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Abstract—Traffic accident prediction is crucial for enhanc-
ing road safety and mitigating congestion, and recent Graph
Neural Networks (GNNs) have shown promise in modeling
the inherent graph-based traffic data. However, existing GNN-
based approaches often overlook or do not explicitly exploit
geographic position information, which often plays a critical
role in understanding spatial dependencies. This is also aligned
with our observation, where accident locations are often highly
relevant. To address this issue, we propose a plug-in-and-play
module for common GNN frameworks, termed Geographic
Information Alignment (GIA). This module can efficiently fuse
the node feature and geographic position information through
a novel Transpose Cross-attention mechanism. Due to the large
number of nodes for traffic data, the conventional cross-attention
mechanism performing the node-wise alignment may be infeasible
in computation-limited resources. Instead, we take the transpose
operation for Query, Key, and Value in the Cross-attention
mechanism, which substantially reduces the computation cost
while maintaining sufficient information. Experimental results
for both traffic occurrence prediction and severity prediction
(severity levels based on the interval of recorded crash counts)
on large-scale city-wise datasets confirm the effectiveness of our
proposed method. For example, our method can obtain gains
ranging from 1.3% to 10.9% in F1 score and 0.3% to 4.8% in
AUC'.

Index Terms—Traffic Accident Analysis, Non-conventional Big
data, Graph Data, Transpose Cross-attention, Position Feature
Alignment

I. INTRODUCTION

Road traffic accidents pose a significant global health and
safety issue, as reported by the World Health Organization
(WHO). The 2018 report estimated 1.35 million fatalities per
year, and though this number slightly decreased to 1.19 million
in the 2023 report, the issue remains critical [1], [2]. To mitigate
the risks associated with road traffic incidents, predictive
analytics have become a promising approach in modern
traffic management systems. The importance of modeling
traffic incident risks is well-recognized in the field of urban
planning and public safety [3]-[5]. In the machine learning
community, the use of traffic data is often large-scale, and
it can be inherently possessed to a graph/network structure
[6], [7]. For example, nodes represent physical locations, and
edges represent the roads connecting them [8]. Therefore,
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Figure 1: Top: Traffic Accident Map in Los Angeles shows
a strong correlation between traffic accidents and location
information. Positive denotes the crash/accident occurrence.
We mark some exemplary accident clusters. Bottom: The
proposed Geographic Information Alignment (GIA) through
the Transpose Cross-attention (TCA) mechanism.

learning graph-based representations of road networks enables
understanding traffic flow and identifying high-risk areas for
accidents. It is noteworthy that graph-based data is often
considered non-conventional due to its irregular structure with
dynamics topology. To address this issue, several Graph Neural
Networks (GNNs) are proposed [9]-[12]. Subsequently, many
of the following works [8], [13]-[16] apply GNN to different
traffic tasks.

However, a general issue with GNNS is their permutation-
invariant nature, which means they do not consider the order
of nodes. In the context of traffic analysis, these models
may neglect or do not explicitly exploit geographic position
information. This can be problematic in traffic accident
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Figure 2: Comparison of different fusion strategies. Left: Simply take addition, Middle: The conventional Cross-attention, and
Right: Our proposed Transpose Cross-attention (TCA) for feature-alignment.

prediction because geographical context and the precise location
of nodes are highly relevant. This is also aligned with our
observation of real-world datasets [8]. In Fig. 1(Left), we can
observe the accident distribution is often grouped according to
some geographical patterns. Areas with dense traffic networks
or critical intersections tend to experience higher accident
frequencies, highlighting the importance of geographic context
in traffic incident analysis.

Therefore, we aim to explicitly harness this geographical
information to GNN, and to this end, we propose a plug-in-and-
play technique termed Geographical Information Alignment
(GIA) as shown in Fig. 1(Right), which can be integrated
into general GNN frameworks. Intuitively, we can employ the
Cross-attention mechanism to fuse the node feature and the
geographical information. We note that the number of nodes
N often is substantial (e.g., over 10k), and directly applying
Cross-attention requires O(NN?) complexity in memory and
time, which can challenge the computation resources (In
fact, we encountered out-of-memory issues when attempting
this approach using one NVIDIA V100 GPU). Instead, we
propose a Transpose Cross-attention mechanism, where we
construct attention between each dimension and attempt to
align features from edges and geographical information. This
substantially reduces the complexity from O(N?) to O(d?),
where d denotes the number of dimensions and is much smaller
than N (e.g., d = 16 in our experiments). Fig. 2 illustrates
the different fusion strategies. The left one simply takes the
addition of node features and position representation, which
tends to limited learning performance. The middle one shows
the conventional Cross-attention to fuse two features, which
has a high computational cost, and the right one shows our
proposed Transpose Cross-attention, which performs feature-
wise alignment.

Our analysis is based on a database of national traffic
accident reports provided by [8]. We select some representative
cities and states in our experiments, including Dallas, Houston,
Miami, Orlando, Los Angeles, and New York. We consider
two important tasks involving accident occurrence prediction
and severity prediction. The empirical results confirm the
effectiveness of our enhanced GNN model, showing significant
improvements in predictive performance across multiple state-
of-the-art GNN models.
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II. RELATED WORK

Graph Neural Networks in Traffic Analysis. In current
mainstream research, network, and graph data are widely
used to deal with problems related to traffic flow [17], [18].
Therefore, many existing studies focus on network analysis [19]—-
[21]. However, compared to common data types in the field
of machine learning (such as images) [18], graph data are
more difficult to process because their topological structure
is often dynamic and large in scale [22]. To tackle this issue,
the community developed and improved many methods, and
the most popular paradigm is GNN. At a very early stage,
spectral methods were introduced to perform convolution
operations using the graph Laplacian operator [23]. Afterward,
Graph Convolutional Networks (GCN) [24] significantly reduce
the computational complexity to enhance its generalizability.
Subsequently, many variants of GNN are developed with
different modules [10], [11], [25], [26], such as attention
mechanism [27] or Transformer [12].

Graph Neural Networks (GNNs) have become increasingly
important in traffic analysis due to their ability to model traffic
networks as graphs, where nodes represent traffic entities like
vehicles or road intersections, and edges represent interactions
such as traffic flow or road connections. GNNs are particularly
effective for tasks like traffic flow prediction, route optimization,
and accident risk assessment. For example, recent models such
as FPTN [13] enhance traffic forecasting by leveraging sensor-
based data division and a Transformer encoder, which reduces
computational demands while improving accuracy. Similarly,
DyHSL [14] utilizes a hypergraph neural network (HGNN) to
capture dynamic and interactive spatio-temporal relationships,
significantly improving forecasting performance across multiple
datasets. DSTAGNN [15] focuses on dynamically modeling
spatial-temporal interactions in road networks, employing en-
hanced multi-head attention mechanisms and multi-scale gated
convolutions for more precise traffic predictions. Moreover,
Bi-STAT [16] advances traffic forecasting by using adaptive
spatial-temporal transformers, effectively handling diverse tasks
and leveraging historical data for more accurate predictions.
Finally, STFGNN [28] integrates data-driven temporal and
spatial graphs and gated convolutions, successfully managing
long sequences of traffic data, making it a robust model for
traffic forecasting.
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Our work is based on [8] for the large-scale traffic accident

analysis with GNNs. In this work, the authors investigate a
series of recent state-of-the-art GNN models (such as [9]-[12])
and further propose a new GNN-based method to analyze the
traffic accident occurrence and severity. We reiterate that a
significant limitation of these approaches is their reliance on
topological features of the graph while often ignoring or not
explicitly employing the absolute spatial coordinates of the
nodes, making it difficult to fully exploit prior to the geographic
information. Accordingly, this may limit the models’ predictive
power for tasks such as traffic accident prediction. Hence, in
this work, we propose a method to align position information
with node features to mitigate this concern.
Positional Encoding. The proposed method is relevant to
positional encoding techniques; however, we realize that there
exists an essential difference between them. Position encoding
has been extensively studied in Natural Language Processing
(NLP), particularly in the context of the Transformer architec-
ture [29], where sinusoidal position encoding is used to help
models capture the sequential order of words. This technique
is unlearnable, which often leads to limited performance. In
the domain of GNNs, researchers have started to investigate
methods to encode positional information within graphs. A
known work presented in [30] introduced positional encoding
for GNN. However, similar to sinusoidal position encoding,
they directly add position information and latent features, which
apparently degenerate learning ability. Instead, we propose the
Transpose Cross-attention to better and efficiently integrate
position and node features. In traffic analysis, although some
recent studies have experimented with incorporating node
coordinates into GNNs by injecting the coordinate information
as node features [31], these efforts often lack a systematic
approach to position encoding. In contrast, our method offers a
universal strategy to elegantly impose the position information
to GNNs.

III. METHOD

In this section, we present the problem formulation for
traffic accident prediction, followed by our proposed method,
the Geographical Information Alignment (GIA) through a novel
Transpose Cross-attention mechanism.

A. Problem Formulation

Following [8], the task of traffic accident prediction is for-
mulated as a node-wise classification problem in a monolithic
graph under the popular transductive setup [32]. In this context,
each dataset (i.e., a city) is presented as a large graph with NV
nodes and E edges. Subsequently, this graph can be presented
by three matrices A € RV*N X € RV*P1 and E € REXDz2,
denoting the adjacency matrix, node embedding, and edge
embedding, respectively. Here, D; and D- denote the number
of dimensions of node and edge features, respectively. We
also have partial node labels, with the index set of these
labeled nodes denoted as Vi,,. The set of nodes whose
labels are unknown and need to be predicted is denoted
as Vst The goal is to classify nodes based on accident
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occurrence or severity. Accident occurrence prediction is
a binary classification, indicating whether an accident has
occurred at a node or not. In contrast, the severity prediction
involves eight categories, where each category is defined based
on an interval of recorded crash counts. Please refer to [8] for
more detail.

B. Proposed Method

Here, we delve into the proposed Geographical Information
Alignment and demonstrate how to incorporate it with general
GNN models.

1) Position Encoding: The goal is to encode the semantic
information of a node’s absolute positions into its feature
representation. First, we can obtain the embedding of the node
features as X < fomwea(X) € R¥*Pn Here N and D,
denote the number of nodes and the dimensions of latent
space, respectively. This is because, in the raw data space,
different features represent different physical meanings (e.g.,
junction types, speed limit, etc,. ). Directly imposing position
information in that space may constrain the learning ability.
We also want to mention that the embedding layer fenpeq(-)
comes from the original architecture of a GNN, and we do not
intend to modify it. Given a geographical position P € RV *2,
we then map it to a latent space via a linear layer to match
the dimensions of the input edge feature, which is denoted
as P« frinear(P) € RVNXDn  Subsequently, we consider
to fuse it with P € RV*Pn and X € RVN*DPn_ Anp intuitive
solution is employing the cross-attention mechanism to perform
node-wise alignment:

H = softmax (XP> P.

NXN

ey

Following the common operation, we can apply the respec-
tive linear layers for the Query, Key, and Value. However, the
main concern here is that in our graph-based problem, the
number of nodes is often very large, and we have N >> D,,,
which leads to the computation and memory cost for the
attention matrix requiring an O(n?). This may be unacceptable
for a resource-constrained platform.

To address the concern, we propose the Transpose Cross-
attention mechanism. Instead of performing the node-wise
alignment, we prefer feature-wise alignment. Mathematically,

X'P

PT

N—_———
D, x Dy,

H = softmax < )

This substantially reduces the complexity from O(n?) to
O(D?2). Another justification is this operation can also con-
tain sufficient information from the perspective of linear

N AT A
algebra. This is because rank(XP ) = rank(X P)
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min(N, D,) = D,,. We also added a residual term to stabilize

the training as,
X'P) .
20 g
VN

The overall architecture is presented in Fig. 1.

X « Sfrinear(X) + softmax (

IV. EXPERIMENTS

Setup. In this section, we evaluate the performance of the
proposed GNN-based model variants for traffic incident pre-
diction. We employ multiple model baselines and analyze their
performance on large-scale traffic datasets provided by [8].
We select representative cities and states, such as Miami, Los
Angeles and New York to ensure geographical diversity and
capture a wide range of traffic patterns. These datasets vary
in size and structure, providing a comprehensive testbed for
traffic analysis. Detailed information on the number of nodes
and edges for each dataset can be found in Table I. It is
noteworthy to mention that the datasets are very unbalanced,
which challenges most deep learning or machine learning
models.

Dataset Miami | Los Angeles | Orlando | Dallas | Houston | New York
(FL) (CA) (FL) (TX) (TX) (NY)
# of Nodes | 8461 49251 7513 36150 | 59711 55404
# of Edges | 22648 135547 18216 | 92348 | 148937 140005

Table I: Summary of the datasets used in the experiments.

The dataset is stratified into training (60%), validation (20%),
and test (20%) sets, with stratification based on the incident
labels. All features are normalized using the MinMaxScaler
for each split.

Baselines. To validate that our proposed method is model-
agnostic, we choose 12 different state-of-the-art GNN models,
including (1) GCN: Graph Convolutional Networks [9], (2)
ChebNet: graph convolutional networks with spetral filtering
[10], (3) ARMANet: Graph neural networks with convolu-
tional auto-regressive moving average (ARMA) filters [25].
(4) GraphSAGE: inductive representation learning [11], (5)
TAGCN: Topology adaptive graph convolutional networks [26],
(6) GIN: Graph Isomorphism Networks [33], (7) GAT: Graph
attention networks [27], (8) MPNN: Message Passing Neural
Network [34], (9) CGC: Crystal graph convolutional neural
network [35], (10) GEN: GENeralized graph convolutional
neural networks [36], (11) Graphformer: Graph transformers
[12], and (12) TRAVEL: the recent GNN model proposed
for our problem [8]. For the sake of fair comparison, Each
model, including the baselines and our proposed variants,
applies a unified training regimen, where we adjust the training
epochs of 500 to make the model fully converge. The other
hyperparameters follow the default setting in [8].

Main Results. The main results are shown in Table II. The
primary observation is that by the proposed GIA, all GNN
models demonstrate significant improvements across different
cities. Specifically, in the occurrence prediction task (Table II),
GNN models achieve a 1.53% to 10.9% gain in F1 score and a
1.26% to 4.8% gain in AUC when incorporating our proposed
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GIA. For instance, models like GCN-GIA, ChebNet-GIA,
and GIN-GIA demonstrate F1 score improvements of 1.53%,
2.6%, and 4.51%, respectively. The model GIN-GIA shows
an exceptional improvement in the city of Miami, achieving a
remarkable 10.9% increase in F1 score(see Fig. 3) and a 4.0%
increase in AUC.

More importantly, the TRAVEL-GIA model, which previ-
ously had the best performance, achieved an additional 1.74%
gain in FI score and a 1.26% gain in AUC compared to its
non-PE variant. Likewise, in GEN-GIA, the F1 score shows a
4.69% improvement, with notable enhancements in cities like
Los Angeles and Dallas. These results underscore the critical
role of incorporating geographic positional information to boost
GNN performance on traffic prediction tasks.

Similarly, in severity prediction tasks (Table III), all GNN
models experience consistent improvements. In this task,
due to the already high performance of the original models
(around 85%), the improvements are relatively modest but still
significant. Notably, Transformer-GIA achieves the highest F1
score of 86.59%, with an improvement of 0.79%. The CGC-
GIA model also exhibits strong performance, reaching an F1
score of 86.48% with a 0.68% improvement. TRAVEL-GIA
shows the largest relative improvement of 1.12%, reaching an
F1 score of 85.82%. These results confirm that integrating GIA
leads to measurable performance gains, even in tasks where
baseline models already perform well.

In conclusion, the addition of GIA provides a consistent
performance boost across multiple models in the severity
prediction task despite the already high baseline performance.
This demonstrates that GIA is an effective enhancement
for traffic incident severity prediction, capable of improving
model performance even when the original models are already
achieving strong results. The observed improvements, while
modest in absolute terms, are significant given the high initial
performance levels and highlight the potential of GIA in
refining state-of-the-art models for this critical task.
Ablation Study. Table IV presents the results of our abla-
tion study, where we compare the performance of different
variations of GNN models across three methods: ARMANet,
GIN, and GEN. The first row corresponds to the original
model without any positional encoding. The second row shows
we only keep the linear residual term (i.e., the first term
presented in Eq.3). This can also be viewed as a simple
way for linear positional encoding. Finally, we will add the
most popular Sinusoidal PE for comparison. As shown in
Table IV, both linear and Sinusoidal positional encodings
provide improvements over the original models, with Linear
Encoding leading to a slightly higher improvement than
Sinusoidal Encoding across all three models. This may be
because it is learnable. Finally, we show the full model,
demonstrating the performance achieved when Geographic
Interaction Attention (GIA) is integrated into the system. This
yields the highest improvements, with F1 scores increasing
by 3.26%, 3.77%, and 4.9% for ARMANet, GIN, and GEN,
respectively, demonstrating the effectiveness of each component
in our design for these traffic analysis tasks.
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Figure 3: Comparison of traffic accident predictions in the Houston area using the GEN model(left), GEN-GIA model(middle),
and the ground truth(right). The GEN-GIA model shows improved accuracy in predicting high-accident areas by integrating
positional encoding.

Dataset Mean Miami (FL) Los Angeles(CA) Orlando (FL) Dallas (TX) Houston (TX) New York (NY)
Method F1 AUC F1 AUC F1 AUC Fl1 AUC F1 AUC F1 AUC F1 AUC

GCN 3453 7288  20.0+3.3 68.5+3.3 40.2£1.1 80.4+0.3 51.6+0.8 73.1£1.2 39.8+1.9 73.1£0.4 16.4+1.3 66.7+0.2 39.2+3.7 75.5£0.4
GCN-GIA 36.06 75.54 21.73%2777 72.69+0.18 40.74+£0.47 82.79+0.15 52.32+0.18 76.65+0.16 41.16+0.80 74.00£0.11 18.83£1.47 67.57+0.20 41.57+0.91 79.52+0.13
ChebNet 36.72 7545  20.7%29 71.3£3.6 39.8£1.8 81.0+£0.3 53.1+0.6 76.7£1.6 42.0£0.5 75.8+0.4 23.840.5 69.6+0.5 40.9+4.3 78.3%1.1

ChebNet-GIA 3932 7729 25.80+0.83 73.16+0.87 42.43%1.35 83.86+0.33 55.52+1.50 78.16+0.63 43.46+0.07 76.64+0.08 25.30£0.96 70.26+0.27 43.41+0.74 81.68+0.16

ARMANet 36.37 7477 19.243.3 69.5+3.5 40.8+1.0 80.9+0.4 51.5+1.3 75.7+1.4 41.240.5 75.6£0.2 23.1+0.4 69.2+0.7 42.4+1.1 77.7+0.6
ARMANet-GIA 3951 7725 25.69+0.29 74.3240.06 43.70£1.30 83.55+0.35 57.43+0.20 78.44+0.45 43.66+1.13 76.23+0.14 24.53£0.69 69.90+0.34 42.03+0.78  81.04+0.42

GraphSAGE 3755 7357  20.7+24 67.6+2.8 41.6+0.5 80.5+0.3 52.6+1.3 74.1x1.2 44.2+0.5 74.4+0.3 23.7+0.4 68.5+0.4 42.5%1.1 76.3+0.1
GraphSAGE-GIA  38.94 7598 25.4443.05 71.41£1.65 44.05+1.31 82.86+0.68 54.51x1.00 77.00+0.64 42.49+0.66 75.16+0.12 24.50+0.41 69.74+0.53 42.68+0.94 79.68+0.01

TAGCN 39.85 7740 252811 73.5%24  495%07 847202 533225  712+12 454204 770205 237206 705803  420+l.1  815%02
TAGCN-GIA 4277 79.11 3043168 75.64£075 53354178 86244021 57.8760.62 80.13:0.46 47384065 77.66:001 2520£0.92 7095026 42.40£0.60 84.06+0.30
GIN 3717 7557 228:12 727426 41607 818402  547+14 76611 413820 752203 20910  68.0803 417221  79.10.5
GIN-GIA 4168 7794 3377+0.15 7671335 46512054 84372049 5781127 78942008 438120.61 76932035 24.50:149 68.78:0.07 4366047 81.92£0.28

A 451 237 109 4 49 25 31 23 25 17 3 07 19 = 28
GAT 3693 7347 226£15 68330 416804  80.9:02  553%1.3  TAIXL0  420:15  73.6:0.3 178208  67.3:03  422:0.5 76604
GAT-GIA 3903 7611 27.698223 72.03#2.31 4528+124 83928049 56.55+1.11 77504008 42012005 74.59+0.10 20.91£1.15 6828£033 42.37+0.03 80.2420.03
MPNN 4463 8132 388+2.1  824+10  46.0£1.6 839302  614%25  81.8£0.7  48.5:1.9 79404 28217  73.5:0.5 44908  86.9+0.4
MPNN-GIA 4701 8296 43.03:1.44 84724038 48.88£098 86.9120.51 6372105 82458005 50.23:0.73 8126060 30728043 74.613026 45494008 87.8420.19
CGC 4247 7983 344227 79515 450812 815202 500421  8LI*08 485205 792407  27.3:19  723:0.1  406:12 85408
CGC-GIA 4608 8229 38.33+3.06 8416026 47.98+194 85.88:0.57 63.12+0.60 82742047 51.20:0.50 8037033 33.02£2.86 73.13:0.13 42832015 8747025

Graphformer 4513 81.32  37.7£33 81.0£1.9 48.9+0.3 83.8+0.3 62.9+1.6 82.0+0.7 49.840.7 80.0£0.7 28.4+0.7 73.9+0.4 43.1£0.7 87.2+0.4
Transformer-GIA ~ 48.02 83.17 42.04+1.35 85.04£0.47 51.74%1.45 86.59+0.51 64.52+0.83 83.02+0.63 51.3320.80 80.96+0.21 33.22+0.58 74.83+0.24 45.26+0.74 88.56+0.16

GEN 49.07 80.97  44.943.1 81.0£2.4 48.6+6.2 82.7+0.9 63.0£1.1 81.2+0.9 56.5£1.7 79.5+0.1 34.1+£6.0 73.7+0.4 47.3+1.4 87.7£0.9
GEN-GIA 53.76  83.62 51.96+0.66 86.14+0.55 55.44+0.17 87.67+0.22 65.42+1.04 82.79+1.08 56.14+0.99 81.06£0.49 42.95+0.94 75.35+0.89 50.65+2.37 88.70+0.07

TRAVEL 54.62 8277  51.9+1.0 84.9+0.9 55.3+0.9 85.9+0.5 65.0+0.4 82.3+0.4 58.0£0.9 80.8+0.7 46.4+0.7 74.5+0.3 51.1£0.9 88.2+0.2
TRAVEL-GIA 56.36  84.03 54.91+1.04 86.44+0.41 58.07£0.47 87.99+0.29 65.71x0.21 83.58+0.13 58.29+0.12 81.59+0.22 47.34+0.66 75.79+0.58 53.83+0.95 88.76+0.05

Table II: City-wise accident occurrence prediction results in terms of F1 score and AUC. A denotes the gain obtained by
imposing our proposed Geographical Information Alignment(with the suffix "-GIA") in the neural networks.

Model ARMANet GIN GEN
Model Fl (%) | AF1% F1 A F1 F1 A F1 F1 A F1
Transformer-GIA | 86.59 +0.79 Baseline 36.37 - 49.07 - 49.07 -
CGC-GIA 86.48 +0.68 +GIA w/o TCA | 38.81 +2.44 | 3849 +1.32 | 51.59 +2.52
TRAVEL-GIA 85.82 +1.12 +GIA 39.63 +3.26 | 40.94 +3.77 | 53.97 +4.9
Sinusoidal 38.28 +1.91 | 38.33 +1.16 | 51.05 +1.98

Table III: Comparison of different models on Severity Predic-
tion tasks. Table IV: Ablation study comparing the performance of
different GNN variants on accident occurrence prediction tasks
with and without positional encoding techniques. The methods
include the original GNN models (baseline), models without
TCA (only linear residual term), models with Sinusoidal
Encoding, and the full model.

For the severity prediction tasks (Table V), we observe
a similar trend, with GIA once again providing the largest
performance boost. Although the baseline models already
perform well, GIA enhances F1 scores by 0.95% for ARMANet,
0.64% for GIN, and 0.75% for GEN, confirming its positive
impact even in high-performing models.
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Model ARMANet GIN GEN
F1 A Fl1 F1 A Fl1 F1 A Fl1
Baseline 81.4 - 81.3 - 83.6 -
+GIA w/o TCA | 81.42 +0.02 | 81.58 +0.28 | 83.67 +0.07
+GIA 8235 +0.95 | 81.94 +0.64 | 84.35 +0.75
Sinusoidal 81.5 +0.1 | 81.41 +0.11 | 83.89 +0.29

Table V: Ablation study comparing the performance of different
GNN variants on severity prediction tasks with and without
positional encoding techniques. The methods include the
original GNN models (baseline), models without TCA (only
linear residual term), models with Sinusoidal Encoding, and
the full GIA model.

V. CONCLUSION

In this paper, we aim to address the common limitation
of GNNs, which often fail or explicitly incorporate spatial
information in traffic prediction tasks. To this end, we propose a
Geographical Information Alignment (GIA) module to enhance
GNNs for addressing this constraint. Specifically, the GIA
effectively integrates geographic positional information with
node features using the proposed Transpose Cross-attention
mechanism with a substantially low computation overhead.
Our extensive experiments, conducted on large-scale traffic
datasets from various cities, demonstrate significant perfor-
mance improvements across multiple state-of-the-art GNN
models, both in accident occurrence and severity prediction
tasks. For example, our method can obtain up to 10.9% and
4.8% gain in F1 score and AUC, respectively.
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