terms of a stochastic process on R¥ , the
equilibrium states are precisely the probability densities 0 on R¥ that are functions
of the energy % Z;vzl v]z. This is because any function on R¥ that is invariant under
all planar rotations is constant on each level-surface of the energy due to the fact that
averaging a function over all planar rotations has the same effect as averaging the

function over all rotations.
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In the quantum setting, things are somewhat more complicated. Consider an N
particle quantum Kac model in which the collision law v is normalized Haar measure.

Let E € Spec(Hy), the spectrum of Hy, and let Ky g denote corresponding
eigenspace. Let Py, g denote the orthogonal projection onto K . Then,

dv= P Kne.
EeSpec(Hpy)

The Hilbert spaces Ky, g are the analogs of the energy shells Sy g in the classical
Kac model. Define the density matrix og by

1
= —PNE.
ON.E dim(Kz) N.E
This is the direct analog of the uniform probability measure on Sy g in the classical
Kac model. Then, each gy, g is an equilibrium state for the Kac model. That is, for
all E,

On(on,E) = ON,E-

which is true because each on, g is a polynomial in Hy, and hence, o g commutes
with every Uy, »(0),0 € €.

However, as explained in [9], at this level of generality, it may be that Py g can
be decomposed as the sum of two (or more) non-trivial orthogonal projections

Pve=P+0

satisfying Qn(P) = P and Q(Q) = Q. Then, ﬁP and ﬁQ are equilibrium
states, and they are not normalized projections onto energy eigenspaces. This is ex-
actly what happens in Example 3.4. We can decide whether or not this happens based
on the structure of the graph §y .

The following result is proved in [9], although it is stated in somewhat different
terms, not explicitly mentioning the graph ¥, but using the same notion of “con-

nected component”.

Theorem 3.6. The set density matrices o € B(Hy) satisfying Qn (0) = o is precisely
convex hull of the set

{onE : E €spec(Hy)} (3.10)

if and only if all y and § such that e(y) = e(8) belong to the same connected com-
ponent of Gn.

As we have seen above, if we make the assumption that the spectrum of 4 is
strongly non-degenerate (in addition to the assumption that v is normalized Haar
measure), then all ¥ and & such that e(y) = e(8) do belong to the same connected
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component of §y. Thus, under this condition, the set of equilibrium states is pre-
cisely the convex hull of the set in (3.10). For the rest of this paper, we assume that
the spectrum of h is strongly non-degenerate.

Write B(Ky, g) to denote the subalgebra Py g B(Hn) Py g consisting of oper-
ators on B (H ) that act non-trivially only on Ky, g. Because Py, g, being a function
of Hpy, commutes with every unitary that commutes with Hy, for all X € B(Hy),

Py eEQON(X)PNE = QN (PN.EXPN,E).

It follows that each B (K n,g) is invariant under Py, for each ¢ > 0, and the generator
L. Define

LN,E = LN|£(J<N,E)'

In this finite-dimensional setting, it is easy to show that, for any density matrix o €
B(Kn.E), lim; 00 Pro exists and is an equilibrium state in B(Ky,g). Since there
is exactly one equilibrium state in B(Ky,£), namely, on £,

lim P,0 = on,E. (3.11)
t—>00

as shown in [9]. This is the analog of the convergence to the uniform distribution on
each Sy g in the classical Kac model.

3.4. Main results and methods

Let o be a density matrix in 8(Kx ). In this paper, we are concerned with deter-
mining the rate of convergence in (3.11) in terms of the spectral gap, Uz , ., for the
generator £y, g of the QKME on B (K y,g). Since the nullspace of £y restricted to
B(Kn,g) is spanned by on, g, this spectral gap is the smallest positive eigenvalue of
—L y restricted to B(Ky, g). We will prove the following theorem.

Theorem 3.7. Consider a quantum Kac model based on a single-particle Hamilto-
nian h whose spectrum is strongly non-degenerate, and in which the collision measure
v is the normalized Haar measure on the collision group €. Then, for all N > 2, all
d > 2, and all E € Spec(H ) such that dim(Kn,g) > 1, the spectral gap of LN E,
Ly g s given by

N

Ceve =571

As a consequence of Theorem 3.7 and the spectral theorem, forany X € B(Kn )
such that Tr[og X] = 0,

N
1P:(X)ll2 < e F=T|[ X2,
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where || - |2 denotes the Hilbert—-Schmidt norm on B (K y ). The fact that this rate
of equilibration does not decrease to zero as N increases to infinity is significant for
the applications developed in [9]. (Note that if dim(Kx,g) = 1 and X € B(Kn,E),
Tr[X] = 0 implies X = 0.)

In this paper, we focus on the graph theoretical results that are basic to the proof
of Theorem 3.7. As we have already seen in Theorem 3.6, there is a close connection
between the generator £y and the graph §y. In Theorem 5.3, we prove a formula that
expresses the entire spectrum of £ in terms of the spectrum of Ag,, forall M < N.

Once this is in hand, the remaining problem is to determine the spectrum of Ag,,
for all M. Under our conditions on the Kac model, ¥y turns out to be a graph known
as the multislice, and the full spectrum of the graph Laplacian for the multislice is
known. However, for the purpose of proving Theorem 3.7, we need much less than
knowledge of the full spectrum of Ag,, for all M.

In fact, the ideas we have developed for determining the spectral gap in the clas-
sical Kac model [6, 8, 9] are relevant to determining the spectral gap of Ag,, for all
M, and we develop this approach here. The approach is quite robust, and we expect
it be applicable to a range of problems that will arise when other collision models are
investigated in which the graphs are more complicated and the edges are weighted.

4. The Lindblad form of the QKME

When the collision law v is normalized Haar measure, the operators Q,,, specified
in (2.4) are not only self-adjoint; they are orthogonal projections since, due to the
invariance properties of Haar measure,

Unn(0)Qmn Ur:n (0) = Qmun

for all o and hence Q2,, = Q,,,. It is easy to pass from an explicit form of these
projections to the Lindblad form of the QKME.

Consider first the case N = 2. The subalgebra M of B(H>) consisting of func-
tions of H is a von Neumann subalgebra of B (#), as is its commutant M’. Any von
Neumann algebra is spanned by the unitaries it contains, and hence, M’ is spanned by
the unitaries that commute with H,, which is, by definition, €. By von Neumann’s
double commutant theorem,

M — M// — \6/
Evidently, the range of the projection Qy, is precisely €' = M. Therefore, if

H, = Z EPg
Eex,
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is the spectral decomposition of Hj,

Q(X)= > D(IE) Tr{XPE] Pk, .1

where
D(E) = Tr[Pg]

is the degeneracy of the eigenvalue E. From here, it is easy to write down a Kraus
representation of Q; in terms of the orthonormal basis {{q, @ Vo, : | <1, a2 <d}
of J,. Since

TiXPel= ) (Vo ® Yy XVay ® V)

eq| tea,=E
and
Pg = Z |wﬁ1 ® wﬂz)(%ﬂ] ® w32|’

e51+e/32=E

if we define
Foyay:pipy i= Ve, ® wdz)(‘ﬂﬁl ® ‘/fﬂzla

then

1 *

Q12(X) = Z ﬁ( Z ala2;ﬂ1ﬂ2XF°‘1°‘2?/31/32>’
EecXs ea1+ea2=eﬁl+eﬁ2=E

Evidently, Qn ., is completely positive. Since Haar measure on U is invariant
under the map U +— U*, Qn m.» is self-adjoint with respect to the Hilbert—Schmidt
inner product on B (H ). It is evidently unital and trace preserving.

We now lift Q5 to # as described in the beginning of this section by fixing
1 <m <n < N and replacing each U by Uy, , and thus obtaining Q,, ,, which
now describes the averaged effect of a collision between particles m and n. For every
1 <m<n<N,Qy,is completely positive, self-adjoint with respect to the Hilbert—
Schmidt inner product on B(Hy), unital, and trace preserving because it inherits
these properties from Q5.

In lifting Q up to Hy as described, the trace in (4.1) becomes the partial trace over
the mth and nth factors in H . For (m,n) = (1,2), one easily finds

1 *
Qi2(X) = Z Dlew 1) )Ealaz;ﬁlﬂzXEalaz;ﬂlﬁz’
a1,02,B1,B25ea| tea,=e€p, t+eg, 1 2
where

Eq oy = |W051 ® W@)(Wﬂl ® Wﬂ2| ® Ly
= |‘/f¢x1>(‘/fﬁ1| ® |1/fa2)<1/fﬂ2| ® ]IN—Z,
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and 1 y_5 is the identity operator on the remaining factor. For general m < n, the rank
one operators |Vq,)(¥g,| and |Yq,)(¥,| should be inserted as factors m, respec-
tively, n in the tensor product and the remaining factors are the identity matrices.
Therefore, for1 <m <n <N,

1
Qm,n (X)= Z D(e——}—'e) E‘;kman 3BmBn XE 03 Bn
U ,%n BB seam tean =¢€p,y, tep, G T8

4.2)
where

EamanQﬁmIgn = Wrxm)(WﬂM ® Wan)(Wﬂ,J &® ]lN—Za

with the subscripts indicating the factors on which the first two terms operate. Finally,

define
N -1
AX) = (2) D Qun(X).

m<n

Note that (4.2) gives the Kraus form [22] of the completely positive operator Q, ,,
and then summing, we have the Kraus form of Q. From this, one can easily write down
the Lindblad form [23] of the generator £y, but here it turns out to be more convenient
to work directly with (4.2).

To make use of (4.2), we introduce a natural orthonormal basis for B(Hy): for
o, B € Vy, define

Fup = Vo) {¥g].

Since {Wq }aecv, is an orthonormal basis for #n, {Fyg : @, B € Vy} is an orthonor-
mal basis of B(Hy).

The operator Q turns out to have a fairly simple matrix representation in the { Fo g }
basis, as we now show. It will be useful to define

Jap = Wa)(¥pl.

We will also make use of the swap map, both as a map from Vy into itself and as
a unitary operator on J . First, we use a map from Vy into itself; for m < n, and
o« € Vy, Syn(e) is defined by

o,, j=m,

o, jF#Fm,n.

The swap operator is the unitary operator on #y defined by

Smnqja = qjsmn(a) :
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The following theorem says that Qx (Fy s) is a linear combination of the Fy g in
which forsome 1 <m <n < N, = Sy, ,y and B = S, 8, and also for this same
m and n, ¥, = &, and y, = &,. In particular, if

Dy s :={n:yn # on}

and (Fg,g,9On(Fy,5)) #0,then Dy g = D, 5. This provides a large number of invari-
ant subspaces of Qy that greatly facilitates the determination of its spectrum, and
moreover, it says that the only “active indices” in y and § are those in the complement
of D, s, and these change on lockstep through pair transpositions. This is the origin
on the close link between £ and the operators Ag,,, where M < N will correspond
to the number of “active indices”.

Theorem 4.1. Forall N > 2 andall y,§ € Vy,

N 1
( ) )QN(F}'S) = 5 Z 8ym8m8yn8n [FyS + SmnFySSmn]

m<n

1
= 5 Z 8)’In8m8yn8n [F}'8 + Fsmn(}')smn(s)]‘

m<n

Proof. For simplicity, we pick the pair (m,n) = (1, 2). Then,
;102;ﬁ1ﬁ2 Fys Eayaipi

N
= [fﬁlotl ® fﬂzdz ® IN—2]|:®fy_,~8j:|[fa1B1 ® fuzﬁz ® In_2]
j=1
N
= fﬂlal fV151f061ﬂ1 &® fﬂzasz252fdzﬂ2 ®f1’j5j
j=3

N
= oy 8510618062V25520¢2fﬂ1ﬂ1 ® fﬂzﬁz ® ij5j'
j=3

The sum
Z 1 E, F,sE
m ajon; BB Y8 Lara;BiBa
a1,02,B1,B256, +ea, =€, +ep, 1 >

has a contribution from the non-degenerate eigenvalues of H, given by 2e, e € o(h)

N
* J—
Ealal;alal Fy$ Eoyaisai0 = 81’1515V2528)’1V2f)/1)/1 ® f)/lJ/l ®fy_,'3j
Jj=3

= 8,8, 0y,6,0y17, Fys.
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and a contribution from the doubly degenerate eigenvalues of 1, e; + e, i # J,

1
2 Z ;1a2;ﬂ1ﬁzF}’5Eala2;ﬂ1ﬂzv

o1,a2,81,823eq, +ea, =ep, +ep,

which for y; # y, equals

N N

81181078

%{fym ® frava ®fyj3./ + frars ® friv, ®fyj5ji|
j=3 J=3

N N
8y 81078
=1 12V2 2 |:f1/151 ® fJ/252®ij5j + fV252 ® fV151 ®f3’j8j:|
Jj=3 Jj=3

8y, 8,0
= %[F;’S + S12Fy8512]-

Hence, we have

_ 871818)/2525711/2F}'5 iftyr =y
QIZ(FyS) o 81/1818)/282 .
222 [Fys + S12FpsS12] ify1 # »2
81181618
= %[Fys + S12F5512]

since for y; = y» the swap operator S, acts trivially. The same reasoning yields
the analogous result for all other m < n. Summing and then using (2.5) prove the
theorem. [

5. The spectrum of the Kac generator £y

5.1. Direct sum decomposition of B (Hy)

As explained in the paragraph above Theorem 4.1, this theorem gives rise to a direct
sum decomposition of B (H ) into subspaces that are invariant under £ .

Definition 5.1. For any §, y € Vy, define Cs, C {1,..., N} to be the coincidence
set of this pair of vertices. That is,

Csy =17 :6i = v}

Next,let S ¢ {I,...,N}.

(1) Define the set of exterior pair configurations Eg to be the set of pairs £, 5 €
{1,...,d}5" suchthat, forall j € S, Ci #nj.
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(2) Foreach S ¢ {l1,..., N} and each (§, ) € Eg, define Bg.; » to be the sub-
space of B(H ) spanned by the operators Fg , such that Cs, = S, and such
that for j € §¢,8; = {j and y; = ;.

(3) For S ={1,..., N}, define €y = span({Fy , : y € Vy}). That is, €y is
the span of the Fs , such that Cs, = {1, ..., N} in which case there are no
exterior configurations to be considered. Note that € is not only a subspace

of B(H ), it is a commutative subalgebra of B(H ). It is called the classical
subalgebra of B(Hy).

Lemma 5.2. The N -particle space Hy is the direct sum of the subspaces Bgs.¢ y;
that is,
sum=tve( @  Bsua). (5.1
S¢{1,...,N}, (¢.n)€Es

Proof. 1t is evident that, for each 8, y € Vu, Fs,, belongs to Bg.¢ 5 if and only if
S = Csy and for each j ¢ S.6; = {; and y; = n;. Thus, each of the basis vectors
Fs., belongs to exactly one of the spaces B¢ 5, and this proves (5.1). |

For M € N, let L?(%)y) denote the Hilbert space obtained by equipping §ps with

counting measure. For each multi-index & = (a1, ..., ap ), define a function gg on
Vi by gg(e) = 8o.p. Then, {gg}aecv,, is an orthonormal basis for L2(Gas).
Fix some S < {1, ..., N} with cardinality |S| = M, and write it in the form

{j1,..., jm}. Define the map ks : S — {1,..., M} by ks(jx) = k. In addition, for
M < N, fix some (¢, 5) € Es. Then, define a unitary map Us.¢y from L?(8) to
Bs.¢ 5 by linearly extending

Vi =8 =Prs(j). JES

. (5.2)
vi=8.8 =mn, Jj¢ES.

Usien(gp) = Fys. Wwhere {

This map is unitary because it takes an orthonormal basis of L2(§s) to an orthonor-
mal basis of Bg.¢ 5. For § = {1,..., N}, there is the simpler unitary map Ue,, from
L?(8y) onto €y defined by Ue,, (g8) = Fpg-

Theorem 5.3. Let S C {1,..., N} with |S| = M, and let (§,n) € Es. Define r :=
N — M. Forall f € L?(9y), and all o, € Vyy,

r(r+1)
N -1

U;;;n(_LN)US;Cﬂf(a) — N 1_ lAgM f((X) + (27’ NA: 1 )f(a)

For S ={1,...,N}, we have

Ug, (~Ln)Uey = —— gy, f(@).

N —1
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Theorem 5.3 reduces the study of the spectrum of £y to the study of the spectrum
of the graph Laplacians Ag,,, M < N. The rest of this section is devoted to the proof
of Theorem 5.3. In the next section, we turn to the analysis of the spectrum of Ag,,,
M < N.We give a new a relatively simple proof of some known relevant facts about
the spectrum, and in particular, the determination of the spectral gap.

Proof of Theorem 5.3. Fix B € &y, and let F), 3 = Us.¢y(gg) so that y and § are
given by (5.2). Then, Cy g = M, and from Theorem 4.1,

1N 1
N 1( 5 )LN(FN) =3 > 8yt Synsn [Frs + FSpnn)Sun (@] — Fys

m<n

1
= 5 Z Syln‘gm Sl/ngn [Fsmn(}’)smn(s) - F}’S]

m<n

() ()

1
US;;”(E Z Sl’m‘gmgl’n‘gn [Fsmn(}')smn(s) - F}’s])U;;Cn(a)

m<n

Now, observe that

= > gpe) —v(@gp(e) = —Ag, gp().

{a/:[o,0’]€E N }

and
N M _(NZ—N)—(NZ—(Zr—i-1)N+r(r—|—1))_N r(r+1)
(2)_(2)_ 2 T T

6. The spectrum of the Graph Laplacian on the multislice

6.1. The multislice

The graph gy is known as the multislice in analogy with the sliced Boolean cube
{0, 1}V . The pair-transposition random walk on the vertices of the Boolean cube pre-
serves the sum of the coordinates belonging to a vertex in {0, 1}?V, and hence, the
paths of the walk stay in, and eventually cover, the “slices” of {0, 1}"V corresponding
to the N + 1 possible values of the sum of the coordinates.

When / is non-degenerate, we identify Vy = {1,...,d}" with {e,...,eq}".
Then, due to energy conservation, our pair transposition walk on Vx conserves the
value of the sum of the coordinates. The possible values of this sum are the eigenval-
ues of Hy, and we have seen that these are indexed by the occupation vectors k(e),
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a € 9y . Under the strong non-degeneracy condition, there is a one-to-one correspon-
dence between eigenvalues E of Hy, and occupation vectors k = (ky,...,kg) such
that each k; is a non-negative integer and Z}izl kj = N . For each such k, define §y i
to be the subgraph of &y consisting of those vertices o € §y for which k() = k.
(This is a slight shift from our previous notation §y, g, but in this purely graph theo-
retic context, notation referring to k instead of E is natural.) It is easy to see that these
are precisely the connected components of §y. Thus, Ag,, is the direct sum of the
operators Ag,; k.

Theorem 6.1. Forall N > 2, alld > 2, and allk = (ky, ... .kq) € Z% with
d
Z km =N and maxiky,...,.k;—1} <N
m=1
so that G x is not trivial, the spectral gap Uy of Ag,, , is given by
I'vx = N.
Granted this, we now prove Theorem 3.7.

Proof of Theorem 3.7. To show that for all E € Spec(Hp ), such that dim(Ky,g) > 1,

| N % it suffices to prove that the least non-zero eigenvalue of —L y is %
By Lemma 5.2 and Theorem 5.3, every eigenvalue of £ is of the form
! A+ ! 2rN —r(r +1))
rN —r(r ,
N —1 N —1
where A > 0 is an eigenvalue of Ag,, f(e) and r is an integer in {0,..., N — 1}. By

concavity,

min{(2rN —r(r + 1)) :ref{l,...,N —1}} = min{2(N — 1), N(N — 1)}
=2(N —-1).

Therefore, the least eigenvalue in the subspaces corresponding to r > 0 is 2%.
Next, consider r = 0. By Lemma 5.2, this corresponds to invariant subspace €y ;
that is the classical sector, since €y is a commutative subalgebra of B (Hy ). For the
classical sector, Theorem 5.3 says that —{ y is unitarily equivalent to ﬁAgN. It
then follows immediately from Theorem 6.1 that, on this sector, the smallest non-
zero eigenvalue of —Ly is % < 2%. Therefore, the gap is %, and all gap
eigenvectors lie in the classical sector. |

Remark 6.2. The proof of Theorem 3.7 not only yields the exact spectral gap for
the QKME,; it shows that all truly quantum modes decay at least twice as fast as the
slowest classical mode.
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Turning to the proof of Theorem 6.1, it is easy to write down a set of eigenfunc-
tions of Ag,, , that have eigenvalue N. This will be very useful in the proof that N is
in fact the spectral gap.

Definition 6.3. Let Ky denote the set of real-valued functions g on {ey, ..., e4}
such that

d
Y kmg(em) = 0.
m=1

Lemma 6.4. Let g be any non-zero function in Ky x as specified in Definition 6.3.
Fix 1 < { < N and define a function f on Vyx by f(x) = g(x¢). Then,

Agy,f(x) = Nf(x). (6.1)

Proof. Note that f(x) — f(m; jx) = Ounless i = £ or j = {; hence, we need only
consider such pair permutations when computing Lg, , f(x). Forany0 <m <r —1,
consider x € Vy k such that x; = e,,. For each n # m, there are k, pair permutations
such that when applied to x yield the value e, in the £th place. Therefore,

Agy, f(x) =Y kn(g(em) — glen))
n#m

= (N —km)g(em) — Z kng(en)
n#m

= (N —km)g(em) + kmg(ex) = Ng(em) = Nf(x),
where in the last line we have used

r—1
Z kng(en) = 0.

n=0
Since m is arbitrary, (6.1) is proved. [

Remark 6.5. Fix any function g on {eq,..., ez} such that Z,‘f:l kng(en) = 0. Then,

the N functions {g(x1),...,g(xy)} are not linearly independent since, for any x €
VN
N d
> gxe) =) knglen) =0. (6.2)
{=1 n=1
Now, consider any {g1,...,gn} C Kk, not all zero, and define the function

N
) =" ge(xo).
=1
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By Lemma 6.4, Lg,,, f = Nf. However, we can express f in a simpler way: since
by (6.2), Y0, gn(xe) = 0,

N N-1
f(x) = f(x)— (Zgwe)) =Y hy(xe).
=1

=1

where, for1 <{ <N —1,hy =g;—gn.

6.2. Spectral properties of the graph Laplacian on the multislice

For each N, there is a natural partial order on the set of vectors k = (kq,...,kq)
induced by the “coarsening operation” of “merging” energy levels [24]. For any d’ >
d>21letp:{0,...,d"} = {0,...,d} be any surjection. For k = (ko, ..., kg) with

7

Y m—okn = N, define

¢K)m = Y ky and ¢(k) = (@®)1,....(K)).

n:p(n)=m
Then, ¢ induces a map, also denoted by ¢, from {e, ..., ez} into itself by
plen) =epm), 1=n=<d’. (6.3)

We say that one multislice Vi i is coarser than another Vy y if, for some 2 <
d < d’ < N,thereis asurjection ¢ : {1,...,d’} — {1,...,d} such that ¢ (k') = k.
In this case, ¢ induces a map from Vy i onto Vy s given by

(P (X)) = ¢p(xe) (6.4)

with ¢ (x¢) defined by (6.3).

The relevance of such coarsenings to spectral problems was pointed out and ex-
ploited in [12,13]. In our setting, suppose that for some ¢ as above we have k = ¢ (K').
It is easy to see that, for any real-valued function f on Vy,

(A'VN,k f) 0 ¢ = A'VN,k/ (f o ¢)
Let f be an eigenfunction of Ag, , with eigenvalue A. Then,
Afop=(Ayy, flod = Ay, (fog).

Since the map ¢ defined in (6.4) is surjective, f o ¢ is not identically zero, and hence,
A is also an eigenvalue of Ay, . Therefore, when the multislice Vi k is coarser than
the multislice Vi i, the spectrum of Ag,, , is contained in the spectrum of AﬁN,k/' In
particular,

Inw = Ty (6.5)
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Whenever §y k is not trivial, i.e., has at least one edge, it is known that 'y x = N,
independent of k. This result can be found in [24, Lemma 1], in which the proof refers
to the deep proof by Caputo, Liggett, and Richthammer [5] of a famous conjecture of
Aldous [2]. This fact about the gap also follows from (6.5) and some computations
that follow. Because of (6.5), it suffices to know I'y i for a few special choices of k.

Among the graphs considered here, some are absolutely trivial. For example, if
km = N for some 0 <m < r — 1, then Vy is a singleton, and the edge set Ey  is
empty. In this case, the graph Laplacian is 0, and there is only this one eigenvalue,
and hence no gap.

Somewhat less trivial is the case in which k;,, = N — 1 for some my. Then, k,, =
1 for one value of m # my, and k,, = O for all n % m, my. In this case, every vertex
is related to every other by a pair transposition, and hence, the graph is a complete
graph with N vertices, and therefore, the spectral gap is N.

For r = 2, we might as well take {eg, ¢;} = {0, 1}, and then,

{€07 e ,er—l} = {09 1}Na

the Boolean N-cube. Take § = {0, 1}V with adjacency defined as above. The con-
nected components §y(k,.k,) are known as Johnson Graphs, and the full spectrum
of the Laplacian Lg,, Kook 1) is known [3, 15]. In particular, it is known that the spec-
tral gap is always N independent of k = (k¢, k1), assuming that both k¢ and k; are
non-zero.

Finally, consider the case in which r = N and k = (1,...,1), i.e., k, = 1 for
all m. Then, evidently, Vy (1,....1) has N! vertices and may be identified with Sy, the
symmetric group on N letters. The spectrum of the corresponding graph Laplacian
Ly, .., has been studied using methods from group representation theory by Dia-
conis and Shahshahani [14]. Their results provide complete information on all of the
eigenvalues, and this is essential for their applications. One of their results is that, for
all N, the spectral gap is N. For this alone, one does not need so much machinery,
and a simple proof is given in [8, Theorem 5.1].

Now, consider any k such that Gy is non-trivial. Evidently, k is coarser than

k= (1,....1),

and going in the opposite direction, reducing to just two energies, there is a kg =
(ko, k1) such that
vy <Tnx =Tk,

Since §n k, is a Johnson graph, I'y x, = N [3]. Then, since 'y, = N, yx = N.
This result is explicitly noted in [24, Lemma 1], with an argument based on the proof
of Aldous’ conjecture [2] by Caputo, Liggett, and Richthammer [5].
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We now give a simple proof of Theorem 6.1 and somewhat more use ideas devel-
oped in [8], applied there to the case of the sliced Boolean cube.

6.3. The induction for the lower bound on the gap

Define yx to be the uniform probability measure on Vy k. The Dirichlet form for
Agy, on L2(iy ) is

% DD (@) = fri i) e (6.6)

x€VNki<j

It greatly simplifies the induction we will carry out if we normalize so that the sum
over pairs becomes an average. Therefore, we will work with the Dirichlet form of

-1
(1;]) A5/\/,15

-1
l(N) Y D () = [ i) Nk 6.7)

2\ 2 —
XEVNKI<]

The key to our induction is the identity

(ZZ)_I D (frijx) = f(x))?

i<j
N _n L

N % 2 ((Nz 1) > (flmijx) - f(X))z). (6.8)
t=1 i<ji.j#t

On the right, we have an average of N terms, each of which leaves one coordinate, x,
unchanged since transpositions 7; ; in which either i = £ or j = { are not included.
If one thinks in terms of processes defined by the Dirichlet forms, this identity will
relate the dynamics for N particles to the dynamics for N — 1 particles.

First, we make one more adjustment to the N particle dynamics. The Dirichlet
form (6.7) is associated to a continuous-time Markov jump process on Vy i of the
following description: a Poisson clock is running with expected times between “rings”
equal to 2. When a “ring” occurs, a pair (i, j), i < j, is chosen uniformly at random,
and the state jumps from vertex x to vertex s; ;x. For any given 1 < { < N, the
number of pairs i < j containing £ is N — 1, and hence, the fraction of the jumps
that change the state of the £th particle is 2/N. In order to have that all particles
update with an expected time of order 1, independent of N, we therefore multiply the
Dirichlet form in (6.7) by N to obtain a family of processes, indexed by N, in which
the expected waiting times for updates of each particle are of order 1, independent
of N. This is physically motivated, but as we will see, it is also convenient for the
induction.
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Definition 6.6. Define the Dirichlet form

-1
Onr(f f) = E(N ) S S i) — FOD )

2\ 2 -
XEVN K I<J
1
=7 X 2 f0m0) = f) N (), 6.9)
x€EVNKI<J

where the pair permutations 7; ; acts on x by swapping the i and jth entries. Also,
define I'y x to be the spectral gap associated to this Dirichlet from; that is,

Ty = inf{Dyi(f. f) Iz =1 (f D2y 0 = 0)-

Remark 6.7. Comparing with (6.6) which gives the Dirichlet form of the graph
Laplacian Ay, we see that its gaps I'y x and I'y , are related by

A

I'yk = I'nk. 6.10

Nk = 3 LNk (6.10)

To make use of (6.8), we first consider a graph Gy, where kK = (k1,...,kq) is
such that

km >1 foreachl <m <d. (6.11)

Then, §y is a graph for N particles that truly have d different energy levels. If it
were the case that k,, = 0 for some m, the energy e, would play no role, and the
graph would be identical to another graph with a reduced set of ' < r energy levels
and a net k' such that, forall 0 <m < r’ —1, k], > 1. Evidently, §yx and Gy are
isomorphic and in particular have the same spectral gap.

Now, considering §x x such that (6.11) is satisfied, we specify a bijection of Vy k
with a union of vertex sets of graphs for N — 1 particles: for 0 < m < r — 1, define
k™ to be obtained from k by replacing k,, with k,, — 1. For each 1 < £ < N, we
define a map

r—1
Te . ( U vN—l,k(m)) —> rVN,k
m=0
by
Te(x) = (x1,...,X¢-1.€m, Xg,...,XN—1) forx e 'VN_I’k(m)

with the obvious modifications for £ = 1 or £ = N — 1. In other words, for x €
VN1, one simply inserts e,, in the £th place, keeping the order of the remain-
ing entries unchanged, and thus obtains an element of V. It is evident that this
does indeed yield a bijection. The set {x € Vi : Xy = ep} is precisely the image of
Vn—1 ke under T;. We will prove the following theorem.
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Theorem 6.8. Let {eq,...,eq} be given along with kK = (ko, ..., kr—1), where each
km is a strictly positive integer and ), _, k;n = N. Then, the spectral gap A x for
the corresponding Dirichlet form specified in (6.9) satisfies
N N(N —2)
'yk > ———
M= =)
We will prove this to be a consequence of several lemmas and begin by explaining
how we make use of (6.8)
Foreach1 <{ < N,andeachm € {0,...,r — 1}, define

DRSS
N—1(N-1\""
) ( 2 ) Z ( Z (f(”i,jx)—f(x))z)MN—Lk(m)

XEVN k. Xe=em 1<j,i,j#L

- N -2 Z ( Z (f(f[i,j.x) - f(x))z)MN_l’k(m).

x€VNx.Xe=em i<j,i,j#L

min{f’N_l,k(m) 0<m<r-—1}.

Next, for each 1 < £ < N, define the operator P; on Lz('VN,k) as follows: on the
set{x :xy = em},

ng(X) ‘= M KO Z f(y)

YEVN K Ye=em

The operator Py is just the orthogonal projection in L2 () onto the subspace of

functions that depend only on x,. Therefore, for each m € {0,...,r — 1},
L, ¢,
DS f) = DI = Pofo f — Pof). (6.12)
Also, note that
r—1 k
m
PVK =D N1 (6.13)
m=0

Therefore, using the key identity (6.8), together with (6.12) and (6.13),

N r—1
1 N ‘ k
ONk(f ) =< D DR = Puf f = Pf)=r.  (6.14)
N N -1 ’ N
{=1 m=0
Recall that T’ .k is the spectral gap of the Dirichlet form defined in (6.9). Since for
eachm =0,...,r —1, f — Py f is constant on the image of each VN _1 ke under
Ty,

DYR(f = Pef f = Pef) = Ay_aam I(f = Pef) o TallZa,

—l,k(m)).
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By (6.13), and the fact that each Py is an orthogonal projection,

r—1
k
SIS = Pef) o Tulag,, | o = 1 = Pef li2gun

m=1

= 1/ oy, = s Pef ) i2Guns-

Then, taking f to be a normalized gap eigenfunction for Ay, we have from (6.14)
that

- P N
Py =min{ly_jyom :0<m<r— 1}ﬁ(1 — (L P2y y):  (6.15)

where
1 N
P = ﬁ;m.

Note that P is an average of orthogonal projections, and hence, its spectrum lies in
[0, 1]. Any function f that is an eigenvalue of P with the eigenvalue 1 must be in the
range of each of the projections P,. However, the range of P; consists of functions
f that depend on x only through x,. For N > 3, the only functions f on Vy that
have this property for all £ are the constant functions since, for every x, y € Vyx,
there is a sequence of pair transpositions that takes x to y, and since N > 3, each
such transposition leaves one coordinate unchanged, and hence leaves the value of f
unchanged. Hence,

J&x) = f(y).

Therefore, for N > 3, 1 is an eigenvalue of P of multiplicity one with the eigenspace
being the constant functions. Since the gap eigenfunction f is orthogonal to the con-
stants in L? (), we must have

(f,Pf) <1.

In fact, this quantity can be no larger than the next largest eigenvalue of P.

Definition 6.9. Let N > 3, and let A ; x denote the second largest eigenvalue of P

Ang = sup{{h, Ph) 2y ¢ hll2guy,y = 1 (B D) 12y, = 0)-

Therefore, (6.15) becomes
. A N
Py =min{ly_jom:0<m<r— 1}—N (1= An). (6.16)

The next lemma renders (6.16) completely explicit and yields the proof of Theo-
rem 0.8.
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Lemma 6.10. Let N > 3. The spectrum of P is the set {0,(N — 1), 1}. In particular,

A = —. 6.17
NEK= N (6.17)

Moreover, the eigenspace corresponding to 1 consists of the constant functions, and
the eigenspace corresponding to (N — 1)~ has dimension (r — 1)(N — 1) and a
basis for it is the set of functions of the form

Jma(X) =gm(xp), 1<m<r—1, and 1<L<N -1,

where {g1, ..., 8r—1} is a basis for KXy x.

The proof of Lemma 6.10 that we give is patterned on the proof of [6, Lemma
2.16]. It involves a simpler operator K that, like P, is constructed out of the projec-

tions P¢. K is an operator on functions of a single variable in {ey, ..., eq}: let vy
denote the probability measure on {eq, ..., ey} that is the image of the uniform prob-
ability measure on Vy under the map ny : (x1,...,x5) > xn. It is easy to see
that k

vnw(len)) = .
Define the operator K on L?(vyx) by Kh = P1h o . Note that, for any function h
on{ey,...,eq}, h omy is a function on Vy, depending only on the Nth coordinate,

and then, P1/ o 7y, which is a function of the first coordinate only, may be identified
with a function on {ey, ..., eys}, and this function is, by definition, KA. There is
nothing special about 1 and N, and pairs of distinct indices yield the same operator
by symmetry.

By the definition of vy in terms of uy k, we have the following formula for K
which shows that it is self-adjoint on L2 (v ):

(8. Kh) 20y = Z g(x1)h(xn) Nk (x). (6.18)

XG'VN.k

Lemma 6.11. The spectrum of the K on L?(vy ) is {1,—1/(N —1)}. The eigenspace

corresponding to the eigenvalue 1 consists of the constant functions on {eq, . ..,e,—1},
and the eigenspace corresponding to the eigenvalue —1/(N — 1) is the space consist-
ing of functions g on {ey, ..., er—1} such that
r—1
> kmg(em) = 0.
m=1
(N=2)!

Proof. Since, for m # n, there are mkmkn vertices with x; = e, and xy = e,,,

and there are %k,ﬂ (km — 1) vertices with x; = xy = e,,, working from the
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right-hand side of (6.18), we find

Y gxDh(xn)pNk(x) = Zg(em)h(e,n)k (km — 1)

xe'VN,k N(N
emh(en)kmky,.
=S .2 slemhien)

From here, it follows easily that Kh(ey,,) = Z;;lo K nh(en), where

k,—1, n=m,

(N - 1)I(m,n = { "

kn, n # m.
Therefore, (N — 1)K = —1 + L, where L is the rank one matrix, each of whose rows
is (ko, ..., kr—1). Evidently, the non-zero constant vectors are eigenvectors of K with

eigenvalue 1, and every non-zero vector orthogonal to the constants in L2(vy ) is an
eigenvector with eigenvalue —1/(N — 1). [

Note that the space K that figures in Theorem 6.1 is precisely the eigenspace
of K corresponding to the eigenvalue —1/(N — 1).

We have seen in Remark 6.5 that, for {g1,...,gn} C Ky K, {g1(x1),...,gn(xN)}
need not be linearly independent even if each g, is non-zero. The following lemma
shows that the only way linear independence can fail is the way indicated in Remark
6.5

Lemma 6.12. Let {g1,...,gn} C Knk Then, 21]3\;1 ge(xg) =0forallx € Vyy if
and only if all of the functions g1, ..., gN are the same.

Proof. By what is explained in Remark 6.5, it suffices to show that if Z?’:l go(xg) =
0 for all x € Vy, then all of the functions g1,. .., gy are the same. Hence, we assume

ZQI:I ge(x¢) = 0 and compute

N
Z ge(Xe) =3 (1811220 + D (81 K& 12000
L(uyy  i=1 t#i
N 1
=3 (162~ 7 2 €020 )
i=1 t#i

Mz

1
(ug,- 12y — 77 2 & ||Lz<vN,k)||ge||Lz<vN,k>)
L0

1 1
= 3 (182 = 57 2 508y + I801R,0)) =0
(£

1

~

Mz

1

~
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Hence, both inequalities must be equalities. The first inequality is the Schwarz in-
equality and a worst-case assumption on the signs, and equality here entails that the
functions g1, ..., gn are all positive multiples of one another. The second inequality
is the arithmetic-geometric mean inequality, and equality here entails that

Igillz2n0 = I8ellL2n 0
forall i and £. ]

Proof of Lemma 6.10. Suppose that f is an eigenfunction of P with eigenvalue A > 0.
Write

Py f(x) =: hy(xg) = hyg o my(x),

where ¢ (x) = x¢. Define hi= (h1,...,hy) viewed as an element of CV ® L?(vy ).
Since f is an elgenfunctlon of P, f #0and NA Zév 1 he(xg) = f(x). Therefore,
h 2 0, and the map f — h is injective from the eigenspace of P corresponding to
eigenvalue A > 0 into CN ® L%(vyyx). Since this is true for every eigenvalue A > 0
of P, the map f +— his injective from ker(P)* into CV ® L2(vy ).

Applying P; to both sides of A f = P f, and using the formula Khy = P;hy o 7y,

(NA—Dh; = > Khy. (6.19)
23

0 i=¢
Define M to be the N x N matrix with M; y = { - % Then, since (6.19) is
i

valid for each i, we have
(NA—1h=M Q@ Kh.

Since /1 # 0, (NA — 1) is an eigenvalue of M ® K. Evidently, the spectrum of M is
{—1, N — 1}, and by Lemma 6.11, the spectrum of K is {1,—1/(N — 1)}. Then, the
spectrum of M ® K is {—1,1/(N — 1), N — 1}. It follows that if A > 0, then either
A=1lorA=1/(N —1).Since (NA—1) e {—1,1/(N —1), N — 1} is equivalent to

Aef{0,1/(N —1),1},

this proves that the only eigenvalue A of P with0 <A <1isA =1/(N — 1), and
hence, (6.17) is proved.

Moreover, we have seen that the map f +— h= (h1,...,hy) is injective from
the 1/(N — 1) eigenspace of P into the 1/(N — 1) eigenspace of M ® K, and this
eigenspace is the product of the —1 eigenspace of M and the —1/(N — 1) eigenspace
of K. Evidently, the dimension of this eigenspace is (N — 1)(r — 1). Hence, the
dimension of the 1/(N — 1) eigenspace of P cannot have a dimension any higher
than this.
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To see that it is not any lower, consider any non-zero g € Ky g, andany 1 <{ <N,
and let f(x) = g(x¢). We then compute

PG = (g0 + ¥ i) = v (#e0 -5 gg(xi))

1{ N 1 & 1 !
= N(mg(xe) “N_-1 ;g(xi)) = mg(xé) = ﬁf(x).

Hence, all such functions belong to the eigenspace corresponding to the eigen-
value 1/(N — 1). Choose a basis {g1, ..., gr—1} of Knk. Let f be a non-trivial
linear combination of the (N — 1)(r — 1) functions f,, ¢ = gm(x¢), 1 <m <r —1
and 1 <{ < N — 1. The result is a function of the form ) ,_, h¢(x;) with each
hg € K n, at least one of which is non-zero. Then, by Lemma 6.12, this cannot van-
ish identically, and hence, the specified set of (N — 1)(r — 1) functions is linearly
independent. Hence, they constitute a basis for the eigenspace corresponding to the
eigenvalue 1/(N — 1) eigenspace corresponding to the eigenvalue 1/(N — 1) [

Proof of Theorem 6.8. This now follows directly from (6.16) and (6.17). [ ]

6.4. Proof of Theorem 6.1

To use our inductive relation (6.16), we need to know the values of I'y x for small N.
For some values of k, this is trivial even for large N: if max{k,, : 0 <m <r —1} =
N, Gy has a single vertex and no edges. We exclude these trivial cases, and going
forward suppose that

max{k, :0<m<r—-1} <N —1. (6.20)

If there is equality in (6.20), then every vertex x = (xy,...,Xxy) in Vy has all but
one of the entries x; the same, and exactly one that is not. All of these are related to
one another by a pair transposition, and hence, in this case, ¥y x is a complete graph
with N vertices, and hence,

Tk = d Py = 2N
Nk =N an Nk =TT
for all such k.

Finally, as we have observed before, it suffices to consider graphs ¥y x for which
km > 1for0 <m <r — 1, since otherwise the graph is the same as one with a smaller
set of energies that does satisfy such a condition.

Consider N = 2. The only non-trivial choice for k is with » = 2 and k = (1, 1).
There are two vertices (e, e1) and (e, eg) and the single edge connects them. This is
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a complete graph, and hence, I'; (1,1) = 2 and fz,(l,l) = 4. In summary, for N = 2,
there is only one non-trivial choice of k, and for this choice, f‘zjk =4,

Next, consider N = 3. The non-trivial choices for k are, with r = 2, k = (1,2)
and k = (2, 1), both of which are complete graphs, and for r = 3,k = (1,1, 1). By
Theorem 6.8,

. 3. . .
30,1,y = me{rz,(o,m), 2,01, T2,0,1,0))-
But evidently, fZ,(O,l,l) = fZ,(l,O,l) = f‘Z,(l,l,O) = fZ,(l,l) =4, Therefore,
A~ 3
30,1, > 24 =3.

Since §3,(2,1) and &3 (1,2) are complete, I'3 (2,1) = '3 (1/2) = 3, and since
2/(N-1)=1

for N = 3, we also have f‘3,(2,1) = IA‘3’(1,2) = 3. In summary, for N = 3 and all
non-trivial choices of k, I'; x = 3.

Proof of Theorem 6.1. Let N > 3 be an integer. We make the inductive hypothesis
that, for M = N — 1, f‘M,k =2M /(M — 1) for all k such that &y is non-trivial. By
the remarks made above, this is valid for M = 2 and M = 3. Now, consider k such
that ¥y x is non-trivial and such that k,,, > 1 for 0 < m < r — 1 which, as explained
above, we may assume without loss of generality. Then, by Theorem 6.8, (6.16) and
the inductive hypothesis yield

~ N(N —2)2(N —-1) 2N

Inx > = .

’ (N-12 N-2 N —1

However, by Lemma 6.4 and (6.10),

and hence f‘Nk = i

N —1 ’ N —1

for all N and all k such that §y  is non-trivial. By (6.10) once more, this proves that
I'vx = N for all N and all k such that §y x is non-trivial.

Now, take f to a normalized gap eigenfunction for fN,k. We have from (6.15)

IF'yx <

that if f is not a gap eigenfunction of P, there is strict inequality in (6.16), and this
in turn would yield
~ N(N —=2)2(N - 1) 2N
FN kK > = .
’ (N-1)2 N-=2 N —1

This contradiction shows that every gap eigenfunction for £y is a gap eigenfunction
of P. However, Lemma 6.10 provides a complete description of the gap eigenspace
of P, and Lemma 6.4 shows that every gap eigenfunction of P is a gap eigenfunction
of £ Nk ]
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7. Relative entropy dissipation

Again, consider our Kac model with strongly non-degenerate spectrum and uniform
collision law. Let E € Spec(Hy ), and let Ty, g denote the normalized trace on Ky, £.
That is, for X € Q(B(JfN,E),

1

—dim(JfN,E) Tr[X].

™wE(X) =
We say that ¢ € B(Hy,g) is a normalized density matrix in case ¢ > 0 and

ve(0) = 1.

Every quantum state on 8 (Hy,g) has a representation of the form X — wx g (Xo)
for some uniquely determined normalized density matrix .

Recall that Py g is the orthogonal projection onto Ku g. Then, Py g is a nor-
malized density matrix in B(H#n,£), and as we have seen, Ly g (Pn,g) = 0. That s,
Py £ is the equilibrium normalized state in the sector B(Hn k).

The relative entropy of ¢ with respect to the equilibrium state Py, g is the quantity

D(o||Pn.E) := tn,e(0(logo —log Py,g)) = tn,E(0l0g0).

The are entropy inequalities that are very useful for studying the approach to
equilibrium and that which imply a spectral gap inequality. In our context, these
inequalities take the following form: let C, g be the such that

Tr[olog o] < —Cn,k Tr[log 0L N,E0] (7.1)

for all normalized density matrices ¢ in B(Hn.g).
In this case, we have that, for any normalized density matrix oo,

D(e"*N-Ego||Py,g) < e7"“NE D(o|| PnE).

The inequality (7.1) is known as a modified logarithmic Sobolev inequality.

The existence of a finite constant C, g such that (7.1) holds is trivial, but deter-
mining the dependence on E and N is not. In the classical sector, or, what is the
same thing, for the corresponding walk on slices of the multislice, it is known that
1/2 < Cy,g < 1 for all non-trivial E and N. See [24, Section 3.4], where this is
deduced from a comparison argument and a result of Caputo, Dai Pra, and Posta [4].
It is natural to conjecture that a similar result is valid for the quantum model, and this
is the subject of current research.
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DMS-2055282 (E.A.C.) and DMS-2154340 (M.L.)



E. A. Carlen and M. Loss 36

References

(1]

(2]

(3]

(4]

(5]

[6]

(7]

(8]

(9]

[15]

[16]

D. Aharonov, A. Ambainis, J. Kempe, and U. Vazirani, Quantum walks on graphs. In
Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, pp.
50-59, Association for Computing Machinery, New York, 2001 Zbl 1323.81020

MR 2120300

D. Aldous and J. A. Fill, Reversible Markov chains and random walks on graphs. 2002,
unfinished monograph, recompiled 2014, http://www.stat.berkeley.edu/~aldous/RWG/
book.html, visited on 1 January 2025

A. E. Brouwer, A. M. Cohen, and A. Neumaier, Distance-regular graphs. Ergeb. Math.
Grenzgeb. (3) 18, Springer, Berlin, 1989 Zbl 0747.05073 MR 1002568

P. Caputo, P. Dai Pra, and G. Posta, Convex entropy decay via the Bochner—Bakry—Emery
approach. Ann. Inst. Henri Poincaré Probab. Stat. 45 (2009), no. 3, 734-753

Zbl 1181.60142 MR 2548501

P. Caputo, T. M. Liggett, and T. Richthammer, Proof of Aldous” spectral gap conjecture.
J. Amer. Math. Soc. 23 (2010), no. 3, 831-851 Zbl 1203.60145 MR 2629990

E. Carlen, M. Carvalho, and M. Loss, Spectral gaps for reversible Markov processes with
chaotic invariant measures: The Kac process with hard sphere collisions in three dimen-
sions. Ann. Probab. 48 (2020), no. 6, 2807-2844 Zbl 1456.60252 MR 4164454

E. A. Carlen, M. C. Carvalho, and A. Einav, Entropy production inequalities for the Kac
walk. Kinet. Relat. Models 11 (2018), no. 2, 219-238 Zbl 1406.81042 MR 3810826

E. A. Carlen, M. C. Carvalho, and M. Loss, Determination of the spectral gap for Kac’s
master equation and related stochastic evolution. Acta Math. 191 (2003), no. 1, 1-54

Zbl 1080.60091 MR 2020418

E. A. Carlen, M. C. Carvalho, and M. P. Loss, Chaos, ergodicity, and equilibria in a quan-
tum Kac model. Adv. Math. 358 (2019), article no. 106827 Zbl 1427.35172

MR 4018546

M. D. Choi, Completely positive linear maps on complex matrices. Linear Algebra Appl.
10 (1975), 285-290 Zbl 0327.15018 MR 0376726

E. B. Davies, Quantum theory of open systems. Academic Press Harcourt Brace Jo-
vanovich, London, 1976 Zbl 0388.46044 MR 0489429

P. Diaconis and J. A. Fill, Strong stationary times via a new form of duality. Ann. Probab.
18 (1990), no. 4, 1483-1522 Zbl 0723.60083 MR 1071805

P. Diaconis and L. Saloff-Coste, Comparison theorems for reversible Markov chains. Ann.
Appl. Probab. 3 (1993), no. 3, 696730 Zbl 0799.60058 MR 1233621

P. Diaconis and M. Shahshahani, Generating a random permutation with random transpo-
sitions. Z. Wahrsch. Verw. Gebiete 57 (1981), no. 2, 159-179 Zbl 0485.60006

MR 0626813

Y. Filmus, An orthogonal basis for functions over a slice of the Boolean hypercube. Elec-
tron. J. Combin. 23 (2016), no. 1, article no. 1.23 Zbl 1330.05163 MR 3484728

Y. Filmus, R. O’Donnell, and X. Wu, A log-Sobolev inequality for the multislice, with
applications. In 10th Innovations in Theoretical Computer Science, p. article no. 34,
LIPIcs. Leibniz Int. Proc. Inform. 124, Schloss Dagstuhl - Leibniz-Zentrum fiir Infor-
matik, Wadern, 2019 Zbl 07559077 MR 3899828



(17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

(25]

Quantum semigroups 37

M. P. A. Fisher, V. Khemani, A. Nahum, and S. Vijay, Random quantum circuits. Ann.
Rev. of Condensed Matter Physics 14 (2023), no. 1, 335-379

V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, Completely positive dynamical semi-
groups of N-level systems. J. Mathematical Phys. 17 (1976), no. 5, 821-825

Zbl 1446.47009 MR 0406206

M. Ippoliti, M. J. Gullans, S. Gopalakrishnan, D. A. Huse, and V. Khemani, Entangle-
ment phase transitions in measurement-only dynamics. Phys. Rev. X 11 (2021), article
no. 011030

M. Kac, Foundations of kinetic theory. In Proceedings of the Third Berkeley Symposium
on Mathematical Statistics and Probability, 19541955, vol. I11, pp. 171-197, University
of California Press, Berkeley, California, 1956 Zbl 0072.42802 MR 0084985

M. Kac, Probability and related topics in physical sciences. Lectures Appl. Math., Inter-
science, London, 1959 Zbl 0087.33003 MR 0102849

K. Kraus, General state changes in quantum theory. Ann. Physics 64 (1971), 311-335
Zbl 1229.81137 MR 0292434

G. Lindblad, On the generators of quantum dynamical semigroups. Comm. Math. Phys.
48 (1976), no. 2, 119-130 Zbl 0343.47031 MR 0413878

J. Salez, A sharp log-Sobolev inequality for the multislice. Ann. H. Lebesgue 4 (2021),
1143-1161 Zbl 1483.60110 MR 4353960

C. Villani, Cercignani’s conjecture is sometimes true and always almost true. Comm. Math.
Phys. 234 (2003), no. 3, 455-490 Zbl 1041.82018 MR 1964379

Communicated by Adrian Tanasa

Received 11 December 2023; revised 9 July 2024.

Eric A. Carlen
Department of Mathematics, Rutgers University, 110 Frelinghuysen Road, Piscataway,
NJ 08854-8019, USA; carlen@math.rutgers.edu

Michael Loss
School of Mathematics, Georgia Institute of Technology, 686 Cherry Street, Atlanta,
GA 30332-0160, USA; loss@math.gatech.edu



