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ABSTRACT10

The objective of this work is to provide a Bayesian re-interpretation to model falsification.11

We show that model falsification can be viewed as an approximate Bayesian computation (ABC)12

approach when hypotheses (models) are sampled from a prior. To achieve this, we recast model13

falsifiers as discrepancy metrics and density kernels such that they may be adopted within ABC14

and generalized ABC (GABC) methods. We call the resulting frameworks model falsified ABC15

and GABC, respectively. Moreover, as a result of our reinterpretation, the set of unfalsified16

models can be shown to be realizations of an approximate posterior. We consider both error and17

likelihood domain model falsification in our exposition. Model falsified (G)ABC is used to tackle18

two practical inverse problems albeit with synthetic measurements. The first type of problem19

concerns parameter estimation and includes applications of ABC to the inference of a statistical20

model where the likelihood can be difficult to compute, and the identification of a cubic-quintic21

dynamical system. The second type of example involves model selection for the base isolation22

system of a four degree-of-freedom base isolated structure. The performance of model falsified23
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ABC and GABC are compared with Bayesian inference. The results show that model falsified24

(G)ABC can be used to solve inverse problems in a computationally efficient manner. The results25

are also used to compare the various falsifiers in their capability of approximating the posterior and26

some of its important statistics. Further, we show that model falsifier based density kernels can27

be used in kernel regression to infer unknown model parameters and compute structural responses28

under epistemic uncertainty.29

INTRODUCTION30

Model falsification is a simulation-based inference approach that is based on the Popperian31

notion of falsifiability: any hypothesis unable to predict observations must be rejected. The basic32

idea behind model falsification is to find useful models by comparing simulations from each model33

against the available measurements. There are two different approaches for model falsification —34

error domain and likelihood domain model falsification. The error domain model falsification,35

which is a likelihood-free approach, was developed by Goulet et al. (2010). In error domain model36

falsification, models are falsified if the difference between the predictions and the measurements37

exceed bounds that are derived after accounting for uncertainty arising from different sources.38

Error domain model falsification has been used for system identification (Goulet and Smith 2013b;39

Pasquier and Smith 2015) and in many other applications (Goulet et al. 2013; Goulet and Smith40

2013a; Moser et al. 2018; Pai et al. 2018). Likelihood domain model falsification was proposed41

by De et al. (2018) and draws on ideas from the generalized likelihood uncertainty estimation42

(GLUE) methods (Beven 1993; Beven and Freer 2001; Beven 2011). In the likelihood domain,43

models are falsified based on the likelihood value of their prediction errors. It must be stressed44

here that the likelihood values may even be computed based on an assumed probability density45

for the prediction errors. Regardless of the falsification methodology adopted, model falsification46

appears to be a frequentist approach to inference since hypothesis testing lies at its core. Every47

model (or hypothesis) is rejected or accepted based on its merit (the capability to predict what has48

been observed) as controlled via a target identification probability. The unfalsified models form49

a candidate set (Goulet and Smith 2013b; De et al. 2018) that can be considered to comprise the50
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solutions to the inverse problem at hand.51

The debate on differences and similarities between Bayesian and frequentist approaches to52

inference has been on-going; see, for instance, (Freedman 1997; Freedman and Stark 2003; Stark53

and Tenorio 2010; Milne 1995; Rosenkrantz 1977). In fact, error domain model falsification is54

similar to Bayesian inference with a modified likelihood (Pai and Smith 2017; Pai et al. 2018).55

Similarly, Sadegh and Vrugt (2013) have discussed similarities between the GLUE approach and56

ABC. Our work was motivated by these suggestions of similarity between model falsification, and57

similar inference approaches, and Bayesian inference. However, one difference that we need to58

note at the outset is the necessity of defining a prior. Consider the inference of a parameter 𝜃.59

Bayesian inference requires that a prior probability density 𝜋(𝜃) be specified (Evans and Stark 2002);60

the prior represents subjective knowledge of the various hypotheses. On the other hand, model61

falsification does not require that a prior probability density be specified: specifying 𝜃 ∈ Ω, such62

that one can sample from Ω, may be sufficient for model falsification. However, in practice, models63

are conveniently sampled from a prior density and subsequently subject to falsification (De et al.64

2018). This has, in particular, enabled the application of falsification to high-dimensional problems65

involving multiple random variables. The specification of a prior has also been a convenient way66

of introducing subjective information, which is at the very least a non-informative (a uniform prior67

over Ω), within model falsification. This approach of sampling models from a prior and subjecting68

them to model falsification, as we shall reveal, resembles approximate Bayesian computation (ABC)69

where the falsifier (defined later) plays the role of a discrepancy metric.70

ABC is also a simulation-based inference method commonly used when the likelihood function71

is either unavailable or difficult to compute. Beaumont et al. (2002) is credited with coining the term72

approximate Bayesian computation, although the ideas behind ABC predates them (Rubin 1984;73

Tavaré et al. 1997; Pritchard et al. 1999). Briefly, ABC methods sidestep the likelihood function by74

simulating predictions from different parameters of a model class, and accepting them if, according75

to some discrepancy metric, simulations match the observed data. ABC methods have been applied76

in civil engineering for model selection and/or parameter estimation of dynamical systems (Toni77
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et al. 2009; Abdessalem et al. 2018; Abdessalem et al. 2019; Chiachio et al. 2014; Vakilzadeh et al.78

2017; Barros et al. 2022), estimating the parameters of degradation processes (Hazra et al. 2020;79

Hazra and Pandey 2021), damage detection (Fang et al. 2019), and the calibration of hydrological80

models (Vrugt and Sadegh 2013). A further class of methods known as generalized ABC (GABC),81

first proposed by Wilkinson (2014), uses density kernels, instead of discrepancy metrics, to assess82

the similarity of model predictions and measurements.83

We argue that model falsification is nothing but ABC by showing that the methodology of84

model falsification resembles rejection sampling based ABC, and refer to it as model falsified85

ABC. Incorporated within model falsified ABC is a model falsifier acting as a discrepancy metric.86

Building on our preliminary study (Dasgupta and Johnson 2022), our presentation is fairly general87

as we show this for four different types of model falsifiers that are representative of the wide88

gamut of falsifiers; other falsifiers not covered herein can also be easily used. We also show that89

model falsifiers can be recast as density kernels, and introduce model falsified GABC that makes90

use of these kernels. Further, we show that the set of unfalsified models are realizations drawn91

from the approximate posterior distribution, formally providing a Bayesian perspective on model92

falsification. Moreover, the ratio of unfalsified models from different model classes can be shown to93

approximate the posterior probability of the respective model classes. The re-purposing of falsifiers94

as kernels further allows for their use in kernel regression (Wasserman 2006). We show that kernel95

regression can be performed using density kernels based on model falsifiers while exploiting96

Nadaraya-Watson estimates (Wasserman 2006; Blum 2010). We use model falsification based97

kernel regression for non-parametric inference of unknown parameters, and response prediction98

when the true model class is unknown.99

The remainder of the paper is organized as follows. In Section 2, Bayesian inference and ABC100

are reviewed very briefly, and a background on model falsification is provided in modest detail.101

Various falsifiers are also introduced in Section 2. In Section 3, we recast falsifiers as discrepancy102

metrics and density kernels, and discuss some of their properties. In Section 4, we make the formal103

connection between model falsification and ABC and introduce model falsified ABC and GABC;104

4 Dasgupta, September 13, 2023



for brevity, we refer to these two approaches together as model falsified (G)ABC. Next, model105

falsified (G)ABC is applied to two types of inverse problems in Sections 5 and 6. In Section 5,106

model falsified (G)ABC is applied to parameter inference problems; two examples are considered107

— a toy example and a dynamical system. In Section 6, the behavior of a base isolated building108

modeled as a four degree-of-freedom system is inferred using model falsified (G)ABC. In Section 7,109

kernel regression using falsifiers is introduced and applied to parameter estimation and response110

prediction. We discuss some implications of this work and future research directions in Section 8,111

and conclude the paper in Section 9.112

BACKGROUND ON DIFFERENT APPROACHES FOR INVERSE PROBLEMS INVOLVING113

PARAMETER ESTIMATION114

The goal of any parameter estimation problem is to infer the unknown parameter 𝜽 ∈ 𝚯 ⊆ R𝑁𝜃115

of a parameterized model class M using noisy measurements d ∈ 𝔇 ⊆ R𝑁𝑚 . A realization of 𝜽 is116

often called a model. Corresponding to the measurements d, a prediction y ∈ 𝔇 from the model 𝜽117

is a realization of the random variable 𝒚 drawn from the distribution 𝜋(𝒚 |𝜽 ,M).118

Bayesian Inference119

In Bayesian inference (BI), prior belief (or knowledge) about 𝜽 is updated using the observations120

d to obtain the posterior belief about 𝜽 . The prior probability density function (pdf), noise model121

and posterior pdf are denoted as 𝜋(𝜽 |M), 𝜋(d|𝒚, 𝜽 ,M) and 𝜋(𝜽 |d), respectively. Further, let122

ℓ(d|𝜽 ,M) =
∫
𝔇
𝜋(d|𝒚, 𝜽 ,M)𝜋(𝒚 |𝜽 ,M) d𝒚 (1)123

be the likelihood function. Bayes’ theorem tells us that 𝜋(𝜽 |d,M) ∝ ℓ(d|𝜽 ,M)𝜋(𝜽 |M). Thus,124

Bayes’ theorem helps characterize all possible solutions to the inverse problem using the posterior125

pdf 𝜋(𝜽 |d,M), which also reflects the relative plausibility of different solutions. Herein, the126

conditional dependence on model class M is suppressed for notational simplicity.127
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Approximate Bayesian Computation128

The likelihood function ℓ may be unknown or intractable, which can make evaluations of the129

posterior pdf challenging. ABC methods were developed to overcome this difficulty. The basic130

idea is to evaluate the joint posterior 𝜋(𝜽 , 𝒚 |d) and then marginalize over 𝒚. Using Bayes’ theorem131

again,132

𝜋(𝜽 , 𝒚 |d) ∝ 𝜋(d|𝜽 , 𝒚)𝜋(𝒚 |𝜽)𝜋(𝜽), (2)133

from which it follows that 𝜋(𝜽 |d) =
∫
𝔇
𝜋(𝜽 , 𝒚 |d) d𝒚. Setting 𝜋(d|𝜽 , 𝒚) = IAd (𝒚), where I𝐵 is the134

indicator function of the set B and Ad = {𝒚 ∈ 𝔇|𝒚 = d}, yields the posterior pdf 𝜋(𝜽 |d). However,135

the criteria 𝒚 = d is infeasible in a continuous setting. ABC methods circumvent this by using136

𝜋(d|𝜽 , 𝒚) = IA𝜅,d (𝒚), instead of IAd (𝒚), where 𝜅 is now a tolerance parameter or threshold, and137

A𝜅,d(𝒚) = {𝒚 ∈ 𝔇|𝜌(𝒚, d) ≤ 𝜅} . (3)138

The function 𝜌(·, ·) is a metric for the discrepancy or degree of dissimilarity between model139

predictions 𝒚 and measurements d, and usually satisfies the property that 𝜌(𝒚, d) → 0 as 𝒚 → d.140

Eq. (3) leads to the joint pdf141

𝜋ABC(𝜽 , 𝒚 |d) ∝ IA𝜅,d (𝒚)𝜋(𝒚 |𝜽)𝜋(𝜽) (4)142

which, after marginalization, ultimately yields an approximate posterior pdf143

𝜋ABC(𝜽 |d) ∝ 𝜋(𝜽)
∫
𝔇
𝜋(𝒚 |𝜽) IA𝜅,d (𝒚) d𝒚 = P(𝒚 ∈ A𝜅,d) 𝜋(𝜽). (5)144

Samples can be drawn from the approximate posterior pdf 𝜋ABC(𝜽 , 𝒚 |d) using the likelihood free145

rejection sampler described in Algorithm 1 (Sisson et al. 2018, Chapter 1) in Appendix I, and the146

marginalization of Eq. (5) can be performed by retaining only the 𝜽 components of the generated147

samples. Note that 𝜋ABC(𝜽 |d) and 𝜋(𝜽 |d) are one and the same when 𝜅 = 0, meaning that the148

marginal distribution of the parameter 𝜽 in samples drawn using Algorithm 1 with 𝜅 = 0 is the true149
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posterior pdf 𝜋(𝜽 |d).150

Accept/reject conditions like Eq. (3) do not utilize the degree of similarity between model151

predictions and measurements. With the view of utilizing that information, Wilkinson (2014)152

proposed GABC, where the indicator function IA𝜅,d (𝒚) is replaced by a density kernel 𝑘 (𝒚, d). The153

resultant joint posterior pdf is given as 𝜋ABC(𝜽 , 𝒚 |d) ∝ 𝑘 (𝒚, d)𝜋(𝒚 |𝜽)𝜋(𝜽), and the approximate154

posterior pdf is155

𝜋ABC(𝜽 |d) ∝
{∫

𝔇
𝑘 (𝒚, d)𝜋(𝒚 |𝜽) d𝒚

}
︸                        ︷︷                        ︸

ℓABC (d|𝜽)

𝜋(𝜽). (6)156

Let 𝑏 be the bandwidth of the kernel 𝑘; as the bandwidth 𝑏 of the kernel 𝑘 approaches zero, 𝑘157

starts to resemble a Dirac-delta function; i.e., 𝑘 (𝒚, d) → 𝛿d(𝒚) as 𝑏 → 0, where 𝛿d(·) is the Dirac158

delta function centered around d. As a result, 𝜋ABC(𝜽 |d) → 𝜋(𝜽 |d) as 𝑏 → 0. The rejection159

ABC method of Algorithm 1 is a special case of the GABC method wherein a uniform kernel is160

used (Sisson et al. 2018). The GABC approach can also be considered Bayesian inference using161

the approximate likelihood ℓABC. Realizations can be drawn from the approximate posterior using162

rejection sampling; see Algorithm 2 in Appendix I (Wilkinson 2013).163

Model Falsification164

Model falsification compares the model predictions to the observations d and accepts or rejects165

models, with all accepted (or unfalsified) models considered to be candidates for the solution to166

the inverse problem. The decision to falsify or unfalsify a model is made using a model falsifier167

function, denoted herein as f . Therefore, falsifiers are natural candidates for quantifying the degree168

of similarity between model predictions and measurements. A prediction y from a model 𝜽 is169

unfalsified by f when170

f (y, d) ≤ 𝜅𝜙, (7)171

where the falsifier f and the threshold 𝜅𝜙 depend on the model falsification approach and error control172

criteria adopted to falsify models, and the latter depends on the target identification probability173

𝜙. We consider two model falsification approaches: error domain and likelihood domain model174
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falsification and use the subscripts E and L, respectively, to denote the respective falsifiers and175

their corresponding thresholds. Error control criteria that have been used for model falsification176

include the family wise error rate (FWER) and the false discovery rate (FDR); as the FWER is177

usually controlled using the Šidák correction (Abdi 2007), while the FDR is controlled using the178

Benjamini-Hochberg (BH) procedure (Benjamini and Hochberg 1995), we will use the subscripts179

S and B to denote Šidák and BH corrections, respectively. Thus, four subscripts on f and 𝜅 are180

used to denote the resulting cases: ES, EB, LS and LB. Irrespective of the falsification approach181

adopted, the model falsifier f is also a function of the error residual vector 𝜖𝜖𝜖 = y − d, which is the182

difference between model predictions and observations. Therefore, model falsifiers f(·) can also be183

expressed as a function of 𝜖𝜖𝜖 ; i.e., f(·) (y, d) ≡ f(·) (y − d) ≡ f(·) (𝜖𝜖𝜖).184

For model falsification, the pdf of the components of the error residuals must be specified. Let185

𝜖𝑖 = 𝑦𝑖 − 𝑑𝑖 be the 𝑖th component of the error residual vector 𝜖𝜖𝜖 , and 𝜋𝐸𝑖
(𝑒𝑖) be the pdf associated186

with 𝜖𝑖, where 𝐸𝑖 is the random variable corresponding to 𝜖𝑖 and 𝑒𝑖 is the value 𝜖𝑖 assumes. The187

𝜋𝐸𝑖
(𝑒𝑖) are generally chosen based on the measurement process. Moreover, the target identification188

probability 𝜙 also must be chosen a priori and directly controls the type I and type II errors made189

by the falsifiers (De et al. 2018).190

Error domain model falsification191

In error domain model falsification, the model falsifier fE(·) — where (·) denotes one of the192

error control criteria — can be expressed as the composition of three functions; i.e., fE(·) (y, d) =193

f3
(
f2,(·) (f1(y, d))

)
. First, the 𝑖th component of p = f1(y, d) is computed using194

𝑝𝑖 = 2 min
{ ∫ 𝜖𝑖

−∞
𝜋𝐸𝑖

(𝑒𝑖)d𝑒𝑖 ,
∫ ∞

𝜖𝑖

𝜋𝐸𝑖
(𝑒𝑖)d𝑒𝑖

}
. (8)195

p is the vector of 𝑝-values corresponding to the prediction y. Second, p̃ = f2,(·) (p) orders the196

𝑝-values (𝑝 (1) ≡ 𝑝 𝑗1 ≤ 𝑝 (2) ≡ 𝑝 𝑗2 ≤ ..., where 𝑗𝑖 ∈ {1, 2, . . . , 𝑁𝑚} and 𝑗𝑖 ≠ 𝑗𝑘 for 𝑖 ≠ 𝑘) and197

scales them as 𝑝𝑖 = 𝑟𝑖,(·) 𝑝 (𝑖) . The scaling factors 𝑟𝑖 depend on the error control criteria used. Third,198

𝑓3(p̃) = 1 − min𝑖=1,...,𝑁𝑚
𝑝𝑖. The scaling factors and the thresholds for different model falsifiers in199
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the error domain with different error control criteria are provided in Table 1.200

Likelihood domain model falsification201

Despite its name, likelihood domain model falsification does not require access to the true202

likelihood function necessary for Bayesian inference. Instead, models are falsified directly based203

on the likelihood of observing 𝜖𝜖𝜖 as computed using the 𝜋𝐸𝑖
(𝑒𝑖). The falsifier fL(·) is defined as,204

fL(·) = 1 − 𝑐(·)
𝑁𝑚∏
𝑖=1

𝜋𝐸𝑖
(𝜖𝑖) (9)205

where 𝑐( ·) is a constant that is defined later. In the likelihood domain model falsification approach,206

𝜅L(·),𝜙 is an implicit function of 𝜙 and can be chosen based on bounds for the residual errors 𝜖𝑖.207

Given a significance level 𝛼𝑖 for the 𝑖th error residue 𝜖𝑖, upper and lower error bounds 𝜖 𝑖 and 𝜖𝑖 can208

be computed from the following equation:209

𝛼𝑖
2

=
∫ 𝜖 𝑖

−∞
𝜋𝐸𝑖

(𝑒𝑖)d𝑒𝑖 =
∫ ∞

𝜖𝑖

𝜋𝐸𝑖
(𝑒𝑖)d𝑒𝑖 . (10)210

The significance level 𝛼𝑖 depends on the error control criteria and correction being used; see Table 1.211

Now, the threshold in the likelihood domain can be chosen as follows,212

𝜅L(·),𝜙 = 1 − 𝑐(·),𝜙
𝑁𝑚∏
𝑖=1

min
𝜖 𝑖≤𝑒𝑖≤𝜖𝑖

𝜋𝐸𝑖
(𝑒𝑖). (11)213

In Eqs. (9) and (11), 𝑐−1
(·),𝜙 =

∏𝑁𝑚

𝑖=1 max𝜖 𝑖≤𝑒𝑖≤𝜖𝑖 𝜋𝐸𝑖
(𝑒𝑖) is the normalizing factor that also depends214

on the error control criteria being used. However, simplifying Eqs. (7), (9) and (11) results in215

−
𝑁𝑚∏
𝑖=1

𝜋𝐸𝑖
(𝜖𝑖) ≤ −

𝑁𝑚∏
𝑖=1

min
𝜖 𝑖≤𝑒𝑖≤𝜖𝑖

𝜋𝐸𝑖
(𝑒𝑖), (12)216

where the left-hand-side of the inequality does not depend on the error control criteria. Thus, 𝑓LS217

and 𝑓LB will be effectively the same when implemented as Eq. (12).218
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RECASTING MODEL FALSIFIERS219

In this section, we recast the model falsifiers first as discrepancy metrics and then as kernels.220

At this point, we make two practical assumptions about the marginal pdfs 𝜋𝐸𝑖
(𝑒𝑖):221

Assumption 1: E[𝐸𝑖] = 0 ∀𝑖 = 1, . . . , 𝑁𝑚; i.e., the residual errors are zero mean distributed;222

Assumption 2: 𝜋𝐸𝑖
(𝑒𝑖) is symmetric about the mean.223

Assumption 1 can be made without any loss in generality. Assumption 2 is stronger and places a224

restriction on the type of distributions that can be used to statistically describe the error residuals.225

Assumption 2 enforces the condition that the mean and median coincide. Both assumptions are226

practically motivated, and are satisfied, for example, when the residues are zero-mean Gaussian227

distributed (a popular choice if arguments based on the principal of maximum entropy are used) or228

zero-mean Laplace distributed (when heavier tails are necessary).229

As discrepancy metrics230

In Eq. (7), model falsifiers have already been posed as discrepancy metrics, similar to ABC’s231

Eq. (3). Additionally, due to the assumptions made above, all three falsifiers exhibit the following232

two important properties:233

1. 𝑓(·) = 0 when y = d; i.e., the functions assume the minimum value of zero when the234

predictions match the measurements.235

2. The falsifiers are non-decreasing functions of the error residual (some norm of 𝜖𝜖𝜖 to be more236

precise). For example, in the one dimensional case, 𝑓(·) is a non-decreasing function of |𝜖 |.237

Thus, model falsifiers are natural candidates for measures of discrepancy between predictions y238

and data d.239

Figs. 1 and 2 show plots of the different falsifiers in one and two dimensions, respectively, where240

the error residuals are assumed to be independent standard normal variables. From Fig. 1, it can241

be seen that fES and fEB are one and the same, but different from fL(·) . However, the functions are242

all different from each other in higher dimensions, as shown in Fig. 2. Also note that, 𝑓EB = 0 not243
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only at (0, 0), but also along both coordinate axes. For example, for standard normal distributed244

error residues, any model 𝜽 with error residuals 𝜖1 = 1 and |𝜖2 | ≤ 0.6745 (or vice versa) will also245

result in fEB = 0. However, both fES and fL(·) are zeros if and only if y = d.246

For the same value of the target identification probability, and independent standard normal247

distributed error resdiuals in two-dimensions, a comparison between the various falsifiers is shown248

in Fig. SM1 that can be found in Section SM1 of the Supplemental Material (described in Ap-249

pendix IV) and also in (Dasgupta 2023). Falsifiers employing the Šidák correction are more250

conservative compared to falsifiers based on FDR control because the BH correction causes more251

models to be falsified at the same value of 𝜙 (De et al. 2018). Similarly, likelihood domain falsifiers252

are more conservative compared to their error domain counterparts (De et al. 2018).253

As kernels254

Model falsifiers can also be converted into density kernels. For a specified value of 𝜙, error255

control criterion and model falsification method, let 𝑘 (·) be the kernel corresponding to the falsifier256

𝑓(·) . We define 𝑘E(·) as257

𝑘E(·) (y, d) =



1−fE( ·) (y,d)
𝑉E( ·)

if fE(·) (y, d) ≤ 𝜅E(·),𝜙

0 otherwise,
(13)258

and 𝑘L(·) as259

𝑘L(·) (y, d) =
1 − 𝑓L(·) (y, d)

𝑉L(·)
, (14)260

where 𝑉(·) is a kernel specific constant which ensures that
∫
𝑘 (·) (𝒚, d) d𝒚 = 1, but 𝑉(·) need not be261

computed for the purposes of numerical implementation. From Eq. (13), 𝑘E(·) evaluates to zero if262

the model 𝜽 is to be falsified based on the prediction y. This means that kernels of type 𝑘E(·) have263

a compact support. The kernels of type 𝑘L(·) do need to be assigned a compact support, although a264

compact support can be assigned in a manner very similar to Eq. (13). Effectively, 𝑘LS = 𝑘LB (the265

constant 𝑐(·),𝜙 gets absorbed into 𝑉L(·) , and 𝑉LS = 𝑉LB), and we use 𝑘L to commonly denote them.266

The reason we refrain from assigning the compact support will become clear in Section 4.267
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In one dimension, the kernels 𝑘ES (which is equal to 𝑘EB in the one dimensional case) and 𝑘L(·)268

are shown in Fig. 3. Fig. 4 shows plots of the different kernels in two dimensions where the error269

residuals are again assumed to be standard normal distributed. In both plots, 𝜙 = 0.90 is chosen270

to assign compact support to the kernels. For kernels with compact support, the bandwidth along271

the 𝑖th dimension is half the size of the interval over which 𝑘 (·) ≠ 0. Thus, the bandwidths of the272

kernels in this case implicitly depend on the marginal distributions of the error residuals, and the273

target identification probability 𝜙. The bandwidth will reduce if 𝜙 is reduced and/or the assumed274

variance in the residual errors is reduced.275

Validity of the kernels276

Let 𝑘′E(·) (y, d) =
{
1 − fE(·) (y,d)

}
I
[
fE(·) (y, d) ≤ 𝜅E(·),𝜙

]
= 𝑘E(·)𝑉E(·) and 𝑘′L(·) (y, d) = 1 −277

fL(·) (y,d) = 𝑘L(·)𝑉L(·) , where I[·] is the indicator function. Similar to 𝑓 , 𝑘′ can be an also be278

expressed as as a function of 𝜖𝜖𝜖 ; further, 𝑘 = 𝑘′/𝑉 . Now, we will show that the kernels are indeed279

valid kernels, which, for the purposes of GABC, need only satisfy
∫
𝑘 (y, d) dy = 1 (Fearnhead and280

Prangle 2012). First, note that the kernels are all bounded and non-negative over their respective281

supports. For 𝑘′E(·) , non-negativity and boundedness follows from the the fact that 𝑝-values are282

non-negative and bounded by 1; i.e., 𝑝𝑖 ∈ [0, 1] ∀𝑖 ∈ {1, 2, . . . , 𝑁𝑚}. For 𝑘′L(·) , non-negativity283

and boundedness stems from the pdfs 𝜋𝐸𝑖
(𝑒𝑖). Moreover, 𝑘′E(·) has compact support around d.284

Therefore, 𝑘′E(·) is measurable, since all closed subsets of R𝑁𝑚 are measureable. Similarly, 𝑘′L(·)285

must be integrable since the 𝜋𝐸𝑖
(𝑒𝑖) are integrable. Thus, 𝑘′(·) is integrable (Durrett 2019) and it286

follows that 𝑉(·) < ∞. Since 𝑘 (·) is nothing but a re-scaled version of 𝑘′(·) with unit hyper-volume,287

𝑘 (·) is a valid density kernel.288

MODEL FALSIFIED ABC THROUGH A BAYESIAN REINTERPRETATION OF MODEL289

FALSIFICATION290

Fig. 5 shows the process of model falsification when the models are sampled according to a291

prior; this process resembles the workflow of standard rejection sampling based ABC where the292
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falsifier plays the role of the discrepancy metric. Thus, the set of unfalsified models293

𝚯𝑢 =
{
𝜽 | f(·) (y, d) ≤ 𝜅(·),𝜙 where y ∼ 𝜋(𝒚 |𝜽)}, (15)294

yields an approximation to the posterior pdf. The approximation will depend on the falsifier used,295

the target identification probability and the marginal densities assumed to model the residual errors.296

Let,297

A𝜙,d(𝒚) =
{
𝒚 ∈ 𝔇|f(·) (𝒚, d) ≤ 𝜅(·),𝜙

}
, (16)298

be the set/region of predictions that are unfalsified by f(·) for a specified target identification299

probability 𝜙. Eq. (16) leads to an approximate posterior pdf, denoted herein as 𝜋ABC(𝜽 |d), that300

can be found using Eq. (4) as follows301

𝜋ABC(𝜽 |d) ∝ P(𝒚 ∈ A𝜙,d)𝜋(𝜽). (17)302

Eq. (17) provides a Bayesian interpretation to model falsification. More precisely, model falsifi-303

cation is nothing but ABC performed with model falsifiers as discrepancy metrics and the set of304

unfalsified models may be considered as realizations from an approximate posterior pdf. Herein,305

we will refer to the schematic of Fig. 5 as model falsified ABC. In a similar vein, model falsified306

GABC is performed using the kernels based on model falsifiers and is called herein model falsified307

GABC.308

Can the true posterior be recovered?309

Consider falsifiers — like fES, fLS and fLB but not fEB — that satisfy the property 𝑓 (y, d) = 0310

if and only if y = d. In such a case, the true posterior can theoretically be recovered by setting311

the target identification probability to zero. In that case, A𝜙,d ≡ Ad when 𝜙 = 0. Thus, model312

falsification using the falsifiers fES, fLS and fLB corresponds to Bayesian inference when 𝜙 = 0.313

However, the true posterior cannot be recovered practically because acceptance ratios drop as314

𝜙 → 0.315
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A special case for the likelihood domain falsifier316

Consider a case where the measurements are corrupted with independent and identically dis-317

tributed (IID) additive noise 𝜼; i.e., d = y + 𝜼. This measurement model is common in many318

applications. In this case, since the probability distribution of the 𝜂𝑖 are the same as those of the319

𝜖𝑖, 𝑘L = 𝜋(d|𝒚) and, as a result, ℓABC(d|𝜽) = ℓ(d|𝜽). However, ℓ(d|𝜽) may still be intractable320

or difficult to compute, which is the primary reason for adopting ABC and not using Bayesian321

inference. Moreover, without 𝑘L being compactly supported, GABC using 𝑘L is equivalent to322

performing Bayesian inference. Thus, we do not assign a compact support to 𝑘L to retain the323

aforementioned property.324

APPLICATION OF MODEL FALSIFIED (G)ABC TO PARAMETER INFERENCE325

In this section, model falsified (G)ABC is applied to two inverse problems of parameter esti-326

mation — an illustrative toy example for which the likelihood cannot be calculated in closed form,327

and a system identification example wherein the parameters of a cubic-quintic dynamical system328

are estimated from noisy measurements. Some pointers and resources that may be helpful for329

implementing model falsified (G)ABC approaches are given in Appendix II.330

A toy example331

To show how model falsified ABC can be used to approximate the posterior pdf, we adopt the332

following simple example. Consider the model333

𝑑𝑖 = 𝑦𝑖 + 𝜂𝑖, 𝑦𝑖 = (0.9 + 0.2𝛽𝑖) 𝜃, 𝑖 = 1, 2 (18)334

where 𝛽1 and 𝛽2 are IID Beta(2,2) random variables, and 𝜂1 and 𝜂2 are IID zero-mean Gaussian335

random variables with standard deviation 𝜎𝜂 = 0.05. For this example, 𝜃 is assigned a standard336

normal prior with a true value of 1 that is denoted as 𝜃true herein. Also, 𝒚 = [𝑦1, 𝑦2]T with 𝑦𝑖 |𝜃337

being Beta distributed, and d = [𝑑1, 𝑑2]T with 𝑑𝑖 |𝑦𝑖 being Gaussian distributed. The goal is to338

estimate the parameter 𝜃 from the two noisy observations d = [0.921, 1.017]T. The likelihood339

14 Dasgupta, September 13, 2023



function ℓ(d|𝜃) is given by340

ℓ(d|𝜃) =
∫

𝜋(d|𝒚)𝜋(𝒚 |𝜃) d𝒚 =
∬

𝜋(𝑑1 |𝑦1)𝜋(𝑑2 |𝑦2)𝜋(𝑦1 |𝜃)𝜋(𝑦2 |𝜃) d𝑦1d𝑦2. (19)341

The likelihood function and the posterior pdf cannot be computed analytically, which makes the342

application of Bayesian inference challenging. However, given the simple nature of the problem,343

Bayesian inference can still be performed by computing ℓ(d|𝜽) from Eq. (19) using Monte Carlo344

simulation (Kroese et al. 2013), and the parameter 𝜃 can be estimated using Markov-chain Monte345

Carlo (MCMC) (Kroese et al. 2013). The posterior mean and coefficient of variation (COV)346

of 𝜃 were found to be 0.9711 and 0.0023 respectively. The statistics were estimated using 1000347

realizations from a single MCMC chain where realizations were accepted after an initial burn period348

of 5000 and a lag of 20. Herein, we choose the error residuals as IID zero-mean Gaussian random349

variables and vary the standard deviation 𝜎𝜖 . (In Section SM2 in the Supplemental Material and in350

(Dasgupta 2023), we study the effect of misspecifying the 𝜋𝐸𝑖
(𝑒𝑖) by assuming the error residuals351

to be Laplace distributed.)352

Estimating 𝜃 using model falsified ABC353

First, we estimate 𝜃 using model falsified ABC where the falsifiers act as discrepancy metrics.354

We begin by assuming that 𝜎𝜂 is known and set 𝜎𝜖 = 𝜎𝜂. The target identification probability355

is varied between 𝜙 = 0.99 and 0.30. Fig. 6 shows the approximate posterior pdf obtained using356

different falsifiers at three representative values of 𝜙 (these pdfs were estimated from the unfalsified357

realizations of 𝜃 using the kernel density estimation technique of Matlab (The Mathworks, Inc.358

2021)). Fig. 7 shows the posterior mean and coefficient of variation (COV) of the approximate359

posterior pdfs. The estimate for the posterior mean improves as 𝜙 is reduced since the threshold360

𝜅(·),𝜙 decreases (Barber et al. 2015). Moreover, as 𝜙 is decreased, more models are falsified, which361

results in a decrease in the approximate pdf’s COV. The behavior of the various falsifiers is also362

evident in Fig. 7. Recall that fEB falsifies more models as compared to fES for the same value363

of 𝜙. Similarly, the likelihood domain falsifiers unfalsify more models as compared to the error364
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domain falsifiers for the same value of 𝜙. Hence, the COV of the approximate pdf is less for fEB365

as compared to fES, and the COV of the likelihood domain falsifiers is more than those of the error366

domain falsifiers.367

The assumed distributions of the residual error also play an important role in the approximation368

of the posterior pdf, and may possibly be unknown or poorly estimated. Different choices of 𝜎𝜖369

lead to different approximations of the posterior pdf. Choosing 𝜎𝜖 > 𝜎𝜂 means the noise in the370

measurements is overestimated, causing more models to be unfalsified for the same value of 𝜙,371

while 𝜎𝜖 < 𝜎𝜂 leads to the falsification of more models. Thus, assuming 𝜎𝜖 > 𝜎𝜂 is equivalent to372

setting a looser tolerance 𝜅 and vice versa. Fig. 8 shows the approximate posterior pdf obtained373

using three different values of 𝜎𝜖 that correspond to assuming double, equal and half signal to noise374

ratios, for the falsifier 𝑓ES when 𝜙 = 0.90. The mean and COV of the approximate posterior pdfs for375

𝜽 are also shown in Fig. 8. For the same value of 𝜙, the COV of the posterior samples reduces with376

𝜎𝜖 due to more models being falsified. Note that the same level of approximation is possible from377

the three different assumptions about the residual errors albeit at three different levels of 𝜙. Thus,378

a good approximation to the posterior pdf can be obtained even in the case where the statistics of379

the assumed residual errors are poorly designed.380

Estimating 𝜃 using model falsified GABC381

Now, 𝜃 is estimated using the GABC approach with kernels based on falsifiers. The target382

identification probability 𝜙 was fixed to 0.99 to maintain healthy acceptance ratios. As before, we383

assume the error residuals to be IID zero-mean Gaussian random variables with standard deviation384

𝜎𝜖 = 𝜎𝜂. The approximate posterior pdfs obtained using the three kernels, shown in the left plot in385

Fig. 9, exhibit a good match with the true posterior pdf from Bayesian inference. For the kernels 𝑘ES,386

𝑘EB and 𝑘L, the mean of the approximate posterior of 𝜃 was found to be 0.9686, 0.9694 and 0.9686,387

while the approximate posterior had a COV of 0.0029, 0.0030 and 0.0021, respectively. Among388

the three kernels, 𝑘L provides the best approximation to the true posterior pdf. This is expected389

since the kernel 𝑘L accurately captures 𝜋(d|𝒚). In fact, ABC using the kernel 𝑘L should ideally390

have resulted in the same distribution, and the small deviation from the true posterior statistics may391
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be attributed to Monte Carlo error. The assumed standard deviation 𝜎𝜖 for the residual errors plays392

a more crucial role when falsifiers are used as kernels as it controls the effective bandwidth of the393

kernels. The approximate posterior pdfs obtained using model falsified GABC with the kernel 𝑘ES394

with different values of 𝜎𝜖 are shown in Fig. 9. A lower value of 𝜎𝜖 causes the uncertainty to395

be underestimated. Thus, when using falsifiers as kernels, the residual errors should be carefully396

designed such that the resulting approximation is useful.397

Application: system identification of a cubic-quintic oscillator398

In this example, model falsified (G)ABC is used to infer the system parameters of a cubic-quintic399

dynamical system. Duffing oscillators with cubic and quintic nonlinear terms can be used to model400

dynamical systems that arise in many real world applications (Elı́as-Zúñiga 2013). The cubic-401

quintic system has also been studied in the context of parameter inference using ABC approaches402

in previous works (Abdessalem et al. 2018; Abdessalem et al. 2019). The equation of motion of403

the time invariant cubic-quintic system is given by404

𝑚 ¥𝑥(𝑡) + 𝑐 ¤𝑥(𝑡) + 𝑘𝑥(𝑡) + 𝑘3𝑥
3(𝑡) + 𝑘5𝑥

5(𝑡) = 𝑤(𝑡). (20)405

where 𝑚, 𝑐 and 𝑘 are the mass, damping and linear stiffness coefficients, while 𝑘3 and 𝑘5 are406

the non-linear cubic and quintic stiffness coefficients, respectively. 𝑥(𝑡), ¤𝑥(𝑡) and ¥𝑥(𝑡) are the407

displacement, velocity and acceleration response of the system, respectively, at time instant 𝑡. For408

this example, all quantities are considered non-dimensional. The true values of the parameters are:409

𝑚 = 1, 𝑐 = 0.05, 𝑘 = 50, 𝑘3 = 103 and 𝑘5 = 105. The system is assumed to start from rest and is410

excited by a white noise excitation 𝑤(𝑡) with mean zero and instantaneous variance 10 units. The411

excitation used to generate the synthetic response of the system is shown in Fig. 10a; the resulting412

time history of the system displacement is shown in Fig. 10b. The system response is generated by413

integrating Eq. (20) up to 𝑡 = 5 using the solve ivp function from the SciPy package (Virtanen414

et al. 2020) with a time step of Δ𝑡 = 0.01. Measurements d are recorded at a sampling frequency415

of 25 Hz; ignoring the first measurement at 𝑡 = 0, 𝑁𝑚 = 125. The measurements are corrupted by416
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an additive zero-mean Gaussian noise with standard deviation equal to 1% of the root-mean-square417

(RMS) of the true displacement response. The measurements are also shown in Fig. 10(b).418

The unknown parameters’ priors, chosen following (Abdessalem et al. 2018), are: 𝑚 ∼ U(0.1, 10),419

𝑐 ∼ U(0.0005, 0.5), 𝑘 ∼ U(5, 500), 𝑘3 ∼ U(102, 104) and 𝑘5 ∼ U(104, 106), where 𝑋 ∼ U(𝑎, 𝑏)420

means that the random variable 𝑋 is uniformly distributed between 𝑎 and 𝑏. Throughout this ex-421

ample, we assume the residual errors are IID zero-mean Gaussian random variables with standard422

deviation equal to 5% of the RMS of the measured response. We found implementing model falsi-423

fied (G)ABC to be computationally inefficient because the priors are relatively diffuse, making very424

small the fraction of unfalsiable models. So we use a sequential Monte Carlo (SMC) algorithm,425

proposed by Toni et al. (2009), to sample from the ABC posterior. The SMC technique for ABC426

is briefly described in section III. Moreover, we implement SMC using the open-source Python427

toolbox pyABC (Klinger et al. 2018). Among other things, pyABC allows parallel implementation428

of SMC, as well as adaptively chosen intermediate thresholds in the SMC process.429

We note that the model adopted in this example is deterministic; i.e., given a realization of the430

parameter vector 𝜽 = [𝑚, 𝑐, 𝑘, 𝑘3, 𝑘5]T, the prediction from it is always the same. We consider431

this example because the likelihood function is tractable when the properties of the measurement432

noise process are known and, as a result, Bayesian inference can be adopted to infer the parameter433

vector 𝜽 . In fact, model falsified GABC performed with the kernel 𝑘L is equivalent to Bayesian434

inference in such cases. Thus, this example offers an opportunity to compare the performance of435

model falsified (G)ABC with Bayesian inference.436

Parameter inference using model falsified ABC437

First, the unknown parameters of the cubic-quintic system are estimated using model falsified438

ABC with the target identification probability 𝜙 set to 0.99. The SMC scheme is run with 1000439

particles at every population (Fig. SM4 in the Supplementary Material shows the evolution of the440

posterior mean of the different system parameters through the populations of SMC for different441

falsifiers (Dasgupta 2023)). Table 2 shows the average relative error between the posterior mean442

and the true value for each parameter and the COV associated with the parameter estimates obtained443
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using the different falsifiers averaged across 10 independent runs (detailed summary statistics of444

the approximate posterior distributions are reported in Table SM1 in the Supplemental Material).445

The results show that model falsified ABC using the error domain falsifiers performs very well,446

with relative errors of the estimated 𝑚, 𝑘 and 𝑘5 below 10%. The corresponding likelihood447

domain falsifiers perform slightly poorer for the same value of 𝜙. However, all four falsifiers have448

difficulty in identifying 𝑐 and 𝑘3. Plots of the approximate pdfs of the various system parameters449

corresponding to the different falsifiers can be seen in Fig. 11. The approximate pdfs were found to450

peak around the true values of the parameters for the error domain falsifiers: a qualitative indication451

that the inference is good.452

Fig. 11 shows the approximate pdfs of the various system parameters corresponding to the453

different falsifiers. The pdfs in Fig. 11 were estimated from the unfalsified models in the last454

population of the SMC algorithm using kernel density estimation. The posterior mean of the455

parameters is collectively denoted the identified model herein. The approximate pdfs also peak456

around the true values of the parameters for the error domain falsifiers: a qualitative indication that457

the inference is good.458

Fig. 12(a) shows the predicted response when the identified model from each falsifier is ex-459

cited using the random Gaussian excitation shown in Fig. 10(a); Column 2 in Table 3 shows the460

corresponding normalized root-mean-square-error (RMSE), which is denoted 𝜖RMSE herein. The461

predictive capability of the identified systems are further tested by evaluating the response to a differ-462

ent test excitation and comparing it to the true response. A harmonic excitation 𝑤̃(𝑡) = 10 · sin(𝜔f𝑡)463

with 𝜔f = 10 is used as the test excitation. Fig. 12(b) shows the predicted response of the identified464

models under the test excitation while their respective 𝜖RMSE values are tabulated in Column 3 of465

Table 3. The better estimation capability of the error domain falsifiers also translates to better466

predictive capabilities of the identified models; 𝜖RMSE is lower across both excitations for the error467

domain falsifiers. However, the comparatively better performance of the error domain falsifiers468

comes at an increased computational cost. The average number of model evaluations necessary469

to sample from the approximate posterior corresponding to each falsifier is shown in Column 4470
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of Table 3: model falsified ABC using the error domain falsifiers requires an order of magnitude471

more model simulations than the likelihood domain falsifiers to reach the same threshold. The best472

performing falsifier is 𝑓EB, with lower relative errors in the posterior mean of all system parameters473

except 𝑘5 and lower 𝜖RMSE from the identified model under both excitations, although it is slightly474

less computationally efficient as compared to the other falsifiers.475

Parameter inference using model falsified GABC476

Now, we use model falsified GABC to estimate 𝜽 . Kernels 𝑘ES and 𝑘EB are assigned compact477

supports by setting 𝜙 = 0.99. A modified SMC algorithm (see III) was used to perform model478

falsified GABC. As before, we set 𝑁 = 1000 as the population size. Unfortunately, a limit of 108
479

model runs precluded GABC with 𝑘L from converging with this setting. (It was only possible to480

sample from 𝑘
1/12.5
L . For reference, sampling from 𝑘0

L and 𝑘L is equivalent to sampling from the481

prior 𝜋(𝜽) and Bayes’ posterior 𝜋(𝜽 |d), respectively.) Thus, we are only able to report the results482

corresponding to an annealed posterior pdf (specifically, 𝑘1/12.5
L ).483

The relative error of the posterior mean of the system parameters obtained using model falsified484

GABC with various kernels is provided in Table 4. The COV values of the posterior estimates485

is also provided in Table 4 (more detailed summaries of the approximate posterior distributions486

obtained using GABC with various kernels is provided in Table SM2 in the Supplemental Material487

and in (Dasgupta 2023)). The performance of the model falsified GABC approach is similar to488

model falsified ABC. As before, the true parameter values lie within the inter-quartile ranges, and,489

as shown in Fig. 13, the approximate posterior pdfs peak around the true values. This shows490

that inference using model falsified GABC is of good quality. Similarly, predictions to both 𝑤(𝑡)491

and 𝑤̃(𝑡) from the identified models are shown in Fig. 14. The predictions agree well with the492

true response, as evidence by the low normalized RMSE values in Table 5, which means that the493

identified models can generalize well. The kernel 𝑘ES performs better than 𝑘EB at estimating all494

parameters except for 𝑚 and 𝑐. 𝑘ES also outperforms 𝑘EB when the prediction capabilities of the495

identified models are compared. However, as evident from Column 4 of Table 5, model falsified496

GABC with 𝑘ES is more computationally expensive. However, model falsified GABC with 𝑘L,497
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i.e., Bayesian inference, is computationally prohibitive in this case. The results provide empirical498

evidence that model falsified (G)ABC can be a computationally efficient alternative to Bayesian499

inference when the prior density is diffused. These findings are consistent with those reported by500

Abdessalem et al. (2018).501

MODEL CLASS SELECTION WITH THE MODEL FALSIFIED (G)ABC FRAMEWORKS502

In many physical applications, the underlying model that describes the relationship between the503

uncertain parameters and the observations, or some part thereof, is unknown or must be chosen from504

a set of probable model classes (defined as a collection of parameterized models). Consider the set505

ℳ = {M1,M2, ...,M𝐾} of model classes that all describe the same phenomena. The objective of506

model class selection is to determine which model class(es) can predict the observations d. Bayesian507

model class selection refers to the method of selecting model classes based on the posterior model508

class probabilities, which are denoted herein as P(M𝑘 |d) ∀𝑘 = 1, 2, . . . , 𝐾 . Also, let 𝜽 𝑘 ∈ 𝚯𝑘 be509

the parameter vector associated with the model class M𝑘 . Then Bayes’ theorem gives us510

P(M𝑘 |d) ∝ 𝜋(d|M𝑘 )P(M𝑘 ) (21)511

where512

𝜋(d|M𝑘 ) =
∫
𝚯𝑘

∫
𝔇
𝜋(d|𝒚𝑘 , 𝜽 𝑘 ,M𝑘 )𝜋(𝒚𝑘 |𝜽 𝑘 ,M𝑘 )𝜋(𝜽 𝑘 |M𝑘 ) d𝒚

︸                                                          ︷︷                                                          ︸
ℓ(d|𝜽𝑘 ,M)

d𝜽 (22)513

is commonly known as the model evidence or marginal likelihood and P(M𝑘 ) is the prior probability514

assigned to the model class M𝑘 . Model falsified ABC can be used to perform model class selection515

simply by setting 𝜋(d|𝒚𝑘 , 𝜽 𝑘 ,M𝑘 ) = IA𝜙,d (𝒚𝑘 ; 𝜽 𝑘 ,M𝑘 ) in Eq. (22), which leads to the approximate516

posterior model class probabilities517

PABC(M𝑘 |d) ∝
[∫

𝚯𝑘

P(𝒚𝑘 ∈ A𝜙,d)𝜋(𝜽 𝑘 |M𝑘 ) d𝜽 𝑘
]

P(M𝑘 ). (23)518

Similar modifications can also be made for model falsified GABC. Also note that, for the special519
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cases discussed in Section 4, the posterior model class probabilities can be recovered by setting520

𝜙 = 0.521

Model class selection for base isolation devices using model falsified (G)ABC522

Consider the base isolated shear frame structure shown in Fig. 15a. In this example, which is523

adopted from (De et al. 2018), the appropriate model for the isolation layer is to be determined.524

Identifying the behavior of isolation-layer devices is important for predicting system responses that525

may, in turn, inform design choices and control strategies. The equations of motion of the system526

are527

𝑴s ¥𝑿s + 𝑪s ¤𝑿s + 𝑲s𝑿s = −𝑴s1¥𝑥𝑔 + 𝑪s1 ¤𝑥b + 𝑲s1𝑥b (24)528

𝑚b ¥𝑥b + 1T𝑪s1 ¤𝑥b + 1T𝑲s1𝑥b + 𝑓b = −𝑚b ¥𝑥g + 1T𝑪s ¤𝑿s + 1T𝑲s𝑿s (25)529

where530

𝑴s =



𝑚1 0 0

0 𝑚2 0

0 0 𝑚3


and 𝑲s =



𝑘1 + 𝑘2 −𝑘2 0

−𝑘2 𝑘1 + 𝑘2 −𝑘3

0 −𝑘3 𝑘1 + 𝑘2


(26)531

are the mass and stiffness matrices of the superstructure, respectively; 𝑚b and 𝑐b are the base532

mass and isolation layer linear damping coefficient, respectively; 𝑿s = [𝑥1, 𝑥2, 𝑥3]T are the floor533

displacements relative to the ground; 𝑥b is the base displacement relative to the ground; and 1 is a534

column vector of all ones. A proportional Rayleigh damping is assumed for the superstructure; i.e.,535

𝑪s = 𝛽1𝑴s + 𝛽2𝑲s with 3% damping in the first two modes. We also choose 𝑚1 = 𝑚2 = 𝑚3 = 300536

Mg and 𝑘1 = 𝑘2 = 𝑘3 = 40 MN/m, respectively. The base mass 𝑚b = 500 Mg. 𝑓b, representing537

the effect of the isolation layer damping and restoring force, depends on the isolation layer model538

adopted. The total mass of the structure is 𝑚 = 𝑚b + 𝑚1 + 𝑚2 + 𝑚3 = 1400 Mg.539

Model classes for the base isolation device540

(1) Nonlinear model classes: In this study, we consider two nonlinear model classes that can541

approximate the behavior of the isolation layer — a bilinear hysteresis model and a Bouc-Wen542
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hysteresis model (Wen 1976) denoted herein as M1 and M2, respectively. Representative force543

displacement behaviors for both model classes can be seen in Fig. 15b. For both model classes, kpre,544

𝑘post and𝑄y are used to denote pre-yield and post-yield stiffnesses, and the yield force, respectively.545

Now, the force 𝑓b exerted by the isolation layer can be expressed as546

𝑓b = 𝑐b ¤𝑥b + 𝑘post𝑥b + 𝑞y𝑧 (27)547

where 𝑞y𝑧 represents the nonelastic force and 𝑧 is an evolutionary variable. In nonlinear model548

classes, 𝑞y = 𝑄y(1−𝑟k) where 𝑟k = 𝑘post/𝑘pre is the hardness ratio and 𝑧 is an evolutionary variable549

whose evolution is governed by550

¤𝑧 = 𝐴 ¤𝑥b − 𝛽 ¤𝑥b |𝑧 |𝑛pow − 𝛾𝑧 | ¤𝑥b | |𝑧 |𝑛pow−1 (28)551

where 𝐴 = 2𝛽 = 2𝛾 = 𝑘pre/𝑄y is chosen to ensure that 𝑧 is contained within [−1, 1] and the loading552

and unloading stiffnesses remain equal (Ramallo et al. 2002). We adopt 𝑛pow = 1 for the Bouc-Wen553

model class, and 𝑛pow = 100 for the bilinear model class (De et al. 2018).554

(2) Linear model classes: A few linear model classes are considered as alternates to the nonlinear555

model classes described above. The force displacement behavior of one linear model class is also556

shown in Fig. 15b. Linear model classes are considered because they can be computationally557

efficient alternatives that are simpler for engineering design. In linear model classes, the force558

exerted by the isolation layer is represented as559

𝑓b = [𝑐b + 𝑐eq] ¤𝑥b + 𝑘eq𝑥b =
[
𝑐b + 2𝜁eq

√︁
𝑘eq𝑚b

]
¤𝑥b + 𝑘eq𝑥b. (29)560

The American Association of State Highway and Transportation Officials (AASHTO) and the561

Japanese Public Works Research Institute (JPWRI) recommend562

𝑘eq =
𝑘pre

𝜌
[1 + 𝑟k(𝜌 − 1)] and 𝜁eq =

2(1 − 𝑟k) (1 − 𝜌−1)
𝜋 [1 + 𝑟k(𝜌 − 1)] , (30)563
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with 𝜌 = 𝑟d and 0.7𝑟d for the AASHTO and JPWRI model classes, respectively (Hwang and564

Chiou 1996), where 𝑟d = 𝑥d𝑘pre/𝑄y is the shear ductility ratio. A modified AASHTO model565

class is also considered, for which 𝜌 = 𝑟d and multiplicative correction factors of 𝑟0.58
d /(6 − 10𝑟k)566

and
[
1 − 0.737(𝑟d − 1)/𝑟2

d
]−2 are applied to 𝜁eq and 𝑘eq, respectively (Hwang and Chiou 1996).567

Further, based on recommendations from the California Department of Transportations (Caltrans)568

(Hwang and Chiou 1996), we also consider569

𝜁eq = 0.0587(𝑟d − 1)0.371 and 𝑘eq = 𝑘pre
[
1 + ln

{
1 + 0.13(𝑟d − 1)1.137}]−2

. (31)570

The AASHTO, JPWRI, modified AASHTO and Caltrans model classes are herein denoted as M3,571

M4, M5 and M6, respectively. Thus, in total, there are 𝐾 = 6 model classes, to which uniform572

prior probabilities are assigned; i.e., P(M𝑘 ) = 𝐾−1 ∀M𝑘 ∈ ℳ. Additionally, the parameters 𝑘post,573

𝑐b, 𝑟k, 𝑟d and𝑄y are assumed to be uncertain across the different model class. The parameter priors574

are tabulated in Table 6. Note that the parameter 𝑟d is not necessary for the nonlinear model classes575

while the linear model classes do not require the parameter 𝑄y.576

Synthetic measurements and error residual density577

In this example, we choose the N–S El Centro, California, earthquake record during the May578

18, 1940, Imperial Valley earthquake sampled at 50 Hz, that had a peak acceleration of 3.42 m/s2,579

as the base excitation ¥𝑥g. A model from the Bouc-Wen model class is used to generate the synthetic580

data set. The parameters of the truth model are tabulated in Table 6; the hysteresis curve of the581

evolutionary variable 𝑧 with respect to base displacement 𝑥b, along with the absolute acceleration at582

the base isolation layer of the truth model, are shown in Fig. 16. The absolute acceleration ¥𝑥a
b of the583

base layer is sampled at 20 Hz for 30 s (𝑁𝑚 = 600), to which we add Gaussian noise with standard584

deviation equal to 10% of the RMS of the actual response to generate noisy measurements. The585

error residual densities are also assumed to be Gaussian with a slightly higher standard deviation586

set equal to 15% of the RMS of the measurements d.587
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Model class selection using model falsified ABC588

In this example, we again use the SMC algorithm to perform model class selection; the posterior589

model class probability is proportional to the relative frequency of different model classes in the last590

population of the SMC algorithm (Toni et al. 2009; Abdessalem et al. 2018). We set the population591

size for the SMC algorithm to 𝑁 = 5000. Fig. 17 shows the posterior model class probabilities592

of each model class. All falsifiers are able to correctly select the Bouc-Wen model class (M2).593

The error-domain falsifiers reject all other model classes for all values of 𝜙 that we consider. In594

comparison, the likelihood domain falsifiers are more conservative in falsifying models and, as595

a result, some posterior mass is assigned to the linear model classes when 𝜙 = 0.99. As 𝜙 is596

decreased to 0.95, the posterior probability of the linear model classes drop to zero. Subsequently,597

as we decrease 𝜙 to 0.90, the bilinear model class M1 is no longer assigned any posterior mass.598

The relative error between the posterior mean of the parameters of the Bouc-Wen model599

class M2 obtained using different falsifiers and the true value is provided in Table 7 (a more600

detailed summary of the approximate posterior distributions can be found in Table SM3, and the601

corresponding approximate pdfs are shown in Fig. SM5, in the Supplemental Material and in602

(Dasgupta 2023)). In this case also, the error domain falsifiers, owing to fact that they are more603

restrictive at the same level of 𝜙, are better at estimating the parameters, with the performance of604

𝑓EB being marginally better than 𝑓ES. The parameters are well estimated with the range between605

the 5th and 95th percentiles containing the true value for all parameters except 𝑘post. All falsifiers606

find it difficult to estimate parameter 𝑐b.607

Fig. 18a shows the approximate posterior predicted mean absolute base acceleration under the608

El Centro excitation for different falsifiers. Columns 2 and 4 in Table 8 show the normalized609

RMSE between the true and posterior mean absolute base acceleration response, and normalized610

error between the true and posterior maximum absolute base acceleration response, respectively,611

under the El Centro excitation. Table 8 shows that model falsified ABC is able to make good612

predictions of the maximum response. The response of the structure after the ground motion613

subsides is not predicted as well as the initial response because the damping properties of the614
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isolation layer are not well estimated. The performance of the estimated parameters under a615

new excitation is also studied. For this, the base isolated structure is subjected to the July 2019616

Ridgecrest, California earthquake. The ground motion recorded by Channel 1 (90◦ component)617

at Tower 2 is used as the ground excitation, the peak acceleration for which was reported to be618

3.90 m/s2 (Center for Engineering Strong Motion Data 2019; Strong Motion Virtual Data Center619

2019). Fig. 18b shows the approximate posterior predicted mean absolute base acceleration of the620

structure under the Ridgecrest ground excitation for different falsifiers. The normalized errors in621

the predicted response, shown in Columns 3 and 5 of Table 8, indicate that the estimated parameters622

also generalize well to different excitations. In this example as well, the relative order between the623

model falsifiers in terms of the number of model simulations was similar.624

Model class selection using model falsified GABC625

Model class selection using the falsifier based kernels are investigated in the context of this626

example. Again, the SMC algorithm with a population size 𝑁 = 5000 is used to perform model627

falsified GABC. We fix 𝜙 = 0.99 for the kernels 𝑘ES and 𝑘EB. Fig. 19 shows the approximate628

posterior probabilities of the different model class evolving with the populations of the SMC629

algorithm. Model falsified GABC with all the kernels estimate P(M2 |d) = 1 at the final population,630

thereby choosing the correct model class.631

The relative errors between the posterior means and the true parameter values are reported in632

Table 9. (The summary statistics of the approximate posterior distribution of the parameters of the633

Bouc-Wen model class are tabulated in Table SM4 and the corresponding approximate posterior634

pdfs, estimated using kernel density estimation, are shown in Fig. SM6 in the Supplemental Material635

and in (Dasgupta 2023).) In this example, the approximate posterior pdfs, obtained using model636

falsified ABC and GABC, do not peak around the true parameter values due to the presence of637

large noise in the measurements. Bayesian inference can overcome this challenge because the638

likelihood model is correctly specified by 𝑘L. The kernel 𝑘ES performs marginally better than 𝑘B,639

both in terms of the predicted uncertainty and relative errors of the estimated parameters. Unlike640

the previous example, the SMC algorithm converged for the kernel 𝑘L, and model falsified GABC641
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with 𝑘L, or Bayesian inference, provides the best results. (The approximate posterior predicted642

mean absolute base acceleration obtained using model falsified GABC with different kernels under643

the El Centro and Ridgecrest earthquake excitations are omitted here, as they are similar to Fig. 18,644

but are included in Figs. SM7a and SM7b in the Supplemental Material and in (Dasgupta 2023).)645

The normalized RMSE between the true and predicted responses is tabulated in Table 10. Bayesian646

inference outperforms model falsified GABC with the falsification kernels as well, when compared647

in terms of predictive quality of the identified model. However, the number of populations required648

for the model falsified GABC with 𝑘L to converge is significantly higher than the other kernels,649

which means that Bayesian inference is a more computationally expensive alternative to model650

falsified GABC.651

MODEL FALSIFIER BASED KERNEL REGRESSION FOR PARAMETER ESTIMATION652

AND RESPONSE PREDICTION653

In this section, we introduce kernel regression using model falsifier based kernels: a non-654

parametric approach to parameter estimation and response prediction. Let, 𝑔(𝜽) be a function655

of the underlying uncertain parameter 𝜽 . The Nadaraya-Watson estimator for the conditional656

expectation of 𝑔(𝜽) given the observations d, which we denote as 𝑔̂NW, obtained using a kernel 𝑘 (·)657

is given as658

𝑔̂NW =

∑𝑁
𝑖=1 𝑔(𝜽 (𝑖))𝑘 (·) (y(𝑖) , d)∑𝑁

𝑖=1 𝑘 (·) (y(𝑖) , d) , (32)659

where y(𝑖) is a prediction from 𝜽 (𝑖) (a realization drawn from 𝜋(𝒚 |𝜽 (𝑖))) corresponding to d (Blum660

2010). The Nadaraya-Watson estimator can be used to estimate the posterior mean of 𝜽 by setting661

𝑔(𝜽) = 𝜽 to obtain662

𝜽̂NW =

∑𝑁
𝑖=1 𝜽

(𝑖)𝑘 (y(𝑖) , d)∑𝑁
𝑖=1 𝑘 (y(𝑖) , d) (33)663

and make response predictions by setting 𝑔(𝜽) = ỹ(𝜽),664

𝒚̂NW =

∑𝑁
𝑖=1 ỹ(𝑖)𝑘 (y(𝑖) , d)∑𝑁
𝑖=1 𝑘𝜅 (y(𝑖) , d) (34)665
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where, now ỹ(𝑖) is the prediction from the model 𝜽 (𝑖) . If the response to the same excitation which666

yielded d is to be computed then ỹ = y. In a similar vein, Eq. (33) can also be extended to obtain667

an estimate to any function of 𝜽 .668

The ability to make predictions using the correct model class is implicit in the kernel regression669

approach using kernels 𝑘ES or 𝑘EB. When the kernel 𝑘ES or 𝑘EB is used, then due to fact that670

these kernels have compact support, some of the drawn samples of 𝜽 will carry no weight; i.e.,671

𝑘 (y(𝑖) , d) will be zero for those 𝜽 (𝑖) that are falsified for a given target identification probability672

𝜙. These realizations can be disregarded and sampling continues up until all the realizations have673

non-zero weights. This will automatically disregard model classes that are inconsistent with the674

observed data. We also note that similar computations can be performed when kernel regression is675

performed with 𝑘L if a compact support is assigned in a manner similar to Eq. (13). Thus, similar to676

model falsified GABC, kernel regression is another way in which the degree of similarity between677

model predictions and measured data can be utilized, which leads to improved predictions, as we678

will show. However, the computational costs of kernel regression will be similar to those of model679

falsified ABC using the corresponding falsifier.680

Parameter estimation using kernels based on model falsifiers681

Table 11 shows the relative error in the Nadaraya-Watson estimates for the parameters of the682

base isolated structure described in Section 6 when 𝜙 = 0.99 (the actual parameter estimates are683

provided in Table SM5 in the Supplemental Material and in (Dasgupta 2023)). The estimates are684

made using a sample of size 5000. Note that all model classes except the true Bouc-Wen model685

class (M2) are falsified for 𝜙 = 0.99 as shown previously in Fig. 17. For the kernel 𝑘L, only the686

model class M2 is considered because we did not assign it a compact support. The quality of687

the parameter estimates is very close to those obtained from the ABC posterior; the relative errors688

are very similar to those in Table 7, where we had used 𝜙 = 0.90. The computational cost of689

performing kernel regression is the same as model falsified ABC with the corresponding kernels690

with the same value of 𝜙. Although the parameter estimates obtained using model falsified GABC691

are better, note that it is more computationally expensive.692
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Response prediction using kernels based on model falsifiers693

The response of the base isolated system described in Section 6 to the El Centro earthquake694

(the same excitation for which the measurements are available) and the Ridgrecrest earthquake695

(an alternate excitation) can be computed using kernel regression. Table 12 shows the normalized696

(with respect to the true response) RMSE of the predicted base acceleration and maximum of the697

absolute base acceleration. (Figs. SM8a and SM8b in the Supplemental Material, which can also698

be found in (Dasgupta 2023), show the Nadaraya-Watson estimate for the absolute acceleration at699

the base of the structure where it is clear that the estimates are in good agreement with the true700

response.) The results indicate good generalizability of the Nadaraya-Watson estimator.701

IMPLICATIONS OF THIS WORK AND FUTURE RESEARCH DIRECTIONS702

The main purpose of this work was to provide a Bayesian perspective on model falsification.703

Our reinterpretation will allow the results from model falsification to be viewed in a different light,704

primarily, unfalsified models are realizations of an approximate posterior density, and predictions705

and estimates obtained using the unfalsified models are posterior predictive quantities. In the706

process, we have also introduced model falsified (G)ABC wherein model falsifiers are appropriately707

adapted within (G)ABC frameworks.708

Our reinterpretation also means that many of the desirable properties enjoyed by ABC can now709

be attributed to model falsification. Chief among them is perhaps the fact that model falsification710

may now be deemed to honor the principle of Occam’s razor; therefore, falsification may implicitly711

favor simpler or parsimonious hypotheses, although that remains to be verified. Also, it may now712

be possible to perform a posteriori model validation using Bayesian statistical tools like posterior713

predictive checks and credible intervals. Model checking is a necessary and crucial step that714

should be conducted when carrying out inference (Gelman and Shalizi 2013) and, to the best of715

our knowledge, no such validation metrics have been developed for model falsification. Much of716

the ABC machinery, such as computationally efficient algorithms for sampling, can also be applied717

to reduce the computational burden of model falsification, much like we have used SMC.718

Going the opposite direction, using model falsifiers as discrepancy measures means that ABC719

29 Dasgupta, September 13, 2023



may be calibrated based on the frequentist properties of the falsifiers. As such, future work needs720

to investigate the automatic selection of 𝜙 such that any estimates obtained using model falsified721

ABC are consistent; see (Fearnhead and Prangle 2012; Ratmann et al. 2013) for related work.722

Model falsifiers could also take into consideration model errors by accounting for it in 𝜋𝐸𝑖
(𝑒𝑖)723

(Goulet and Smith 2013b; Pai and Smith 2017; Pai et al. 2018). Therefore, the application of model724

falsified ABC to inference problems where the data generating model 𝜋(𝒚 |𝜽) is misspecified or725

only partially known may be another interesting avenue of future research.726

Another direction for future research could be the application of model falsification to summary727

statistics. Note that the approximation in ABC stems from two sources: first, from using the728

acceptance criteria in Eq. (3) with a looser tolerance, which is considered in this work; second,729

approximation can also be induced from using summary statistics, which are often not sufficient,730

particularly when dealing with high dimensional data such as time series data (for example, modal731

frequency and mode shape data, extracted from structural response, is routinely used for structural732

system identification or health monitoring (Yuen 2010)). The introduction of summary statistics733

can further boost the computational efficiency of model falsified ABC. We intend to explore model734

falsified (G)ABC with summary statistics in a future work.735

CONCLUSIONS AND OUTLOOK736

We have shown that model falsification is similar to approximate Bayesian computation. A737

new framework for ABC and generalized ABC that utilizes model falsifiers as discrepancy metrics738

and density kernels, respectively, has been introduced. We have also considered different types of739

error and likelihood domain falsifiers. Model falsified (G)ABC was applied to different inference740

tasks. The results show that inference using model falsified (G)ABC is satisfactory. The inferred741

parameters were found to agree with the true values and could generalize well. The results742

also indicate that model falsified (G)ABC may be a computationally efficient inference approach,743

compared to Bayesian inference, when the prior is non-informative. We have also shown how744

falsifier based kernels can be used for kernel regression to estimate parameters and/or make745

predictions via Nadaraya-Watson estimators.746
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APPENDIX I. ALGORITHMS FOR APPROXIMATE BAYESIAN COMPUTATION765

Algorithms 1 and 2, shown in Figs. 20 and 21, are the rejection based samplers used for766

performing ABC and generalized ABC, respectively. Both algorithms can be found in (Sisson et al.767

2018, Chapter 1).768
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APPENDIX II. COMPUTATIONAL ASPECTS FOR IMPLEMENTING MODEL FALSIFIED769

(G)ABC770

We highlight here some computational aspects regarding the implementation of model falsified771

ABC. First, all computation should be carried out in logarithmic scale. This not only helps with772

better conditioning of computations in the likelihood domain but also helps with the computation773

of probability densities and cumulative distribution functions (cdfs). For example, the successful774

implementation of ABC with falsifiers often required the computation of the standard normal cdf775

at very large negative values of the variate. These computations must be carried out in logarithmic776

scale using appropriate approximations, else all 𝑝-values in Eq. (8) will evaluate to zero. For777

instance, the standard normal cdf’s logarithm is approximated using the logphi function available778

as part of the GPML toolbox (Rasmussen and Nickisch 2016) in Matlab (The Mathworks, Inc.779

2021), and the scipy.norm module (Virtanen et al. 2020) in Python (Van Rossum and Drake780

2009). Moreover, when working with error domain falsifiers, it can be easier to implement the781

acceptance step within ABC as follows:782

max
𝑖=1,...,𝑁𝑚

− log 𝑝𝑖 ≤ 𝜅′, (35)783

where 𝜅′ = − log(1 − 𝜙1/𝑁m) and − log(1 − 𝜙) for falsifiers 𝑓ES and 𝑓EB, respectively. Similarly,784

instead of Eqs. (9) and (11), the acceptance step for the likelihood domain falsifiers can be modified785

as786

−
𝑁𝑚∑︁
𝑖=1

log 𝜋𝐸𝑖
(𝜖𝑖) ≤ −

𝑁𝑚∑︁
𝑖=1

min
𝜖 𝑖≤𝑒𝑖≤𝜖𝑖

log 𝜋𝐸𝑖
(𝑒𝑖) (36)787

and the error bounds 𝜖 𝑖 and 𝜖𝑖 are derived as described previously.788
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APPENDIX III. ABC USING SEQUENTIAL MONTE CARLO METHODS789

The SMC algorithm (Toni et al. 2009) used in the numerical examples shown in Sections 5790

and 6 are implemented using the pyABC toolbox (Klinger et al. 2018); its basic algorithm is791

provided in Fig. 22. The SMC algorithm begins with 𝑁 particles that are drawn from the parameter792

priors; subsequently, the particles explore the parameter space through repeated updates, ultimately793

providing a Monte Carlo approximation to the ABC posterior through the weights794

𝑤 (𝑖)
𝑡 =




1, if 𝑡 = 0

𝜋(𝜽∗ |M (𝑖)
𝑡 )

/ [∑𝑁
𝑗=1 𝑤

( 𝑗)
𝑡−1𝐾𝑝,𝑡

(
𝜽∗ |𝜽 ( 𝑗)

𝑡−1

)]
, if 𝑡 > 0

(37)795

The outputs of Algorithm 3 can be used to compute the posterior model class probabilities as796

follows797

PABC(M𝑘 |d) = 1
𝑁

𝑁∑︁
𝑗=1
I[M ( 𝑗) = M𝑘 ] (38)798

Further, Algorithm 3 reverts to Algorithm 1 when 𝐾 = 1 and 𝑁𝑡 = 1.799

Several improvements over the standard SMC approach have also been proposed; we note800

only those that we utilize. The thresholds 𝜅𝑡 and the number of iterations 𝑁𝑡 can be adaptively801

selected (Beaumont et al. 2009; Del Moral et al. 2012), which helps improve the conditioning of802

acceptance rates, ultimately increasing sampling efficiency. In the parameter estimation example803

from Section 5, the threshold 𝜅𝑡 at iteration 𝑡 is chosen such that 𝜏𝑁 particles are retained, with 𝜏 =804

0.5. Moreover, the perturbation kernel 𝐾𝑝,𝑡 for the 𝑡th population can also be adaptively designed;805

throughout this work, we have perturbed the particles in every population using a multivariate806

normal density kernel whose precision matrix is adaptively determined (see the documentation for807

the pyABC toolbox (Klinger et al. 2018) for details).808

To perform GABC with the density kernel 𝑘 , the acceptance criteria in Step 15 of Algorithm 3809

is modified as follows (Schälte and Hasenauer 2020)810

Accept 𝜽∗,M∗ with probability min
{
1,
𝑘 (y∗, d)
𝐶

}
, (39)811
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where 𝑘 is the kernel being used, and 𝐶 is a normalization constant such that 𝐶 ≥ maxy 𝑘 (y, d).812

Choosing the normalization constant 𝐶 is critical to the performance of the GABC approach using813

SMC. If 𝐶 is too small, relative to the realized values of 𝑘 (y, d), then all of the models are814

accepted. On the other hand, if 𝐶 is too large, then the acceptance rates drop, making the approach815

computationally inefficient. As a remedy, Schälte and Hasenauer (2020) proposed an efficient816

scheme that further modifies the acceptance criteria from Eq. (39) to817

Accept 𝜽∗,M∗ with probability min

{
1,

(
𝑘 (y∗, d)
𝐶𝑡

)1/𝑇𝑡
}

(40)818

where 𝐶𝑡 and 𝑇𝑡 are the normalization constant and temperature at population 𝑡, respectively. To819

ensure that the samples indeed belong to the approximate posterior, 𝑇1 > 𝑇2 > . . . > 𝑇𝑁𝑡
= 1 is820

used and the weights are accordingly modified as follows821

𝑤̄ (𝑖)
𝑡 ∝ 𝑘 (y∗, d)1/𝑇𝑡

min
{
1, [𝑘 (y∗, d)/𝐶𝑡]1/𝑇𝑡

} · 𝜋(𝜽
(𝑖) |M (𝑖)

𝑡 )
𝑤 (𝑖)
𝑡

(41)822

where 𝑤 (𝑖)
𝑡 can be obtained using Eq. (37). Schälte and Hasenauer (2020) also proposed multiple823

approaches for decaying the temperatures, among which is a scheme, used in all examples studied824

herein, that aims to maintain the target acceptance rate at a predefined level. As an example, the825

temperatures at different population levels and the corresponding acceptance probabilities across826

different model classes for the base isolated structure in Section 6 are shown in Figs. 23a and 23b,827

respectively. As the population evolves in the modified SMC algorithm, the temperature is gradually828

reduced to 1 such that all particles belong to the approximate posterior.829
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APPENDIX IV. SUPPLEMENTAL MATERIAL830

Sections SM1–SM5, including Figs. SM1–SM8 and Tables SM1–SM5, are available online in831

the ASCE Library (ascelibrary.org) as a companion to this paper.832
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TABLE 1: Scale factors, significance levels and thresholds for different model falsification ap-
proaches and error control control criterion. 𝜙 is the specified target identification probability, and
𝑁𝑚 is the number of measurements

Error
control

Error domain (ED) Likelihood domain (LD)
Notation 𝑟𝑖 𝜅 Notation 𝛼𝑖 𝜅

FWER/Šidák 𝑓ES 1 𝜙1/𝑁m 𝑓LS 1 − 𝜙1/𝑁m
Eq. (11)FDR/BH 𝑓EB 𝑁𝑚/𝑖 𝜙 𝑓LB (1 − 𝜙)𝑖/𝑁m
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TABLE 2: Relative error in the parameter estimates of the cubic-quintic system obtained using
model falsified ABC with different model falsifiers and the associated COV (given in parentheses).
The reported estimates are averages across ten independent runs

Parameter Falsifier
𝑓ES 𝑓ES 𝑓LS 𝑓LB

𝑚 0.012 (0.073) 0.014 (0.067) 0.039 (0.102) 0.009 (0.087)
𝑐 0.819 (0.572) 0.612 (0.583) 1.198 (0.654) 1.072 (0.613)
𝑘 0.020 (0.216) 0.023 (0.220) 0.110 (0.352) 0.106 (0.299)
𝑘3 0.668 (0.607) 0.662 (0.577) 1.535 (0.628) 1.113 (0.602)
𝑘5 0.083 (0.244) 0.097 (0.238) 0.081 (0.447) 0.082 (0.412)
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TABLE 3: Comparison of the normalized RMSE of the predicted response from the model
identified using model falsified ABC with different falsifiers, and the total number of model
simulations necessary for the inference. The average across ten independent runs is reported

Falsifier Normalized RMSE for different excitations Total
simulationsRandom Gaussian 𝑤(𝑡) Harmonic 𝑤̃(𝑡)

𝑓ES 0.001 0.001 2.47 × 106

𝑓EB 0.001 0.001 2.38 × 106

𝑓LS 0.003 0.004 1.66 × 105

𝑓LB 0.004 0.003 2.37 × 105
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TABLE 4: Relative error in the parameter estimates of the cubic-quintic system obtained using
model falsified GABC with different kernels and the associated COV (given in parenthesis). The
reported estimates for kernel 𝑘ES and 𝑘EB are averages across ten independent runs.

Parameter Kernel
𝑘ES 𝑘ES 𝑘L

𝑚 0.006 (0.065) 0.003 (0.066) 0.024 (0.035)
𝑐 0.676 (0.541) 0.660 (0.550) 0.185 (0.368)
𝑘 0.023 (0.130) 0.031 (0.204) 0.020 (0.130)
𝑘3 0.463 (0.594) 0.565 (0.598) 0.644 (0.382)
𝑘5 0.096 (0.232) 0.107 (0.249) 0.133 (0.192)
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TABLE 5: Comparison of the normalized RMSE of the predicted reponse from the posterior mean
of the system parameters obtained from different kernels and the total number of model simulations
necessary for the inference. The average across ten independent runs is reported for kernels 𝑘ES
and 𝑘EB

Falsifier
or Kernel

Normalized RMSE for different excitations Total
simulationsRandom Gaussian Harmonic

𝑘ES 0.001 0.001 5.34 × 107

𝑘EB 0.006 0.002 1.73 × 107

𝑘L 0.027 0.056 > 108
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TABLE 6: Parameter priors for different model classes. Note that 𝑋 ∼ logN(𝜇, 𝜎2) means
that the random variable 𝑋 is log-normally distributed with mean 𝜇 and variance 𝜎2. Similarly,
𝑋 ∼ U(𝑎, 𝑏) means that the random variable 𝑋 is uniformly distributed between 𝑎 and 𝑏

Parameter True value Prior
𝑘post 4.0 MN/m logN (4.5,0.25) MN/m
𝑐b 20 KN·s/m2 logN (20,4) KN·s/m2

𝑟k 0.1667 U(0.15, 0.17)
𝑟d N/A U(2.0, 3.0)
𝑄y (%𝑚𝑔) 5.00 U(4.25, 5.25)
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TABLE 7: Relative error of the posterior mean of the Bouc-Wen model class parameters, and the
associated COV (given in parenthesis), obtained using model falsified ABC with different model
falsifiers when 𝜙 = 0.90

Parameter Falsifier
𝑓ES 𝑓ES 𝑓LS 𝑓LB

𝑘post (MN/m) 0.082 (0.042) 0.082 (0.041) 0.106 (0.047) 0.100 (0.047)
𝑐b (kN·s/m) 0.247 (0.199) 0.246 (0.199) 0.251 (0.204) 0.250 (0.202)

𝑟k 0.026 (0.031) 0.024 (0.031) 0.032 (0.037) 0.032 (0.037)
𝑄y (%𝑚𝑔) 0.079 (0.047) 0.079 (0.049) 0.060 (0.059) 0.059 (0.060)
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TABLE 8: Normalized RMSE between true response and the ABC posterior mean response for
different falsifiers with 𝜙 = 0.90. Note that the measured responses were from the El Centro
earthquake

Falsifier Absolute base acceleration Absolute peak base acceleration
El Centro Ridgecrest El Centro Ridgecrest

𝑓ES 0.115 0.202 0.035 0.048
𝑓EB 0.112 0.198 0.034 0.047
𝑓LS 0.150 0.248 0.045 0.047
𝑓LB 0.156 0.256 0.047 0.048
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TABLE 9: Relative error of the posterior mean of the Bouc-Wen model class parameters, and the
associated COV (given in parenthesis), obtained using model falsified GABC with different kernels

Parameter Kernel
𝑘ES 𝑘ES 𝑘L

𝑘post (MN/m) 0.060 (0.036) 0.070 (0.040) 0.004 (0.015)
𝑐b (kN·s/m) 0.231 (0.207) 0.249 (0.196) 0.253 (0.191)

𝑟k 0.016 (0.024) 0.019 (0.031) 0.004 (0.012)
𝑄y (%𝑚𝑔) 0.059 (0.042) 0.070 (0.047) 0.007 (0.008)
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TABLE 10: Normalized RMSE between true response and the model falsified GABC approximate
posterior predictive mean response for different falsifiers with 𝜙 = 0.99. The measurements are
recorded when the structure is excited by the El Centro earthquake excitation

Falsifier Absolute Base acceleration Peak absolute base acceleration
El Centro Ridgecrest El Centro Ridgecrest

𝑘ES 0.084 0.154 0.025 0.034
𝑘𝐵 0.095 0.172 0.029 0.040
𝑘𝐿 0.008 0.008 0.002 0.002
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TABLE 11: Relative error in the Nadaraya-Watson estimates of the parameters of the base isolated
structure obtained using different kernels

Parameter Kernel
𝑘ES 𝑘ES 𝑘L

𝑘post (MN/m) 0.096 0.078 0.124
𝑐b (kN·s/m) 0.239 0.248 0.244

𝑟k 0.035 0.025 0.041
𝑄y (%𝑚𝑔) 0.085 0.077 0.046
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TABLE 12: Normalized RMSE between true response and the Nadaraya-Watson estimator com-
puted using different kernels. Note that measurements were recorded when the structure was excited
using the El Centro earthquake

Falsifier Base acceleration Absolute peak base acceleration
El Centro Ridgecrest El Centro Ridgecrest

𝑘ES 0.082 0.153 0.025 0.034
𝑘EB 0.093 0.174 0.028 0.041
𝑘L 0.007 0.007 0.001 1 × 10-4
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FIG. 1: Plot of different discrepancy metrics as functions of 𝜖 assuming 𝜖 ∼ N(0, 1)
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FIG. 2: Plot of different discrepancy metrics as functions of 𝜖𝜖𝜖 = [𝜖1, 𝜖2]T assuming 𝜖1, 𝜖2 ∼ N(0, 1).
Note that under Assumptions 1 and 2, as is the case here, 𝑓LS = 𝑓LB

60 Dasgupta, September 13, 2023



-4 -2 0 2 4

0

0

0.5

1

k
E
S

-4 -2 0 2 4

0

0

0.5

1

k
L

<0 = 1:00
<0 = 0:50
<0 = 0:01
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FIG. 4: Plot of different kernels as functions of 𝜖𝜖𝜖 = [𝜖1, 𝜖2]T in two dimensions assuming 𝜖1, 𝜖2 ∼
N(0, 1). The kernels are appropriately constrained with 𝜙 = 0.90
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ẍg

x1

x2

x3

_1
2k1, _12c1

_1
2k1, _12c1

m1

m2

m3

_1
2k2, _12c2

_1
2k2, _12c2

_1
2k3, _12c3

_1
2k3, _12c3

(a)

restoring force
(fb – cbxb)˙

base
drift

xb

Qy

xy xd

keq
AASHTO

kpost

kpre

Bouc-Wen

Bilinear

AASHTO

(b)

FIG. 15: (a) Shear frame super-structure of the base isolated structure (b) Representative force
displacement behavior of various model classes for the base isolation device. Both figures have
been adapted from (De et al. 2018)

73 Dasgupta, September 13, 2023



-0.1 -0.05 0 0.05 0.1 0.15

xb(t) [m]

-1

-0.5

0

0.5

1

z
(t

)

(a)

0 5 10 15 20 25 30

t [s]

-30

-20

-10

0

10

20

30

Bx
a b
(t

)
[m

/
s2

]

True Measured

(b)

FIG. 16: Time histories of (a) the evolutionary variable 𝑧(𝑡) showing hysteretic behavior of the
isolation layer and (b) the absolute base acceleration of the base isolated structure excited by the
N–S El Centro ground motion

74 Dasgupta, September 13, 2023



fES

M1 M2 M3 M4 M5 M6

0

0.5

1

P
A

B
C
(M

k
jd

)

fEB

M1 M2 M3 M4 M5 M6

0

0.5

1

P
A

B
C
(M

k
jd

)

fLS

M1 M2 M3 M4 M5 M6

0

0.5

1

P
A

B
C
(M

k
jd

)

fLB

M1 M2 M3 M4 M5 M6

0

0.5

1

P
A

B
C
(M

k
jd

)

? = 0:99 ? = 0:95 ? = 0:90

FIG. 17: Posterior model class probabilities using model falsified ABC with different falsifiers and
target identification probabilities 𝜙

75 Dasgupta, September 13, 2023



0 5 10 15 20 25 30

t [s]

-40

-30

-20

-10

0

10

20

30

40

B̂x
a b
(t

)
[m

/
s2

]

True response

fES

fEB

fLS

fLB

(a) El Centro earthquake excitation

0 10 20 30 40 50 60 70 80 90 100

t [s]

-40

-30

-20

-10

0

10

20

30

40

B̂x
a b
(t
)
[m
/
s2
]

True response

fES
fEB
fLS
fLB

(b) Ridgecrest earthquake excitation

FIG. 18: Approximate posterior predicted mean absolute base acceleration of the base isolated
structure when subjected to (a) the El Centro earthquake and (b) the Ridgecrest earthquake base
excitations from model falsified ABC with different falsifiers and when the measurements were
recorded from the El Centro-excited structure

76 Dasgupta, September 13, 2023



0 2 4

Population t

10!4

10!2

100

P
(M

k
jd

)
M1

M2

M3

M4

M5

M6

𝑘ES

Population 𝑡

0 1 2 3

Population t

10!4

10!2

100

P
(M

k
jd

)

M1

M2

M3

M4

M5

M6

𝑘EB

Population 𝑡

0 5 10

Population t

10!4

10!2

100

P
(M

k
jd

)

M1

M2

M3

M4

M5

M6

𝑘L

Population 𝑡

FIG. 19: Posterior model class probabilities of model classes at different populations 𝑡 in the GABC
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Input: 𝑁 : number of samples required, 𝜅 : threshold
1 for 𝑡 = 1 to 𝑁 do
2 repeat
3 Generate candidate model 𝜽′ from prior distribution 𝜋(𝜽) ;
4 Simulate candidate model prediction realization y′ from 𝜋(𝒚 |𝜽′) ;
5 until 𝜌(y′, d) ≤ 𝜅;
6 Set (𝜽 (𝑡) , y(𝑡)) as (𝜽′, y′) ;
7 end

Output: 𝜽 (1) , 𝜽 (2) , . . . , 𝜽 (𝑁) , which are realizations from 𝜋ABC(𝜽 |d)

FIG. 20: Algorithm 1: Likelihood free rejection sampler for standard ABC
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Input: 𝑁 : number of samples required, 𝑘 : kernel function, 𝐶 ≥ maxy 𝑘 (y, d)
1 for 𝑡 = 1 to 𝑁 do
2 Generate candidate model 𝜽′ from prior distribution 𝜋(𝜽) ;
3 Simulate candidate model prediction realization y′ from 𝜋(𝒚 |𝜽′) ;
4 Draw 𝑢 ∼ U(0, 1) ;
5 if 𝑢 ≤ 𝑘 (y′, d)/𝐶 then set (𝜽 (𝑡) , y(𝑡)) as (𝜽′, y′);
6 else Go to Step 2 ;
7 end

Output: 𝜽 (1) , 𝜽 (2) , . . . , 𝜽 (𝑁) , which are realizations from 𝜋GABC(𝜽 |d)

FIG. 21: Algorithm 2: Likelihood free rejection sampler for generalized ABC
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Input: ℳ = {M1,M2, . . . ,M𝐾} : 𝐾 competing model classes
P(M𝑘 ) : model class priors
𝜋(𝜽 𝑘 |M𝑘 ) : parameter priors for all model classes
𝜋(𝒚 |𝜽 𝑘 ,M𝑘 ) : forward model for model class M𝑘 ∀ 𝑘 = 1, . . . , 𝐾
𝑁 : number of particles
𝑁𝑡 : number of populations
𝜅1, 𝜅2, . . . , 𝜅𝑇 : thresholds for each population
𝐾𝑝,1 : parameter perturbation kernel for the first population

1 for 𝑡 = 0 to 𝑁𝑡 do
2 for 𝑖 = 1 to 𝑁 do
3 Select candidate model class M∗ = M𝑘 with probability P(M𝑘 ) ;
4 if 𝑡 = 0 then
5 Generate candidate model 𝜽∗ from prior distribution 𝜋(𝜽 |M∗) ;
6 else
7 repeat
8 Sample a candidate model 𝜽′ from the previous population’s subset{

𝜽 𝑘,𝑡−1
}

with weights 𝑤𝑘,𝑡−1 ;
9 Obtain the perturbed candidate model 𝜽∗ from 𝐾𝑝,𝑡 (𝜽 |𝜽′) ;

10 if 𝜋(𝜽∗ |M∗) = 0 then
11 Return to step 8 ;
12 else
13 Simulate candidate model prediction realization y∗ from 𝜋(𝒚 |𝜽∗,M∗) ;
14 end
15 until 𝜌(y∗, d) ≤ 𝜅𝑡 ;
16 end
17 Set the 𝑖th particle as M (𝑖)

𝑡 = M∗, 𝜽 (𝑖)
𝑡 = 𝜽∗ with weight 𝑤 (𝑖)

𝑡

18 end
19 Normalize the weights ∀ M𝑘 ∈ ℳ;
20 end

FIG. 22: Algorithm 3: Sequential ABC sampler (ABC-SMC) (Toni et al. 2009)
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FIG. 23: (a) Temperature values at different populations of the SMC algorithm and (b) correspond-
ing acceptance rates for the base isolated system
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Section S1. COMPARISON BETWEEN DIFFERENT FALSIFIERS

Fig. S1 compares the different falsifiers — 𝑓ES, 𝑓EB, 𝑓LS and 𝑓LB — in the two-dimensional

case of independent standard normal error residuals with a fixed value of the target identification

probability. Fig. S1 shows that the likelihood domain falsifiers are more conservative in falsifying

models (i.e., retains more models), as compared to the error domain falsifiers. Similarly, FWER

control with the Šidák correction is more conservative than FDR control with Benjamini-Hochberg

(BH) procedure. Interested readers can refer to (De et al. 2018) for a detailed analysis and

comparison of different falsifiers.

fES

fEB

fLS

fLB

ϵ1

ϵ2

FIG. S1: A comparison of the different falsifiers in two-dimensions for the same target identification
probability 𝜙. This figure has been adapted from (De et al. 2018)

Section S2. ADDITIONAL RESULTS FOR THE TOY EXAMPLE: EFFECT OF MODEL

MISSPECIFICATION

In the toy example, described in Section 5, we had assumed that the falsifiers are based on

correct models for the error residuals or, at least, the assumed distributions for the error residuals

are similar to the true one. However, that may not be the case and the residual error model may

be misspecified. Therefore, in this section, the error residuals are assumed to follow a Laplace

distribution, with zero mean and standard deviation 𝜎𝜖 , instead of assuming Gaussian distributions.

Fig. S2 shows the approximate posterior pdf obtained using different falsifiers at various levels

of target identification probability 𝜙 when the error residuals are assumed to Laplace distributed.

Fig. S3a & b show plots of the mean and COV of the approximate posterior pdf, respectively, as 𝜙

1
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FIG. S2: Approximate posterior pdf obtained using different falsifiers at different levels of 𝜙 when
the probabilistic model for the residual errors is misspecified
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FIG. S3: (a) Mean and (b) COV of the approximate posterior pdf of 𝜃 obtained from model falsified
ABC performed using different falsifiers as the target identification probability 𝜙 is varied, and
(c) Approximate posterior pdf obtained using GABC with different kernels when the probabilistic
model for the residual errors is misspecified

is decreased. The effect of this misspecfication is more pronounced at the higher values of 𝜙. Since

the Laplace distribution has heavier tails compared to a Gaussian distribution, more models are

unfalsified when the target identification probability is large, resulting in a very poor approximation

of the posterior pdf. Again, reducing 𝜙 can help improve the approximation of the posterior pdf.

The performance of model falsified GABC is also affected by the model misspecification. Fig. S3c

shows the approximate posterior pdf obtained using model falsified GABC performed using three

different kernels. For 𝑘ES, 𝑘EB and 𝑘L, the posterior mean is 0.9670, 0.9672 and 0.9675, and the
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posterior COV is 0.0029, 0.0030 and 0.0021, respectively. These estimates of 𝜃 are more erroneous

as compared to those that were obtained when the 𝜋𝐸𝑖
(𝑒𝑖) were correctly specified.

Section S3. ADDITIONAL RESULTS FOR THE PARAMETER INFERENCE EXAMPLE

OF A CUBIC-QUINTIC OSCILLATOR

Parameter inference using model falsified ABC

The evolution of the posterior mean of the different system parameters through the populations

of SMC for different falsifiers is shown in Fig. S4. The run that required the fewest number

of populations to reach the target threshold was selected for each falsifier. As the thresholds

monotonically decrease between successive populations, the posterior means also move toward the

true values, respectively. Fig. S4 offers empirical evidence in support of the consistency of model

falsified ABC. The detailed summary statistics of the approximate posterior distributions obtained

using model falsified ABC with different model falsifiers is given in Table S1.
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FIG. S4: Evolution of the posterior mean of the various parameters of the cubic-quintic system
through the populations of the SMC algorithm. The the true values of the parameters also shown
for reference
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TABLE S1: Summary of the posterior distribution for the parameters of the cubic-quintic system
obtained using model falsified ABC with different model falsifiers. The reported estimates are
averages across 10 independent runs

Parameter Falsifier Summary of the posterior distribution Relative
errorMean COV [5th, 95th] percentile

𝑚

𝑓ES 1.011 0.073 [0.884, 1.123] 0.012
𝑓EB 1.012 0.067 [0.891, 1.101] 0.014
𝑓LS 1.039 0.102 [0.848, 1.175] 0.039
𝑓LB 1.006 0.087 [0.857, 1.160] 0.009

𝑐

𝑓ES 0.091 0.572 [0.018, 0.184] 0.819
𝑓EB 0.081 0.583 [0.016, 0.167] 0.612
𝑓LS 0.110 0.654 [0.017, 0.245] 1.198
𝑓LB 0.104 0.613 [0.016, 0.216] 1.072

𝑘

𝑓ES 48.980 0.216 [30.220, 65.129] 0.020
𝑓EB 48.856 0.220 [29.197, 64.771] 0.023
𝑓LS 44.487 0.352 [15.667, 68.351] 0.110
𝑓LB 44.724 0.299 [20.348, 65.168] 0.106

𝑘3

𝑓ES 1.67 × 103 0.607 [0.26 × 103, 3.59 × 103] 0.668
𝑓EB 1.66 × 103 0.577 [0.32 × 103, 3.42 × 103] 0.662
𝑓LS 2.54 × 103 0.628 [0.35 × 103, 5.47 × 103] 1.535
𝑓LB 2.11 × 103 0.602 [0.31 × 103, 4.40 × 103] 1.113

𝑘5

𝑓ES 0.92 × 105 0.244 [0.51 × 105, 1.33 × 105] 0.083
𝑓EB 0.90 × 105 0.238 [0.51 × 105, 1.29 × 105] 0.097
𝑓LS 1.07 × 105 0.447 [0.30 × 105, 1.97 × 105] 0.081
𝑓LB 0.92 × 105 0.412 [0.33 × 105, 1.56 × 105] 0.082

Parameter inference using model falsified GABC

The detailed summary statistics of the approximate posterior distributions obtained using model

falsified GABC with different kernels is given in Table S2.

Section S4. ADDITIONAL RESULTS FOR THE MODEL SELECTION EXAMPLE OF A

FOUR DEGREE-OF-FREEDOM BASE ISOLATED STRUCTURE

Model class selection using model falsified ABC

The detailed summary statistics of the parameters of the Bouc-Wen model class obtained using

model falsified ABC with different falsifiers is given in Table S3. The corresponding approximate

posterior pdfs are shown in Fig. S5.

4



TABLE S2: Summary of the posterior distribution for the parameters of the cubic-quintic system
obtained using model falsified GABC with different kernels and the associated COV given in
brackets. The reported estimates for kernel 𝑘ES and 𝑘EB are averages across 10 independent runs.

Parameter Kernel Summary of the posterior distribution Relative
errorMean COV [5th, 95th] percentile

𝑚

𝑘ES 0.994 0.065 [0.882, 1.094] 0.006
𝑘EB 0.997 0.066 [0.884, 1.100] 0.003
𝑘L 1.022 0.035 [0.964, 1.077] 0.024

𝑐

𝑘ES 0.084 0.541 [0.016, 0.162] 0.676
𝑘EB 0.083 0.550 [0.016, 0.163] 0.660
𝑘L 0.041 0.368 [0.015, 0.069] 0.185

𝑘

𝑘ES 48.836 0.196 [32.003, 63.426] 0.023
𝑘EB 48.446 0.204 [30.637, 63.524] 0.031
𝑘L 49.016 0.130 [38.654, 59.280] 0.020

𝑘3

𝑘ES 1.46 × 103 0.594 [0.25 × 103, 3.12 × 103] 0.463
𝑘EB 1.56 × 103 0.598 [0.26 × 103, 3.29 × 103] 0.565
𝑘L 1.64 × 103 0.382 [0.59 × 103, 2.58 × 103] 0.644

𝑘5

𝑘ES 0.90 × 105 0.232 [0.56 × 105, 1.25 × 105] 0.096
𝑘EB 0.83 × 105 0.249 [0.53 × 105, 1.27 × 105] 0.107
𝑘L 0.87 × 105 0.1922 [0.61 × 105, 1.15 × 105] 0.133
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FIG. S5: Approximate posterior pdf of the parameters of the Bouc-Wen model class obtained using
model falsified ABC with different falsifiers when 𝜙 = 0.90
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TABLE S3: Summary of the approximate posterior distribution of the Bouc-Wen model class
parameters obtained using model falsified ABC with different model falsifiers when 𝜙 = 0.90

Parameter Falsifier Summary of the posterior distribution Relative
errorMean Std. Dev. [5th, 95th] percentile

𝑘post (MN/m)
𝑓ES 4.331 0.181 [4.029, 4.631] 0.082
𝑓EB 4.327 0.177 [4.026, 4.616] 0.082
𝑓LS 4.423 0.210 [4.069, 4.769] 0.106
𝑓LB 4.402 0.206 [4.052, 4.735] 0.100

𝑐b (kN·s/m)
𝑓ES 24.939 4.976 [17.592, 34.212] 0.247
𝑓EB 24.911 4.976 [17.883, 33.377] 0.246
𝑓LS 25.015 5.093 [17.460, 33.863] 0.251
𝑓LB 25.008 5.054 [17.673, 33.798] 0.250

𝑟k

𝑓ES 0.1623 0.005 [0.1526, 0.1693] 0.026
𝑓EB 0.1627 0.005 [0.1531, 0.1694] 0.024
𝑓LS 0.1613 0.006 [0.1516, 0.1692] 0.032
𝑓LB 0.1613 0.006 [0.1515, 0.1693] 0.032

𝑄y (%𝑚𝑔)
𝑓ES 4.603 0.218 [4.290, 5.001] 0.079
𝑓EB 4.605 0.227 [4.290, 5.025] 0.079
𝑓LS 4.700 0.279 [4.289, 5.178] 0.060
𝑓LB 4.703 0.282 [4.292, 5.178] 0.059

Model class selection using model falsified GABC

The detailed summary statistics of the parameters of the Bouc-Wen model class obtained

using model falsified GABC with different kernels is provided in Table S4. The corresponding

approximate posterior pdfs are shown in Fig. S6. Figs. S7a and S7b show the approximate posterior

predicted mean absolute base acceleration obtained using model falsified GABC with different

kernels under the El Centro and Ridgecrest earthquake excitations, respectively.

Section S5. ADDITIONAL RESULTS FOR MODEL FALSIFIER BASED KERNEL

REGRESSION

The Nadaraya-Watson estimates for the parameters of the four degree-of-freedom base isolated

structure and their relative errors are provided in Table S5. Figs. S8a and S8b show the Nadaraya-

Watson estimate for the base absolute acceleration of the four degree-of-freedom base isolated

structure under the El Centro and Ridgecrest earthquake excitations, respectively.
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TABLE S4: Parameter estimates of the base isolated structure using the GABC approach with
different kernels

Parameter Kernel Summary of the posterior distribution Relative
errorMean Std. Dev. [5th, 95th] percentile

𝑘post (MN/m)
𝑘ES 4.241 0.152 [3.995, 4.502] 0.060
𝑘𝐵 4.281 0.172 [3.999, 4.558] 0.070
𝑘L 3.986 0.061 [3.878, 4.075] 0.004

𝑐b (kN·s/m)
𝑘ES 24.621 5.096 [17.061, 33.566] 0.231
𝑘𝐵 24.970 4.885 [17.710, 33.992] 0.249
𝑘L 25.058 4.781 [17.933, 33.172] 0.253

𝑟k

𝑘ES 0.1641 0.004 [0.1554, 0.1696] 0.016
𝑘𝐵 0.1635 0.005 [0.1541, 0.1695] 0.019
𝑘L 0.1661 0.002 [0.1618, 0.1696] 0.004

𝑄y (%𝑚𝑔)
𝑘ES 4.704 0.196 [4.380, 5.0270] 0.059
𝑘𝐵 4.649 0.219 [4.317, 5.052] 0.070
𝑘L 5.034 0.042 [4.967, 5.106] 0.007

TABLE S5: Nadaraya-Watson estimates of the parameters of the base isolated structure obtained
using different kernels

Parameter Kernel Estimate Relative Error

𝑘post (MN/m)
𝑘ES 4.382 0.096
𝑘EB 4.315 0.078
𝑘L 4.497 0.124

𝑐b (kN·s/m)
𝑘ES 24.795 0.239
𝑘EB 24.963 0.248
𝑘L 24.886 0.244

𝑟k

𝑘ES 0.1608 0.035
𝑘EB 0.1625 0.025
𝑘L 0.1599 0.041

𝑄y (%𝑚𝑔)
𝑘ES 4.573 0.085
𝑘EB 4.617 0.077
𝑘L 4.772 0.046
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FIG. S6: Approximate posterior pdf of the parameters of the base isolated structure obtained using
model falsified GABC with different kernels
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FIG. S7: Approximate posterior predicted mean base absolute acceleration of the base isolated
structure under different ground motion excitations from model falsified GABC with different
kernels. The measurements are recorded when the structure is excited by the El Centro earthquake
excitation
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FIG. S8: Nadaraya-Watson estimator for the base absolute acceleration of the base isolated structure
under different ground motion excitations computed using different kernels. The measurements are
recorded when the structure is excited by the El Centro earthquake excitation
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