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Abstract. We study multisections of embedded surfaces in 4–manifolds admitting e↵ective torus
actions. We show that a simply-connected 4–manifold admits a genus one multisection if and only if
it admits an e↵ective torus action. Orlik and Raymond showed that these 4–manifolds are precisely

the connected sums of copies of CP2, CP2
, and S2 ⇥ S2. Therefore, embedded surfaces in these

4–manifolds can be encoded diagrammatically on a genus one surface. Our main result is that every
smooth, complex curve in CP1 ⇥CP1 can be put in e�cient bridge position with respect to a genus
one 4–section. We also analyze the algebraic topology of genus one multisections.

1. Introduction

Trisections were introduced by Gay and Kirby in 2016 as a novel approach to studying smooth
4–manifolds [GK16]. Soon after, the notion of a bridge trisection was introduced by the fourth
author and Zupan as an extension of trisections to the study of smoothly embedded surfaces in 4–
manifolds [MZ17, MZ18]. Recent work indicates an elegant interplay between the theory of (bridge)
trisections and the study of complex curves and surfaces [LC20, LCM20, LCMS21]. For example,
complex curves in CP2 happen to admit bridge trisections that are as simple as possible in that
they can be decomposed into three trivial disks with respect to the standard genus one trisection
of CP2.

The main goal of the present paper is to prove an analogous result for complex curves in CP1⇥CP1

by making use of multisections, a generalization of trisections introduced recently by the first author
and Naylor [IN20].

Theorem 3.4. Every smooth, complex curve in CP1⇥CP1 can be isotoped to lie in e�cient bridge
position with respect to a genus one 4–section.

Here, e�cient means that the surface intersects each of the four sectors of the 4–section in a
single, trivial disk. For example, if Cp,q denotes the isotopy class of the complex curve of bidegree
(q, p), then by Corollary 3.6, Cp,q admits a (b, 1)–bridge 4–section with b = pq � p � q + 2. The
proof of Theorem 3.4 is contained in Section 3, where a careful analysis of the genus one 4–section
of CP1 ⇥ CP1 is given.

As an application of Theorem 3.4, we obtain e�cient 4–sections of the complex surfaces that
occur as branched covers of CP1 ⇥ CP1 along complex curves; see Theorem 4.4 for the detailed
statement. For example, the elliptic surface E(q) admits a (6q � 1, 0) 4–section. Diagrams for the
4–sections of E(1) and K3 = E(2) are shown in Section 4, where other connections to branched
coverings are explored.

Our analysis of the curves Cp,q makes use of the fact that the genus one 4–section of CP1 ⇥CP1

is compatible with an e↵ective torus action. In fact, a more general connection exists between 4–
manifolds admitting e↵ective torus actions and those admitting genus one multisections, which we
henceforth refer to as toric multisections. The following can be viewed as a 4–dimensional analogue
of the fact that a closed 3–manifold admits an e↵ective torus action if and only if it admits a genus
one Heegaard splitting [OR70, Section 2].
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Theorem 5.1. Let X be a closed, simply-connected 4–manifold. Then the following are equivalent.

(1) X admits an e↵ective torus action.
(2) X admits a toric multisection.

(3) X is di↵eomorphic to a connected sum of copies of CP2, CP2
, and S2 ⇥ S2.

Moreover, the following sets of objects are in bijection.

(4) toric multisections of simply-connected 4–manifolds, up to di↵eomorphism
(5) e↵ective torus actions on simply-connected 4–manifolds, up to equivalence
(6) loops in the Farey graph, up to conjugation.

Note that S1 ⇥S3 is the only non-simply-connected 4–manifold admitting a genus one multisec-
tion; see Remark 2.3, but there are infinitely many non-simply-connected 4–manifolds admitting
e↵ective torus actions. So, the hypothesis of simple-connectivity is necessary. Theorem 5.1 holds
when X ⇠= S4 (which we think of as #0X for any 4–manifold X), since S4 admits a toric 2–section,
see Remark 2.2.

The first part of Theorem 5.1 is a consequence of the classification of simply-connected 4–
manifolds admitting e↵ective torus actions given by Orlik and Raymond [OR70], while the second
part makes use of the connection between such 4–manifolds and loops in the Farey graph given by
Melvin [Mel82]. Theorem 5.1 is proved in Section 5, where a number of consequences are discussed.
For example, we describe how to give a simple computation of the intersection form of a 4–manifold
admitting a toric multisection by locating a circular plumbing of disk-bundles over spheres gener-
ating the second homology group. We also remark on the following consequence of the second part
of Theorem 5.1 and work of Melvin.

Corollary 5.11. A 4–manifold X admits finitely many e�cient toric (n+ 2)–sections if and only

if either X ⇠= #nCP2 or X ⇠= #nCP2
– i.e., if and only if X is a definite manifold admitting a

toric multisection.

In fact, by work of Melvin, the number of non-di↵eomorphic toric (n+ 2)–sections of #nCP2 is
the number tn+2 of triangulations of a regular (n+2)–gon (with no added vertices), up to rotations
and reflections. For example, #4CP2 admits 3 distinct 6–sections, which are shown as circuits in
the Farey graph in Figure 12.

This paper is motivated in large part by the following question.

Question 1.1. If C is a complex curve in a rational surface X, then does C admit an e�cient
bridge multisection with respect to the toric multisection of X?

With this question in mind, we include in Section 6 an analysis of the algebraic topology of toric
multisections. We also discuss gluing of bridge multisections with boundary in Section 5. For a
more general discussion of the algebraic topology of multisections, see also [MS21].

If X is a simply-connected 4–manifold with a (g, 0) n–section, then b2(X) = (n � 2)g. For
the elliptic surface, E(q), we have b2(E(q)) = 12q � 2. If E(q) were to admit an e�cient, genus
g n–section, then we must have that (n � 2)g = 12q � 2; in particular g must divide 12q � 2.
Theorem 4.4 shows that E(q) admits an e�cient, (6q� 1, 0) 4–section, and [LCM20, Theorem 7.7]
shows that E(q) admits a (12q � 2, 0) trisection. These results can be seen as the boundary cases
of the following geography problem.

Question 1.2. For which values of g does E(q) admit a (g, 0) n–section?

In particular, the results of this paper produce or rule out all e�cient multisections of E(2),
except for perhaps a (2, 0) 11–section. Not much is known about the classification of genus two
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multisections, which, under a branched covering construction, is equivalent to the classification of
3–bridge multisections. In Section 2, after giving preliminary definitions related to multisections
and bridge multisections, we give an infinite family of non-di↵eomorphic 3–bridge 4–sections of
the unknotted 2–sphere in S4, the 2–fold branched covers of which comprise an infinite family of
non-di↵eomorphic (2, 1) 4–sections of S4.

Acknowledgements. The results of this paper stem from group work that was carried out during
Summer Trisectors Workshop 2021, which was held virtually and was supported by the NSF Focused
Research Grant DMS-1664578. We thank Paul Melvin for helpful comments at the outset of project,
and we thank Swapnanil Banerjee for his contributions to the project early on. PL was supported
by NSF grant DSM1664567. JM was supported by NSF grants DMS-1933019 and DMS-2006029.

2. Multisections and bridge multisections

Throughout this section, X will denote a smooth, orientable, closed, connected 4–manifold.
Multisections, as defined here, were first studied in [IN20], where they were introduced as a gener-
alization of the trisections introduced by Gay and Kirby [GK16].

Definition 2.1. Let g � 0, and let k = (k1, . . . , kn), with n � 3 and ki � 0. A (g,k)–multisection,
M, of X is a decomposition

X = Z1 [ · · · [ Zn,

where, for each i 2 Zn,

(1) Zi
⇠= \ki(S1 ⇥B3),

(2) Hi = Zi \ Zi�1
⇠= #g(S1 ⇥D2), and

(3) ⌃ =
Tn

i=1
Zi

⇠= #gT 2.

We adopt the convention that, as oriented manifolds, @Hi = ⌃ and @Zi = Hi[⌃H i+1. We variously
refer to M as a (g,k) n–section, a genus g n–section, or an n–section, depending on the context.
If k = ki for all i, then M is a (balanced) (g, k)–multisection. We call M e�cient if ki = 0 for all i.

Remark 2.2. Technically, it makes sense to consider the degenerate case of 2–sections, and even 1–
sections, where a 2–section is a decomposition of a manifold into two 4–dimensional 1–handlebodies,
glued along a Heegaard splitting, and a 1–section is a 4–dimensional 1–handlebody with the two
halves of a Heegaard splitting of its boundary identified. However, it is easy to see that a (g; k1, k2)
2–section can be expanded to a (g; k1, k2, g)–trisection, while a (g; k) 1–section can be expanded
to a (g; k, g, g)–trisection. It is easy to see that this implies k1 = k2 and k = g and that these
decompositions describe #k1(S1 ⇥ S3) and #g(S1 ⇥ S3), respectively, since they are built without
2–handles [MSZ16, LP72].

For these degenerate cases, when g = 1, there are two possibilities: S4 and S1 ⇥ S3. The toric
2–section of S4 fits cleanly into the analysis in this paper; see also Remark 5.2. The toric 1–section
and 2–section of S1 ⇥ S3 can be expanded to a toric n–section for any n 2 N; cf. Remark 2.3.

By a theorem of Laudenbach and Poénaru [LP72], the spine H1 [ · · ·[Hn of an n–section of X
determines X up to di↵eomorphism. In light of this, two multisections M and M0 are di↵eomorphic
if there is a di↵eomorphism ' : X ! X 0 such that '(Hi) = H 0

i, up to cyclic reordering.

Since each handlebody Hi is determined by a cut-system of curves ↵i, it follows that X is
determined by the n–tuple (↵1, . . . ,↵n) of g–tuples of curves on ⌃, called a multisection diagram.
Two multisections of a fixed smooth orientable closed 4–manifold are known to be related by a
finite sequence of moves [Isl21]. We note that the notion of a multisection studied here di↵ers
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from that of Rubinstein and Tillmann, who introduced related structures called multisections for
studying PL manifolds in arbitrary dimension [RT18].

The main objects of study in this paper are e�cient multisections of genus one, which we refer
to as toric. Since we are interested in simply-connected 4–manifolds, all toric multisections in this
paper will be (1, 0)-multisections (and hence e�cient).

Remark 2.3. In a genus g multisection, if ki = g, then the sector Zi is simply a product cobordism
between Hi and Hi+1. Usually, this sector can be removed to give a multisection with one fewer
sector. The exception to this rule is the degenerate case that ki = g for all i, in which case
the number of sectors can be reduced to one. In this case, the multisection is an open-book
decomposition, with binding ⌃, page H1, and trivial monodromy. It follows that the 4–manifold is
di↵eomorphic to #g(S1 ⇥ S3) [MSZ16, Theorem 1.2].

Thus, S1 ⇥ S3 is the only non-simply-connected 4–manifold admitting a toric multisection, and
its toric multisection is unique up to di↵eomorphism and collapsing of sectors. See Remark 5.2 for
a discussion of this degenerate case in the context of e↵ective torus actions.

Bridge trisections were introduced in [MZ17, MZ18] as an extension of the theory of trisections
to the study of embedded surfaces in 4–manifolds. Here, we generalize the notion of a bridge
trisection to the setting of 4–manifolds with multisections. A trivial b–strand tangle is a pair
(H, T ) where H is a handlebody and T is a collection of properly embedded arcs in H which are
simultaneously isotopic into the boundary of H; a trivial c–patch disk-tangle is a pair (Z,D) where
X is a 4–dimensional 1–handlebody and D is a collection of properly embedded disks in X which
are simultaneously isotopic into the boundary of X.

Definition 2.4. Let X be a 4–manifold with an n–section M. Let b � 1 and let c = (c1, . . . , cn)
with ci � 1. An embedded surface (X,K) is in (b, c)–bridge position with respect to M if

(1) (Zi,Di) = (Zi, Zi \K) is a trivial ci–patch disk-tangle, and
(2) (Hi, Ti) = (Hi, Hi \K) is a trivial b–strand tangle.

The induced decomposition MK

(X,K) = (Z1,D1) [ · · · [ (Zn,Dn),

is called a (b, c)–bridge n–section for K (relative to M). If K is oriented, we adopt the convention
that, as oriented manifolds, @Di = Ti\T i+1. We variously refer to MK as a b–bridge n–section or a
bridge n–section, depending on the context. If M is a (g,k)–multisection, then MK is a (g,k; b, c)–
bridge multisection. If c = ci for all i, then M is a (balanced) (b, c)–bridge multisection. We call
MK e�cient or 1–patch if ci = 1 for all i.

Any two disk-tangles in a handlebody with the same boundary are isotopic rel-boundary [Liv82,
MZ18], so the spine (H1, T1) [ · · · [ (Hn, Tn) of a bridge n–section of the pair (X,K) determines
the pair (X,K), as well as the multisection, up to di↵eomorphism. In light of this, two bridge
multisections MK and M0

K are di↵eomorphic if there is a di↵eomorphism ' : (X,K) ! (X 0,K) such
that '((H1, T1) [ · · · [ (Hn, Tn)) = (H 0

1
, T 0

1
) [ · · · [ (H 0

n, T 0
n).

Since each tangle Ti is trivial, it can be isotoped to lie on ⌃ as a collection of arcs ai, called
shadow arcs for Ti. It follows that K is determined by the n–tuple (a1, . . . , an) of b–tuples of arcs
on ⌃, called a shadow diagram.

We conclude this section with a simple example that illustrates complexities that arise when one
moves from the consideration of toric multisection to higher genus multisections.
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Theorem 2.5. The 4–sphere admits infinitely many non-di↵eomorphic (2, 1) 4–sections. The
unknotted 2–sphere in S4 admits infinitely many non-di↵eomorphic (3, 2)–bridge 4–sections with
respect to the (0, 0) 4–section of S4.

Proof. Consider the 4–tuple of 3–bridge tangles (Hi, Ti) with Hi
⇠= B3 described diagrammatically

in Figure 1. It is straightforward to check that, for each i 2 Z4, the union (Hi, Ti) [ (Hi+1, Ti+1)
is an unlink of 2–components. It follows that the union

S
4

i=1
(Hi, Ti) is the spine of a (3, 2)–bridge

4–section of a knotted surface K, relative to the (0, 0) 4–section of S4.

T1 T2 T3 T4

k
=

3

Figure 1. The four tangles comprising a (3, 2)–bridge 4–section of the unknotted
2–sphere in S4.

Note that K = T1 [ T 3 is the pretzel link P (3,�3, 3), while U = T2 [ T 4 is the unknot. This
multisection induces the standard Morse function h : S4 ! R so that the restriction f |K satisfies
f�1({0}) = U and has 2 minima and a band below U and a band and 2 maxima above U ; see [IN20,
Proposition 3.2] and [MZ17, Remark 3.4]. By [Sch85, Main Theorem], K is unknotted.

Now, let Mk denote the bridge multisection obtained by replacing each of the three 3–twist
regions of (H1, T1) with k–twist regions (preserving the sign in each case). The above discussion
shows these are all (3, 2)–bridge 4–sections of the unknotted 2–sphere, since the cross-section Uk =
T2[T 4 is still unknotted; however, as 4–sections they are non-di↵eomorphic, since the cross-sections
Kk = T1 [ T 3 are the non-equivalent pretzel links P (k, k,�k). This proves the second claim of the
theorem.

For the final claim, let fMk denote the multisection obtained as the 2–fold branched cover of M.

These are (2, 1) 4–sections of S4 that are non-di↵eomorphic, since the cross-sections eH1 [ fH3 are
the (non-di↵eomorphic) Seifert fibered spaces S2

�
1

k ,
�1

k , 1k
�
, which are distinguished by the first

homology groups [Orl72]. ⇤

3. Bridge position for a family of curves in CP1 ⇥ CP1

In this section, we prove that there is a family of smooth, complex curves Vp,q in X = CP1⇥CP1

that can be isotoped to lie in 1–patch bridge position with respect to the toric 4–section. The
curves Vp,q have homogeneous bidegree (q, p), so every possible bidegree is represented. Since the
moduli space of curves of fixed bidegree is connected, and since smooth curves are generic, this
yields Theorem 3.4.

Our analysis proceeds as follows. First, we study in detail the 4–section M of X = CP1 ⇥ CP1,
which we view through the lens of the symplectic toric structure on X. Next, we introduce a family
of singular, reducible complex curves whose smoothings are the curves Vp,q, and we determine how
they sit relative to M. Finally, we study the smoothing Vp,q, showing that it is isotopic to a surface
in e�cient bridge position with respect to M.
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3.1. The toric 4–section of CP1⇥CP1
. Our study of curves in CP1⇥CP1 makes use of the struc-

ture this manifold inherits as a (symplectic) toric manifold – i.e., a compact, connected (symplectic)
manifold equipped with an e↵ective, half-dimensional torus action (and a choice of moment map).
In fact, the symplectic structure is not necessary for our analysis, but the fact that our analysis is
compatible with the symplectic structure may be of independent interest and useful in future, more
geometric considerations. We refer the reader to [CdS03] for an introduction and complete de-
tails. In Section 5, we generalize the discussion immediately below to the class of simply-connected
4–manifolds admitting e↵ective torus actions, in which case symplectic structures are not always
present. In what follows we write S2 ⇥ S2 and CP1 ⇥ CP1 interchangeably.

As a warm up example, consider the S1 (1–torus) action on CP1. We adopt angular coordinates
on our tori and homogeneous coordinates on our projective spaces. Then, the action of S1 on CP1

is given by
✓ · [x1 : x2] = [x1 : e

i✓x2],

where ✓ 2 [0, 2⇡]. If we equip CP1 with the Fubini-Study symplectic form !FS and moment map
µ : CP1 ! R given by

µ([x1 : x2]) =
|x1|2

|x1|2 + |x2|2
,

then (CP1,!FS , S1, µ) is a symplectic toric manifold. The moment polytope (i.e., the image of µ)
is the closed interval [0, 1] ⇢ R.

In what follows, we consider X = CP1 ⇥ CP1 to be equipped with the product Fubini-Study
form, with the e↵ective torus action given by

(✓,�) · ([x1 : x2], [y1 : y2]) = ([x1 : e
i✓x2], [y1 : e

i�y2]),

and with the corresponding moment map µ : X ! R2 given by

µ([x1 : x2], [y1 : y2]) =

✓
|x1|2

|x1|2 + |x2|2
,

|y1|2

|y1|2 + |y2|2

◆
.

Thus, we find that the moment polytope for X is the unit square [0, 1] ⇥ [0, 1] ⇢ R2. In Figure 2,
the corners and two edges of the unit square are labeled with their preimages in X under µ.

We can construct a 4–section M on X by lifting via the moment map a decomposition of the
moment polytope into four squares; compare the following descriptions with Figure 2.

Z1 = {|x1|  |x2|, |y1|  |y2|}, H1 = {|x1|  |x2|, |y1| = |y2|},

Z2 = {|x1| � |x2|, |y1|  |y2|}, H2 = {|x1| = |x2|, |y1|  |y2|},

Z3 = {|x1| � |x2|, |y1| � |y2|}, H3 = {|x1| � |x2|, |y1| = |y2|},

Z4 = {|x1|  |x2|, |y1| � |y2|}, H4 = {|x1| = |x2|, |y1| � |y2|},

⌃ = {|x1| = |x2|, |y1| = |y2|}.

Each Zi is a 4–ball, while the Hi are solid tori, and ⌃ is a torus. Each of the Hi is determined by
a curve ↵i on ⌃ that bounds a disk in Hi. We adopt the following coloring convention: H1 is red,
H2 is blue, H3 is green, and H4 is purple. When we later consider tangles Ti inside the Hi, we will
depict the shadows of the tangles using a lighter shade of the corresponding color. See Figure 2,
where we have represented ⌃ as a square with opposite edges identified via reflection.
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([0 : 1], [0 : 1]) ([1 : 0], [0 : 1])

([1 : 0], [1 : 0])([0 : 1], [1 : 0])

CP1
× [0 : 1]

[1
:
0]

×
C
P
1

Σ

Σ

H2

H1

H3

H4

α2

α1

α3

α4

Z1 Z2

Z3Z4

Σ α
′

3

0

α
′

4

0

Figure 2. (Left) A decomposition of the moment polytope for CP1 ⇥ CP1 lifting
to a 4–section. (Middle) A 4–section diagram for S2 ⇥ S2. (Right) Obtaining a
handle decomposition of S2 ⇥ S2 from the 4–section.

The Zi inherit orientations fromX, and we orient ⌃ and theHi by declaring that @Zi = Hi[H i+1

and ⌃ = @Hi as oriented submanifolds. Here, and henceforth, we adopt cyclical indexing i 2 Z4.
Note that Hi [H i+1

⇠= S3 for all i, but Hi [H i+2
⇠= S1 ⇥ S2. More precisely, we have

H1 [H3 = @⌫
�
CP1 ⇥ [0 : 1]

�
, and H2 [H4 = @⌫

�
[1 : 0]⇥ CP1

�
,

as oriented manifolds.

The standard handle-decomposition of S2 ⇥ S2 is evident in the 4–section. Consider ⌃ as the
genus one Heegaard surface in S3 = @Z1. Let ↵0

3
and ↵0

4
denote copies of ↵3 and ↵4 (respectively)

that have been isotoped o↵ ⌃ to lie in H2 and H1 (respectively). Let h3 and h4 be 0–framed
2–handles attached along the respective components of the link ↵0

3
[↵0

4
. The e↵ect of attaching h3

is to perform 0–framed Dehn surgery on H2 along ↵0
3
; the resulting handlebody is H3. Similarly,

H4 is the result of performing 0–framed Dehn surgery on H1 along ↵0
4
. The result of performing

0–framed Dehn surgery on S3 = H1 [ H2 along ↵0
3
[ ↵0

4
is S3 = H4 [ H3, which is @Z4. In this

way, we find that Z1 corresponds to the 0–handle; Z2 and Z3 correspond to 2–handles (h3 and h4,
respectively); and Z4 corresponds to the 4–handle. The toric 4–section gives precisely the standard
handle-decomposition. See Figure 2.

The pieces of the 4–section M are preserved set-wise by the action of the torus on X. In
particular, we can identify the surface ⌃ with the torus that is acting upon it. Representing ⌃ as
a square with opposite sides identified, let ✓ represent the horizontal direction, and let � represent
the vertical direction. These coordinates are consistent with the conventions we have established
thus far. For example, fixing � and varying ✓ gives a circle action that amounts to rotation of
CP1 ⇥ [1 : 1] about its poles, which corresponds to rotation of ⌃ in the ↵1–direction. Similarly,
� acts on ⌃ as rotation in the ↵2–direction. Henceforth, we adopt (✓,�)–coordinates on ⌃, which
allow us to identify the representation square with [0, 2⇡]⇥ [0, 2⇡] in R2.

We will refer to a curve � on ⌃ as an (a, b)–curve if it represents a[↵1] + b[↵2] in

H1(⌃) = Z� Z = h↵1,↵2i.
Equivalently, � can be represented in the identification square by a collection of arcs, each of which
has slope b/a 2 Q [ {1}. For example, ↵1 is a (1, 0)–curve, while ↵2 is a (0, 1)–curve.

We note for future reference that certain representatives for the generators of the second homology
are also evident in the diagram. Let Di denote a copy of the meridional disk for Hi; assume
@Di = @Di+2. Then,

D1 [D3 = CP1 ⇥ [1 : 1], and D2 [D4 = [1 : 1]⇥ CP1.
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Note the connection to the handle-decomposition: D1 is isotopic to the Seifert disk for ↵0
3
, and D3

is the core of h3. Similarly, D2 is isotopic to the Seifert disk for ↵0
4
, and D4 is the core of h4. So,

in the handlebody diagram in Figure 2, ↵0
3
is the equator of {pt} ⇥ S2, while ↵0

4
is the equator of

S2⇥{pt}. Let �1 and �2 denote the homology classes of CP1⇥ [1 : 1] and [1 : 1]⇥CP1, respectively,
so,

H2(X) = Z� Z = h�1,�2i.
Note that, given this set-up, the map from H1(⌃) to H2(X) given by ↵i 7! �i is an isomorphism.

3.2. The complex curves V. Consider the bihomogeneous polynomial f : CP1 ⇥CP1 ! C given
by

f =
⇣
xq�1

1
y1 + xq�1

2
y2
⌘⇣

x1y
p�1

2
+ x2y

p�1

1

⌘
.

Let V be the variety cut out by f . Note that V has homogeneous bidegree (q, p) and that it is
reducible. Let V1 be the irreducible variety of homogeneous bidegree (q � 1, 1) cut out by

f1 = xq�1

1
y1 + xq�1

2
y2,

and let V2 be the irreducible variety of homogeneous bidegree (1, p� 1) cut out by

f2 = x1y
p�1

2
+ x2y

p�1

1
.

So, V = V1 [ V2.

Remark 3.1. Note that V represents p�1 + q�2 in H2(X).

We now determine how these varieties intersect the 4–section of X.

Lemma 3.2. The intersections of V = V1 [ V2 is as follows.

(1) V1 \ Int(Z1) = V1 \ Int(Z3) = ?.
(2) V2 \ Int(Z2) = V2 \ Int(Z4) = ?.
(3) V1 \ Z2 and V1 \ Z4 are each a neatly embedded1, trivial disk.
(4) V2 \ Z1 and V2 \ Z3 are each a neatly embedded, trivial disk.
(5) V1 \ Int(Hi) = V2 \ Int(Hi) = ?.
(6) V1 \ ⌃ is a (�1, q � 1)–curve passing through the point (0,⇡).
(7) V2 \ ⌃ is a (p� 1, 1)–curve passing through the point (⇡, 0).

Proof. First, consider V1, which is cut out by xq�1

1
y1 + xq�1

2
y2 = 0. If x1 = 0 or y1 = 0, then

y2 = 0 or x2 = 0, respectively, so we land in Z4 or Z2, respectively. If x1 = y1 = 1, then we get
1 + xq�1

2
y2 = 0. It follows that |x2|  1 if and only if |y2| � 1, so we land in Z4 or Z2. This

completes the proof of (1); the analysis of V2 is similar, yielding (2).

Next, it can be checked that |x1| = |x2| if and only if |y1| = |y2| for points on V. This proves (5).
If we assume |x1| = |x2| and |y1| = |y2|, we can set x2 = y2 = 1 and x1 = ei✓ and y1 = ei�. Then
f = 0 reduces to ⇣

ei(q�1)✓ei� + 1
⌘⇣

ei✓ + ei(p�1)�
⌘
= 0.

Switching to (✓,�)–coordinates, this becomes

(�+ (q � 1)✓ � ⇡)(✓ � (p� 1)�� ⇡) = 0.

So, V1 \ ⌃ is given by the equation � = �(q � 1)✓ + ⇡, while V2 \ ⌃ is given by the equation
✓ = (p� 1)�+ ⇡, proving (6) and (7).

1Recall that an embedding ' : M ! N is neat if f(@M) ⇢ @N and f(@M) t @N .
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It remains to show (3) and (4); first, we consider Z1 \ V2. Since x2 and y2 are nonzero on the
interior of Z1, we can set x2 = y2 = 1 and adopt a�ne (x1, y1)–coordinates so that Z1 = {(x1, y1) :
|x1|  1, |y1|  1}. In this way, we identify Z1 with the bi-disk D2⇥D2. In doing so, the polynomial
f2 reduces to x1 + yp�1

1
, which cuts out a neatly embedded, complex disk in Z1. This is a disk

in the 4–ball bounded with a single minimum – it is a smoothing of a cone – hence, it is trivial
and isotopic rel-boundary to the Seifert disk spanning its boundary, which is the (unknotted) torus
knot T1,p�1. A similar argument for the other three sectors completes the proof. ⇤

3.3. Smoothing the complex curves V. A consequence of Lemma 3.2 is that V1 and V2 are
2–spheres that intersect in (p� 1)(q � 1) + 1 points, all of which are contained in ⌃. The purpose
of this section is to show that these singular points can be smoothed to obtain a smooth, complex
curve Vp,q that is isotopic to a smooth surface Cp,q that lies in bridge position with respect to
M. First, we will describe a local, topological modification that will replace a neighborhood of a
singular point with an annulus, thus smoothing that singularity. We will then describe an ambient
isotopy of the resulting smooth surface that will make it transverse to ⌃. At this point, the surface
will be in bridge position, and it will be isotopic to the smoothing Vp,q, as desired.

Let x be a point in V1\V2, so x lies on ⌃. Let B4 be a small neighborhood of x, which inherits a
4–section structure from M. In abuse of notation, let Zi = B4\Zi, Hi = B4\Hi, and ⌃ = B4\⌃.
Note that the Zi are 4–balls, the Hi are 3–balls, and ⌃ is a disk. Let Yi = S3\Zi, let Pi = S3\Hi,
and let U = S3 \ ⌃. Note that U = @⌃ is the unknot, the Pi are each a page of the open-book
decomposition of S3 with binding U, and the Yi are each a spread of pages co-bounded by the Pi

and Pi+1.

Let Ex = B4 \ V . Since V1 and V2 intersect positively and transversely, Ex consists of a pair of
disks that intersect in a positive node singularity. Let Li = S3\Vi, so L = L1[L2 is a positive Hopf
link. Note that Li is contained in Yi�1 [ Yi+1, with indices taken in Z4; cf. Lemma 3.2, parts (1)
and (2). Also, L\U consists of 4 points. Label these x1, x2, x3, and x4 so that L1 \U = {x2, x4}.
Let ⌧i ⇢ Pi be a neatly embedded arc with @⌧i = {xi, xi+1}. See Figure 3.

Let �i be a triangle contained in Yi such that @�i = ⌧i [ ⌧i+1 [ �i, where �i ⇢ L. Let
A = �1 [�2 [�3 [�4. It is immediate that A is the annular Seifert surface for L. Let Ax denote
the result of perturbing the interior of A into the interior of B4 in such a way as to respect the
4–section structure on B4. (For example, A \ Pi gives rise to Ax \Hi.)

Let C denote the surface obtained from V by replacing node singularity Ex with smooth annulus
Ax at each point x in V1 \ V2. It is immediate that C is isotopic to the smoothing Vp,q of V.
However, although C is transverse to ⌃ near the points x, it is not transverse to ⌃ everywhere; see
Figure 4. Instead, C \⌃ is a collection of arcs. There is an ambient isotopy of C that is supported
in a neighborhood of such an arc that transforms the arc of intersection into a single point of
intersection; see Figure 5.

Having arranged that C is smoothly embedded and transverse to ⌃, we now claim that C is in
bridge position with respect to M.

Lemma 3.3. The smooth surface C is in 1–patch bridge position with respect to the 4–section M.

Proof. Let D1 = Z1 \ C. We will describe how D1 was obtained from D00
1
= Z1 \ V2 and conclude

that D1 is a trivial disk. By Lemma 3.2, we know that D00
1
is a trivial disk. The first modification we

made to D00
1
was to smooth its intersections with V1. This modification was achieved by removing

from D00
1
the disk D1 = B4 \ D00

1
, whose boundary was split as @D1 = �1 [ �1, where �1 ⇢ @D1

and �1 is neatly embedded in D1. The disk D1 was removed and replaced by the triangle �1; see
Figure 3. However, D1 and �1 are neatly, ambiently isotopic; the only di↵erence is that �1 is
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L1
L2

τ1

τ3

x3

x4

x2

∂∆4

τ1
τ4

x1 x2 x3 x4

x1x2

x3x4

∆1

∆2

∆3

∆4

∆1 ∆2

∆3∆4

L1L2

U

P1

P2

P3

P4

Figure 3. The configuration of arcs in S3 that cut the annular Seifert surface in
four triangles.

obtained from D1 by perturbing �1, which is not transverse to ⌃, to the union ⌧1 [ ⌧2, which is
transverse to ⌃. It follows that the result D0

1
remains a trivial, neatly embedded disk, even after V

is smoothed to obtain C.
Besides the smoothing accounted for above, the only other modification made was the ambient

isotopy that was used to make C transverse to ⌃. The e↵ect of this isotopy on D0
1
can be seen in the

bottom line of Figure 5. In the left-most union of “tangles,” we see that D0
1
fails to be transverse to

⌃ along a collection of arcs, one of which is shown in the local picture. The e↵ect of this ambient
isotopy is to straighten out the portion of @D0

1
where the failure of transversality occurs. It is clear

that the result of these ambient isotopies, which is now the desired disk D1, is indeed a trivial disk,
as desired.

A similar argument su�ces to prove that Di = Zi \ C is a trivial disk for all i 2 Z4. It remains
to see that Ti = Hi \ C is a trivial tangle for each i 2 Z4. However, this is clear from the discussion



TORIC MULTISECTIONS AND CURVES IN RATIONAL SURFACES 11

γ1

γ2

x

x1

x2

x3

x4

Figure 4. Here, (p, q) = (7, 4). (Left) The curves of intersection of V = V1 [ V2

with ⌃. (Middle) A diagrammatic representation of the local modification used to
smooth V. (Right) A diagrammatic representation of the smoothing C, before it
has been made transverse to ⌃.

Figure 5. The local ambient isotopy used to make C transverse to ⌃, shown dia-
grammatically (Top line) and ambiently within the spine of M (Bottom lines).

of D1 just given; to see this, we focus on T1, as it lies in @D1. By Lemma 3.2, @D00
1
\ Int(H1) = ?

for all i 2 Z4. As discussed above, the smoothing modification amounted to taking portions of
D00

1
that were lying flat in ⌃ and perturbing them via ambient isotopy to be transverse to ⌃; see
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Figure 3. Therefore, we have that D0
1
intersects H1 in a collection of trivial strands, plus some flat

arcs that come from the residual non-transversality of C; see Figure 5. The ambient isotopy that
eliminated these flat arcs a↵ected the trivial strands only via an isotopy of their boundary points.
It follows that the result, which is precisely T1, is a trivial tangle, as desired. A similar argument
for the other Ti completes the proof. ⇤

Let Vp,q denote a smooth, complex curve obtained from V by a small, analytic perturbation.
The curve Vp,q is smoothly isotopic to the smooth surface C, since the former is obtained from the
singular curve by an arbitrarily small analytic perturbation, while the latter is obtained by a local
transformation near the nodes that matches the e↵ect the perturbation there. We are now ready
to prove our first theorem from the introduction.

Theorem 3.4. Every smooth, complex curve in CP1⇥CP1 can be isotoped to lie in e�cient bridge
position with respect to a genus one 4–section.

Proof. Let S be a smooth, complex curve of homogeneous bidegree (p, q). Then, S is isotopic to
Vp,q, since the moduli space of curves of fixed bidegree is connected and since smooth curves are
generic in this moduli space. On the other hand, Vp,q is isotopic to C, which lies in e�cient bridge
position with respect to M. ⇤

Note that there is no reason to expect that C (as constructed) is algebraic. For this reason, we
will denote by Cp,q the smooth isotopy class of Vp,q, and we will work henceforth with the former,
rather than the latter.

3.4. A shadow diagram for Cp,q. We now describe how a shadow diagram for the e�cient bridge
4–section of Cp,q can be obtained in practice; see Figure 6, where the case of (p, q) = (7, 4) is shown.
First, draw the curves �1 = V1 \ ⌃ and �2 = V2 \ ⌃ on ⌃ as (�1, q � 1) and (p � 1, 1) slopes,
respectively. Note that these curves intersect in b = (p� 1)(q � 1) + 1 points, and these points of
intersection divide each of the curves into the b segments. Let x be a collection of 2b points on
�1 [ �2 so that each point of x lies at the midpoint of one of the 2b segments. For each i 2 Z4,
let ai be a collection of b straight arcs in ⌃ with @ai = x. These should be drawn so that their
union is embedded (i.e., they don’t intersect in their interior), so that, at each point of x, they
are arranged cyclically counterclockwise, and so that the union a1 [ a2 is isotopic to �2. (This will
uniquely determine their placement; cf. Figure 6.)

The following is a useful characterization of the shadow arcs just described.

Proposition 3.5. The union a1[a3 is a (p�2, q)–curve, and the union a2[a4 is a (�p, q�2)–curve.
The shadow arcs give a tiling of ⌃ by congruent parallelograms.

Proof. Recall the identification of ⌃ with the Euclidean square [0, 2⇡]⇥ [0, 2⇡], and arrange �1 and
�2 to be geodesic. Then, for each i, every arc of ai can be drawn as a geodesic segment meeting
�1 (respectively, �2) at the same angle. Moreover, since the ai connect midpoints of the segments
�1 \ �2 to midpoints of the segments �2 \ �1, we find that the arcs of ai are parallel to those of
ai+2. ⇤

In light of the proposition, there is a slightly more streamlined way to draw the shadow diagram:
Instead of starting with �1 and �2, one can first draw the curves a1 [ a3 and a2 [ a4. Then, the
bridge points are the points of intersection of these curves. We have illustrated this approach in
Figures 8 and 9.

A second implication of this proposition is that C intersects CP1 ⇥ [1 : 1] = D1 [D3 in q points
and intersects [1 : 1] ⇥ CP1 = D2 [ D4 in p points; since @D1 = ↵1 = ↵3 is a (1, 0)–curve, while
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γ1

γ2

Figure 6. (Left) The intersection of V with ⌃. (Right) A shadow diagram cor-
responding to the 4–section of (X,Vp,q). Here, (p, q) = (7, 4), and Vp,q is a curve of
genus 18.

@D2 = ↵2 = ↵4 is a (0, 1)–curve, these intersections can be seen explicitly in the diagram by
considering (a1 [ a3) \ ↵1 and (a2 \ a4) \ ↵2. This shows that [Cp,q] = p�1 + q�2 in H2(S2 ⇥ S2);
cf. Remark 3.1.

A consequence of the above discussion is a calculation of the complexity of the e�cient bridge
multisection. Let Cp,q denote the smooth isotopy class of the complex curve Vp,q. Note �(K) =P

i ci � b(n� 2) if K admits a (b, c)–bridge n–section.

Corollary 3.6. The surface Cp,q in S2⇥S2 admits a (b, 1)–bridge 4–section with b = pq�p�q+2,
has genus (p� 1)(q � 1), and represents p�1 + q�2 in H2(S2 ⇥ S2).

4. Branched covers

Branched covers of trivial tangles are handlebodies, therefore, bridge multisections naturally give
rise to multisections of their branched covers. (This fact has been extensively explored in the liter-
ature [BCKM19, CK17, LCM20, LCMS21, MZ17, MZ18].) Moreover, e�cient bridge multisections
give rise to e�cient multisections, since the branched cover of a trivial disk-tangle with one patch
is a 4–ball.

Many interesting 4–manifolds are obtained through branched coverings of complex curves in
complex surfaces. In [LCM20], the authors gave examples of branched covers over complex curves
in trisected complex surfaces. Many of these constructions generalize to the case of multisections
and yield lower genus representations of these branched covers. In the present setting, we will obtain
multisections of the manifolds Xp,q,n which are the n–fold cyclic branched covers of (S2 ⇥ S2, Cp,q),
with n dividing gcd(p, q).

4.1. Branched covers along Cp,q. To get started, we need to calculate the fundamental group
⇡(Cp,q) of the complement of Cp,q.

Proposition 4.1. Let d = gcd(p, q), then ⇡(Cp,q) ⇠= ha | adi.

Proof. The exterior (S2 ⇥ S2) \ ⌫(Cp,q) can be built by starting with 4–dimensional thickeing of
⌃ \ ⌫(x) and attaching 4–dimensional 2–handles of two types. First, attach a 2–handle along the



14 ISLAMBOULI, KARIMI, LAMBERT-COLE, AND MEIER

boundary of a tubular neighborhood of each shadow arc, then, attach four 2–handles, one along
each of the curves ↵i that define the handlebodies of the 4–section M. (In the shadow diagram, the
↵i should be drawn disjoint from the shadow arcs corresponding to Ti.) This builds the restriction
of the exterior to (a thickening of) the spine of the 4–section; the construction is completed by
the addition of 4–dimensional 3–handles and 4–handles to build the exteriors of the trivial disks in
the sectors. These final handles don’t a↵ect the fundamental group calculation, so ⇡(Cpq) can be
calculated as the fundamental group of the 3–dimensional thickening, which deformation retracts
onto the 2–complex given by ⌃ \ ⌫(x) and the cores of the 2–handles.

The orientation on Cp,q induces an orientation on the bridge points x = ⌃ \ Cp,q such that any
two bridge points connected by a shadow arc have opposite orientation. The group is generated
by the (oriented) meridional curves to these bridge points, of which there are 2b and the curves
↵1 and ↵2 on ⌃. The 2–cells that are attached along the boundaries of regular neighborhoods of
the shadow arcs have the e↵ect of (coherently) identifying all the oriented meridional curves to the
bridge points. Let a be the class of a meridional curve to a positive bridge point. This leaves three
generators: a, [↵1], and [↵2].

We claim that ↵1 and ↵3 can be chosen to induce the relation aq and kill [↵1]. Draw a curve
! on ⌃ that (i) intersects the midpoints of the left and right edges of the identification square,
(ii) is isotopic to ↵1, and (iii) is the union of diagonal arcs to the parallelograms cut out by the
shadow arcs; cf. Figure 7, where ! is not drawn, but indicated by bridge points labeled with +.
The number of positive bridge points intersected by ! will be the number of intersections of �1
with the bottom of the square, plus one; this is q. Now, let ↵1 and ↵3 be pusho↵s (with opposite
orientation to each other) of ! that are disjoint from the shadow arcs corresponding to T1 and T3,
respectively, so ↵1 and ↵3 co-bound an annulus containing q positive bridge points. Then, ↵1 [ ↵3

is homotopic to a curve ↵0
3
that encloses q positive bridge points. This implies the relation aq in

⇡(Cp,q), and [↵1] is killed by the cut disk D1.

A similar argument for ↵2 and ↵4 gives the relation ap and kills [↵2], so we have ⇡(Cp,q) ⇠=
ha | ap, aqi, as desired. ⇤

Since ⇡(Cp,q) is cyclic of order gcd(p, q), if n divides gcd(p, q), the n–fold cyclic branched covering
of S2 ⇥ S2 over Cp,q exists. The following proposition shows how this construction can be used to
obtain a multisection of the resulting branched cover, and gives the parameters for the resulting
multisection.

Proposition 4.2. Suppose that (X,K) admits a (g,k; b, c) bridge m–section. Then, the n–fold
cyclic branched cover ( eX, eK) admits a (g0,k0; b, c) bridge m–section where

g0 = ng + (n� 1)(b� 1), k
0 = nk+ (n� 1)(c� 1).

Proof. This theorem essentially follows from the results in Section 2.7 of [MZ17]. The branched
covering eX over X along K restricts to a branched covering of eZi over Zi along Di and eHi over
Hi along Ti for each i 2 Zm. Since Ti is a trivial b–strand tangle in the genus g handlebody
Hi, the cover eHi is a genus ng + (n � 1)(b � 1) handlebody. The branched cover of the genus
ki 4–dimensional 1–handlebody Zi along the ci–component trivial disk-tangle Di, is again a 4–
dimensional 1–handlebody eZi, with k0i = nki + (n� 1)(ci � 1). (Simply notice that a c–component
trivial disk-tangle is a trivial c–strand tangle cross an interval.) ⇤

Applying the previous proposition to a multisection with each ci = 1 and ki = 0, we obtain the
following corollary.
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Figure 7. ⇡(C7,4) ⇠= ha | a7, a4i ⇠= 1. The curves ↵1 and ↵3 are shown running left
to right in red and green, respectively. The curve ! would connect the four bridge
points between these curves labeled with +.

Corollary 4.3. If (X,K) admits an e�cient (g; b) bridge m–section, then ( eX, eK) admits an e�-
cient (g0; b) bridge m–section, with g0 = ng + (n� 1)(b� 1).

Combining Corollaries 3.6 and 4.3, we immediately obtain the main theorem of this section.

Theorem 4.4. The complex surface Xp,q,n admits an e�cient (g, 0) 4–section where

g = n+ (n� 1)(p� 1)(q � 1).

In particular:

(1) the rational surface X2,2q,2
⇠= CP2#(4q + 1)CP2

admits an e�cient (g, 0) 4–section with

g = 2q + 1;

(2) the elliptic surface X4,2q,2
⇠= E(q) admits an e�cient (g, 0) 4–section with

g = 6q � 1;

(3) the Horikawa surface X6,2q,2
⇠= H(q) admits an e�cient (g, 0) 4–section with

g = 10q � 3.

Given a shadow diagram for (X,K), there is a straightforward procedure to draw a multisection
diagram for eX; see [LCM20] for details, presented in the setting of trisections. Multisection dia-
grams for the 4–sections of K3 = X4,4,2 and E(1) = X4,2,2 obtained as branched coverings of the
surfaces Cp,q (as described in Subsection 3.4) are shown in Figures 8 and 9, respectively.

4.2. Branching over the central surface. Given a multisected 4–manifold, a natural operation
is to consider the 4–manifold obtained as the cyclic branched cover over the central surface. This
will always produce a multisected 4–manifold.
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a1 ∪ a3

a2 ∪ a4

Figure 8. (Top) The shadow diagram corresponding to (p, q) = (4, 4). (Bottom)

An (11, 0) 4–section diagram for the K3 surface.

Let X be a closed, smooth oriented 4–manifold with M a genus g n–section of X with central
surface ⌃ and diagram (⌃;↵i, . . . ,↵n). Let X(M, r) denote the r–fold cyclic branched cover of X
over ⌃.

Lemma 4.5. The n–section M lifts to a genus g (rn)–section fM of X(M, r) with diagram

(⌃;↵1, . . . ,↵n, . . . ,↵1, . . . ,↵n).

Furthermore, if M is e�cient, then fM is e�cient as well.

Proof. The central surface ⌃ bounds the handlebody H1 determined by the cut-system ↵1. There-
fore, to construct the cyclic branched cover, we cut along H1, take r copies of X \ H1, and glue
them cyclically. Each 4–dimensional sector Zi has r lifts eZi,1, . . . , eZi,r. After reindexing the sec-

tors by setting eZi,k = eZn(k�1)+i, it is clear that the decomposition X(M, r) = eZ1 [ . . . [ eZrn is a
multisection.

A multisection is e�cient if and only if each sector Zi is di↵eomorphic to a 4-ball, a property
which clearly lifts to the cyclic cover. ⇤

In some simple cases, we can completely determine the di↵eomorphism type of the cyclic branched
cover over the central surface.
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a1 ∪ a3

a2 ∪ a4

Figure 9. (Top) The shadow diagram corresponding to (p, q) = (4, 2). (Bottom)

A (5, 0) 4–section diagram for the elliptic surface E(1).

Proposition 4.6. Suppose that T is a (g, 0)–trisection of X. Then

X(T, r) ⇠= (#rX)#
⇣
#g(r�1)

�
S2 ⇥ S2

�⌘
.

To prove this, we need the following lemma.

Lemma 4.7. Let ↵,� be a pair of geometrically dual cut-systems on a genus g surface. Then the
tuple (↵,�,↵,�) gives a 4–section of #g

�
S2 ⇥ S2

�
.

Proof. Since ↵,� are geometrically dual, we can completely decompose the genus g 4–section into
the connected sum of g toric 4–sections.

Now assume that g = 1. Since ↵,� are geometrically dual, we can immediately identify this
4–section with a 4–section of S2 ⇥ S2. ⇤

Proof of Proposition 4.6. Consider the union Zi[Zi+1 of two successive sectors of the multisection
X(T, r), which has diagram

(⌃;↵,�, �, . . . ,↵,�, �).

This is a bisection of a compact 4–manifold with boundary and is determined by a triple of cut-
systems (↵,�, �). Since T was a (g, 0)–trisection, this is a bisection of X \ B4. We can remove a
connected summand a copy of X from X(T, r) by replacing Zi [ Zi+1 with a 4–ball bounded by
H↵ [H�

⇠= S3. Note that this is equivalent to decreasing the number of sectors of the multisection
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X(T, r) by one; moreover we have replaced the subsequence (↵,�, �) in the multisection diagram
by the subsequence (↵, �).

Inductively, we can remove each � from the multisection diagram. The result is a connected sum
decomposition

X(T, r) ⇠= (#rX)#Y,

where Y has a 2r–section with diagram (⌃;↵, �, . . . ,↵, �).

Now consider the subsequence (↵, �,↵, �), which is a multisection diagram for the union of three
successive sectors of the multisection. By the previous lemma, it is a diagram for #g

�
S2 ⇥ S2

�
\B4.

We can remove these three sectors and replace them with a B4. Consequently, we have replaced
the subsequence (↵, �,↵, �) with the subsequence (↵, �).

Inductively, we can repeat this r � 2 times, until we are left with a 4–section with diagram
(⌃;↵, �,↵, �), which specifies #g

�
S2 ⇥ S2

�
. ⇤

5. Toric multisections

5.1. Toric multisections and e↵ective torus actions. The purpose of this section is to prove
the following theorem, which shows how toric multisections fit into the classical picture of the
classification of simply-connected 4–manifolds admitting e↵ective torus-actions, as illuminated by
Orlik and Raymond [OR70] and Melvin [Mel82]. We refer the reader to [Mel82] for definitions and
complete details.

Recall that the Farey graph F is the graph where

(1) vertices are rational numbers p/q,
(2) an edge connects a/b to p/q if aq � bp = ±1.

We regard F as embedded in the unit disk; see Figure 12.

If we consider a point in the Farey graph as an ordered pair of coprime integers using the obvious
isomorphism p/q ! (p, q), then any two points in the Farey graph which are connected by an edge
form a basis for Z � Z. As the group SL(2,Z) acts transitively on such bases, SL(2,Z) acts
transitively on the vertices and edges of the Farey graph (See also [Mel82]). Following Melvin, we
call two loops ↵ = (↵1, . . . ,↵n) and ↵0 = (↵0

1
, . . . ,↵0

n) in the Farey graph conjugate if there is some
A 2 SL(2,Z) such that ↵0

i = A↵i for all i = 1, . . . , n.

The main theorem of this section is a strengthening of [IN20, Proposition 5.5].

Theorem 5.1. Let X be a closed, simply-connected 4–manifold. Then the following are equivalent.

(1) X admits an e↵ective torus action.
(2) X admits a toric multisection.

(3) X is di↵eomorphic to a connected sum of copies of CP2, CP2
, and S2 ⇥ S2.

Moreover, the following sets of objects are in bijection.

(4) toric multisections of simply-connected 4–manifolds, up to di↵eomorphism
(5) e↵ective torus actions on simply-connected 4–manifolds, up to equivalence
(6) loops in the Farey graph, up to conjugation.

Proof. (1) and (3) are equivalent by [OR70]. We will first show how (1) implies (2).

If X has an e↵ective T 2–action we may consider the orbit space X⇤ together with the orbit map
⇡ : X ! X⇤. Orlik-Raymond showed that X⇤ is a 2–disk with boundary consisting of singular
orbits and isolated fixed points and interior consisting of principal orbits. In particular, we can
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think of X⇤ as an n–gon, where the vertices are the fixed points, and points interior to the edges
of X⇤ are points with isotropy group isomorphic to S1. Melvin describes how the boundary of X⇤

can be identified with a loop ↵ = (↵1, . . . ,↵n) in the Farey graph [Mel82] – i.e., ↵i = bi/ai 2 Q
and |biai+1 � bi+1ai| = 1, with indices taken in Zn. Precisely, the isotropy subgroup of a point
projecting to the interior of the ith edge of the n–gon is the subgroup G(ai, bi)C T 2 isomorphic to
S1 and determined by flowing along the slope bi/ai on the torus.

Let � be a tree in X⇤, with a single vertex v0 in the interior of X⇤, a vertex vi in the interior of
each edge of X⇤ and an edge ei connecting vi to v0, for each i = 1, . . . , n. Then, ⌃ = ⇡�1(v0) is a
torus, Hi = ⇡�1(ei) is a solid torus, with boundary ⌃ and core ⇡�1(vi). Hi is determined by the
fact that the slope ↵i = bi/ai on ⌃ bounds a disk in Hi.

Now ⇡�1(X⇤ \ ⌫(�)) is a collection Z1, . . . , Zn. We claim that each Zi is a 4–ball. To see this,
note that the two handlebodies at the boundary of Zi are solid tori forming a Heegaard splitting of
S3. The sector of X⇤ corresponding to Zi can be filled by smaller parallel copies of the two edges
of � at the boundary until the edges reach the unique corner point of X⇤. The preimage of each
pair of handlebodies under ⇡ of these edges is a copy of S3 and the preimage of the corner point is
a point. This presents Zi as S3 ⇥ I/S3 ⇥ 0 = {pt} ⇠= B4.

It follows that � lifts to give a toric n–section of X. Thus, (1) implies (2); note that n is the
number of fixed points of the action. Moreover, the multisection diagram is (⌃;↵1, . . . ,↵n).

We now describe how (2) implies (1). From the definition of a toric multisection, we have that
there is a multisection of X such that

(1) the central surface ⌃ is T 2,
(2) each handlebody Hi is a solid torus D2 ⇥ S1,
(3) each 4–dimensional sector Zi is a 4–ball D2 ⇥D2.

We will show that the (e↵ective) T 2–action of the central surface on itself can be extended to
an action on Hi and Zi, and therefore, on all of X. In particular, the T 2–action respects the
multisection decomposition.

If we take coordinates (✓1, ✓2) on ⌃, then the action of T 2 (with coordinates ( 1, 2)) on ⌃ is
given by

( 1, 2) · (✓1, ✓2) = (✓1 +  1, ✓2 +  2).

Taking the radial coordinates (r, ✓1, ✓2) on Hi, the action extends trivially:

( 1, 2) · (r, ✓1, ✓2) = (r, ✓1 +  1, ✓2 +  2).

Extending thusly over Hi and Hi+1 gives an extension of the action to S3 = Hi [ H i+1 = @Zi.
Finally, we can parametrize Zi

⇠= B4 as the bi-disk D2 ⇥D2 and extend the action in the obvious
way:

( 1, 2) · (r1, ✓1, r2, ✓2) = (r1, ✓1 +  1, r2, ✓2 +  2).

In this way, X admits an e↵ective torus action.

We now extract a bit more information from the circumstances of an e↵ective torus action on a
toric multisection.

By definition of a toric multisection, for any pair of adjacent handlebodies Hi and Hi+1, the
slopes ↵i = bi/ai and ↵i+1 = bi+1/ai+1 determining the handlebodies satisfy |biai+1 � bi+1ai| = 1.
It follows that the curve ↵i is isotopic to the core of Hi+1, and vice versa. This shows that the
isotropy subgroup of the action for points on the core of Hi+1 (say) is G(ai, bi), since G(ai, bi) acts
by rotation on ↵i and the disk it bounds in Hi, thus fixing the core point-wise. From this, it follows
that the origin (0, ✓1, 0, ✓2) of Zi is a fixed point of the action.
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The orbit space ⇡(⌃) = ⌃⇤ is a point, since ⌃ is an orbit, and ⇡(Hi) = H⇤
i is a closed interval,

with @H⇤
i = ⌃⇤ t C⇤

i , where Ci is the core of Hi, and C⇤
i is decorated with the orbit data bi/ai.

Therefore, the quotient of the spine by the T 2–action is a tree T ⇤ consisting of a central, n–valent
vertex ⌃⇤ and the n decorated leaves C⇤

i . Finally, the orbit space Z⇤
i = ⇡(Zi) is a square, with

@Z⇤
i = (H⇤

i [⌃⇤ H⇤
i+1) [C⇤

i tC⇤
i+1

(E⇤
i [O⇤

i
E⇤

i+1),

where O⇤
i is the orbit space of the origin of Zi (a fixed point), and E⇤

i = ⇡(Ei), where Ei is the
cone in Zi on the core Ci of Hi.

Therefore, X⇤ = ⇡(X) is a union of n–squares, glued cyclically to the edges of the tree T ⇤.
Figure 2 (left) shows this arrangement for n = 4 and X = S2 ⇥ S2. Walking along the bound-
ary of X⇤, we meet the leaves of T ⇤ cyclically, and recording their weights, we get the sequence
(b1/a1, . . . , bn/an), which is the loop in the Farey graph described by Melvin [Mel82]. A multisec-
tion M is uniquely determined by its diagram (⌃;↵1, . . . ,↵n), and the diagram of M is uniquely
specified up to di↵eomorphism and cyclic re-indexing, which correspond precisely to conjugacy of
loops in the Farey graph. This shows that the sets (4) and (6) are in bijective correspondence.
That (5) and (6) are in bijective correspondence is the main result of [Mel82]. ⇤
Remark 5.2. As discussed in Remarks 2.2 and 2.3, there is a (balanced) toric 2–section for S4

and (balanced) toric n–sections for S1 ⇥ S3 for any n � 2. The development in the proof above
apply equally well to these degenerate cases, and we find e↵ective torus actions on S4 and S1 ⇥ S3

coming from the multisection structure.

For X = S1 ⇥ S3, the main di↵erence is that, since all the slopes in the diagram for M are the
same, the disks Ei get (collectively) replaced by a torus E that intersects each handlebody in its
core. It follows that X⇤ is a 2–disk, with the entire boundary circle E⇤ labeled with the same slope.
Note that S1 ⇥ S3 also admits e↵ective torus actions that restrict to e↵ective circle actions on S3

whose ordinary orbits are (p, q)–torus links (which gives S3 the structure of a Seifert fibered space).
The orbit space in this case is the orbifold S2(p, q), so these actions are not equivalent to the one
coming from the (1, 1) multisection.

For X = S4, we simply have that T ⇤ is linear, having only two vertice on @X⇤.

For these reasons, S1 ⇥ S3 and S4 fit into the scheme of this paper (with minor caveat) as the
unique manifolds admitting a toric 1–section and 2–section, respectively.

5.2. Toric multisections with boundary. The definition of an n–section naturally extends to
manifolds with boundary by simply dropping the requirement in Definition 2.1 that (⌃, H1, Hn) be
a Heegaard splitting of #k(S1⇥S2). Instead, @X = H1[⌃Hn will instead form a Heegaard splitting
of the boundary of the manifold. Note that in the case of a toric multisection with boundary, the
boundary 3–manifold will admit a genus one Heegaard splitting, and so is a lens space, S3, or
S1 ⇥ S2. We begin with some examples.

Example 5.3. (Disk-bundles over S2)

The toric multisection diagram
(0/1, 1/0, n/1),

encodes a 2–section of the disk-bundle over S2 with Euler number n. See Figure 10 (left).

Example 5.4. (Dual spheres)

The toric multisection diagram

(0/1, 1/0, p/1, (pq � 1)/q),

encodes a 3–section of the neighborhood of a dual pair of 2–spheres, with Euler numbers p and q,
respectively. See Figure 10 (right).
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Both of the previous examples could be interpreted as a linear plumbing of 2–spheres and in
fact, all toric multisections with boundary are of this form.

Proposition 5.5. Let (↵1, . . . ,↵n+1) be a diagram for a toric n–section of a manifold with boundary
X, where h↵i,↵i+1i = 1 for all i = 1, . . . , n. (In particular, we view all ↵i as oriented). Then X
is di↵eomorphic to the linear plumbing of (n � 1) 2–spheres, where the Euler number ei of the ith

2–sphere is given by the formula
ei = h↵i+2,↵ii.

Proof. First, we will check that the union of two consecutive sectors Zi [Zi+1 is a disk bundle over
S2. Both Zi and Zi+1 are di↵eomorphic to B4 and Hi+1 = Zi \ Zi+1 is a tubular neighborhood of
the unknot in S3 = @Zi. Therefore, gluing Zi+1 to Zi is equivalent to attaching a 4–dimensional
2–handle to Zi along an unknot. The framing here is the surface framing of the curve ↵i+2 and in
the Heegaard splitting of Zi given by the curves ↵i and ↵i+1 is the algebraic intersection number
h↵i+2,↵ii. Consequently, the result is a disk bundle over S2 with Euler number determined by the
framing of the handle attachment.

The union Zi�1 [Zi [Zi+1 is obtained by gluing Zi [Zi+1 to Zi�1 [Zi, where both components
are both disk bundles over S2. We can identify Zi

⇠= D2⇥D2 so that @Zi = (@D2⇥D2)[(D2⇥@D2)
is the Heegaard splitting induced by the multisection. Consequently, this identification of the two
disk bundles is by definition their plumbing. Inducting over the rest of the sectors, we see that this
multisection corresponds to a linear plumbing graph. ⇤

Proposition 5.5 leads quickly to the following characterization of the intersection form for closed
toric multisections.

Proposition 5.6. Let (↵1, . . . ,↵n) be a toric multisection diagram for a closed 4–manifold X.
Assume that h↵i,↵i+1i = 1 for all i = 1, . . . , n� 1. Then the intersection form QX is given by the
matrix 2

6666666666664

e1 1 0 . . . . . . 0
1 e2 1

0 1 e3
...

. . .

... en�4 1 0
1 en�3 1

0 . . . 0 1 en�2

3

7777777777775

,

where
ei = h↵i+2,↵ii.

Proof. Given a multisection X = Z1 [ · · · [ Zn of a closed manifold, we get a multisection with
boundary of X \ B4 given by Z1 [ · · · [ Zn�1. By Proposition 5.5, this is a linear plumbing of
(n � 2) spheres. The condition h↵i,↵i+1i = 1 determines the orientation on the spheres, so that
they intersect sequentially at a positive point. And the integer ei = h↵i+1,↵ii is the self-intersection
number of the ith sphere. ⇤
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Figure 10. (left) A disk bundle over S2 with Euler number 3. (Right) Plumbing
the disk bundle of Euler number 3 with the disk bundle of Euler number 2.

5.3. Blowing up. Two fundamental operations in 4–manifold topology are blowing up and taking
connected sums with S2 ⇥ S2. Under these operations, most of the complexity of smooth simply
connected 4–manifolds dissolves. In this subsection we describe how to modify a toric multisection
to a multisection of its blow-ups or connected sum with S2 ⇥ S2 and outline a procedure for the
proper transform of a toric bridge multisection.

Lemma 5.7. In a toric multisection diagram, replacing the subsequence (↵i,↵i+1) (viewed as ori-
ented classes in H1(T 2)) with (↵i,↵i + ↵i+1,↵i+1) is equivalent to connect summing with

(1) CP2 if h↵i+1,↵ii = 1,

(2) CP2
if h↵i+1,↵ii = �1.

Proof. Removing the subsequence (↵i,↵i+1) from the multisection diagram, removes a B4 from
the toric multisection. By Proposition 5.5, the toric bisection with boundary given by the curves
(↵i,↵i + ↵i+1,↵i+1) is a D2–bundle over S2 with Euler number h↵i+1,↵ii. Thus the total process

removes a ball and glues in, either CP2\B4 or CP2\B4 depending on the given intersection number.
⇤

Lemma 5.8. In a toric multisection, replacing the subsequence (↵i,↵i+1) with (↵i,↵i+1,↵i,↵i+1)
is equivalent to connect summing with S2 ⇥ S2.

Proof. Following along the lines of Lemma 5.7, this operation removes a B4 and replaces it with
a toric 3–section with boundary of a neighborhood of a plumbing of two 2–spheres, with Euler
numbers

h↵i,↵ii = h↵i+1,↵i+1i = 0.

Therefore, the replacement manifold is (S2 ⇥ S2) \B4. ⇤

Recall that, topologically, the proper transform of a 4–manifold/surface pair (X4,K) is the 4–

manifold/surface pair (X4#CP 2
,K#CP1). On a multisection diagram, this can be accomplished

by a relative connected sum operation. Recall that CP1 ⇢ CP 2
has a (1, 1) bridge trisection relative

to a toric trisection CP 2
= W1 [W2 [W3. This can be seen in Figure 11 (left). We can perturb

this bridge trisection to a (b; 1, c2, c3)–bridge trisection with c2+ c3 = b+1 (shown in the Figure 11
(right) for c2 = 1 and c3 = b). We can also stabilize the (1, 0) trisection to a (g; 0, k1, k2)–trisection,
where k1 + k2 = g � 1. Despite these changes, (W1,S1) is still a (B4, D2).

Now let X = Z1 [ · · · [ Zn be a multisection of the 4–manifold X and let K = D1 [ · · · [ Dn

be a b–bridge multisection of the surface S with Di ⇢ Zi. Suppose that some pair (Zi,Di) is
di↵eomorphic as a pair to (W1,S1), so both pairs give the standard pair (B4, D2). Since S3 has
a unique Heegaard splitting in each genus [Wal68], and since the unknot has a unique b–bridge
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(b− 1)−times

Figure 11. A b–bridge trisection diagram of CP1 ⇢ CP 2
.

splitting with respect to these Heegaard splittings [HS98], there is a di↵eomorphism

� : (@W1, @S1) ! (@Zi, @Di),

respecting these decompositions.

The blow-up is then given by X#CP2
= (X\Zi) [� (CP2\W1). Moreover, when forming the

proper transform in this fashion we naturally obtain a bridge multisection given by

(X#CP 2
,K#CP1) = (Z1 [ · · · [ Zi�1 [W2 [W3 [ Zi+1 [ · · · [ Zn,

D1 [ · · · [Di�1 [ S2 [ S3 [Di+1 [ · · · [Dn).

This technique might be used to describe bridge trisections of complex curves in rational surfaces
that are obtained as proper transforms of complex curve in CP1 ⇥CP1 using the bridge trisections
described in Sections 3 and 4.

5.4. Classification of toric n-sections. Our next result gives a classification of the di↵eomor-
phism types of 4–manifolds which admit a toric multisection. We will later show in Section 6 that
we can precisely determine the smooth 4–manifold underlying a toric multisection using algebraic
information.

Theorem 5.9. If X admits a toric n–section, then there is a di↵eomorphism

X ⇠= (#aCP2)#(#bCP2
)#(#cS2 ⇥ S2),

for some integers a, b, c satisfying a+ b+ 2c = n� 2. Moreover, the connected sum decomposition
respects the multisection and the corresponding torus-action.

Proof. Let M be a toric n–section of a 4–manifold X, with n � 2. Let ↵ = (↵1, . . . ,↵n) be the
corresponding loop in the Farey graph, described in the proof of Theorem 5.1. We will prove the
theorem by induction on n. If n = 2, then X ⇠= S4 and the theorem holds. If n = 3, then X is

di↵eomorphic to CP2 or CP2
. Assume the theorem is true for any 3  k  n� 1.

First, assume that ↵ backtracks at some point: ↵i = ↵i+2. Without loss of generality (re-indexing
and applying an automorphism if necessary), we can assume ↵ has the form

↵ = (0/1, 1/0, 0/1, 1/m,↵5, . . . ,↵n) ,

where m 2 Z. Note that H1 [H4 is a Heegaard splitting of S3, so that it may be capped o↵ with
B4 to form a closed 4-section which is a connected summand of our original toric multisection. By

Proposition 5.1 of [IN20] this manifold is S2 ⇥ S2 if m is even and CP2#CP2
if m is odd.

Let X 0 = (X\(Z1[Z2[Z3))[Z 0, where Z 0 ⇠= B4 and let M0 be the (n�2)–section of X 0 obtained
by replacing Z1[Z2[Z3 with Z 0. By the inductive hypothesis, the theorem is true for X 0 andM0, so

X 0 = (#aCP2)#(#bCP2
)#(#c0S2⇥S2), with the connected sum decomposition and the (induced)

T 2–action respecting M0. From this it follows that X ⇠= (#aCP2)#(#bCP2
)#(#cS2 ⇥ S2), with
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c = c0 +1, and the theorem holds for X. Note that this connected sum decomposition respects the
multisection in the sense that the S2⇥S2 \B4 is a union of sectors, giving it a 4–section. Moreover,
the torus action restricts to a torus action on the spine, so it respects this decomposition.

Next, assume that ↵ doesn’t backtrack. In this case, ↵ contains a circuit (an embedded loop of
edges). (The following elegant argument is due to Melvin.) Any circuit in the Farey graph bounds
a triangulated disk. Consider the interior edge " of this triangulation whose distance is shortest
in terms of the Euclidean metric (applied to the disk on which the Farey graph lives). Then, "
co-bounds a triangle with two edges of the circuit. Without loss of generality, assume the first two
vertices of the triangle are ↵1 = 0/1 and ↵2 = 1/0. Then, ↵3 = ±1/1, and Z1 [Z2 is di↵eomorphic

to (CP2) \ B4 or (CP2
) \ B4, respectively, by Lemma 5.7. In either case, we can remove Z1 [ Z2

from the multisection, replacing them with Z 0 ⇠= B4, as in the first part of the proof. The proof is
completed by the inductive hypothesis just as before, with a = a0 + 1 or b = b0 + 1, depending on
the case. Just as before the decomposition respects the multisection (in the sense that punctured
projective plane is the union of two sectors, giving it a 2–section). And again, the torus action
restricts to a torus action on the spine, so it respects this decomposition. ⇤

The above proof also gives the following proposition, which is useful in its own right.

Proposition 5.10. Every loop in the Farey graph with n � 3 edges is conjugate to a loop ↵ =
(↵1, . . . ,↵n) such that (↵1,↵2,↵3) has one of the following forms:

(1) (0/1, 1/0, 1/1),
(2) (0/1, 1/0,�1/1)), or
(3) (0/1, 1/0, 0/1).

In light of the techniques of the previous two proofs, we can apply [Mel82, Theorem 2] to the
class of toric multisections.

Corollary 5.11. A 4–manifold X admits finitely many toric (n+ 2)–sections if and only if either

X ⇠= #nCP2 or X ⇠= #nCP2
– i.e., if and only if X is definite.

Proof. This follows from [Mel82, Theorem 2], combined with Theorem 5.1 above. The equivalence
with the statement that X is definite is Donaldson’s Diagonalization Theorem [Don83]. ⇤
Example 5.12. The 4–manifold #nCP2 (or its mirror) admits a unique (n + 2)–section if and
only if n  3. In contrast, if n = 4, 5 or 6, then #4CP2, #5CP2, and #6CP2 admit 3, 4, and
12 non-di↵eomorphic (n+ 2)–sections, respectively. For n = 4, diagrams for the multisections are
given by the tuples

• (0/1, 1/0, 1/1, 1/2, 1/3, 1/4),
• (0/1, 1/0, 1/1, 2/3, 1/2, 1/3), and
• (0/1, 1/0, 1/1, 2/3, 3/5, 1/2),

which are shown as circuits in the Farey graph in Figure 12.

The 4–manifolds CP2#CP2
and CP1 ⇥ CP1 each admit infinitely many distinct 4–sections, the

diagrams of which are given by the 4–tuples

(0/1, 1/0, 0/1, 1/m) ,

with m 2 Z and even values of m give CP1⇥CP1 (See [IN20] Proposition 5.1). Algebraically, these
correspond to the infinite family of Hirzebruch surfaces and the corresponding T 2–actions come
from the Kähler toric structures on these manifolds.
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Figure 12. Diagrams for the three toric multisections of #4CP2.

6. Algebraic topology of toric multisections

In this section we will give formulas to calculate the algebraic topology of toric multisections.
In light of Theorem 5.1, these invariants are su�cient to determine the di↵eomorphism type of the
underlying 4–manifold. Namely, the manifolds admitting toric multisections are determined by their
Euler characteristic, whether or not they are spin, and their signature. The Euler characteristic of
a toric n–section can easily be computed to be n+ 2. We are also able to quickly determine if the
manifold underlying a toric multisection is spin.

Proposition 6.1. Let (↵1, . . . ,↵n) be a toric multisection diagram for X. Suppose that

↵1 = (1, 0), ↵2 = (0, 1), ↵i = (ai, bi).

Then X admits a spin structure if and only if aibi = 0 (mod 2) for all i = 3, . . . , n.

Proof. Recall that a spin structure can be interpreted as a trivialization of TX along the 1–skeleton
that extends across the 2–skeleton. Given a multisection of X, we can construct a handle decom-
position such that the 2–skeleton consists of T 2 plus 2–handles attached along each ↵i.

There is a unique spin structure on T 2 that extends across the 2–handles attached along ↵1 and
↵2. Extentability is measured by a quadratic enhancement q : H1(T 2;Z) ! Z/2Z which satisfies
the formula

q(x+ y) = q(x) + q(y) + hx, yi (mod 2).

For our chosen spin structure, we have that

q(↵1) = q(ai↵1) = q(↵2) = q(bi↵2) = 0.

Therefore,
q(ai↵1 + bi↵2) = hai↵1, bi↵2i = aibi (mod 2).

⇤

Note that the proof of Theorem 5.9 and Proposition 6.1 shows that X is spin if and only if the
path ↵ in the Farey graph is contained in a tree, since otherwise, the path would traverse two edges
of a triangle, one vertex of which would violate the above proposition.
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6.1. Maslov index and the signature. Following along the lines of [GK16] and [IK19], we will
determine the signature of the 4–manifold underlying a toric multisection using Wall’s nonadditivity
of the signature [Wal69]. As this involves a Maslov index of Lagrangians, we begin with a discussion
of this invariant. Suppose V is a finite dimensional real vector space, and ! : V ⇥ V ! R is a non-
singular symplectic form. A half-dimensional subspace L ⇢ V is called a Lagrangian, if it is
maximally isotropic – i.e.,

L = {x 2 V |!(x, y) = 0, for every y 2 L}.
For any three Lagrangians L1, L2, and L3, define a symmetric form

✓ : L1 � L2 � L3 ⇥ L1 � L2 � L3 ! R,
by

✓((x1, x2, x3), (y1, y2, y3)) = !(x2, y1) + !(y2, x1) + !(x3, y2) + !(y3, x2) + !(x1, y3) + !(y1, x3)

Then the Maslov index, µ(L1, L2, L3), is defined to be the signature of ✓.

In particular, if V = R2 and {v1,v2,v3} is a triple of basis vectors for L1, L2, and L3, then the
symmetric form ✓ is represented by the matrix

2

4
0 !(v2,v1) !(v1,v3)

!(v2,v1) 0 !(v3,v2)
!(v1v3) !(v3,v2) 0

3

5 .

We extend the Maslov index to n–tuples inductively by setting

µ(L1, . . . , Ln, Ln+1) = µ(L1, . . . , Ln) + µ(L1, Ln, Ln+1).

Lemma 6.2. Let L1, L2, and L3 be a triple of Lagrangians in R2 and let v1,v2,v3 be a triple of
basis vectors for the three Lagrangians. Define

⌧(v1,v2,v3) = det([v1 v2]) · det([v2 v3]) · det([v3 v1]).

Then

µ(L1, L2, L3) =

8
><

>:

1 if ⌧ > 0,

�1 if ⌧ < 0,

0 if ⌧ = 0.

In particular, if

v1 =


1
0

�
, v2 =


a
b

�
, v3 =


p
q

�
,

then

µ(L1, L2, L3) =

8
><

>:

1 if bq(aq � bp) < 0,

�1 if bq(aq � bp) > 0,

0 if bq = 0.

Proof. If L1 = L2 and therefore, det([v1v2]) = 0, then !(v1,v2) = 0, and the form ✓ is isomorphic to

the form


0 c
c 0

�
�h0i for some c, which has signature 0. The same holds by any cyclic permutation

of the triple {L1, L2, L3}. This covers all the cases where ⌧ = 0.

Now suppose that no pair of Lagrangians agree. The formula for ⌧ does not change when v2

is replaced by �v2. Therefore, we can assume det([v1 v2]) > 0. The Maslov index is invariant
under symplectic equivalence, which are precisely the area-preserving linear transformations on
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R2. Consequently, by a rotation and a shear map, followed by scaling v1,v2, we can assume that

v1 =


1
0

�
and v2 =


0
1

�
. If v3 =


r
s

�
, then the form ✓ can be represented by the matrix

2

4
0 �1 s
�1 0 r
s r 0

3

5 ⇠=

2

4
0 �1 0
�1 0 0
0 0 2rs

3

5 ,

and ⌧ = rs. The signature of ✓ is precisely the sign of 2rs, which is also the sign of ⌧ . ⇤

We next show how the signature of a toric multisection can be calculated using a Maslov index
determined by the curves in a multisection diagram. Namely, each curve in a multisection diagram
determines a Lagrangian subspace of symplectic vector space H1(T 2;R) = R2 (equipped with the
symplectic form given by the intersection form) given by the span of the curve in homology. The
signature will be the Maslov index of these spaces. In the following proposition we denote by ↵i

both the curve on T 2 as well as the Lagrangian subspace spanned by [↵i] 2 H1(T 2;R).

Proposition 6.3. Let (↵1, . . . ,↵n) be a toric multisection diagram for a smooth 4–manifold X.
Then

�(X) = µ(↵1, . . . ,↵n).

Proof. If X is closed, then X \ B4 has the same signature as X and admits a toric multisection
determined by the same ↵i. So, it su�ces to prove the proposition in the case that X has non-empty
boundary.

The proof is by induction on the number of sectors, n. The base case is n = 2, in which

↵1 = (1, 0),↵2 = (0, 1),↵3 = (±1, 1) representing X = CP2\B4 or CP2\B4. A quick computation
using Lemma 6.2 verifies that in this case �(X) = µ(↵1,↵2,↵3).

Now assume the result is true for k < n, and let (↵1, . . . ,↵n) be a diagram for X. Let X 0

be the result of removing the interior of Zn�1, so @X 0 = H1 [ Hn�1. (Note: there is no Zn,
since X has non-empty boundary.) We have X = X 0 [Hn�1 Zn�1, and by Wall’s nonadditivity of
signature [Wal69],

(1) �(X) = �(X 0) + �(Zn�1)� µ(↵n,↵n�1,↵1) = �(X 0) + µ(↵1,↵n�1,↵n).

By the inductive hypothesis, we have �(X 0) = µ(↵1, . . . ,↵n�1), so the right side is µ(↵1, . . . ,↵n),
by the definition of Maslov index. ⇤

Combining Lemma 6.2 and Proposition 6.3, we can compute the signature directly from the
multisection diagram.

Lemma 6.4. Let (↵1, . . . ,↵n) be a toric multisection diagram for X, with ↵1 = (1, 0) and ↵i =
(ai, bi) for 2  i  n. Let k+ be the set of indices i for 2  i  n�1, where bi and bi+1 are nonzero
and ai

bi
< ai+1

bi+1
; similarly define k� to be the set of indices i for 2  i  n� 1, where bi and bi + 1

are nonzero and ai
bi

> ai+1

bi+1
. Then �(X) = k+ � k�.

Proof. By Proposition 6.3, we have that

�(X) = µ(↵1, . . . ,↵n) =
n�2X

i=2

µ(↵1,↵i,↵i+1) =
n�1X

i=2

µ

✓
1
0

�
,


ai
bi

�
,


ai+1

bi+1

�◆
.

We can assume that bi, bi+1 � 0 without changing the Maslov index and without changing the
quotients ai

bi
and ai+1

bi+1
. Also, recall that by assumption, aibi+1 � ai+1bi = ±1 6= 0. Therefore, we
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can apply the formula of Lemma 6.2 to obtain

µ

✓
1
0

�
,


ai
bi

�
,


ai+1

bi+1

�◆
=

8
><

>:

0 if bi · bi+1 = 0,

1 if bi · bi+1 > 0 and aibi+1 � ai+1bi < 0,

�1 if bi · bi+1 > 0 and aibi+1 � ai+1bi > 0.

Summing over all i = 2, . . . , n� 1 yields the signature formula. ⇤
Theorem 6.5. Let (↵1, . . . ,↵n) be a toric multisection of X with

↵1 = (1, 0), ↵2 = (0, 1), ↵i = (ai, bi).

Then

(1) If aibi = 0 mod 2 for all i = 1, . . . , n, then X is di↵eomorphic to #
n
2�1(S2 ⇥ S2).

(2) Otherwise, X is di↵eomorphic to (#rCP2)#(#sCP2
), where

r =
n

2
� 1 +

1

2
�(X),

s =
n

2
� 1� 1

2
�(X),

where r and s can be calculated by Lemma 6.4.

Proof. By Theorem 5.1, we know that

X ⇠= (#aCP2)#(#bCP2
)#(#cS2 ⇥ S2).

From this decomposition, it is clear that X is spin if and only if a = b = 0. According to
Proposition 6.1, a toric multisection is spin if and only if aibi = 0 mod 2 for all i = 1, . . . , n. Thus,
X is di↵eomorphic to several copies of S2 ⇥ S2 if and only if its multisection diagram satisfies this
condition.

Now suppose that a+ b > 0. Recall that

CP2#S2 ⇥ S2 ⇠= (#2CP2)#CP2
,

CP2
#S2 ⇥ S2 ⇠= CP2#(#2CP2

).

Therefore, if a or b is nonzero, we can replace the parameters (a, b, c) with (a+ c, b+ c, 0). In this
case, r = a+ c = b+

2
(X) and s = b+ c = b�

2
(X). Therefore, we have

r + s = n� 2,

r � s = �(X),

so that calculating the signature via Lemma 6.4 allows us to solve for r and s. ⇤

6.2. The extended Farey graph and almost complex structures. It follows from the Wu
formula that a simply-connected 4–manifold X admits an almost-complex structure J if and only
if b+

2
(X) is odd; see Exercise 1.4.16(b) of [GS99]. Here, we express the condition that b+

2
(X) is odd

in terms of loops in the Farey graph.

We start by introducing an extension of the Farey graph eF . Loops in the extended Farey graph
will correspond to almost-complex 4–manifolds admitting toric multisections.

Definition 6.6. The extended Farey graph eF is the directed graph where

(1) vertices consist of primitive elements (p, q) 2 Z2,
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(2) there is an oriented edge from (a, b) to (p, q) if

det


a p
b q

�
= 1.

In particular, each vertex p/q of the Farey graph lifts to two vertices (p, q) and (�p,�q) of eF and
each edge of the Farey graph lifts to four edges.

There is a map ⇡ : eF ! F that sends edges to edges and vertices to vertices. However, note that
⇡ is not a 2-to-1 covering map. Nonetheless, loops in eF map to loops in F and the following lemma
shows that “half” the loops in F lift to loops in eF .

Lemma 6.7. Every oriented path � in the Farey graph F starting at 1/0 lifts to a unique, oriented
path e� in eF starting at (1, 0).

Proof. To prove the statement, we use induction on the edge-length of �. Suppose that � has length
1, consisting of one edge connecting 1/0 to p/1. The rational number p/1 has two lifts (p, 1) and
(�p,�1) in eF . Lift this edge in F to the edge in eF connecting (1, 0) to (p, 1).

Now suppose � = �0 ⇤e, where �0 is a path of length n�1 and e is an edge connecting p/q to r/s.
By induction, �0 has a lift to eF that ends at either (p, q) or (�p,�q); without loss of generality we
can assume it is (p, q). The two lifts of r/s to eF are (r, s) and (�r,�s). If ps� qr = 1, there is a
directed edge in eF from (p, q) to (r, s), which is the required lift of e. Otherwise, there is a directed
edge in eF from (p, q) to (�r,�s), which is the required lift of e. ⇤
Proposition 6.8. Let (↵1, . . . ,↵n) be a toric multisection diagram for X. Then b+

2
(X) is odd if

and only if the loop in F lifts to a loop in eF .

Proof. The multisection diagram determines a path from ↵1 to ↵n in the Farey graph. This lifts to a
path in eF by Lemma 6.7. This lift corresponds to possibly replacing ↵i with �↵i for i in some subset
of {1, . . . , n}. Equivalently, we can assume that the intersection pairing satisfies h↵i,↵i+1i = 1 for
i = 1, . . . , n� 1. The closed loop lifts to a loop in eF if and only if there is a directed edge from ↵n

to ↵1, which in terms of the intersection pairing is equivalent to h↵n,↵1i = 1.

Recall that we can assume ↵1 = (1, 0). Let ↵2 = (a2, b2). Then by the assumption we must have
that h↵1,↵2i = b2 > 0. Further, if ↵n = (an, bn), then the loop lifts if and only if h↵n,↵1i = �bn > 0.
More generally, suppose that bi = 0. Then ai = ±1. In the first case, ↵i fits into the subsequence:

(ai�1, bi�1), (1, 0), (ai+1, bi+1),

with bi�1 < 0 < bi+1. In the latter, ↵i fits into the subsequence

(ai�1, bi�1), (�1, 0), (ai+1, bi+1),

with bi�1 > 0 > bi+1. Let k0 denote the number of slopes (including i = 1) with bi = 0.

Consider a sequential pair ↵i = (ai, bi) and ↵i+1 = (ai+1, bi+1). The contribution of the pair to
�(X) is the Maslov index of the triple (↵1,↵i,↵i+1). Since h↵i,↵i+1i = 1, it follows from Lemma 6.2
that

(2) µ(↵1,↵i,↵i+1) =

8
><

>:

1 if bibi+1 < 0,

�1 if bibi+1 > 0,

0 if bibi+1 = 0.
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Let k± denote the number of pairs (↵i,↵i+1) such that µ(↵1,↵i,↵i+1) = ±1 and k0 be the number
of slopes with bi = 0. Then

�(X) = k+ � k�,

b2(X) = 2k0 + k+ + k� � 2,

b+
2
(X) =

1

2
(b2(X) + �(X)) = k0 + k+ � 1,

b�
2
(X) =

1

2
(b2(X)� �(X)) = k0 + k� � 1.

Now, the coe�cient bi changes sign or becomes zero exactly (k0 + k+)-times (once for each ↵i =
(±1, 0) and once for each edge with bibi+1 < 0). As these slopes can be consistently oriented to
ensure that each intersection number is positive, we have that the sign must change an even number
of times. Therefore,

k0 + k+ = b+
2
(X) + 1 = 0 mod 2.

⇤
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