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Abstract

Gravitational-wave (GW) detectors are observing compact object mergers from increasingly far distances,
revealing the redshift evolution of the binary black hole (BBH)—and soon the black hole–neutron star (BHNS) and
binary neutron star (BNS)—merger rate. To help interpret these observations, we investigate the expected redshift
evolution of the compact object merger rate from the isolated binary evolution channel. We present a publicly
available catalog of compact object mergers and their accompanying cosmological merger rates from population
synthesis simulations conducted with the COMPAS software. To explore the impact of uncertainties in stellar and
binary evolution, our simulations use two-parameter grids of binary evolution models that vary the common-
envelope efficiency with mass transfer accretion efficiency and supernova (SN) remnant mass prescription with SN
natal kick velocity, respectively. We quantify the redshift evolution of our simulated merger rates using the local
(z∼ 0) rate, the redshift at which the merger rate peaks, and the normalized differential rates (as a proxy for slope).
We find that although the local rates span a range of ∼103 across our model variations, their redshift evolutions are
remarkably similar for BBHs, BHNSs, and BNSs, with differentials typically within a factor 3 and peaks of
z≈ 1.2–2.4 across models. Furthermore, several trends in our simulated rates are correlated with the model
parameters we explore. We conclude that future observations of the redshift evolution of the compact object
merger rate can help constrain binary models for stellar evolution and GW formation channels.

Unified Astronomy Thesaurus concepts: Gravitational waves (678); Binary stars (154); Compact objects (288)

1. Introduction

Observations of gravitational waves (GWs) from compact
object mergers are revolutionizing our understanding of stellar
mass black holes (BHs) and neutron stars (NSs) across cosmic
time. To date, data taken with the detector network consisting of
Advanced LIGO (J. Aasi et al. 2015), Advanced Virgo
(F. Acernese et al. 2015), and KAGRA (T. Akutsu et al.
2021) include on the order of 100 statistically significant GW
observations of binary black holes (BBHs) out to redshifts
z∼ 1.5 (e.g., T. Venumadhav et al. 2019, 2020; B. Zackay et al.
2019; S. Olsen et al. 2022; R. Abbott et al. 2023a; A. K. Mehta
et al. 2023; A. H. Nitz et al. 2023; D. Wadekar et al. 2023).
These observations already probe the BBH merger rate as a
function of redshift (e.g., R. Abbott et al. 2021; T. A. Callister &
W. M. Farr 2023; A. H. Nitz et al. 2023; E. Payne &
E. Thrane 2023; A. Ray et al. 2023), and future observing runs
equipped with technological upgrades such as O4, O5, and A#

are expected to increase the detection volume for stellar mass
BBHs out to redshift z∼ 2 (e.g., V. Baibhav et al. 2019;
R. X. Adhikari et al. 2020; I. Gupta et al. 2023). Moreover, next-
generation detectors like the Einstein Telescope and Cosmic
Explorer are expected to make 100,000 detections annually
from binary neutron star (BNS) and black hole–neutron star
(BHNS) mergers out to redshifts z 2 and BBH mergers out to

redshift 10. The observational capacities of these detectors will
allow us to measure the redshift distribution of mergers to within
percent-level precision (M. Punturo et al. 2010; B. Sathyaprak-
ash et al. 2012; D. Reitze et al. 2019; M. Maggiore et al. 2020;
M. Evans et al. 2021; S. Borhanian & B. S. Sathyaprakash 2024;
F. Iacovelli et al. 2022; N. Singh et al. 2022; M. Branchesi et al.
2023; I. Gupta et al. 2023).
To realize the full potential of these GW observations, we use

theoretical models of binary evolution to infer their formation
channels and learn about the underlying physical processes that
lead to compact object mergers (e.g., M. Mapelli 2021; M. Zevin
et al. 2021; I. Mandel & A. Farmer 2022). Thus far, the majority
of literature has attempted to compare simulated merger rates to
the observed local (z∼ 0) merger rates, but the local rates alone
do not provide enough information to distinguish formation
pathway contributions due to the many poorly constrained
parameters in population synthesis simulations (I. Mandel &
F. S. Broekgaarden 2022). There has therefore been increasing
interest in investigating the properties and rates of double
compact object (DCO) mergers as a function of redshift because
of the information that they encode about formation channels
(e.g., K. K. Y. Ng et al. 2021; M. Zevin et al. 2021; N. Singh
et al. 2022; L. A. C. van Son et al. 2022b; A. Olejak et al. 2024).
To explore the cosmological merger rates, this study

investigates the redshift distribution of DCO mergers created
by the isolated binary evolution channel, in which GW sources
form from pairs of massive stars. Our analysis is more in depth
than most previous studies in three ways: (i) we analyze the
BBH, BHNS, and BNS merger rates simultaneously; (ii) we
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explore the impact of uncertain populations synthesis para-
meters in tandem using two grids of simulations with varying
assumptions for the mass transfer, common envelope (CE), and
supernova (SN) physics; and (iii) we calculate summary
statistics such as the “differential merger rates” across several
redshift bins to efficiently analyze the impact of different
massive binary evolution uncertainties on the expected
distribution of mergers. Our simulations are publicly available
at https://gwlandscape.org.au/compas/.

2. Methods

We calculate the merger rates of simulated BBH, BHNS, and
BNS systems formed by isolated massive binary stars in a
three-step process shown in Figure 1 and summarized below.

2.1. Population Synthesis Simulations

We use the COMPAS8 suite to rapidly evolve large
populations of stellar binaries, a fraction of which create com-
pact objects and merge (Team COMPAS et al. 2022).
COMPAS is built on the single-star evolution analytic fitting
formulae by J. R. Hurley et al. (2000, 2002), which are based
on single-star evolution tables from O. R. Pols et al. (1998) and
earlier work from P. P. Eggleton et al. (1989) and C. A. Tout
et al. (1996); it parameterizes and approximates stellar
evolution and binary interaction in order to rapidly (1 s)
compute the evolution of binary systems. We ran population
synthesis simulations over two-dimensional grids of model
parameters to explore the correlated impact of binary physics
uncertainties. We created two grids, which we will refer to as
grid A and grid B and which we summarize below and in
Table 1.

In grid A, we vary CE efficiency and mass transfer
efficiency. These two parameters are of interest because they

have been the focus of several prior studies, are highly
uncertain, and have been demonstrated to significantly impact
population synthesis outcomes (A. Vigna-Gómez et al. 2018;
S. S. Bavera et al. 2021; F. Santoliquido et al. 2021;
F. S. Broekgaarden et al. 2022; A. Dorozsmai &
S. Toonen 2024). CE phases are defined by dynamically
unstable mass transfer in which one of the companions’
envelopes engulfs the other, causing drag and tightening the
binary. COMPAS parameterizes the CE phase with the
“αCE− λ” formalism (introduced by R. F. Webbink 1984
and M. de Kool 1990), where αCE determines the fraction of
orbital energy that binaries expend to eject their CEs. For grid
A we choose a range of values representative of the literature:
αCE= 0.1, 0.5, 2.0, and 10.0 (C. J. Neijssel et al. 2019;
F. S. Broekgaarden et al. 2021; F. Santoliquido et al. 2022;
L. A. C. van Son et al. 2022a), and we fix λ to λNanjing from the
fit in X.-J. Xu & X.-D. Li (2010a, 2010b). The mass transfer
efficiency parameter is β=ΔMacc/Mdonor, where ΔMdonor and
ΔMacc are the changes in the mass of the donor and accretor
stars, respectively, during stable transfer. We use three values,
β= 0.25, 0.5, and 0.75.
In grid B, we vary the core collapse supernovae (CCSNe)

natal kick velocity and the SN remnant mass prescription
(RMP). Our simulations give SNe a kick with velocity vk drawn
from a Maxwell–Boltzmann distribution with dispersion rms

1Ds .

We explore 30, 265, and750 km srms
1D 1s = - for CCSNe.

Higher dispersion leads to faster kicks, which studies have
found to be proportional to the amount of ejecta from SNe. We
therefore choose these dispersion values to approximate having
weak kicks ( 30 km srms

1D 1s = - ), commonly used moderate

kicks ( 265 km srms
1D 1s = - from G. Hobbs et al. 2005), and

strong kicks ( 750 km srms
1D 1s = - ). RMP maps objects’ carbon–

oxygen core mass to a remnant mass after SN and is largely
responsible for determining if stars become NSs or BHs. In grid
B, we adopt three RMPs for CCSNe: “delayed” (C. L. Fryer
et al. 2012), “rapid” (C. L. Fryer et al. 2012), and “stochastic”
(I. Mandel & B. Müller 2020). The rapid prescription assumes

Figure 1. Schematic overview of the method used in this paper. Step 1: simulate the evolution of binaries with each combination of parameters from the two-
parameter grids (Table 1) using the COMPAS binary population synthesis code. Step 2: distribute binaries from simulations across redshift using a metallicity-specific
star formation rate. Step 3: infer the BBH, BHNS, and BNS merger rates from the simulation results of each parameter combination in the two-parameter grids.

Table 1

Overview of the Models Explored in This Study

Grid Label (dimensions) Parameters Values Changed Physics

A (4 × 3) αCE [0.1, 0.5, 2.0, 10.0] CE ejection efficiency

... β [0.25, 0.5, 0.75] Mass transfer accretion efficiency

B (3 × 3) SN [delayed, rapid; Mandel & Müller] SN RMP

... rms
1Ds [30, 265, 750] km s−1 1d rms natal kick velocity

Note. For the RMPs we use the “delayed” and “rapid” prescriptions from C. L. Fryer et al. (2012) and the “stochastic” prescription from I. Mandel &

B. Müller (2020).

8
Compact Object Mergers: Population Astrophysics and Statistics; https://

compas.science.
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that SN explosions occur within 250 ms as opposed to the
longer duration in the delayed model; the rapid model
reproduces a mass gap between NSs and BHs.9 The
“stochastic” model, on the other hand, enables NS and BH
formation in multiple regions of the parameter space. Kick
velocity is associated with mass ejecta, which in turn reduces
the remnant mass as remnants accumulate ejecta through
“fallback” driven by their gravitational pull.

For each pairing of parameter values in our grids, we evolve
20 million binaries with initial stellar masses drawn from the
P. Kroupa (2001) initial mass function in the 5–150Me range.
For all parameters not varied by the grids in this study, we use
the default values from COMPAS (Team COMPAS et al.
2022), which are listed in Table 2 in Appendix A.

2.2. Calculating the Merger Rate

We calculate the cosmological merger rates of compact
objects following the methodology in Team COMPAS et al.
(2022). The merger rate measured by a comoving observer at a
merger time tm since the Big Bang for a binary consisting of
components with masses M1, and M2 is

( ) ( )
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where Nmerger is the number of systems merged, Nform is the

number of systems formed, Vc is the comoving volume, tdelay is

the time between the formation and merger of the binary, Zi is

the birth metallicity of the components, and MSFR is a unit of

star-forming mass, and we convolve the metallicity-specific

star formation rate density (SFRD) ( ( ))Z z t,i form with the

formation yield.
Throughout this paper, we use the method of bootstrapping

to calculate the 1σ and 2σ confidence intervals of the merger
rate and other metrics. Bootstrapping is a statistical technique
used to estimate the distribution of an estimand by resampling
with replacement and is commonly used for quantifying
uncertainty in population synthesis and GW astrophysics
(e.g., F. S. Broekgaarden et al. 2019; L. A. C. van Son et al.
2022a; R. Abbott et al. 2023b).

2.3. Metallicity-specific Star Formation History

In order to model S(Zi, z(tform)), which describes star
formation history as a function of initial redshift and
metallicity, we follow F. S. Broekgaarden et al. (2019) and
Team COMPAS et al. (2022): we multiply the SFRD by a
metallicity probability density function:
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( ) ( ) ( )

Z z
d M

dt dV dZ
z

d M

dt dV
z

dP

dZ
z

,

, 2

i

s c i

s c i

form

3
SFR

form

2
SFR

form form

 =

= ´

where zform is the redshift at which DCOs form and ts is the time in

the merger’s source frame. We obtain the metallicity density

function ( )z
dP

dZ form
i

by convolving the number density of galaxies

per logarithmic mass bin (GSMF) and the mass–metallicity relation.
For this study we use the SFRD fit from P. Madau & T. Fragos

(2017), which is an update from the earlier work of P. Madau &
M. Dickinson (2014). We adopt the GSMF from B. Panter et al.
(2004), which is a standard Schechter fit based on the Sloan
Digital Sky Survey data. We use the mass–metallicity relation
from X. Ma et al. (2016), which was derived using high-
resolution cosmological zoom-in simulations from P. F. Hopkins
et al. (2014). Models for S(Z, z) are another source of high
uncertainty, which impacts merger rate approximation (F. S. Bro-
ekgaarden et al. 2022; M. Chruślińska 2024; L. A. C. van Son
et al. 2022b). Evaluating the impact of the SFRD on the merger
rate will be a substantial effort that we leave for future studies.

2.4. Quantifying the Merger Rate Redshift Evolution

To understand how parameter variations impact the redshift
evolution of the merger rate, it is helpful to use summary
statistics for the z-distribution and behavior of ( )zmerge . We
quantify the merger rate z-evolution by calculating the relative
differential rates as follows:

( )
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where ( )zm is shorthand for ( )zmerge , zmin and zmax set the

bounds for the differential rate, and the integral in the

denominator is used to scale the rates such that the differential

values describe redshift evolution instead of the number of

mergers. We choose this metric because it represents the slopes

(relative increase) of the merger rate for a given redshift bin.
In this study, we calculate the differentials for the redshift

ranges [0, 1], [1, zpeak], [zpeak, zpeak+ 1], and [zpeak+ 1, 9],
where zpeak is the redshift of the peak. We select these ranges
because (i) our rates monotonically increase and then decrease
before and after the peak, respectively; (ii) it allows for breaks
in the slope before and after the peak (as has been suggested by
observational studies such as E. Payne & E. Thrane 2023 and
T. A. Callister & W. M. Farr 2023); and (iii) the slope of

( )zmerge far from the peak is highly linear. When we discuss
the redshift evolution of the merger rate in Section 3, we
discuss the differentials as well as the intrinsic merger rate,

( )00 merge º , and the redshift of the merger rate peak, zpeak.

3. Results

We show the simulated BBH, BHNS, and BNS merger rates
as a function of redshift in Figure 2 for all binary evolution
models. In Figure 3, we show a quantitative analysis of these
rates’ redshift evolutions including their differential rates
(defined in Equation (3)), local rates, and peak redshifts. The
differential rate is a representative of the “normalized” merger
rate slope: values close to 1 or −1 indicate steep increases or
decreases, whereas values close to 0 indicate flatter evolution
over a given redshift interval. We will therefore refer to these
differential rates as “slopes.” We find the following results.
Most importantly, we observe that the BBH, BHNS, and

BNS merger rates follow a remarkably similar evolution over
redshift for all our models: the merger rates rise monotonically
between z= 0 until they peak between 1.5 z 2.5 and then

9
Theoretical and observational studies predicted a gap between the masses of

BHs and NSs in the 3–5 Me range; however, A. G. Abac et al. (2024) recently
reported a merger with a component mass of 2.5–4.5 Me. The mass gap
remains a topic of debate.
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steeply decline until z∼ 9.5 where they sharply drop off.10 In
Figure 3 we show that the merger rates from all models peak
between redshifts 1.60< z< 2.40 (BBH), 1.35 z 2.26
(BHNS), and 1.20 z 2.13 (BNS) and that their slopes
typically vary with factors between 1 and 3× for a given DCO
type. The slopes that are outliers are (i) BNS models in the
range [1, zpeak], which vary between 0.045 and 0.22 (a factor
4.8×), and (ii) BNS models in [zpeak, zpeak+ 1], which vary

between −0.26 and −0.06 (a factor 4.3×). The redshift interval
with the smallest variations in slope is [zpeak+ 1, 9], for which
values only span a factor of 1.1×, 1.2×, and 1.2× for BBHs,
BHNSs, and BNSs, respectively. In contrast to the similarity of
the merger distributions, we find that the intrinsic merger rates
can span factors of almost 1000× between models, namely,
724×, 939×, and 13× for BBH, BHNS, and BNS,
respectively.11

Figure 2. The BBH (top), BHNS (middle), and BNS (bottom) merger rates as a function of redshift for our simulations. The left column shows models from grid A,
where we vary the common-envelope efficiency αCE and stable mass transfer efficiency β, and the right column shows models from grid B, where we vary the SN

natal kick velocity root mean square rms
1Ds and the RMP. For the RMP prescription, D, M, and R stand for the delayed, I. Mandel & B. Müller (2020), and rapid

prescriptions, respectively. The assumed SFRD from P. Madau & T. Fragos (2017) is scaled arbitrarily and plotted on all panels in black; note that the SFRD is, in
reality, orders of magnitude greater than the merger rate, but the scaling helps compare the shapes by eye. For all merger rates, we include the 1σ and 2σ confidence
intervals calculated by bootstrapping the simulation results to show the sampling uncertainty. The sharp merger rate drop-off around z ∼ 9 is due to our assumption
that star formation starts at z = 10 and mergers are delayed.

10
The merger rate drop-off around z ∼ 9.5 in all simulations results from our

assumption that star formation starts at z = 10 combined with minimum delays
of 10 Myr between star formation and the DCO merger. Assuming that star
formation begins beyond z = 10 has no impact on the simulated merger rates
because the number of binaries formed is negligible.

11
The factor 13× for the BNS intrinsic merger rate variations is small and

would probably also have been of order 1000× if we had included more model
variations (e.g., F. S. Broekgaarden et al. 2022; Q. Chu et al. 2022). Indeed,
even within our models it is clear that the magnitude of the BNS merger rate at
higher redshift varies factors 100× between models.

4
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The merger rate slopes are so similar between models because

the two primary factors that affect the redshift distribution of

binaries are relatively model agnostic. First, the formation

efficiency as a function of metallicity follows the same general

trend for a given DCO type with all of our models, giving rise to

extremely similar quantities of compact objects formed

throughout redshift (see Appendix B for the formation rates).

Second, the delay time distribution of all models follow a

t−1-like distribution. Combined, these two effects govern the

redshift distribution of mergers because they dictate where

binaries form and how long they live before merging (see

A. Boesky et al. 2024 for more details). In Figure 2, the BHNS

merger rates have notably steeper slopes on average than BBHs

for the range z zpeak. This is a result of BHNSs having fewer

systems with short delay times (1 Gyr), which we show in

Figure 4, leading to fewer mergers at high redshift.
We also notice several trends in how specific parameters

impact the merger rates in Figures 2 and 3. The dominant

parameter for the redshift distribution of mergers from grid A is

the common-envelope efficiency αCE, as is visible by the

Figure 3. The intrinsic merger rate ( 0 ), peak redshift (zpeak), and merger rate differentials in the z ranges [0, 1], [1, zpeak], [zpeak, zpeak + 1], and [zpeak + 1, 9] for
BBHs, BHNSs, and BNSs. The top and bottom rows are for models in grid A and B, respectively, and the colors and markers correspond to those in Figure 2. The red
vertical lines in the first column are the inferred BBH, BHNS, and BNS local merger rates (90% credible intervals) from R. Abbott et al. (2023a). We include 1σ and
2σ confidence intervals as shaded boxes around each point, which are calculated by bootstrapping the simulation results. Along the y-axis in the left margin, RMP
stands for remnant mass prescription and D, M, and R stand for the delayed, I. Mandel & B. Müller (2020), and rapid prescriptions, respectively. The gray dashed–
dotted lines in the second to sixth columns correspond to the differential and zpeak values for the assumed SFRD.

5
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clustering of rates by αCE in Figure 2. Models with αCE= 0.1,

10.0 tend to produce fewer BBH mergers than models with

αCE= 0.5, 2.0. Our simulations are therefore consistent with

earlier studies, which found that αCE has a nonmonotonic effect

on binary physics (e.g., F. S. Broekgaarden et al. 2022;

S. S. Bavera et al. 2022).12 Models with αCE= 0.1 and 2.0

produce the least BHNS mergers, whereas models with
αCE= 0.5 and 0.1 produce the least BNS mergers, depending
on the value of β. We also find that models with αCE= 0.1,
10.0 tend to favor low-redshift BBH mergers relative to other
grid A models.

The SN natal kick velocity dispersion rms
1Ds dominates the

redshift distribution of mergers for grid B. In Figure 2 we find

that holding the RMP constant, the number of mergers

monotonically decreases (often with more than a factor 10×)

with increasing rms
1Ds . This is because higher rms

1Ds values lead

more binaries to disrupt during SN. The number of mergers

spans the largest range between rms
1Ds prescriptions for BBHs

with the Mandel & Müller RMP, indicating that BBH

simulations with this stochastic RMP are particularly sensitive

to rms
1Ds .

Trends in how parameters impact the merger rate are often

consistent across values for the second grid parameter. One

example is the BBH slope as a function of αCE between

0< z< 1 with fixed βs shown in Figure 5. For all three β

prescriptions, the differential falls by a factor of ∼1/3 from

αCE= 0.1 to αCE= 0.5, 2.0 and then rises by a factor of ∼1/3

when αCE= 10. In A. Boesky et al. (2024), we discuss how
αCE governs delay times: large αCE fails to shrink orbits
enough to merge in Hubble time, but small αCE prevents CEs
from being ejected altogether, resulting in stellar mergers. This
dynamic creates a “sweet spot” for which the delay times of
models with αCE= 0.5, 2.0 are considerably lower than those
with αCE= 0.1, 10.0. We find that models with longer delay
times have larger merger rate differentials because binaries
merge at lower redshift, therefore causing sharper increase from
z= 0 to z= 1, as visible in Figure 5 (see A. Olejak et al. 2022).
A full overview of the parameter impacts is provided in
Appendix C.

4. Discussion

One of our key findings is that uncertainties in massive
binary stellar evolution have a relatively small impact on the
merger rate slopes but can have a significant impact on the
local merger rate and overall number of mergers. Specifically,
the slopes of the merger rate are typically within a factor of
3× in a given redshift range while the intrinsic rates span
factors up to ∼1000×. These findings are in agreement with
earlier work. For example, K. Belczynski et al. (2016) simulate
the BBH merger rate for four different rms

1Ds models and find
similar merger rate slopes between models but order-of-
magnitude different merger rate normalizations. They also find
higher rms

1Ds leading to fewer mergers, in agreement with our
results in Figure 2. J. Riley et al. (2021) find that wind loss
during the Wolf–Rayet phase does not significantly impact the
BBH merger rate shape; F. Santoliquido et al. (2022) find
similar shapes for the merger rate as a function of redshift when
varying the common-envelope efficiency, mass transfer
efficiency, and natal kicks; and Q. Chu et al. (2022) find
similar BNS merger rate slopes when varying the common-
envelope efficiency, rms

1Ds , and SN ejecta, with the exception of
one model that only creates BNSs with long (1 Gyr) delay
times. A full review of the different merger rates predicted by
different simulations is out of scope for this paper but will be
important to advance the field.
On the other hand, our study and these works do not explore

many other key uncertainties, including stellar evolution tracks
(e.g., P. Agrawal et al. 2023; A. Romagnolo et al. 2023),
alternative metallicity-dependent star formation rate models
(e.g., C. J. Neijssel et al. 2019; M. M. Briel et al. 2022;
M. Chruślińska 2024; F. Santoliquido et al. 2022), and different
initial stellar property distributions (e.g., J. Klencki et al. 2018;
M. Chruślińska et al. 2020). The rapid increase in GW

Figure 4. The delay time distribution of BBHs, BHNSs, and BNSs for the model with αCE = 2.0 and β = 0.5. The left, middle, and right panels are the delay times for
binaries formed at z = 0.2, 2.0, and 6.0, respectively.

Figure 5. The differential BBH merger rate in the interval z = 0 to z = 1 as a
function of αCE values for different fixed values of β in our simulation grid A.

12
See A. Boesky et al. (2024) for more details on αCE.
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observations at increasing distances will improve measure-
ments of the redshift evolution of the compact object merger
rate (e.g., R. Abbott et al. 2021; T. A. Callister &
W. M. Farr 2023; J. Godfrey et al. 2023; A. H. Nitz et al.
2023; E. Payne & E. Thrane 2023; A. Ray et al. 2023). Future
studies should therefore further investigate how compact object
mergers are impacted by the uncertainties omitted in this study.
If the shape of the isolated binary merger rate is, however,
robust across uncertainties in massive binary star evolution, it
would support the potential for using the observed merger rate
in tandem with simulations to constrain other uncertainties such
as the star formation history and formation channel
contributions.

5. Conclusion

In this study, we presented the expected cosmological
merger rates of BBHs, BHNSs, and BNSs for the isolated
binary channel using population synthesis simulations gener-
ated with COMPAS. We used two two-dimensional grids of
models for binary evolution to investigate the impact of stellar
evolution uncertainties. To analyze and quantify the redshift
evolution of the merger rate in our simulations, we parameter-
ized the merger rate using the rate at z∼ 0, the redshift of the
peak merger rate (zpeak), and the differentials for several
redshift intervals as a proxy for the slopes (Equation (3)). We
summarize our main findings below:

1. The redshift evolution of the BBH, BHNS, and BNS
merger rates follows a remarkably similar shape for all
our simulations (Figure 2): they increase from z∼ 0 until
a peak between z= 1.2–2.4 and then decline until our
assumed beginning of star formation at z= 10. Although
the local (z∼ 0) merger rate and overall normalization
vary by factors up to 1000× between models, the slopes
(quantified with the differential from Equation (3))
typically vary with factors of 1–3× (Figure 3).

2. The shape of the merger rate across redshift is correlated
with specific binary evolution parameters (Figure 5).
Future observations of mergers to high redshifts can
therefore help constrain models for binary evolution.

3. We find that the common-envelope efficiency αCE

dominates the redshift distribution of mergers in our grid
A simulations (Figure 2). It has a nonmonotonic impact
on the merger rate, which is a result of a “sweet spot”
range in which binaries both can successfully eject their
CEs and are tightened enough to merge in a Hubble time.

4. The SN natal kick velocity dispersion rms
1Ds typically

dominates the shape of the merger rate in our grid B
simulations because strong kicks disrupt the binaries,
leading to a drastic decrease in the efficiency of DCO
formation (Figures 2, 6).
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Appendix A
Simulation Settings

Table 2 provides a summary of our assumptions for the
COMPAS population synthesis simulations.

Table 2

Initial Values and Default Settings Chosen for the Population Synthesis Simulations Performed with COMPAS in This Study

Description and Name Value/Range Note/Setting

Initial conditions

Initial mass m1,i [5, 150] Me P. Kroupa (2001) IMF m1,iµ a- with αIMF = 2.3 for stars above 5 Me

Initial mass ratio qi = m2,i/m1,i [0, 1] We assume a flat mass ratio distribution p(qi) ∝ 1 with m2,i �0.1 Me

Initial semimajor axis ai [0.01, 1000] au Distributed flat-in-log p(ai) ∝ 1/ai
Initial metallicity Zi [0.0001, 0.03] Distributed flat-in-log p(Zi) ∝ 1/Zi
Initial orbital eccentricity ei 0 All binaries are assumed to be circular at birth

Fiducial parameter settings

Stellar winds for hydrogen-rich stars K. Belczynski et al.

(2010a)

Based on J. S. Vink et al. (2000, 2001), including luminous blue variable wind mass loss

with fLBV = 1.5

Stellar winds for hydrogen-poor helium

stars

K. Belczynski et al.

(2010b)

Based on W. R. Hamann & L. Koesterke (1998) and J. S. Vink & A. de Koter (2005)

Max transfer stability criteria ζ-prescription Based on A. Vigna-Gómez et al. (2018) and references therein

Mass transfer accretion ratea thermal timescale Limited by thermal timescale for stars (A. Vigna-Gómez et al. 2018; S. Vinciguerra et al.

2020)

... Eddington limited Accretion rate is Eddington limited for compact objects
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Appendix B
Formation Rates as a Function of Redshift

Figure 6 shows the formation rate (i.e., number of DCOs
formed) as a function of redshift for all our simulations. It is clear
that the formation rates peak at higher redshifts than the merger

rates in Figure 2 because there are nonnegligible delays between

binary formation and merger. For many models, the formation

rate peaks at higher redshifts compared to the star formation rate

peak, which is a result of boosted DCO formation efficiency at

low metallicities (see A. Boesky et al. 2024 for more details).

Table 2

(Continued)

Description and Name Value/Range Note/Setting

Nonconservative mass loss isotropic reemission A. Massevitch & L. Yungelson (1975), D. Bhattacharya & E. P. J. van den Heuvel (1991),

G. E. Soberman et al. (1997)

... ... T. M. Tauris & E. P. J. van den Heuvel (2023)

Case BB mass transfer stability always stable Based on A. Vigna-Gómez et al. (2018), T. M. Tauris et al. (2015, 2017)

CE prescription α − λ Based on R. F. Webbink (1984), M. de Kool (1990)

CE efficiency α-parametera 0.5 ...

CE λ-parameter λNanjing Based on X.-J. Xu & X.-D. Li (2010a, 2010b) and M. Dominik et al. (2012)

Hertzsprung gap (HG) donor in CE pessimistic Defined in M. Dominik et al. (2012): HG donors do not survive a CE phase

SN natal kick magnitude vk [0, ∞) km s−1 Drawn from Maxwellian distribution with standard deviation rms
1Ds

SN natal kick polar angle θk [0, π] ( ) ( )p sin 2k kq q=
SN natal kick azimuthal angle fk [0, 2π] Uniform p(f) = 1/(2π)

SN mean anomaly of the orbit [0, 2π] Uniformly distributed

CCSN RMPa delayed From C. L. Fryer et al. (2012), which has no lower BH mass gap

USSN RMP delayed From C. L. Fryer et al. (2012)

ECSN RMP mf = 1.26 Me Based on Equation (8) in F. X. Timmes et al. (1996)

CCSN velocity dispersion rms
1Ds a 265 km s−1 1D rms value based on G. Hobbs et al. (2005)

USSN and ECSN velocity dispersion rms
1Ds 30 km s−1 1D rms value based on e.g., E. Pfahl et al. (2002), P. Podsiadlowski et al. (2004)

PISN/PPISN RMP P. Marchant et al.

(2019)

As implemented in S. Stevenson et al. (2019)

Maximum NS mass max 2.5NS= Me Following C. L. Fryer et al. (2012)

Tides and rotation ... We do not include prescriptions for tides and/or rotation.

Simulation settings

Sampling method STROOPWAFEL Adaptive importance sampling from F. S. Broekgaarden et al. (2019).

Binary fraction fbin = 1 Corrected factor to be consistent with e.g., H. Sana (2017)

Solar metallicity Ze Ze = 0.0142 Based on M. Asplund et al. (2009)

Binary population synthesis code COMPAS Team COMPAS et al. (2022)

Note.
a
Prescriptions and assumptions that we vary in tandem (see Table 1).
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Appendix C
Correlating Differentials with Binary Evolution Model

Parameters

As detectors observe compact object mergers at increasing

distances in the coming years, we will constrain the redshift

evolution of the merger rate. Better constraints on the redshift

evolution could enable us to tune population synthesis

parameters by comparing the simulated and true redshift

distribution of mergers. Parameterizing the merger rate

redshift evolution with metrics such as the differential

(Equation (3)) will be important for quantifying and

correlating features of ( )zmerge with model parameters. To

this end, we show the differential in several redshift ranges,

zpeak, and 0 as a function of model parameters for BBHs,

BHNSs, and BNSs in Figures 7, 8, and 9, respectively.

Besides how the BBH differentials correlate with αCE

(described in Section 3), we leave the interpretation of trends

in these figures to the reader.

Figure 6. Same as Figure 2 but for the formation rates of BBH, BHNS, and BNS systems instead of merger rates. We define the formation time as directly after the
second SN when both compact objects have formed.
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Figure 7. Differentials of the BBH merger rate in the redshift ranges [0, 1], [1, zpeak], [zpeak, zpeak + 1], and [zpeak + 1, 9] as well as zpeak and the local rate 0 plotted
as a function of model parameters while keeping the second grid parameter fixed.
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Figure 8. The same as Figure 7 but for BHNSs instead of BBHs.
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