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ABSTRACT

The objective of this work is to provide a Bayesian re-interpretation to model falsification.
We show that model falsification can be viewed as an approximate Bayesian computation (ABC)
approach when hypotheses (models) are sampled from a prior. To achieve this, we recast model
falsifiers as discrepancy metrics and density kernels such that they may be adopted within ABC
and generalized ABC (GABC) methods. We call the resulting frameworks model falsified ABC
and GABC, respectively. Moreover, as a result of our reinterpretation, the set of unfalsified
models can be shown to be realizations of an approximate posterior. We consider both error and
likelihood domain model falsification in our exposition. Model falsified (G)ABC is used to tackle
two practical inverse problems albeit with synthetic measurements. The first type of problem
concerns parameter estimation and includes applications of ABC to the inference of a statistical
model where the likelihood can be difficult to compute, and the identification of a cubic-quintic
dynamical system. The second type of example involves model selection for the base isolation

system of a four degree-of-freedom base isolated structure. The performance of model falsified
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ABC and GABC are compared with Bayesian inference. The results show that model falsified
(G)ABC can be used to solve inverse problems in a computationally efficient manner. The results
are also used to compare the various falsifiers in their capability of approximating the posterior and
some of its important statistics. Further, we show that model falsifier based density kernels can
be used in kernel regression to infer unknown model parameters and compute structural responses

under epistemic uncertainty.

INTRODUCTION

Model falsification is a simulation-based inference approach that is based on the Popperian
notion of falsifiability: any hypothesis unable to predict observations must be rejected. The basic
idea behind model falsification is to find useful models by comparing simulations from each model
against the available measurements. There are two different approaches for model falsification —
error domain and likelihood domain model falsification. The error domain model falsification,
which is a likelihood-free approach, was developed by Goulet et al. (2010). In error domain model
falsification, models are falsified if the difference between the predictions and the measurements
exceed bounds that are derived after accounting for uncertainty arising from different sources.
Error domain model falsification has been used for system identification (Goulet and Smith 2013b;
Pasquier and Smith 2015) and in many other applications (Goulet et al. 2013; Goulet and Smith
2013a; Moser et al. 2018; Pai et al. 2018). Likelihood domain model falsification was proposed
by De et al. (2018) and draws on ideas from the generalized likelihood uncertainty estimation
(GLUE) methods (Beven 1993; Beven and Freer 2001; Beven 2011). In the likelihood domain,
models are falsified based on the likelihood value of their prediction errors. It must be stressed
here that the likelihood values may even be computed based on an assumed probability density
for the prediction errors. Regardless of the falsification methodology adopted, model falsification
appears to be a frequentist approach to inference since hypothesis testing lies at its core. Every
model (or hypothesis) is rejected or accepted based on its merit (the capability to predict what has
been observed) as controlled via a target identification probability. The unfalsified models form

a candidate set (Goulet and Smith 2013b; De et al. 2018) that can be considered to comprise the
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solutions to the inverse problem at hand.

The debate on differences and similarities between Bayesian and frequentist approaches to
inference has been on-going; see, for instance, (Freedman 1997; Freedman and Stark 2003; Stark
and Tenorio 2010; Milne 1995; Rosenkrantz 1977). In fact, error domain model falsification is
similar to Bayesian inference with a modified likelihood (Pai and Smith 2017; Pai et al. 2018).
Similarly, Sadegh and Vrugt (2013) have discussed similarities between the GLUE approach and
ABC. Our work was motivated by these suggestions of similarity between model falsification, and
similar inference approaches, and Bayesian inference. However, one difference that we need to
note at the outset is the necessity of defining a prior. Consider the inference of a parameter 6.
Bayesian inference requires that a prior probability density 7 () be specified (Evans and Stark 2002);
the prior represents subjective knowledge of the various hypotheses. On the other hand, model
falsification does not require that a prior probability density be specified: specifying 6 € €, such
that one can sample from €, may be sufficient for model falsification. However, in practice, models
are conveniently sampled from a prior density and subsequently subject to falsification (De et al.
2018). This has, in particular, enabled the application of falsification to high-dimensional problems
involving multiple random variables. The specification of a prior has also been a convenient way
of introducing subjective information, which is at the very least a non-informative (a uniform prior
over Q), within model falsification. This approach of sampling models from a prior and subjecting
them to model falsification, as we shall reveal, resembles approximate Bayesian computation (ABC)
where the falsifier (defined later) plays the role of a discrepancy metric.

ABC is also a simulation-based inference method commonly used when the likelihood function
is either unavailable or difficult to compute. Beaumont et al. (2002) is credited with coining the term
approximate Bayesian computation, although the ideas behind ABC predates them (Rubin 1984;
Tavaré et al. 1997; Pritchard et al. 1999). Briefly, ABC methods sidestep the likelihood function by
simulating predictions from different parameters of a model class, and accepting them if, according
to some discrepancy metric, simulations match the observed data. ABC methods have been applied

in civil engineering for model selection and/or parameter estimation of dynamical systems (Toni
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et al. 2009; Abdessalem et al. 2018; Abdessalem et al. 2019; Chiachio et al. 2014; Vakilzadeh et al.
2017; Barros et al. 2022), estimating the parameters of degradation processes (Hazra et al. 2020
Hazra and Pandey 2021), damage detection (Fang et al. 2019), and the calibration of hydrological
models (Vrugt and Sadegh 2013). A further class of methods known as generalized ABC (GABC),
first proposed by Wilkinson (2014), uses density kernels, instead of discrepancy metrics, to assess
the similarity of model predictions and measurements.

We argue that model falsification is nothing but ABC by showing that the methodology of
model falsification resembles rejection sampling based ABC, and refer to it as model falsified
ABC. Incorporated within model falsified ABC is a model falsifier acting as a discrepancy metric.
Building on our preliminary study (Dasgupta and Johnson 2022), our presentation is fairly general
as we show this for four different types of model falsifiers that are representative of the wide
gamut of falsifiers; other falsifiers not covered herein can also be easily used. We also show that
model falsifiers can be recast as density kernels, and introduce model falsified GABC that makes
use of these kernels. Further, we show that the set of unfalsified models are realizations drawn
from the approximate posterior distribution, formally providing a Bayesian perspective on model
falsification. Moreover, the ratio of unfalsified models from different model classes can be shown to
approximate the posterior probability of the respective model classes. The re-purposing of falsifiers
as kernels further allows for their use in kernel regression (Wasserman 2006). We show that kernel
regression can be performed using density kernels based on model falsifiers while exploiting
Nadaraya-Watson estimates (Wasserman 2006; Blum 2010). We use model falsification based
kernel regression for non-parametric inference of unknown parameters, and response prediction
when the true model class is unknown.

The remainder of the paper is organized as follows. In Section 2, Bayesian inference and ABC
are reviewed very briefly, and a background on model falsification is provided in modest detail.
Various falsifiers are also introduced in Section 2. In Section 3, we recast falsifiers as discrepancy
metrics and density kernels, and discuss some of their properties. In Section 4, we make the formal

connection between model falsification and ABC and introduce model falsified ABC and GABC;
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for brevity, we refer to these two approaches together as model falsified (G)ABC. Next, model
falsified (G)ABC is applied to two types of inverse problems in Sections 5 and 6. In Section 5,
model falsified (G)ABC is applied to parameter inference problems; two examples are considered
— a toy example and a dynamical system. In Section 6, the behavior of a base isolated building
modeled as a four degree-of-freedom system is inferred using model falsified (G)ABC. In Section 7,
kernel regression using falsifiers is introduced and applied to parameter estimation and response
prediction. We discuss some implications of this work and future research directions in Section 8§,

and conclude the paper in Section 9.

BACKGROUND ON DIFFERENT APPROACHES FOR INVERSE PROBLEMS INVOLVING
PARAMETER ESTIMATION

The goal of any parameter estimation problem is to infer the unknown parameter § € @ C RV¢
of a parameterized model class M using noisy measurements d € D C RV=. A realization of 6 is
often called a model. Corresponding to the measurements d, a prediction y € © from the model

is a realization of the random variable y drawn from the distribution 7 (y |8, M).

Bayesian Inference
In Bayesian inference (BI), prior belief (or knowledge) about € is updated using the observations
d to obtain the posterior belief about 8. The prior probability density function (pdf), noise model

and posterior pdf are denoted as 7 (0| M), n(d|y, 8, M) and 7(6|d), respectively. Further, let
o M) = [ x(dly. 0. (31600 dy M)

be the likelihood function. Bayes’ theorem tells us that 7(6|d, M) o« £(d|0@, M)n(6|M). Thus,
Bayes’ theorem helps characterize all possible solutions to the inverse problem using the posterior
pdf 7(0|d, M), which also reflects the relative plausibility of different solutions. Herein, the

conditional dependence on model class M is suppressed for notational simplicity.
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Approximate Bayesian Computation

The likelihood function ¢ may be unknown or intractable, which can make evaluations of the
posterior pdf challenging. ABC methods were developed to overcome this difficulty. The basic
idea is to evaluate the joint posterior 7(6, y|d) and then marginalize over y. Using Bayes’ theorem
again,

7(0,y|d) e 7(d|6, y)7(y|0)7(6), 2

from which it follows that 7(6|d) = /:D n(6,y|d) dy. Setting n(d|0,y) = Z4,(y), where I is the
indicator function of the set B and Agq = {y € D|y = d}, yields the posterior pdf 7(#|d). However,
the criteria y = d is infeasible in a continuous setting. ABC methods circumvent this by using

n(dl@,y) = Ig,4(y), instead of Z4,(y), where « is now a tolerance parameter or threshold, and

Aa(y) ={y € Dlp(y,d) < «}. 3)

The function p(-,-) is a metric for the discrepancy or degree of dissimilarity between model
predictions y and measurements d, and usually satisfies the property that p(y,d) — Oasy — d.

Eq. (3) leads to the joint pdf

nagc(0,yld) o Ia, ,(y)7(y|0)7(6) 4)

which, after marginalization, ultimately yields an approximate posterior pdf

rapc(81d) « 7(6) /D 7(316) Zn, o () dy = Py € Aca) 7(8). 5)

Samples can be drawn from the approximate posterior pdf mapc (8, y|d) using the likelihood free
rejection sampler described in Algorithm 1 (Sisson et al. 2018, Chapter 1) in Appendix I, and the
marginalization of Eq. (5) can be performed by retaining only the # components of the generated
samples. Note that mapc(€|d) and 7(#|d) are one and the same when « = 0, meaning that the

marginal distribution of the parameter @ in samples drawn using Algorithm 1 with x = 0 is the true
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posterior pdf 7(6|d).

Accept/reject conditions like Eq. (3) do not utilize the degree of similarity between model
predictions and measurements. With the view of utilizing that information, Wilkinson (2014)
proposed GABC, where the indicator function 74, ,(y) is replaced by a density kernel k(y, d). The
resultant joint posterior pdf is given as mapc(€, y|d) « k(y,d)7(y|0@)n(0), and the approximate

posterior pdf is

rapc(0]d) o { [D k(y.d)n(y]6) dy} (). ©)

aBc(d])
Let b be the bandwidth of the kernel k; as the bandwidth b of the kernel k approaches zero, k
starts to resemble a Dirac-delta function; i.e., k(y,d) — dq(y) as b — 0, where d4(-) is the Dirac
delta function centered around d. As a result, 7apc(€|d) — n(0|d) as b — 0. The rejection
ABC method of Algorithm 1 is a special case of the GABC method wherein a uniform kernel is
used (Sisson et al. 2018). The GABC approach can also be considered Bayesian inference using
the approximate likelihood {ppc. Realizations can be drawn from the approximate posterior using

rejection sampling; see Algorithm 2 in Appendix I (Wilkinson 2013).

Model Falsification

Model falsification compares the model predictions to the observations d and accepts or rejects
models, with all accepted (or unfalsified) models considered to be candidates for the solution to
the inverse problem. The decision to falsify or unfalsify a model is made using a model falsifier
function, denoted herein as f. Therefore, falsifiers are natural candidates for quantifying the degree
of similarity between model predictions and measurements. A prediction y from a model 6 is

unfalsified by f when

f(y’ d) < Kp, (7)

where the falsifier f and the threshold k4 depend on the model falsification approach and error control
criteria adopted to falsify models, and the latter depends on the target identification probability

¢. We consider two model falsification approaches: error domain and likelihood domain model
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falsification and use the subscripts E and L, respectively, to denote the respective falsifiers and
their corresponding thresholds. Error control criteria that have been used for model falsification
include the family wise error rate (FWER) and the false discovery rate (FDR); as the FWER is
usually controlled using the Sidak correction (Abdi 2007), while the FDR is controlled using the
Benjamini-Hochberg (BH) procedure (Benjamini and Hochberg 1995), we will use the subscripts
S and B to denote Siddk and BH corrections, respectively. Thus, four subscripts on f and « are
used to denote the resulting cases: ES, EB, LS and LB. Irrespective of the falsification approach
adopted, the model falsifier f is also a function of the error residual vector € =y — d, which is the
difference between model predictions and observations. Therefore, model falsifiers f(.) can also be
expressed as a function of €; i.e., f(,)(y,d) = f,(y —d) =1 (€).

For model falsification, the pdf of the components of the error residuals must be specified. Let
€ = y; — d; be the it component of the error residual vector €, and 7g,(e;) be the pdf associated
with ¢, where E; is the random variable corresponding to € and e; is the value ¢ assumes. The
7, (e;) are generally chosen based on the measurement process. Moreover, the target identification
probability ¢ also must be chosen a priori and directly controls the type I and type II errors made

by the falsifiers (De et al. 2018).

Error domain model falsification
In error domain model falsification, the model falsifier fg(.) — where (-) denotes one of the
error control criteria — can be expressed as the composition of three functions; i.e., fg()(y,d) =

£ () (fiy. d))). First, the i'™ component of p = fi(y, d) is computed using

p,-:zmin{ [ mntender. [ nEi(e,-)de,-}. ®)
.

p is the vector of p-values corresponding to the prediction y. Second, p = f> .)(p) orders the
p-values (p(M) = pj < p? = Pj, < ..., where j; € {1,2,...,Ny,} and j; # ji fori # k) and
scales them as p; = r; () p(i). The scaling factors r; depend on the error control criteria used. Third,

f3(P) = 1 —min;—;__y, pi- The scaling factors and the thresholds for different model falsifiers in
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the error domain with different error control criteria are provided in Table 1.

Likelihood domain model falsification
Despite its name, likelihood domain model falsification does not require access to the true
likelihood function necessary for Bayesian inference. Instead, models are falsified directly based

on the likelihood of observing € as computed using the ng, (e;). The falsifier fi () is defined as,

Nm
fup=1-c¢q l_[ﬂE,-(Ei) )
i=1

where c(-) is a constant that is defined later. In the likelihood domain model falsification approach,
KL(-),¢ 1s an implicit function of ¢ and can be chosen based on bounds for the residual errors €;.
Given a significance level a; for the i™ error residue €;, upper and lower error bounds €, and € can

be computed from the following equation:

@; & ®
EL = / JTE[(ei)dei = / ﬂEi(ei)dezW (10)
—00 €;

1

The significance level a; depends on the error control criteria and correction being used; see Table 1.

Now, the threshold in the likelihood domain can be chosen as follows,

E<€ <€

KLy =1 —c()g n min_ 7g, (e;). (11
i=

In Egs. (9) and (11), ¢ R ) 6= Hfi ' MaXe <¢;<¢ 7E;(€;) is the normalizing factor that also depends

on the error control criteria being used. However, simplifying Eqs. (7), (9) and (11) results in

—]_[nE (e,)<—]—[ min_ 7, (). (12)

where the left-hand-side of the inequality does not depend on the error control criteria. Thus, fig

and fi g will be effectively the same when implemented as Eq. (12).
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RECASTING MODEL FALSIFIERS
In this section, we recast the model falsifiers first as discrepancy metrics and then as kernels.

At this point, we make two practical assumptions about the marginal pdfs ng, (e;):

Assumption 1: E[E;] =0Vi=1,...,Ny;i.e., the residual errors are zero mean distributed;

Assumption 2: 7, (e;) is symmetric about the mean.

Assumption 1 can be made without any loss in generality. Assumption 2 is stronger and places a
restriction on the type of distributions that can be used to statistically describe the error residuals.
Assumption 2 enforces the condition that the mean and median coincide. Both assumptions are
practically motivated, and are satisfied, for example, when the residues are zero-mean Gaussian
distributed (a popular choice if arguments based on the principal of maximum entropy are used) or

zero-mean Laplace distributed (when heavier tails are necessary).

As discrepancy metrics
In Eq. (7), model falsifiers have already been posed as discrepancy metrics, similar to ABC’s
Eq. (3). Additionally, due to the assumptions made above, all three falsifiers exhibit the following

two important properties:

1. fcy = 0 when y = d; ie., the functions assume the minimum value of zero when the

predictions match the measurements.

2. The falsifiers are non-decreasing functions of the error residual (some norm of € to be more

precise). For example, in the one dimensional case, f{.) is a non-decreasing function of |e].

Thus, model falsifiers are natural candidates for measures of discrepancy between predictions y
and data d.

Figs. 1 and 2 show plots of the different falsifiers in one and two dimensions, respectively, where
the error residuals are assumed to be independent standard normal variables. From Fig. 1, it can
be seen that fgs and fgp are one and the same, but different from fj (). However, the functions are

all different from each other in higher dimensions, as shown in Fig. 2. Also note that, fgg = 0 not
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only at (0, 0), but also along both coordinate axes. For example, for standard normal distributed
error residues, any model @ with error residuals €; = 1 and |e;| < 0.6745 (or vice versa) will also
result in fgg = 0. However, both fgs and fi () are zeros if and only if y = d.

For the same value of the target identification probability, and independent standard normal
distributed error resdiuals in two-dimensions, a comparison between the various falsifiers is shown
in Fig. SM1 that can be found in Section SM1 of the Supplemental Material (described in Ap-
pendix IV) and also in (Dasgupta 2023). Falsifiers employing the Siddk correction are more
conservative compared to falsifiers based on FDR control because the BH correction causes more
models to be falsified at the same value of ¢ (De et al. 2018). Similarly, likelihood domain falsifiers

are more conservative compared to their error domain counterparts (De et al. 2018).

As kernels
Model falsifiers can also be converted into density kernels. For a specified value of ¢, error
control criterion and model falsification method, let k(.) be the kernel corresponding to the falsifier

f()- We define kg, as

1—fg (y,d .
fli/(E)(F)y ) lffE(-)(Ya d) < KE(-),¢
ki) (y,d) = (13)
0 otherwise,
and kL(.) as
1= fL(y.d)
kL() (y’ d) = #, (14)

Vie

where V() is a kernel specific constant which ensures that / ky(y,d) dy = 1, but V() need not be
computed for the purposes of numerical implementation. From Eq. (13), kg(.) evaluates to zero if
the model @ is to be falsified based on the prediction y. This means that kernels of type kg(.) have
a compact support. The kernels of type k1) do need to be assigned a compact support, although a
compact support can be assigned in a manner very similar to Eq. (13). Effectively, k1 s = k1 (the
constant c(.) 4 gets absorbed into Vi), and V1.5 = V1p), and we use k. to commonly denote them.

The reason we refrain from assigning the compact support will become clear in Section 4.
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In one dimension, the kernels kgg (which is equal to kgp in the one dimensional case) and kp .
are shown in Fig. 3. Fig. 4 shows plots of the different kernels in two dimensions where the error
residuals are again assumed to be standard normal distributed. In both plots, ¢ = 0.90 is chosen
to assign compact support to the kernels. For kernels with compact support, the bandwidth along
the i™ dimension is half the size of the interval over which k) # 0. Thus, the bandwidths of the
kernels in this case implicitly depend on the marginal distributions of the error residuals, and the
target identification probability ¢. The bandwidth will reduce if ¢ is reduced and/or the assumed

variance in the residual errors is reduced.

Validity of the kernels

Let k;:(.) (y,d) = {1 —fE(.)(y,d)} I[[fE(.)(y, d) < KE(.)’¢] = kg Ve() and k’L(.)(y, d =1-
L) = kiVie), where I[-] is the indicator function. Similar to f, k’ can be an also be
expressed as as a function of €; further, k = k’/V. Now, we will show that the kernels are indeed
valid kernels, which, for the purposes of GABC, need only satisfy / k(y,d) dy = 1 (Fearnhead and
Prangle 2012). First, note that the kernels are all bounded and non-negative over their respective

supports. For &’

E() non-negativity and boundedness follows from the the fact that p-values are

non-negative and bounded by 1; i.e., p; € [0,1] Vi € {1,2,...,N,}. For ki(_), non-negativity

’. .. has compact support around d.

E()

Therefore, kf«:(-) is measurable, since all closed subsets of RV» are measureable. Similarly, k’L(_)

must be integrable since the 7g, (e;) are integrable. Thus, k;-) is integrable (Durrett 2019) and it

follows that V() < co. Since k .y is nothing but a re-scaled version of kE.) with unit hyper-volume,

and boundedness stems from the pdfs g, (e;). Moreover, k

k. is a valid density kernel.

MODEL FALSIFIED ABC THROUGH A BAYESIAN REINTERPRETATION OF MODEL
FALSIFICATION
Fig. 5 shows the process of model falsification when the models are sampled according to a

prior; this process resembles the workflow of standard rejection sampling based ABC where the

12 Dasgupta, September 13, 2023



293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

falsifier plays the role of the discrepancy metric. Thus, the set of unfalsified models

0, = {0 | f)(y.d) < k()¢ Wherey ~ 7r(y|0)}, (15)

yields an approximation to the posterior pdf. The approximation will depend on the falsifier used,
the target identification probability and the marginal densities assumed to model the residual errors.

Let,

Apaly) = {y € Dlf(H(y,d) < K(.),¢} , (16)

be the set/region of predictions that are unfalsified by f.) for a specified target identification
probability ¢. Eq. (16) leads to an approximate posterior pdf, denoted herein as mapc(0|d), that

can be found using Eq. (4) as follows

maBc(0]d) o P(y € Ag.a)7(8). 7)

Eq. (17) provides a Bayesian interpretation to model falsification. More precisely, model falsifi-
cation is nothing but ABC performed with model falsifiers as discrepancy metrics and the set of
unfalsified models may be considered as realizations from an approximate posterior pdf. Herein,
we will refer to the schematic of Fig. 5 as model falsified ABC. In a similar vein, model falsified
GABC is performed using the kernels based on model falsifiers and is called herein model falsified

GABC.

Can the true posterior be recovered?

Consider falsifiers — like fgs, fis and fi g but not fgg — that satisfy the property f(y,d) =0
if and only if y = d. In such a case, the true posterior can theoretically be recovered by setting
the target identification probability to zero. In that case, Agq = HAq when ¢ = 0. Thus, model
falsification using the falsifiers fgs, fis and fig corresponds to Bayesian inference when ¢ = 0.
However, the true posterior cannot be recovered practically because acceptance ratios drop as

¢ — 0.
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A special case for the likelihood domain falsifier

Consider a case where the measurements are corrupted with independent and identically dis-
tributed (IID) additive noise 7i; i.e., d = y + 1. This measurement model is common in many
applications. In this case, since the probability distribution of the r; are the same as those of the
€, ki = n(d|y) and, as a result, {apc(d|@) = €(d|@). However, £(d|@) may still be intractable
or difficult to compute, which is the primary reason for adopting ABC and not using Bayesian
inference. Moreover, without ki, being compactly supported, GABC using k. is equivalent to
performing Bayesian inference. Thus, we do not assign a compact support to ki to retain the

aforementioned property.

APPLICATION OF MODEL FALSIFIED (G)ABC TO PARAMETER INFERENCE

In this section, model falsified (G)ABC is applied to two inverse problems of parameter esti-
mation — an illustrative toy example for which the likelihood cannot be calculated in closed form,
and a system identification example wherein the parameters of a cubic-quintic dynamical system
are estimated from noisy measurements. Some pointers and resources that may be helpful for

implementing model falsified (G)ABC approaches are given in Appendix II.

A toy example
To show how model falsified ABC can be used to approximate the posterior pdf, we adopt the

following simple example. Consider the model

di=yi+mni, yi=(09+028)80, i=1,2 (18)

where £ and 8 are I1ID Beta(2,2) random variables, and n7; and 7, are IID zero-mean Gaussian
random variables with standard deviation o = 0.05. For this example, 6 is assigned a standard
normal prior with a true value of 1 that is denoted as 6y herein. Also, y = [y, y2]T with y;]6
being Beta distributed, and d = [d,d>]T with d;|y; being Gaussian distributed. The goal is to

estimate the parameter 6 from the two noisy observations d = [0.921,1.017]T. The likelihood
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function £(d|6) is given by

£(dj6) = / r(dly)n(y]6) dy = // r(dily)r(daly)(y110)x(r216) dyidys.  (19)

The likelihood function and the posterior pdf cannot be computed analytically, which makes the
application of Bayesian inference challenging. However, given the simple nature of the problem,
Bayesian inference can still be performed by computing £(d|#) from Eq. (19) using Monte Carlo
simulation (Kroese et al. 2013), and the parameter 6 can be estimated using Markov-chain Monte
Carlo (MCMC) (Kroese et al. 2013). The posterior mean and coefficient of variation (COV)
of 6 were found to be 0.9711 and 0.0023 respectively. The statistics were estimated using 1000
realizations from a single MCMC chain where realizations were accepted after an initial burn period
of 5000 and a lag of 20. Herein, we choose the error residuals as IID zero-mean Gaussian random
variables and vary the standard deviation 0. (In Section SM2 in the Supplemental Material and in
(Dasgupta 2023), we study the effect of misspecifying the ng, (e;) by assuming the error residuals

to be Laplace distributed.)

Estimating 6 using model falsified ABC

First, we estimate 6 using model falsified ABC where the falsifiers act as discrepancy metrics.
We begin by assuming that o, is known and set o = o03,. The target identification probability
is varied between ¢ = 0.99 and 0.30. Fig. 6 shows the approximate posterior pdf obtained using
different falsifiers at three representative values of ¢ (these pdfs were estimated from the unfalsified
realizations of 6 using the kernel density estimation technique of MarLaB (The Mathworks, Inc.
2021)). Fig. 7 shows the posterior mean and coefficient of variation (COV) of the approximate
posterior pdfs. The estimate for the posterior mean improves as ¢ is reduced since the threshold
K(.),¢ decreases (Barber et al. 2015). Moreover, as ¢ is decreased, more models are falsified, which
results in a decrease in the approximate pdf’s COV. The behavior of the various falsifiers is also
evident in Fig. 7. Recall that fgg falsifies more models as compared to fgs for the same value

of ¢. Similarly, the likelihood domain falsifiers unfalsify more models as compared to the error
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domain falsifiers for the same value of ¢. Hence, the COV of the approximate pdf is less for fgp
as compared to fgs, and the COV of the likelihood domain falsifiers is more than those of the error
domain falsifiers.

The assumed distributions of the residual error also play an important role in the approximation
of the posterior pdf, and may possibly be unknown or poorly estimated. Different choices of o
lead to different approximations of the posterior pdf. Choosing o > 07, means the noise in the
measurements is overestimated, causing more models to be unfalsified for the same value of ¢,
while o, < 07, leads to the falsification of more models. Thus, assuming o > oy, is equivalent to
setting a looser tolerance k and vice versa. Fig. 8 shows the approximate posterior pdf obtained
using three different values of o that correspond to assuming double, equal and half signal to noise
ratios, for the falsifier fgs when ¢ = 0.90. The mean and COV of the approximate posterior pdfs for
6 are also shown in Fig. 8. For the same value of ¢, the COV of the posterior samples reduces with
o due to more models being falsified. Note that the same level of approximation is possible from
the three different assumptions about the residual errors albeit at three different levels of ¢. Thus,
a good approximation to the posterior pdf can be obtained even in the case where the statistics of

the assumed residual errors are poorly designed.

Estimating 6 using model falsified GABC

Now, 6 is estimated using the GABC approach with kernels based on falsifiers. The target
identification probability ¢ was fixed to 0.99 to maintain healthy acceptance ratios. As before, we
assume the error residuals to be IID zero-mean Gaussian random variables with standard deviation
oe = 0y,. The approximate posterior pdfs obtained using the three kernels, shown in the left plot in
Fig. 9, exhibit a good match with the true posterior pdf from Bayesian inference. For the kernels kgs,
kgp and ki, the mean of the approximate posterior of 8 was found to be 0.9686, 0.9694 and 0.9686,
while the approximate posterior had a COV of 0.0029, 0.0030 and 0.0021, respectively. Among
the three kernels, ki provides the best approximation to the true posterior pdf. This is expected
since the kernel ki, accurately captures m(d|y). In fact, ABC using the kernel ki, should ideally

have resulted in the same distribution, and the small deviation from the true posterior statistics may
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be attributed to Monte Carlo error. The assumed standard deviation o for the residual errors plays
a more crucial role when falsifiers are used as kernels as it controls the effective bandwidth of the
kernels. The approximate posterior pdfs obtained using model falsified GABC with the kernel kgg
with different values of o, are shown in Fig. 9. A lower value of o, causes the uncertainty to
be underestimated. Thus, when using falsifiers as kernels, the residual errors should be carefully

designed such that the resulting approximation is useful.

Application: system identification of a cubic-quintic oscillator

In this example, model falsified (G)ABC is used to infer the system parameters of a cubic-quintic
dynamical system. Duffing oscillators with cubic and quintic nonlinear terms can be used to model
dynamical systems that arise in many real world applications (Elias-Zuafiga 2013). The cubic-
quintic system has also been studied in the context of parameter inference using ABC approaches
in previous works (Abdessalem et al. 2018; Abdessalem et al. 2019). The equation of motion of

the time invariant cubic-quintic system is given by

mx (1) + cx(t) + kx (1) + k3x> (1) + ksx> (1) = w(?). (20)

where m, ¢ and k are the mass, damping and linear stiffness coefficients, while k3 and ks are
the non-linear cubic and quintic stiffness coefficients, respectively. x(¢), x(¢) and X(¢) are the
displacement, velocity and acceleration response of the system, respectively, at time instant ¢. For
this example, all quantities are considered non-dimensional. The true values of the parameters are:
m=1,¢=0.05, k=50, kz = 10® and ks = 10°. The system is assumed to start from rest and is
excited by a white noise excitation w(#) with mean zero and instantaneous variance 10 units. The
excitation used to generate the synthetic response of the system is shown in Fig. 10a; the resulting
time history of the system displacement is shown in Fig. 10b. The system response is generated by
integrating Eq. (20) up to r = 5 using the solve_ivp function from the SciPy package (Virtanen
et al. 2020) with a time step of Ar = 0.01. Measurements d are recorded at a sampling frequency

of 25 Hz; ignoring the first measurement at t = 0, NV, = 125. The measurements are corrupted by
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an additive zero-mean Gaussian noise with standard deviation equal to 1% of the root-mean-square
(RMS) of the true displacement response. The measurements are also shown in Fig. 10(b).

The unknown parameters’ priors, chosen following (Abdessalemet al. 2018), are: m ~ U(0.1, 10),
¢ ~ U(0.0005,0.5), k ~ U(5,500), k3 ~ U(10%,10%) and k5 ~ U (10*, 10%), where X ~ U (a, b)
means that the random variable X is uniformly distributed between a and b. Throughout this ex-
ample, we assume the residual errors are IID zero-mean Gaussian random variables with standard
deviation equal to 5% of the RMS of the measured response. We found implementing model falsi-
fied (G)ABC to be computationally inefficient because the priors are relatively diffuse, making very
small the fraction of unfalsiable models. So we use a sequential Monte Carlo (SMC) algorithm,
proposed by Toni et al. (2009), to sample from the ABC posterior. The SMC technique for ABC
is briefly described in section III. Moreover, we implement SMC using the open-source Python
toolbox pyABC (Klinger et al. 2018). Among other things, pyABC allows parallel implementation
of SMC, as well as adaptively chosen intermediate thresholds in the SMC process.

We note that the model adopted in this example is deterministic; i.e., given a realization of the
parameter vector @ = [m,c, k, k3, k5]T, the prediction from it is always the same. We consider
this example because the likelihood function is tractable when the properties of the measurement
noise process are known and, as a result, Bayesian inference can be adopted to infer the parameter
vector @. In fact, model falsified GABC performed with the kernel &y, is equivalent to Bayesian

inference in such cases. Thus, this example offers an opportunity to compare the performance of

model falsified (G)ABC with Bayesian inference.

Parameter inference using model falsified ABC

First, the unknown parameters of the cubic-quintic system are estimated using model falsified
ABC with the target identification probability ¢ set to 0.99. The SMC scheme is run with 1000
particles at every population (Fig. SM4 in the Supplementary Material shows the evolution of the
posterior mean of the different system parameters through the populations of SMC for different
falsifiers (Dasgupta 2023)). Table 2 shows the average relative error between the posterior mean

and the true value for each parameter and the COV associated with the parameter estimates obtained
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using the different falsifiers averaged across 10 independent runs (detailed summary statistics of
the approximate posterior distributions are reported in Table SM1 in the Supplemental Material).
The results show that model falsified ABC using the error domain falsifiers performs very well,
with relative errors of the estimated m, k and ks below 10%. The corresponding likelihood
domain falsifiers perform slightly poorer for the same value of ¢. However, all four falsifiers have
difficulty in identifying ¢ and k3. Plots of the approximate pdfs of the various system parameters
corresponding to the different falsifiers can be seen in Fig. 11. The approximate pdfs were found to
peak around the true values of the parameters for the error domain falsifiers: a qualitative indication
that the inference is good.

Fig. 11 shows the approximate pdfs of the various system parameters corresponding to the
different falsifiers. The pdfs in Fig. 11 were estimated from the unfalsified models in the last
population of the SMC algorithm using kernel density estimation. The posterior mean of the
parameters is collectively denoted the identified model herein. The approximate pdfs also peak
around the true values of the parameters for the error domain falsifiers: a qualitative indication that
the inference is good.

Fig. 12(a) shows the predicted response when the identified model from each falsifier is ex-
cited using the random Gaussian excitation shown in Fig. 10(a); Column 2 in Table 3 shows the
corresponding normalized root-mean-square-error (RMSE), which is denoted ernmsg herein. The
predictive capability of the identified systems are further tested by evaluating the response to a differ-
ent test excitation and comparing it to the true response. A harmonic excitation w(¢) = 10 - sin(wst)
with ws = 10 is used as the test excitation. Fig. 12(b) shows the predicted response of the identified
models under the test excitation while their respective ermsg values are tabulated in Column 3 of
Table 3. The better estimation capability of the error domain falsifiers also translates to better
predictive capabilities of the identified models; ermsg 1S lower across both excitations for the error
domain falsifiers. However, the comparatively better performance of the error domain falsifiers
comes at an increased computational cost. The average number of model evaluations necessary

to sample from the approximate posterior corresponding to each falsifier is shown in Column 4
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of Table 3: model falsified ABC using the error domain falsifiers requires an order of magnitude
more model simulations than the likelihood domain falsifiers to reach the same threshold. The best
performing falsifier is fgp, with lower relative errors in the posterior mean of all system parameters
except ks and lower erymsg from the identified model under both excitations, although it is slightly

less computationally efficient as compared to the other falsifiers.

Parameter inference using model falsified GABC

Now, we use model falsified GABC to estimate 8. Kernels kgs and kgg are assigned compact
supports by setting ¢ = 0.99. A modified SMC algorithm (see III) was used to perform model
falsified GABC. As before, we set N = 1000 as the population size. Unfortunately, a limit of 103
model runs precluded GABC with k1, from converging with this setting. (It was only possible to
sample from kllf >* For reference, sampling from kg and ki, is equivalent to sampling from the
prior (@) and Bayes’ posterior 7(60|d), respectively.) Thus, we are only able to report the results
corresponding to an annealed posterior pdf (specifically, kL/ 29,

The relative error of the posterior mean of the system parameters obtained using model falsified
GABC with various kernels is provided in Table 4. The COV values of the posterior estimates
is also provided in Table 4 (more detailed summaries of the approximate posterior distributions
obtained using GABC with various kernels is provided in Table SM2 in the Supplemental Material
and in (Dasgupta 2023)). The performance of the model falsified GABC approach is similar to
model falsified ABC. As before, the true parameter values lie within the inter-quartile ranges, and,
as shown in Fig. 13, the approximate posterior pdfs peak around the true values. This shows
that inference using model falsified GABC is of good quality. Similarly, predictions to both w(t)
and w(7) from the identified models are shown in Fig. 14. The predictions agree well with the
true response, as evidence by the low normalized RMSE values in Table 5, which means that the
identified models can generalize well. The kernel kggs performs better than kgp at estimating all
parameters except for m and c¢. kgs also outperforms kgg when the prediction capabilities of the
identified models are compared. However, as evident from Column 4 of Table 5, model falsified

GABC with kgs i1s more computationally expensive. However, model falsified GABC with ki,
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1.e., Bayesian inference, is computationally prohibitive in this case. The results provide empirical
evidence that model falsified (G)ABC can be a computationally efficient alternative to Bayesian
inference when the prior density is diffused. These findings are consistent with those reported by

Abdessalem et al. (2018).

MODEL CLASS SELECTION WITH THE MODEL FALSIFIED (G)ABC FRAMEWORKS

In many physical applications, the underlying model that describes the relationship between the
uncertain parameters and the observations, or some part thereof, is unknown or must be chosen from
a set of probable model classes (defined as a collection of parameterized models). Consider the set
M ={ M, Mo, ..., Mk} of model classes that all describe the same phenomena. The objective of
model class selection is to determine which model class(es) can predict the observations d. Bayesian
model class selection refers to the method of selecting model classes based on the posterior model
class probabilities, which are denoted herein as P(M;|d) Vk = 1,2,...,K. Also, let 8; € O be

the parameter vector associated with the model class M. Then Bayes’ theorem gives us

P(M|d) oc n(d|My)P(My) (21)
where
r(dIM,) = /@ /@ 7 (dlyg. 0 M) (165 MR (6 M) dy d6 22)
k
£(d[@x, M)

is commonly known as the model evidence or marginal likelihood and P( M) is the prior probability
assigned to the model class My. Model falsified ABC can be used to perform model class selection
simply by setting w(d|y, Ox, Mi) = Za, 4(yi; Ok, M) in Eq. (22), which leads to the approximate

posterior model class probabilities

Papc(Mild) o [/ P(y, € Apa)m (0| M) db; | P(My). (23)

(G

Similar modifications can also be made for model falsified GABC. Also note that, for the special
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cases discussed in Section 4, the posterior model class probabilities can be recovered by setting
¢ =0.
Model class selection for base isolation devices using model falsified (G)ABC

Consider the base isolated shear frame structure shown in Fig. 15a. In this example, which is
adopted from (De et al. 2018), the appropriate model for the isolation layer is to be determined.

Identifying the behavior of isolation-layer devices is important for predicting system responses that

may, in turn, inform design choices and control strategies. The equations of motion of the system

are
M X+ C X+ K X = —~M 1%, + CsLiy, + Kilxy, (24)
mpip + 17CsLiy + 1 KIxy + fiy = —mpie + 17 C X + 1TK X (25)
where
m; 0 0 ki + ko —k> 0
M;=1]0 mpy O and K = —k» ki + k> —k3 (26)
0 0 ms 0 —k3 ki +ko

are the mass and stiffness matrices of the superstructure, respectively; my, and ¢y, are the base
mass and isolation layer linear damping coeflicient, respectively; X = [xl,xz,x3]T are the floor
displacements relative to the ground; xy, is the base displacement relative to the ground; and 1 is a
column vector of all ones. A proportional Rayleigh damping is assumed for the superstructure; i.e.,
Cs = B1 M + B, K with 3% damping in the first two modes. We also choose m| = my = m3 = 300
Mg and k| = kp = k3 = 40 MN/m, respectively. The base mass my, = 500 Mg. f;, representing

the effect of the isolation layer damping and restoring force, depends on the isolation layer model

adopted. The total mass of the structure is m = my, + m| + my + mz = 1400 Mg.

Model classes for the base isolation device

(1) Nonlinear model classes: In this study, we consider two nonlinear model classes that can

approximate the behavior of the isolation layer — a bilinear hysteresis model and a Bouc-Wen
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hysteresis model (Wen 1976) denoted herein as M; and My, respectively. Representative force
displacement behaviors for both model classes can be seen in Fig. 15b. For both model classes, kpre,
kpost and Qy are used to denote pre-yield and post-yield stiffnesses, and the yield force, respectively.

Now, the force f, exerted by the isolation layer can be expressed as

Jo = cpip + kpostxb + gyz (27)

where gyz represents the nonelastic force and z is an evolutionary variable. In nonlinear model
classes, gy = Qy (1 —rk) where r¢ = kpost/ kpre is the hardness ratio and z is an evolutionary variable

whose evolution is governed by
&= Ak, — Biolz|"™ — yzlip| |z (28)

where A = 28 = 2y = kpye/Qy is chosen to ensure that z is contained within [—-1, 1] and the loading
and unloading stiffnesses remain equal (Ramallo et al. 2002). We adopt n,0w = 1 for the Bouc-Wen
model class, and n,0w = 100 for the bilinear model class (De et al. 2018).

(2) Linear model classes: A few linear model classes are considered as alternates to the nonlinear
model classes described above. The force displacement behavior of one linear model class is also
shown in Fig. 15b. Linear model classes are considered because they can be computationally
efficient alternatives that are simpler for engineering design. In linear model classes, the force

exerted by the isolation layer is represented as

fo=l[co+ Ceq]xb + keqxb = [Cb + 2§eq V keqmb] Xp + keqxb- (29)

The American Association of State Highway and Transportation Officials (AASHTO) and the

Japanese Public Works Research Institute (JPWRI) recommend

Kpre 2(1 = r)(1 = p~!
keq = % [1+7rc(p—1)] and feq = 75 ¥ -:krl((p _pl)]), (30)
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with p = rq and 0.7ry for the AASHTO and JPWRI model classes, respectively (Hwang and
Chiou 1996), where rq = xgqkpre/Qy is the shear ductility ratio. A modified AASHTO model
class is also considered, for which p = rg and multiplicative correction factors of r3'58 /(6 — 10ry)
and [1 —-0.737(rq — 1)/1*(21]_2 are applied to {oq and keq, respectively (Hwang and Chiou 1996).
Further, based on recommendations from the California Department of Transportations (Caltrans)

(Hwang and Chiou 1996), we also consider
Leq = 0.0587(rg — 13" and keq = kpre [1+1In {1 +0.13(rg — )17} . 31)

The AASHTO, JPWRI, modified AASHTO and Caltrans model classes are herein denoted as M3,
My, Ms and Mg, respectively. Thus, in total, there are K = 6 model classes, to which uniform
prior probabilities are assigned; i.e., P(My) = K~ VM, € . Additionally, the parameters K posts
Cb, 'k, r4 and Qy are assumed to be uncertain across the different model class. The parameter priors
are tabulated in Table 6. Note that the parameter rq is not necessary for the nonlinear model classes

while the linear model classes do not require the parameter Qy.

Synthetic measurements and error residual density

In this example, we choose the N-S El Centro, California, earthquake record during the May
18, 1940, Imperial Valley earthquake sampled at 50 Hz, that had a peak acceleration of 3.42 m/s?,
as the base excitation X;. A model from the Bouc-Wen model class is used to generate the synthetic
data set. The parameters of the truth model are tabulated in Table 6; the hysteresis curve of the
evolutionary variable z with respect to base displacement xy,, along with the absolute acceleration at
the base isolation layer of the truth model, are shown in Fig. 16. The absolute acceleration Xj of the
base layer is sampled at 20 Hz for 30 s (N,, = 600), to which we add Gaussian noise with standard
deviation equal to 10% of the RMS of the actual response to generate noisy measurements. The
error residual densities are also assumed to be Gaussian with a slightly higher standard deviation

set equal to 15% of the RMS of the measurements d.
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Model class selection using model falsified ABC

In this example, we again use the SMC algorithm to perform model class selection; the posterior
model class probability is proportional to the relative frequency of different model classes in the last
population of the SMC algorithm (Toni et al. 2009; Abdessalem et al. 2018). We set the population
size for the SMC algorithm to N = 5000. Fig. 17 shows the posterior model class probabilities
of each model class. All falsifiers are able to correctly select the Bouc-Wen model class (Mo).
The error-domain falsifiers reject all other model classes for all values of ¢ that we consider. In
comparison, the likelihood domain falsifiers are more conservative in falsifying models and, as
a result, some posterior mass is assigned to the linear model classes when ¢ = 0.99. As ¢ is
decreased to 0.95, the posterior probability of the linear model classes drop to zero. Subsequently,
as we decrease ¢ to 0.90, the bilinear model class M is no longer assigned any posterior mass.

The relative error between the posterior mean of the parameters of the Bouc-Wen model
class M, obtained using different falsifiers and the true value is provided in Table 7 (a more
detailed summary of the approximate posterior distributions can be found in Table SM3, and the
corresponding approximate pdfs are shown in Fig. SMS5, in the Supplemental Material and in
(Dasgupta 2023)). In this case also, the error domain falsifiers, owing to fact that they are more
restrictive at the same level of ¢, are better at estimating the parameters, with the performance of
JeB being marginally better than fgs. The parameters are well estimated with the range between
the 5 and 95" percentiles containing the true value for all parameters except kpost. All falsifiers
find it difficult to estimate parameter cy.

Fig. 18a shows the approximate posterior predicted mean absolute base acceleration under the
El Centro excitation for different falsifiers. Columns 2 and 4 in Table 8 show the normalized
RMSE between the true and posterior mean absolute base acceleration response, and normalized
error between the true and posterior maximum absolute base acceleration response, respectively,
under the El Centro excitation. Table 8 shows that model falsified ABC is able to make good
predictions of the maximum response. The response of the structure after the ground motion

subsides is not predicted as well as the initial response because the damping properties of the
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isolation layer are not well estimated. The performance of the estimated parameters under a
new excitation is also studied. For this, the base isolated structure is subjected to the July 2019
Ridgecrest, California earthquake. The ground motion recorded by Channel 1 (90° component)
at Tower 2 is used as the ground excitation, the peak acceleration for which was reported to be
3.90 m/s? (Center for Engineering Strong Motion Data 2019; Strong Motion Virtual Data Center
2019). Fig. 18b shows the approximate posterior predicted mean absolute base acceleration of the
structure under the Ridgecrest ground excitation for different falsifiers. The normalized errors in
the predicted response, shown in Columns 3 and 5 of Table 8, indicate that the estimated parameters
also generalize well to different excitations. In this example as well, the relative order between the

model falsifiers in terms of the number of model simulations was similar.

Model class selection using model falsified GABC

Model class selection using the falsifier based kernels are investigated in the context of this
example. Again, the SMC algorithm with a population size N = 5000 is used to perform model
falsified GABC. We fix ¢ = 0.99 for the kernels kgs and kgp. Fig. 19 shows the approximate
posterior probabilities of the different model class evolving with the populations of the SMC
algorithm. Model falsified GABC with all the kernels estimate P(M;|d) = 1 at the final population,
thereby choosing the correct model class.

The relative errors between the posterior means and the true parameter values are reported in
Table 9. (The summary statistics of the approximate posterior distribution of the parameters of the
Bouc-Wen model class are tabulated in Table SM4 and the corresponding approximate posterior
pdfs, estimated using kernel density estimation, are shown in Fig. SM6 in the Supplemental Material
and in (Dasgupta 2023).) In this example, the approximate posterior pdfs, obtained using model
falsified ABC and GABC, do not peak around the true parameter values due to the presence of
large noise in the measurements. Bayesian inference can overcome this challenge because the
likelihood model is correctly specified by kr.. The kernel kgs performs marginally better than kg,
both in terms of the predicted uncertainty and relative errors of the estimated parameters. Unlike

the previous example, the SMC algorithm converged for the kernel k1, and model falsified GABC
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with &, or Bayesian inference, provides the best results. (The approximate posterior predicted
mean absolute base acceleration obtained using model falsified GABC with different kernels under
the El Centro and Ridgecrest earthquake excitations are omitted here, as they are similar to Fig. 18,
but are included in Figs. SM7a and SM7b in the Supplemental Material and in (Dasgupta 2023).)
The normalized RMSE between the true and predicted responses is tabulated in Table 10. Bayesian
inference outperforms model falsified GABC with the falsification kernels as well, when compared
in terms of predictive quality of the identified model. However, the number of populations required
for the model falsified GABC with k1, to converge is significantly higher than the other kernels,
which means that Bayesian inference is a more computationally expensive alternative to model

falsified GABC.

MODEL FALSIFIER BASED KERNEL REGRESSION FOR PARAMETER ESTIMATION
AND RESPONSE PREDICTION

In this section, we introduce kernel regression using model falsifier based kernels: a non-
parametric approach to parameter estimation and response prediction. Let, g(€) be a function
of the underlying uncertain parameter #. The Nadaraya-Watson estimator for the conditional
expectation of g(#) given the observations d, which we denote as gxw, obtained using a kernel k.

is given as
; 280k (v, d)
NW = ,
S ko (y®, )

; (32)

where y is a prediction from 8'” (a realization drawn from 7 (y|0”)) corresponding to d (Blum
2010). The Nadaraya-Watson estimator can be used to estimate the posterior mean of @ by setting

g(0) = 6 to obtain
. 2N 0Vk(y",a)

Onw = - (33)
Zfil k(y(l)’ d)
and make response predictions by setting g(6) = §(6),
Lk, d)
Iaw = oy (34)

N ke(y®,ad)
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where, now ) is the prediction from the model 8”). If the response to the same excitation which
yielded d is to be computed then ¥ = y. In a similar vein, Eq. (33) can also be extended to obtain
an estimate to any function of 6.

The ability to make predictions using the correct model class is implicit in the kernel regression
approach using kernels kgs or kgg. When the kernel kgs or kgp is used, then due to fact that
these kernels have compact support, some of the drawn samples of # will carry no weight; i.e.,
k(y,d) will be zero for those ) that are falsified for a given target identification probability
¢. These realizations can be disregarded and sampling continues up until all the realizations have
non-zero weights. This will automatically disregard model classes that are inconsistent with the
observed data. We also note that similar computations can be performed when kernel regression is
performed with kg, if a compact support is assigned in a manner similar to Eq. (13). Thus, similar to
model falsified GABC, kernel regression is another way in which the degree of similarity between
model predictions and measured data can be utilized, which leads to improved predictions, as we
will show. However, the computational costs of kernel regression will be similar to those of model

falsified ABC using the corresponding falsifier.

Parameter estimation using kernels based on model falsifiers

Table 11 shows the relative error in the Nadaraya-Watson estimates for the parameters of the
base isolated structure described in Section 6 when ¢ = 0.99 (the actual parameter estimates are
provided in Table SMS in the Supplemental Material and in (Dasgupta 2023)). The estimates are
made using a sample of size 5000. Note that all model classes except the true Bouc-Wen model
class (My) are falsified for ¢ = 0.99 as shown previously in Fig. 17. For the kernel kr, only the
model class M, is considered because we did not assign it a compact support. The quality of
the parameter estimates is very close to those obtained from the ABC posterior; the relative errors
are very similar to those in Table 7, where we had used ¢ = 0.90. The computational cost of
performing kernel regression is the same as model falsified ABC with the corresponding kernels
with the same value of ¢. Although the parameter estimates obtained using model falsified GABC

are better, note that it is more computationally expensive.
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Response prediction using kernels based on model falsifiers

The response of the base isolated system described in Section 6 to the El Centro earthquake
(the same excitation for which the measurements are available) and the Ridgrecrest earthquake
(an alternate excitation) can be computed using kernel regression. Table 12 shows the normalized
(with respect to the true response) RMSE of the predicted base acceleration and maximum of the
absolute base acceleration. (Figs. SM8a and SMS8b in the Supplemental Material, which can also
be found in (Dasgupta 2023), show the Nadaraya-Watson estimate for the absolute acceleration at
the base of the structure where it is clear that the estimates are in good agreement with the true

response.) The results indicate good generalizability of the Nadaraya-Watson estimator.

IMPLICATIONS OF THIS WORK AND FUTURE RESEARCH DIRECTIONS

The main purpose of this work was to provide a Bayesian perspective on model falsification.
Our reinterpretation will allow the results from model falsification to be viewed in a different light,
primarily, unfalsified models are realizations of an approximate posterior density, and predictions
and estimates obtained using the unfalsified models are posterior predictive quantities. In the
process, we have also introduced model falsified (G)ABC wherein model falsifiers are appropriately
adapted within (G)ABC frameworks.

Our reinterpretation also means that many of the desirable properties enjoyed by ABC can now
be attributed to model falsification. Chief among them is perhaps the fact that model falsification
may now be deemed to honor the principle of Occam’s razor; therefore, falsification may implicitly
favor simpler or parsimonious hypotheses, although that remains to be verified. Also, it may now
be possible to perform a posteriori model validation using Bayesian statistical tools like posterior
predictive checks and credible intervals. Model checking is a necessary and crucial step that
should be conducted when carrying out inference (Gelman and Shalizi 2013) and, to the best of
our knowledge, no such validation metrics have been developed for model falsification. Much of
the ABC machinery, such as computationally efficient algorithms for sampling, can also be applied
to reduce the computational burden of model falsification, much like we have used SMC.

Going the opposite direction, using model falsifiers as discrepancy measures means that ABC
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may be calibrated based on the frequentist properties of the falsifiers. As such, future work needs
to investigate the automatic selection of ¢ such that any estimates obtained using model falsified
ABC are consistent; see (Fearnhead and Prangle 2012; Ratmann et al. 2013) for related work.
Model falsifiers could also take into consideration model errors by accounting for it in 7g,(e;)
(Goulet and Smith 2013b; Pai and Smith 2017; Pai et al. 2018). Therefore, the application of model
falsified ABC to inference problems where the data generating model 7 (y|@) is misspecified or
only partially known may be another interesting avenue of future research.

Another direction for future research could be the application of model falsification to summary
statistics. Note that the approximation in ABC stems from two sources: first, from using the
acceptance criteria in Eq. (3) with a looser tolerance, which is considered in this work; second,
approximation can also be induced from using summary statistics, which are often not sufficient,
particularly when dealing with high dimensional data such as time series data (for example, modal
frequency and mode shape data, extracted from structural response, is routinely used for structural
system identification or health monitoring (Yuen 2010)). The introduction of summary statistics
can further boost the computational efficiency of model falsified ABC. We intend to explore model

falsified (G)ABC with summary statistics in a future work.

CONCLUSIONS AND OUTLOOK

We have shown that model falsification is similar to approximate Bayesian computation. A
new framework for ABC and generalized ABC that utilizes model falsifiers as discrepancy metrics
and density kernels, respectively, has been introduced. We have also considered different types of
error and likelihood domain falsifiers. Model falsified (G)ABC was applied to different inference
tasks. The results show that inference using model falsified (G)ABC is satisfactory. The inferred
parameters were found to agree with the true values and could generalize well. The results
also indicate that model falsified (G)ABC may be a computationally efficient inference approach,
compared to Bayesian inference, when the prior is non-informative. We have also shown how
falsifier based kernels can be used for kernel regression to estimate parameters and/or make

predictions via Nadaraya-Watson estimators.
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7ss  APPENDIX I. ALGORITHMS FOR APPROXIMATE BAYESIAN COMPUTATION
766 Algorithms 1 and 2, shown in Figs. 20 and 21, are the rejection based samplers used for
767 performing ABC and generalized ABC, respectively. Both algorithms can be found in (Sisson et al.

768 2018, Chapter 1).
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APPENDIX Il. COMPUTATIONAL ASPECTS FOR IMPLEMENTING MODEL FALSIFIED
(G)ABC

We highlight here some computational aspects regarding the implementation of model falsified
ABC. First, all computation should be carried out in logarithmic scale. This not only helps with
better conditioning of computations in the likelihood domain but also helps with the computation
of probability densities and cumulative distribution functions (cdfs). For example, the successful
implementation of ABC with falsifiers often required the computation of the standard normal cdf
at very large negative values of the variate. These computations must be carried out in logarithmic
scale using appropriate approximations, else all p-values in Eq. (8) will evaluate to zero. For
instance, the standard normal cdf’s logarithm is approximated using the 1 ogphi function available
as part of the GPML toolbox (Rasmussen and Nickisch 2016) in MaTtLAB (The Mathworks, Inc.
2021), and the scipy.norm module (Virtanen et al. 2020) in Python (Van Rossum and Drake
2009). Moreover, when working with error domain falsifiers, it can be easier to implement the

acceptance step within ABC as follows:
. ma)](v —logp; < K, (35)

where k' = —log(1 — ¢'/Mm) and —log(1 — ¢) for falsifiers fgs and fig, respectively. Similarly,
instead of Egs. (9) and (11), the acceptance step for the likelihood domain falsifiers can be modified

as

N”‘L Nm
- logrp (&) < = ) min_logrg, (e) (36)
i=1 =1~

and the error bounds €, and €; are derived as described previously.
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APPENDIX Ill. ABC USING SEQUENTIAL MONTE CARLO METHODS

The SMC algorithm (Toni et al. 2009) used in the numerical examples shown in Sections 5
and 6 are implemented using the pyABC toolbox (Klinger et al. 2018); its basic algorithm is
provided in Fig. 22. The SMC algorithm begins with N particles that are drawn from the parameter
priors; subsequently, the particles explore the parameter space through repeated updates, ultimately

providing a Monte Carlo approximation to the ABC posterior through the weights

NS ifr=0
w = (37)

(@M [ |2, w Ky (0716))] i >0

The outputs of Algorithm 3 can be used to compute the posterior model class probabilities as

follows

N
1 .
Pasc(Mild) = = > IIMY = My] (38)
J=1

Further, Algorithm 3 reverts to Algorithm 1 when K = 1 and N; = 1.

Several improvements over the standard SMC approach have also been proposed; we note
only those that we utilize. The thresholds «; and the number of iterations N; can be adaptively
selected (Beaumont et al. 2009; Del Moral et al. 2012), which helps improve the conditioning of
acceptance rates, ultimately increasing sampling efficiency. In the parameter estimation example
from Section 5, the threshold «; at iteration ¢ is chosen such that 7N particles are retained, with 7 =
0.5. Moreover, the perturbation kernel K, ; for the ™ population can also be adaptively designed;
throughout this work, we have perturbed the particles in every population using a multivariate
normal density kernel whose precision matrix is adaptively determined (see the documentation for
the pyABC toolbox (Klinger et al. 2018) for details).

To perform GABC with the density kernel &, the acceptance criteria in Step 15 of Algorithm 3

is modified as follows (Schilte and Hasenauer 2020)

(39)

k(y*,d
Accept 0*, M* with probability min {1, V. d } ,

C
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where k is the kernel being used, and C is a normalization constant such that C > maxy k(y, d).
Choosing the normalization constant C is critical to the performance of the GABC approach using
SMC. If C is too small, relative to the realized values of k(y,d), then all of the models are
accepted. On the other hand, if C is too large, then the acceptance rates drop, making the approach
computationally inefficient. As a remedy, Schilte and Hasenauer (2020) proposed an efficient

scheme that further modifies the acceptance criteria from Eq. (39) to

k')
Accept 6", M* with probability min < 1, ( C ) (40)
t

where C; and T; are the normalization constant and temperature at population ¢, respectively. To
ensure that the samples indeed belong to the approximate posterior, 71 > T > ... > Ty, = 1 is

used and the weights are accordingly modified as follows

k(y*, d)\/T: 7r(0(i)|Mt(i))
min {1, k(v d)/C17 )

Wt(i) oc

(41)

where w,(i) can be obtained using Eq. (37). Schalte and Hasenauer (2020) also proposed multiple
approaches for decaying the temperatures, among which is a scheme, used in all examples studied
herein, that aims to maintain the target acceptance rate at a predefined level. As an example, the
temperatures at different population levels and the corresponding acceptance probabilities across
different model classes for the base isolated structure in Section 6 are shown in Figs. 23a and 23b,

respectively. As the population evolves in the modified SMC algorithm, the temperature is gradually

reduced to 1 such that all particles belong to the approximate posterior.
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s0  APPENDIX IV. SUPPLEMENTAL MATERIAL
831 Sections SM1-SM35, including Figs. SM1-SM8 and Tables SM1-SM5, are available online in

832 the ASCE Library (ascelibrary.org) as a companion to this paper.
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TABLE 1: Scale factors, significance levels and thresholds for different model falsification ap-
proaches and error control control criterion. ¢ is the specified target identification probability, and
N,, is the number of measurements

Error Error domain (ED) Likelihood domain (LD)
control Notation i K Notation ; K
FWER/Sidak fes 1 ¢!/Nm fis 1 —¢!/Nm Eq. (11)

FDR/BH fis  Nali ¢ fis (1=@)i/Ny T
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TABLE 2: Relative error in the parameter estimates of the cubic-quintic system obtained using
model falsified ABC with different model falsifiers and the associated COV (given in parentheses).

The reported estimates are averages across ten independent runs

Parameter Falsifier
fEs fes fis fiB
m 0.012 (0.073) 0.014 (0.067) 0.039 (0.102) 0.009 (0.087)
c 0.819 (0.572) 0.612 (0.583) 1.198 (0.654) 1.072 (0.613)
k 0.020 (0.216) 0.023 (0.220) 0.110(0.352) 0.106 (0.299)
k3 0.668 (0.607) 0.662 (0.577) 1.535(0.628) 1.113 (0.602)
ks 0.083 (0.244) 0.097 (0.238) 0.081 (0.447) 0.082 (0.412)
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TABLE 3: Comparison of the normalized RMSE of the predicted response from the model
identified using model falsified ABC with different falsifiers, and the total number of model
simulations necessary for the inference. The average across ten independent runs is reported

) Normalized RMSE for different excitations Total
Falsifier : : mulati
Random Gaussian w () Harmonic w(r) simulations
JES 0.001 0.001 2.47 x 10°
feB 0.001 0.001 2.38 x 10°
fis 0.003 0.004 1.66 x 10°
JiB 0.004 0.003 237 x 10°
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TABLE 4: Relative error in the parameter estimates of the cubic-quintic system obtained using
model falsified GABC with different kernels and the associated COV (given in parenthesis). The
reported estimates for kernel kgs and kgp are averages across ten independent runs.

Parameter Kernel
kEs kgs ky
m 0.006 (0.065) 0.003 (0.066) 0.024 (0.035)
c 0.676 (0.541) 0.660 (0.550) 0.185 (0.368)
k 0.023 (0.130) 0.031 (0.204) 0.020 (0.130)
ks 0.463 (0.594) 0.565 (0.598) 0.644 (0.382)
ks 0.096 (0.232) 0.107 (0.249) 0.133 (0.192)
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TABLE 5: Comparison of the normalized RMSE of the predicted reponse from the posterior mean
of the system parameters obtained from different kernels and the total number of model simulations
necessary for the inference. The average across ten independent runs is reported for kernels kgg
and kEB

Falsifier Normalized RMSE for different excitations Total

or Kernel Random Gaussian Harmonic simulations
kgs 0.001 0.001 5.34 x 107
kes 0.006 0.002 1.73 x 107
ki, 0.027 0.056 > 108
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TABLE 6: Parameter priors for different model classes. Note that X ~ log N'(u, 02) means
that the random variable X is log-normally distributed with mean u and variance o->. Similarly,
X ~ U(a, b) means that the random variable X is uniformly distributed between a and b

Parameter  True value Prior

Kpost 40MN/m log N(4.5,0.25) MN/m
Ch 20 KN-s/m?>  log N'(20,4) KN-s/m?
r 0.1667 U(0.15,0.17)

rd N/A U(2.0,3.0)

Qy (%mg) 5.00 U(4.25,5.25)
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TABLE 7: Relative error of the posterior mean of the Bouc-Wen model class parameters, and the
associated COV (given in parenthesis), obtained using model falsified ABC with different model
falsifiers when ¢ = 0.90

Falsifier
fes fEs fLs fiB
kpost (MN/m)  0.082 (0.042) 0.082 (0.041) 0.106 (0.047) 0.100 (0.047)
cp (kN-s/m)  0.247 (0.199) 0.246 (0.199) 0.251 (0.204) 0.250 (0.202)
rk 0.026 (0.031) 0.024 (0.031) 0.032 (0.037) 0.032 (0.037)
Oy (Jomg) 0.079 (0.047) 0.079 (0.049) 0.060 (0.059) 0.059 (0.060)

Parameter
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TABLE 8: Normalized RMSE between true response and the ABC posterior mean response for
different falsifiers with ¢ = 0.90. Note that the measured responses were from the El Centro
earthquake

Falsifier Absolute base acceleration Absolute peak base acceleration
El Centro Ridgecrest El Centro Ridgecrest
fEs 0.115 0.202 0.035 0.048
fEB 0.112 0.198 0.034 0.047
fis 0.150 0.248 0.045 0.047
fiB 0.156 0.256 0.047 0.048
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TABLE 9: Relative error of the posterior mean of the Bouc-Wen model class parameters, and the
associated COV (given in parenthesis), obtained using model falsified GABC with different kernels

Parameter Kernel
kEs kgs ky
kpost (MN/m)  0.060 (0.036) 0.070 (0.040) 0.004 (0.015)
cp (kKN-s/m) 0.231 (0.207) 0.249 (0.196) 0.253 (0.191)
Ik 0.016 (0.024) 0.019 (0.031) 0.004 (0.012)
Oy (%omg)  0.059 (0.042) 0.070 (0.047) 0.007 (0.008)
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TABLE 10: Normalized RMSE between true response and the model falsified GABC approximate
posterior predictive mean response for different falsifiers with ¢ = 0.99. The measurements are
recorded when the structure is excited by the El Centro earthquake excitation

Falsifier Absolute Base acceleration Peak absolute base acceleration
El Centro Ridgecrest El Centro Ridgecrest
kgs 0.084 0.154 0.025 0.034
kg 0.095 0.172 0.029 0.040
ki 0.008 0.008 0.002 0.002
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TABLE 11: Relative error in the Nadaraya-Watson estimates of the parameters of the base isolated

structure obtained using different kernels

Parameter Kernel
kes  kgs ki
kpost MN/m) 0.096 0.078 0.124
cp (kN-s/m) 0.239 0.248 0.244
rk 0.035 0.025 0.041
Oy (%omg)  0.085 0.077 0.046
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TABLE 12: Normalized RMSE between true response and the Nadaraya-Watson estimator com-
puted using different kernels. Note that measurements were recorded when the structure was excited
using the El Centro earthquake

Falsifier Base acceleration Absolute peak base acceleration
El Centro Ridgecrest El Centro Ridgecrest
kgs 0.082 0.153 0.025 0.034
kep 0.093 0.174 0.028 0.041
99 0.007 0.007 0.001 1x 10
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FIG. 1: Plot of different discrepancy metrics as functions of € assuming € ~ N (0, 1)
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Note that under Assumptions 1 and 2, as is the case here, fi.s = fiLB

assuming €1, & ~ N (0, 1).
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FIG. 3: Plot of different kernels as functions of € in one dimension assuming € ~ N(0, o) for
oe = 1,0.5,0.01. The kernel kgs is constrained to appropriate intervals which correspond to
choosing ¢ = 0.90
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Input: N : number of samples required, « : threshold
fort=1to Ndo
repeat
Generate candidate model € from prior distribution 7(0) ;
Simulate candidate model prediction realization y’ from 7 (y|0’) ;
until p(y’,d) < «;
Set (8,y") as (0,y') ;
end
Output: 0 0@ . . W) which are realizations from mapc(6]d)

FIG. 20: Algorithm 1: Likelihood free rejection sampler for standard ABC
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Input: N : number of samples required, & : kernel function, C > maxy k(y, d)
fortr=1toNdo

Generate candidate model 8" from prior distribution 7(0) ;

Simulate candidate model prediction realization y’ from 7 (y|6’) ;

Draw u ~ U(0,1) ;

if u < k(y’,d)/C then set (81, y") as (6',y');

else Go to Step 2 ;

end
Output: 0. 9@ . W) which are realizations from ngapc(0|d)

FIG. 21: Algorithm 2: Likelihood free rejection sampler for generalized ABC
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16
17
18
19

20

Input:

M= {Mi, Mo, ..

P(My) : model class priors

for r = 0to N; do
fori=1to N do
if 1 = 0 then
else
repeat
{0k} with weights w . ;
if 7(6*|M™*) =0 then
‘ Return to step 8 ;
else
end
until p(y*,d) < «;;
end
end
Normalize the weights V My €
end

(0| M) : parameter priors for all model classes
n(y|@x, My) : forward model for model class My Vk=1,...,K

N : number of particles
N; : number of populations
K1, K2, ..

Select candidate model class M* = M, with probability P(My) ;

\ Generate candidate model 6* from prior distribution (G| M) ;

Set the i particle as M? = M*, 8 = * with weight w'”

., Mg} : K competing model classes

., k7 : thresholds for each population
K1 : parameter perturbation kernel for the first population

Sample a candidate model 6’ from the previous population’s subset

Obtain the perturbed candidate model 6* from K, ;(0(6’) ;

\ Simulate candidate model prediction realization y* from 7 (y|0*, M") ;

FIG. 22: Algorithm 3: Sequential ABC sampler (ABC-SMC) (Toni et al. 2009)
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Section S1. COMPARISON BETWEEN DIFFERENT FALSIFIERS

Fig. S1 compares the different falsifiers — fgs, fgs, fLs and fig — in the two-dimensional
case of independent standard normal error residuals with a fixed value of the target identification
probability. Fig. S1 shows that the likelihood domain falsifiers are more conservative in falsifying
models (i.e., retains more models), as compared to the error domain falsifiers. Similarly, FWER
control with the Sidak correction is more conservative than FDR control with Benjamini-Hochberg
(BH) procedure. Interested readers can refer to (De et al. 2018) for a detailed analysis and

comparison of different falsifiers.

FIG. S1: A comparison of the different falsifiers in two-dimensions for the same target identification
probability ¢. This figure has been adapted from (De et al. 2018)

Section S2. ADDITIONAL RESULTS FOR THE TOY EXAMPLE: EFFECT OF MODEL
MISSPECIFICATION

In the toy example, described in Section 5, we had assumed that the falsifiers are based on
correct models for the error residuals or, at least, the assumed distributions for the error residuals
are similar to the true one. However, that may not be the case and the residual error model may
be misspecified. Therefore, in this section, the error residuals are assumed to follow a Laplace
distribution, with zero mean and standard deviation o, instead of assuming Gaussian distributions.
Fig. S2 shows the approximate posterior pdf obtained using different falsifiers at various levels
of target identification probability ¢ when the error residuals are assumed to Laplace distributed.

Fig. S3a & b show plots of the mean and COV of the approximate posterior pdf, respectively, as ¢
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FIG. S2: Approximate posterior pdf obtained using different falsifiers at different levels of ¢ when
the probabilistic model for the residual errors is misspecified
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FIG. S3: (a) Mean and (b) COV of the approximate posterior pdf of 8 obtained from model falsified
ABC performed using different falsifiers as the target identification probability ¢ is varied, and
(c) Approximate posterior pdf obtained using GABC with different kernels when the probabilistic
model for the residual errors is misspecified

is decreased. The effect of this misspecfication is more pronounced at the higher values of ¢. Since
the Laplace distribution has heavier tails compared to a Gaussian distribution, more models are
unfalsified when the target identification probability is large, resulting in a very poor approximation
of the posterior pdf. Again, reducing ¢ can help improve the approximation of the posterior pdf.
The performance of model falsified GABC is also affected by the model misspecification. Fig. S3c
shows the approximate posterior pdf obtained using model falsified GABC performed using three

different kernels. For kgs, kg and kr, the posterior mean is 0.9670, 0.9672 and 0.9675, and the



posterior COV is 0.0029, 0.0030 and 0.0021, respectively. These estimates of 6 are more erroneous

as compared to those that were obtained when the 7, (e;) were correctly specified.

Section S3. ADDITIONAL RESULTS FOR THE PARAMETER INFERENCE EXAMPLE
OF A CUBIC-QUINTIC OSCILLATOR

Parameter inference using model falsified ABC

The evolution of the posterior mean of the different system parameters through the populations
of SMC for different falsifiers is shown in Fig. S4. The run that required the fewest number
of populations to reach the target threshold was selected for each falsifier. As the thresholds
monotonically decrease between successive populations, the posterior means also move toward the
true values, respectively. Fig. S4 offers empirical evidence in support of the consistency of model
falsified ABC. The detailed summary statistics of the approximate posterior distributions obtained

using model falsified ABC with different model falsifiers is given in Table S1.
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FIG. S4: Evolution of the posterior mean of the various parameters of the cubic-quintic system
through the populations of the SMC algorithm. The the true values of the parameters also shown
for reference



TABLE S1: Summary of the posterior distribution for the parameters of the cubic-quintic system
obtained using model falsified ABC with different model falsifiers. The reported estimates are
averages across 10 independent runs

Parameter Falsifier MSel;rIrllmary CO égl © pos[getfll’ogr SC‘I}lliti)lebrl;:I(l)gle Rgﬁlgrv ©
JEs 1.011 0.073 [0.884, 1.123] 0.012
. fiB 1.012  0.067 [0.891, 1.101] 0.014
Jis 1.039  0.102 [0.848, 1.175] 0.039
JLB 1.006  0.087 [0.857, 1.160] 0.009
fes 0.091  0.572 [0.018, 0.184] 0.819
. fB 0.081  0.583 [0.016, 0.167] 0.612
Jis 0.110  0.654 [0.017, 0.245] 1.198
JiB 0.104  0.613 [0.016, 0.216] 1.072
JES 48980  0.216 [30.220, 65.129] 0.020
i JeB 48.856  0.220 [29.197, 64.771] 0.023
Jis 44.487  0.352 [15.667, 68.351] 0.110
JLB 44724  0.299 [20.348, 65.168] 0.106

JEs 1.67 x 10> 0.607 [0.26 x 10%,3.59 x 10°]  0.668

i fie 1.66x10° 0.577 [0.32x10%3.42x 10°]  0.662
: fis  254x10° 0.628 [0.35x10%547x10°] 1.535
fig  2.11x10° 0.602 [0.31x10%4.40x10%] 1.113

fes  092x10° 0.244 [0.51 x 10°,1.33x 10°]  0.083

i fie 0.90x10° 0.238 [0.51 x 10°,1.29 x 10°]  0.097
: Jis 1.07 x 10°  0.447 [0.30 x 10°,1.97 x 10°]  0.081
fig  092x10° 0412 [0.33x10° 1.56%x10°]  0.082

Parameter inference using model falsified GABC

The detailed summary statistics of the approximate posterior distributions obtained using model

falsified GABC with different kernels is given in Table S2.

Section S4. ADDITIONAL RESULTS FOR THE MODEL SELECTION EXAMPLE OF A
FOUR DEGREE-OF-FREEDOM BASE ISOLATED STRUCTURE

Model class selection using model falsified ABC
The detailed summary statistics of the parameters of the Bouc-Wen model class obtained using
model falsified ABC with different falsifiers is given in Table S3. The corresponding approximate

posterior pdfs are shown in Fig. S5.



TABLE S2: Summary of the posterior distribution for the parameters of the cubic-quintic system
obtained using model falsified GABC with different kernels and the associated COV given in
brackets. The reported estimates for kernel kgs and kgp are averages across 10 independent runs.

Summary of the posterior distribution Relative
Parameter  Kernel Mean cov [57, 951 percentile error
kgs 0.994 0.065 [0.882, 1.094] 0.006
m keg 0.997 0.066 [0.884, 1.100] 0.003
kL 1.022 0.035 [0.964, 1.077] 0.024
kgs 0.084 0.541 [0.016, 0.162] 0.676
c kep 0.083 0.550 [0.016, 0.163] 0.660
kL 0.041 0.368 [0.015, 0.069] 0.185
kEs 48.836 0.196 [32.003, 63.426] 0.023
k kep 48.446 0.204 [30.637, 63.524] 0.031
kL 49.016 0.130 [38.654, 59.280] 0.020
kgs 146 x10° 0594 [0.25x 10%,3.12x 10°]  0.463
k3 kep  1.56x 10> 0.598 [0.26 x 10%,3.29 x 10°]  0.565
ki 1.64x10° 0382 [0.59x 10%,2.58x 10°] 0.644
kes 090 x 10° 0.232 [0.56 x 10°,1.25x 10°]  0.096
ks kep 0.83x10° 0249 [0.53x10°,1.27 x10°] 0.107
ki, 0.87x10° 0.1922 [0.61 x 10°,1.15x 10°]  0.133
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FIG. S5: Approximate posterior pdf of the parameters of the Bouc-Wen model class obtained using
model falsified ABC with different falsifiers when ¢ = 0.90



TABLE S3: Summary of the approximate posterior distribution of the Bouc-Wen model class
parameters obtained using model falsified ABC with different model falsifiers when ¢ = 0.90

Summary of the posterior distribution Relative

Parameter  Falsifier Mean Std. Dev. [5™, 95™] percentile ~ €TTOT

Jes 4.331 0.181 [4.029, 4.631] 0.082
kpost (MN/m) fEB 4.327 0.177 [4.026, 4.616] 0.082
Jis 4.423 0.210 [4.069, 4.769] 0.106
JiB 4.402 0.206 [4.052, 4.735] 0.100

JEs 24939 4976 [17.592, 34.212] 0.247
cp (kN-s/m) fEB 24911 4.976 [17.883,33.377] 0.246
Jis 25.015  5.093 [17.460, 33.863] 0.251
Jis 25.008  5.054 [17.673, 33.798] 0.250

JEs 0.1623  0.005 [0.1526, 0.1693] 0.026
Ik fEB 0.1627  0.005 [0.1531, 0.1694] 0.024
Jis 0.1613  0.006 [0.1516, 0.1692] 0.032
JiB 0.1613  0.006 [0.1515, 0.1693] 0.032

JEs 4.603 0.218 [4.290, 5.001] 0.079
Oy (Yomg) fEB 4.605 0.227 [4.290, 5.025] 0.079
Jis 4.700 0.279 [4.289, 5.178] 0.060
JiB 4.703 0.282 [4.292, 5.178] 0.059

Model class selection using model falsified GABC

The detailed summary statistics of the parameters of the Bouc-Wen model class obtained
using model falsified GABC with different kernels is provided in Table S4. The corresponding
approximate posterior pdfs are shown in Fig. S6. Figs. S7a and S7b show the approximate posterior
predicted mean absolute base acceleration obtained using model falsified GABC with different

kernels under the El Centro and Ridgecrest earthquake excitations, respectively.

Section S5. ADDITIONAL RESULTS FOR MODEL FALSIFIER BASED KERNEL
REGRESSION

The Nadaraya-Watson estimates for the parameters of the four degree-of-freedom base isolated
structure and their relative errors are provided in Table S5. Figs. S8a and S8b show the Nadaraya-
Watson estimate for the base absolute acceleration of the four degree-of-freedom base isolated

structure under the El Centro and Ridgecrest earthquake excitations, respectively.



TABLE S4: Parameter estimates of the base isolated structure using the GABC approach with
different kernels

Summary of the posterior distribution Relative

Parameter  Kernel Mean Std. Dev. [5™, 95™] percentile ~ €TTOT

kEgs 4.241 0.152 [3.995, 4.502] 0.060

kpost (MN/m) kp 4.281 0.172 [3.999, 4.558] 0.070
99 3.986 0.061 [3.878, 4.075] 0.004

kgs  24.621 5.096 [17.061, 33.566] 0.231

¢p (kN-s/m) kp 24970  4.885 [17.710, 33.992] 0.249
ki 25.058  4.781 [17.933, 33.172] 0.253

kgs  0.1641 0.004 [0.1554, 0.1696] 0.016

Tk kp 0.1635  0.005 [0.1541, 0.1695] 0.019

99 0.1661 0.002 [0.1618, 0.1696] 0.004

kgs 4.704 0.196 [4.380, 5.0270] 0.059

Oy (Jomg) kp 4.649 0.219 [4.317, 5.052] 0.070
ki 5.034 0.042 [4.967, 5.106] 0.007

TABLE S5: Nadaraya-Watson estimates of the parameters of the base isolated structure obtained
using different kernels

Parameter Kernel Estimate Relative Error

ks 4.382 0.096

kpost (MN/m)  kgp 4.315 0.078
ki, 4.497 0.124

ks 24.795 0.239

¢p (kN-s/m) keB 24.963 0.248
ki 24.886 0.244

ks 0.1608 0.035

rk kep 0.1625 0.025

99 0.1599 0.041

ks 4.573 0.085

Oy (Yomg) keB 4.617 0.077
ki, 4.772 0.046
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FIG. S6: Approximate posterior pdf of the parameters of the base isolated structure obtained using
model falsified GABC with different kernels
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FIG. S7: Approximate posterior predicted mean base absolute acceleration of the base isolated
structure under different ground motion excitations from model falsified GABC with different
kernels. The measurements are recorded when the structure is excited by the El Centro earthquake
excitation
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FIG. S8: Nadaraya-Watson estimator for the base absolute acceleration of the base isolated structure
under different ground motion excitations computed using different kernels. The measurements are
recorded when the structure is excited by the El Centro earthquake excitation
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