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Abstract: We introduce a geometry-guided design method in concentric ring resonators for
dispersion engineering. Using eigenmode simulations of a single ring, we construct a two-
dimensional round-trip optical path length (OPL) map that systematically identifies phase-matched
geometries without exhaustive parameter sweeps. The OPL map finds feasible ring and gap
combinations for efficient coupling, also revealing the design limits. With this approach, we design
a 50 nm-thick Si3N4 concentric ring resonator that achieves anomalous dispersion in a weakly-
guided mode—a regime that typically exhibits normal dispersion in single-ring configurations.
Lugiato–Lefever equation (LLE) simulations confirm that this dispersion-engineered concentric
ring can support a bright soliton in a weakly guided mode, overcoming the dispersion limit due
to a weak confinement. The proposed modeling method is generalized and readily extendable to
a wide range of material platforms and wavelength regimes, providing a powerful tool for diverse
integrated nonlinear photonic applications.

© 2025 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Microresonators, especially in the form of ring resonators, are fundamental components of
integrated photonics, enabling optical frequency combs, wavelength division multiplexer (WDM)
filters, high-speed modulators, and sensors [1–9]. These applications rely on precise control of
dispersion, which governs the phase-matching for wave-mixing, channel bandwidths in WDM
filters, signal linearity in high-speed modulators, and sensitivity of optical sensors. The precise
control of dispersion is especially critical for microcomb generation, as it directly governs the
microcomb initiation, bandwidth, shape, and stability [10–13].

Conventional dispersion engineering relies on parametric sweeps of single-ring cross-section
[14–18], which often require thick films to achieve high confinement for anomalous dispersion.
However, such a thick silicon nitride film tends to crack and poses fabrication challenges [19–21].
Moreover, dispersion issues become more challenging in visible and ultraviolet regions, where
most materials intrinsically exhibit strong normal dispersion. To address these limitations,
mode coupling or avoided mode crossing has been widely explored to introduce localized but
strong anomalous dispersion. This mechanism has been linked to microcomb generation across
various high-Q microresonator platforms [22–24], yet it often arises from accidental mode
interactions with limited engineering capability. Here, concentric microresonators provide an
additional degree of freedom for dispersion engineering through controlled modal interaction
between the inner and outer rings. This modal coupling leads to the formation of symmetric
and anti-symmetric supermodes, whose dispersion profiles can be reshaped via avoided mode
crossings. Consequently, concentric ring geometries can provide more versatile dispersion
profiles, enabling near-zero or anomalous dispersion even in spectral regimes typically dominated
by strong material dispersion.
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Recent studies have confirmed the feasibility of this modal coupling approach, clearly showing
how concentric resonator configurations can induce avoided mode crossings and reshape the
dispersion profiles [25–30]. Nevertheless, most prior works still rely on heuristic parameter
sweeps and extensive numerical simulations, which are computationally expensive and limit
broader applicability. Therefore, developing a systematic and broadly applicable modeling
method capable of accurately predicting coupling conditions without exhaustive computational
searches is still highly needed.

Such a systematic modeling method is especially beneficial for addressing dispersion challenges
associated with weakly-guided modes [31–34]. Recently, ultra-high-Q resonators utilizing weakly-
guided modes have been developed on ultrathin Si3N4 films (<100 nm) cladded by thick (>6
µm) low-loss oxides [32,35]. Due to their low index contrast and weak confinement, these modes
naturally exhibit normal dispersion, limiting their potential. For example, in Kerr microcomb
generation, anomalous dispersion is required for bright soliton formation, while normal dispersion
yields dark solitons. Thus, with a weakly-guided mode, a dark soliton generation has been
demonstrated first [36], while bright solitons in this platform have only recently been demonstrated
with laterally coupled racetrack resonators [37,38].

In this paper, we present a generalized, geometry-guided modeling method for dispersion
engineering in concentric ring resonators, utilizing optical path length (OPL) maps from
eigenmode analysis of single-ring resonators. Using this method, we systematically identify
geometric parameters, including outer and inner ring dimensions and the gap between them,
and provide design guidelines for optimizing modal coupling for dispersion control. As a
proof-of-concept demonstration, we apply our method to design a 50 nm-thick Si3N4 resonator,
successfully achieving anomalous dispersion in a weakly-guided mode, a regime particularly
challenging due to weak optical confinement that leads to normal dispersion. Lugiato–Lefever
equation (LLE) simulations further confirm that our design supports the single bright soliton
formation in a weakly-guided resonator. Given its solely geometric basis, our modeling approach
is broadly applicable across diverse material platforms and wavelength ranges, offering an
efficient tool for versatile dispersion engineering.

2. Modeling method for a concentric ring resonator

2.1. Concept and schematics of a concentric ring resonator

Figure 1(a) illustrates the proposed concentric ring resonator scheme. Two rings with different
radii (Rout and Rin) and widths (wout and win) are positioned in the same plane, sharing a common
center. The ring radius is defined as the distance from the origin to the outer boundary of the
ring. The widths of each ring are typically wout<win to match the round-trip phase accumulations
between outer and inner rings. This condition is necessary because the inner ring has a shorter
physical circumference compared to the outer ring, thus requiring a higher effective refractive
index to maintain equal phase around the ring.

Figure 1(b) shows the cross-sectional view of the concentric ring resonator, comprising Si3N4
resonator core embedded within an upper and lower silicon dioxide (SiO2) claddings. Here,
we choose Si3N4 as an example for its low loss and broadband transparency window, but the
proposed configuration can be readily applied to other platforms.

When two individual rings with matched round-trip phase accumulation are brought into
proximity, their evanescent fields overlap, leading to mode coupling. This interaction hybridizes
modes and gives rise to new collective eigenstates, called supermodes, that span both rings.
These supermodes are typically classified as symmetric or antisymmetric modes based on their
electric-field profiles. Figure 1(c) visualizes these distinct field distributions, showing normalized
radial electric field component Re(Er). While the symmetric mode exhibits an in-phase field
distribution across both rings, the antisymmetric mode shows a distinct phase reversal between
them. The formation of supermodes transforms the system from two individually perturbed
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Fig. 1. Device schematics and dispersion engineering in concentric ring resonators.
(a) Schematic of the concentric ring resonator having outer and inner radii Rout and Rin,
respectively. The Si3N4 core is embedded between upper and lower SiO2 claddings. (b) Cross-
sectional view illustrating the geometrical parameters: the inner and outer ring widths win
and wout, thickness h, and gap g. (c) Normalized radial electric field [Re(Er)] distributions
of symmetric (Sym) and anti-symmetric (Anti) supermodes at the coupling wavelength
λc and the detuned wavelengths. (d) Dispersion curves for the coupled supermodes (Sym:
blue dashed, Anti: orange dashed) compared with those of uncoupled modes in the outer
(blue solid) and inner (orange solid) rings. Strong dispersion deviations occur at the λc.
Geometric parameters are Rout = 100 µm, Rin = 98.1 µm, win = 2.6 µm, wout = 1.4 µm,
h = 0.3 µm, and g = 0.5 µm.

resonators into a coupled system described by collective eigenstates. Thus, resonant frequencies
and dispersion properties are no longer limited to individual rings but instead are determined by
their mutual interactions. This coupling introduces an additional degree of freedom, enabling
dispersion control that surpasses the capabilities of conventional single-ring geometries alone.

2.2. Analysis of a mode coupling and dispersion engineering

Phase matching is essential for efficient mode coupling and formation of hybridized supermodes.
This has been pointed out in several studies related to avoided mode crossings in concentric
resonator structures [26,28]. In this section, we clarify how phase matching leads to mode
coupling and enables dispersion engineering using the coupled-mode theory represented in a
cylindrical coordinate [39].

For wave propagation along the azimuthal direction (0 ≤ θ ≤ 2π), the coupled-mode equations
for two asymmetric waveguides can be expressed as follows:

da1
R1dθ

= iβ1a1 + iκ12a2, (1a)
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da2
R2dθ

= iβ2a2 + iκ21a1, (1b)

where a1 and a2 represent the modal amplitudes in each waveguide, β1 and β2 are the propagation
constants of the uncoupled mode, κ12 and κ21 are the coupling coefficients between modes
in each ring, and R1 and R2 are the radii of the outer and inner rings, respectively. Here,
the propagation constants β and coupling coefficients κ are calculated using bent waveguide
eigenmodes, reflecting bending effects compared to straight waveguides. Under lossless and
reciprocal conditions, the coupling coefficients satisfy κ12 = −κ∗21 ≡ κ.

To simplify our analysis, we introduce the azimuthal propagation constant βθi = βiRi for
each ring i = 1, 2. Note that βi and Ri are related, thus defining one inherently determines the
other one, but their product remains constant. Thus, in a cylindrical coordinate, the azimuthal
propagation constant βθ is an intuitive parameter to assess phase accumulation around the ring;
this is often referred to as the OPL matching condition in literature [26,40]. The coupled-mode
equations can be rewritten as:

da1
dθ
= iβθ1a1 + iR1κ12a2, (2)

da2
dθ
= iβθ2a2 + iR2κ21a1. (3)

Assuming supermode solutions of the form a1(θ) = A1eiγθ and a2(θ) = A2eiγθ , where γ is the
eigenvalue of the coupled system representing the azimuthal propagation constant of supermodes
(i.e., γ = βθ± = β±R±). Solving the eigenvalue for γ, we obtain:

γ = βθ± =
βθ1 + βθ2

2
±

√︄(︃
βθ1 − βθ2

2

)︃2
+ R1R2 |κ |2. (4)

The term under the square root includes both phase mismatch and the coupling strength
|κ |, determining the degree of splitting between symmetric and anti-symmetric modes and
consequently controlling their dispersions. This term can be defined as the dispersion splitting
term ∆(ω), given by:

∆(ω) =

√︄(︃
β1R1 − β2R2

2

)︃2
+ R1R2 |κ |2. (5)

The dispersion parameter D±(ω) for the coupled symmetric (+) and anti-symmetric (-) modes
can thus be expressed as [41]:

D±(ω) = −
ω2

2πc
d2β±

dω2 = D0 ∓
ω2

2πcR±

d2∆

dω2 (6)

where D0 is the average intrinsic dispersion of the individual uncoupled single rings.
Mode coupling in a concentric ring resonator occurs when the round-trip phase accumulation

(or OPLs) around the rings closely match. Since one round-trip OPL of a resonator is defined as
OPL = 2πReffneff, where neff and Reff are the effective refractive index and radius of the ring,
respectively, the OPL matching condition at a given wavelength implies β1R1 = β2R2 = β0R0
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(i.e., azimuthal propagation constant matching). Accounting this, Eq. (4) simplifies to:

γ = β0R0 ± |κ |
√︁

R1R2 (7)

Assuming the effective radii of the coupled modes are approximately equal (i.e., R± =
√

R1R2 =
R0), the dispersion parameter in Eq. (6) at coupling frequency ωc can be simplified to:

D±(ω)
|︁|︁
ω=ωc

= D0 ∓
ω2

2πc
d2 |κ(ω)|

dω2 (8)

Note that the dispersion of the supermodes D± is directly governed by the second derivative of
the coupling strength |κ | with respect to angular frequency ω. Typically, the coupling strength
|κ | exhibits a convex frequency dependence, implying a positive second derivative:

d2 |κ |

dω2 >0.

Consequently, with appropriate coupling, the dispersion of the anti-symmetric mode can reach
anomalous dispersion (D−>0), even when the intrinsic dispersion D0 is in the normal dispersion
regime (D0<0). This is shown in Fig. 1(d), which plots the dispersion parameter D± for both
supermodes as a function of wavelength. Near the OPL-matched coupling wavelength λc, strong
modal hybridization causes an avoided mode crossing; the modes repel and diverge rather than
crossing, leading to a sharp reshaping of their dispersion profiles. This enables a localized
transition from normal to anomalous dispersion within a certain spectral window. Slight detuning
from OPL matching (β1R1 ≈ β2R2) still causes noticeable dispersion shifts, as shown by the
curvature around the peak coupling region in Fig. 1(d). By tailoring geometric parameters such
as the gap size and ring widths, the position and bandwidth of the anomalous dispersion region
can be engineered. Thus, this method provides a powerful approach to dispersion engineering
beyond the conventional waveguide cross-section optimization method alone.

2.3. Resonant mode coupling in a concentric ring resonator

Now, the hybridized guided modes form new basis sets for resonant modes. These hybridized
supermodes must be carefully designed for avoided mode crossing, considering the resonance
condition. A single-ring resonance condition is mλm = 2πReffneff (≡ OPL), where m is the
azimuthal mode number and λm is the resonant wavelength. Achieving hybridized modes
requires careful matching of the round-trip OPLs between the inner and outer rings, given by:
2πRoutnout = 2πRinnin, where subscripts out and in denote the outer and inner rings, respectively.
Combining the resonant conditions with the mode coupling requirement, the coupling condition
can be expressed as: mλout

m = nλin
n , where m and n represent azimuthal mode numbers of the

outer and inner rings, respectively. Thus, designing ring geometries that satisfy this condition at a
target wavelength results in resonant mode coupling. Figure 2 shows this resonant mode coupling
matching, demonstrating how individual ring geometries can be designed at a target wavelength.
Figures 2(a) and 2(b) show the cross-sections of the individual outer and inner Si3N4 rings
with their geometric parameters. Each single ring supports a distinct resonant mode due to its
unique geometry and corresponding modal index. Figure 2(c) shows the coupled concentric ring
structure with a small gap, enabling their optical field overlap to support a coupling. Figure 2(d)
plots numerically simulated round-trip OPLs (mλm) of each ring as a function of wavelength λ.
Since simulations return discrete eigenfrequencies for each integer m, the data points are discrete.
However, we plot with continuous line graphs to explicitly show the coupling and mode splitting.
Two solid lines represent the round-trip OPLs of uncoupled outer (blue) and inner (orange) rings,
while two dashed lines are those of coupled symmetric (blue) and anti-symmetric (orange) modes.
The zoomed-in inset clearly shows the intersection between the OPLs of the inner and outer rings,
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corresponding to the OPL matching condition. Near this matching wavelength, the two coupled
modes split, resulting in modal dispersion due to avoided mode crossing. The dispersion plots
shown in Fig. 1(d) are directly derived from this OPL data in Fig. 2(d), illustrating the capability
of dispersion engineering via mode coupling. Overall, OPL calculations enable precise targeting
of coupling wavelengths, offering systematic modeling capability for concentric ring resonators.

Fig. 2. Round-trip optical path length (OPL) matching using eigenmode analysis. (a)-
(c) Cross-sectional geometries of (a) outer, (b) inner, and (c) concentric rings. (d) Simulated
round-trip OPLs versus wavelength: outer ring (solid blue), inner ring (solid orange),
symmetric (dashed blue), and anti-symmetric (dashed orange) modes. The intersection
of the solid curves indicates phase-matching near 1550 nm, corresponding to the onset of
coupling. Geometric parameters are the same as in Fig. 1.

2.4. Design methodology for a concentric ring resonator

To systematically design mode coupling at a desired wavelength λc, we propose a geometric
modeling method based on single-ring eigenmode simulations. First, eigenmode simulations
of a single ring are conducted over a chosen geometric parameter space, spanning ranges of
radius R ∈ [R1, R2] and waveguide width w ∈ [w1, w2]. From each simulation, we extract (m,
λm) set and form the modal product OPL = mλm. Compiling the results, we can construct a
two-dimensional OPL map, with contours representing configurations of the identical OPLs.

Figure 3 shows the simulated OPL map of a single-ring SiN resonator (h = 300 nm-thick)
as a function of R = 95 − 105 µm and w = 0.6 − 3.5 µm. Different colors represent different
OPLs, allowing rapid identification of resonator geometries of the same OPLs. To determine
the mode coupling pair, we begin by selecting the outer ring parameters. Here, we chose radius
Rout = 100 µm and width wout = 1.4 µm, represented as point A on the map. Next, we trace
the contour line corresponding to the OPL at point A (purple dashed line). To define the inner
ring geometry, we shift horizontally to the left by a distance equal to the difference between
the outer and inner ring radii, i.e., wout + g, identifying point B. In other words, the inner ring
radius is defined as Rin = Rout − (wout + g). Here, we chose wout = 1.4 µm and g = 0.5 µm,
resulting in Rin = 98.1 µm. From point B, a perpendicular line is drawn toward the contour line,
determining the intersection point C. This intersection identifies the required inner ring width,
here win = 2.6 µm. The ring parameters used in Figs. 1 and 2 were obtained using this parameter
extraction procedure. This method simplifies the design process for concentric rings, eliminating
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the need for computationally intensive simulations of the fully coupled structure. The entire
design procedure is summarized in Table 1.

This OPL map provides a direct visualization of the single-ring phase accumulation, where the
contour line indicates phase matching (β1R1 ≈ β2R2) and thus predicts the geometry at which the
avoided mode crossing occurs. The resulting dispersion reshaping in the coupled structure is then
governed by the coupling strength κ, which depends on the modal overlap and gap separation.
Accordingly, the OPL contours highlight where coupling and dispersion perturbations arise
across geometry space, while κ determines how strongly they manifest in the coupled dispersion
D±(ω). Moreover, it defines the feasible geometric limits, including the maximum gap that
determines the degree of dispersion detuning. Once the outer ring geometry is fixed on the
OPL map (point A), the corresponding inner ring radius follows Rin = Rout − (wout + g). Due
to the steep slope of contour lines near the lower edge of the map, the inner ring radius cannot
be arbitrarily small. The minimum feasible inner ring radius occurs where the OPL contour
intersects the vertical axis, limiting the maximum allowable gap at a given outer ring geometry.
Consequently, adjusting outer ring parameters directly influences the maximum gap for coupling.
From the OPL contour map in Fig. 3, it can be observed that decreasing the outer ring width
(moving upward along the contour) generally increases the maximum allowable gap. Similarly,
increasing the outer ring radius (moving rightward along the contour) also expands the feasible
gap range. These trends provide a qualitative guide for the initial selection of concentric ring
geometries; the outer ring width can be minimized to maximize design flexibility, while being
sufficiently large to maintain a high confinement for a higher Q. Likewise, a larger outer ring
radius increases the allowable gap range but results in increased cavity volume, a trade-off that
must be considered. The tolerance analysis presented in Appendix A further quantifies how such
geometric trade-offs manifest in real fabrication scenarios, highlighting the relative impact of
width and gap variations on the resulting dispersion response.

Table 1. Step-by-step geometry-guided design procedure for concentric ring resonator

Step 1 Prepare input parameters

• Target coupling wavelength λc

• Radius range (R ∈ [R1, R2]) and width range (w ∈ [w1, w2])

• Gap between rings (g)

Step 2 Construct a 2D OPL map plot

• Run FEM eigenmode simulations of a single ring at the target wavelength λc for each
combination of R ∈ [R1, R2] and w ∈ [w1, w2]

• Plot a 2D OPL = mλm contour map as functions of (R, w) (Fig. 3)

Step 3 Find (Rout, wout) and (Rin, win) set using the OPL map

• Select a point A = (Rout, wout) representing the outer ring

• Trace the contour line passing through point A

• Determine the inner ring radius Rin = Rout − wout − g (point B)

• Determine the inner ring width win, following the contour line with Rin (point
C = (Rin, win))

Step 4 Output parameters

Coordinates of A = (Rout, wout) and C = (Rin, win) define the concentric ring resonator that
supports mode coupling at λc.

One may also reverse the process, i.e., starting from point C to find the corresponding point
A, which might make the process easier. This geometry-guided approach can also be extended
to design multiple coupled-ring resonators [42], enabling broader exploration of dispersion
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Fig. 3. 2D OPL map for parameter extraction of a concentric ring resonator. The map is
constructed from the OPL of a single ring as functions of ring radius R ∈ [95, 105] µm and
width w ∈ [0.6, 3.5] µm. The design procedure begins by selecting an outer ring point A
(Rout, wout) and tracing its corresponding contour (purple dashed line). The inner ring radius
is defined by Rin = Rout − (wout + g) (point B), from which a vertical projection intersects
the contour at point C, yielding the inner ring geometry (Rin, win). This procedure provides
a systematic method to identify phase-matched inner and outer rings at the target wavelength
λc.

engineering strategies beyond a single mode coupling alone. Appendix B further demonstrates
the use of the OPL-based design across different materials platforms and wavelength ranges.

3. Concentric ring resonators with a weakly-guided mode

3.1. Achieving anomalous dispersion with a weakly-guided mode

The modeling method introduced in Sec. 2 is broadly applicable to various material platforms
and spectral regimes. Among other platforms, this method is particularly effective for resonators
supporting a weakly-guided mode. Recently, an ultrathin Si3N4 resonator, characterized by
core thicknesses below 100 nm and thick low-loss oxide claddings, has emerged as a prominent
platform, achieving extremely low propagation losses (<0.06 dB/m) and ultra-high quality
factors (Q>400 million) [32,35]. Due to its low optical confinement, such resonators typically
require a large bending radius, resulting in a smaller free spectral range (FSR, on the order of
tens of GHz) compared to thick high confinement Si3N4 resonators (typically, on the order of
hundreds to thousands of GHz). Consequently, the ultra-high-Q and relatively narrow FSRs
make the weakly-guided resonators attractive for narrow linewidth laser sources [36,43–45] and
high-precision frequency comb applications [36,38,46], while making the platform compatible
with CMOS technology.

However, weakly-guided resonators inherently exhibit strong normal dispersion due to their low
optical confinement, limiting their conventional single-ring microcomb formation to dark solitons
[36,47]. Recent approaches using laterally coupled racetrack resonators have demonstrated
effective dispersion engineering, achieving anomalous dispersion and enabling bright soliton
generation [37,38]. However, these approaches often produce soliton pulse pairs, limiting
independent control of comb parameters such as repetition rate and pulse phase.

In this section, we show that the concentric ring resonator design, guided by the design
method introduced in Sec. 2, provides an alternative to overcome these limitations. By precisely
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controlling geometric parameters and carefully engineering mode coupling between inner and
outer rings, anomalous dispersion can be directly realized even in resonators characterized
by strong normal dispersion. We apply our design method to a 50 nm-thick Si3N4 resonator,
achieving anomalous dispersion at an FSR of approximately 10 GHz. Using the dispersion profile
obtained through our concentric ring design, we numerically solve the LLE and demonstrate stable
bright soliton microcomb generation at ≈ 10 GHz repetition rates, highlighting the effectiveness
of our approach in a weakly-guided resonator.

Figure 4 demonstrates the proposed concentric ring resonator design approach with a low-loss
weakly-guided mode platform. Figure 4(a) shows the OPL map plot as a function of the ring radius
and waveguide width for the 50 nm-thick Si3N4 scheme (inset: scheme). Since the mode sizes
are relatively large, the bending radius is on the order of millimeters (∼3 mm) and the waveguide
width is in several micrometers (∼2-6 µm). For this design, the outer ring radius is chosen to
be 3 mm (with the ring width of 2.45 µm), which corresponds to a FSR of approximately 10.6
GHz. Then, using the method in Sec. 2, we found the inner ring parameters as Rin = 2.99 mm
and win = 5.71 µm to achieve the mode coupling near 1550 nm. Figure 4(b) shows the electric
field profiles of the coupled concentric ring, showing the coupled symmetric and anti-symmetric
modes with a low optical confinement. By sweeping the azimuthal mode numbers, we can obtain
the corresponding resonant frequencies, from which the FSRs are extracted as shown in Fig. 4(c).
Near the coupling wavelength, the FSRs are exchanged between the symmetric (blue circles)
and anti-symmetric (orange circles) modes, while away from the coupling region, both modes
asymptotically approach the FSRs of the uncoupled outer and inner rings. Note that the slopes
of the FSR curves ( δFSR

δλ ) are positive for all modes, indicating normal dispersion, except for
the antisymmetric mode near the coupling wavelength. The negative slope in antisymmetric
mode suggests the appearance of anomalous dispersion. This is clearly shown in the extracted
dispersion plot in Fig. 4(d), confirming that our mode coupling approach is also effective for the
weakly-guided platform as well.

3.2. Bright soliton generation in a weakly-guided concentric resonator

The anomalous dispersion profile obtained in Sec. 3.1 can be used to form a bright Kerr soliton in
a weakly-guided mode. Previously, a dark soliton was initially demonstrated with a weakly-guided
ring due to its normal dispersion profile caused by weak confinement [36]. While dark solitons
are useful for power-efficient operation, bright solitons are desired for applications requiring short
pulses with high peak power, such as optical frequency synthesis [48], dual-comb spectroscopy
[49], and low-jitter microwave photonics [50]. Here, we numerically show that bright-soliton
generation is possible in the weakly-guided structure shown in Fig. 4.

We used the LLE to simulate bright soliton generation [51]. The dispersion profile of the
anti-symmetric mode in Fig. 4 was used for this LLE simulation. Due to low confinement, the
effective modal volume Veff is about two orders of magnitude larger than that of a typical high
confinement silicon nitride resonator [52]. Since the parametric oscillation threshold scales as
∼ Veff/Q2, such an increase in modal volume would require a higher threshold power for soliton
formation. However, this is compensated by the platform’s ultra-high intrinsic Q factor, which is
also enhanced by approximately two orders of magnitude. In our LLE simulation, an intrinsic
Q factor of 150 million [36] and critical coupling were assumed. This enabled bright soliton
generation with a threshold power of 2.6 mW when pumping the anomalous dispersion mode
near 1550 nm. Figure 5(a) shows the simulated spectrum, which has the characteristic hyperbolic
secant shape of a bright soliton. The soliton step as a function of pump wavelength detuning is
also shown in Fig. 5(b). The inset shows the intracavity power distribution over the resonator polar
angle θ, confirming a single localized bright pulse circulating in the cavity. Generating bright
solitons in a weakly-guided, ultrathin Si3N4 platform via modal-coupling-induced anomalous
dispersion enables low-FSR, highly coherent pulse trains. Combined with self-injection locking
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Fig. 4. Concentric ring resonator in a 50 nm-thick Si3N4 weakly-guided platform. (a) Optical
path length (OPL) map of a single 50 nm thick Si3N4 ring resonator as a function of radius
R = 2.95− 3.05 mm and waveguide width w = 2− 10 µm. The inset shows the cross-section
of the corresponding single Si3N4 ring. The points A and C denote the extracted outer
and inner ring geometries, respectively: Rout = 3 mm, wout = 2.45 µm, Rin = 2.99 mm,
and win = 5.71 µm. The ring gap is g = 7.1 µm. (b) Electric field profiles Re(Er) of
the coupled symmetric (Sym) and anti-symmetric (Anti) supermodes. (c) Simulated free
spectral ranges (FSRs) of the symmetric (blue circles) and anti-symmetric (orange circles)
resonant modes. The blue and orange dashed lines represent the FSRs of the uncoupled outer
and inner resonators, respectively. (d) Dispersion profiles of the symmetric (blue dash) and
anti-symmetric (orange dash) mode, demonstrating the emergence of anomalous dispersion
near 1550 nm.

and ultrahigh-Q, this approach could offer a promising route toward integrated microcombs
with low noise and high spectral coherence. While the material system and process flow are
compatible with CMOS fabrication principles, further experimental validation is required to
confirm full process compatibility and device scalability for large-volume integration.

4. Conclusion

In summary, we introduced a generalized, geometry-based method for dispersion engineering
in concentric microresonators. Leveraging single-ring eigenmode simulations, we constructed
an OPL map that rapidly identifies phase-matched geometries without exhaustive parameter
sweeps. This approach also reveals practical design limits, such as gap size and ring dimensions.
We applied this method on a 50 nm-thick Si3N4 weakly-guided resonator, whose single-ring
dispersion normally exhibits only normal dispersion. Using our modeling method, we achieved
anomalous dispersion near the telecom band and numerically confirmed single bright soliton
generation via LLE simulation. The modeling method is material-independent and readily
applicable to various platforms and wavelength regimes.
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Fig. 5. Bright soliton generation in a weakly-guided concentric resonator. (a) Simulated
bright soliton spectrum, exhibiting a sech2 envelope. (b) Characteristic soliton step versus
normalized detuning ζ0 = 2

κ (w0 − wp), where κ represents the cavity decay rate, and w0
and wp are the angular frequencies of the pumped resonance mode and the pump laser,
respectively. Inset: the spatial profile of the intracavity pulse along the resonator’s polar
angle −π ≤ θ ≤ π, confirming a single bright soliton. The dispersion profile from Fig. 4(a)
is used, assuming an intrinsic Q of 150 million and critical coupling.

Appendix A: fabrication tolerance analysis of the 300 nm Si3N4 concentric mi-
croresonator

It is important to note that fabrication-induced variations can affect the designed dispersion
response. Among the key structural parameters, the outer-ring width wout and coupling gap g
exhibit the highest sensitivity to dispersion detuning, whereas variations in the outer radius Rout
and inner-ring width win exert relatively weaker influence.

Figure 6 presents a tolerance analysis for the 300 nm Si3N4 platform, incorporating realistic
process deviations of±40 nm. The figure shows the dispersion profile of the coupled antisymmetric
mode of the concentric resonator described in Fig. 1, with fabrication deviations incorporated in
the simulation by introducing ±5 nm steps along both ring edges, resulting in a corresponding

Fig. 6. Tolerance analysis for the 300 nm Si3N4 concentric microresonator platform. The
dispersion profile of the antisymmetric mode is plotted for ring dimensions [wout, g, win]
varying from [1360, 540, 2560] nm (dark-blue dashed) to [1440, 460, 2640] nm (light-blue
dashed), corresponding to ±40 nm fabrication deviations. The solid green curve represents
the initial design at [1400, 500, 2600] nm. The black circles denote the peak-dispersion
points for the initial geometry and for ±40 nm variations in ring widths; the corresponding
coupling wavelength and dispersion (in ps/nm/km) for each peak point is marked.
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width change of ±10 nm and gap change of ∓10 nm, simultaneously. For an overall ±40 nm
width tolerance, the coupling wavelength exhibits a shift of approximately ±40 nm, while the
peak dispersion varies by about ∓310 ps/nm/km relative to the initial design (solid green line
in Fig. 6). It should be noted that this sensitivity is specific to the given material platform and
geometry; changes in material composition, film thickness, or operating wavelength would alter
the degree and nature of the dispersion variation.

Appendix B: OPL-based design at different wavelength regimes and material plat-
forms

To further demonstrate the generality of the proposed workflow, it is applied to different wavelength
and material platforms. Figure 7 illustrates its extension to a 300 nm SiN platform at 1060
nm, capable of generating visible to near-infrared soliton microcombs for application in atomic
spectroscopy [53], and to a 250 nm-thick AlN-on-insulator platform at 1550 nm capable of
frequency comb generation [54]. The resulting OPL maps and corresponding dispersion profiles
confirm that the same design method remains valid across distinct wavelength regimes and
material systems, confirming the versatility of the geometry-guided approach.

Fig. 7. Geometry-guided design method at different wavelength regimes and material
platforms. 2D OPL map and concentric-ring parameter extraction for (a) 300 nm-thick SiN
platform at 1060 nm wavelength and (b) 250 nm-thick AlN-on-insulator platform at 1550 nm
wavelength. (c), (d) Dispersion curves for the coupled supermodes (Sym: blue dashed,
Anti: orange dashed) compared with those of uncoupled modes in the outer (blue solid)
and inner (orange solid) rings for the concentric-ring geometries extracted from (a) and (b),
respectively. Extracted geometric parameters are: (a) Rout = 200 µm, Rin = 198.29 µm,
win = 1.61 µm, wout = 1.21 µm, h = 0.3 µm, and g = 0.5 µm; and (b) Rout = 100 µm,
Rin = 98.14 µm, win = 2.65 µm, wout = 1.41 µm, h = 0.25 µm, and g = 0.45 µm.
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