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Abstract—Traffic accident prediction is crucial for enhanc-
ing road safety and mitigating congestion, and recent Graph
Neural Networks (GNNs) have shown promise in modeling
the inherent graph-based traffic data. However, existing GNN-
based approaches often overlook or do not explicitly exploit
geographic position information, which often plays a critical
role in understanding spatial dependencies. This is also aligned
with our observation, where accident locations are often highly
relevant. To address this issue, we propose a plug-in-and-play
module for common GNN frameworks, termed Geographic
Information Alignment (GIA). This module can efficiently fuse
the node feature and geographic position information through
a novel Transpose Cross-attention mechanism. Due to the large
number of nodes for traffic data, the conventional cross-attention
mechanism performing the node-wise alignment may be infeasible
in computation-limited resources. Instead, we take the transpose
operation for Query, Key, and Value in the Cross-attention
mechanism, which substantially reduces the computation cost
while maintaining sufficient information. Experimental results
for both traffic occurrence prediction and severity prediction
(severity levels based on the interval of recorded crash counts)
on large-scale city-wise datasets confirm the effectiveness of our
proposed method. For example, our method can obtain gains
ranging from 1.3% to 10.9% in F1 score and 0.3% to 4.8% in
AUC1.

Index Terms—Traffic Accident Analysis, Non-conventional Big
data, Graph Data, Transpose Cross-attention, Position Feature
Alignment

I. INTRODUCTION

Road traffic accidents pose a significant global health and

safety issue, as reported by the World Health Organization

(WHO). The 2018 report estimated 1.35 million fatalities per

year, and though this number slightly decreased to 1.19 million

in the 2023 report, the issue remains critical [1], [2]. To mitigate

the risks associated with road traffic incidents, predictive

analytics have become a promising approach in modern

traffic management systems. The importance of modeling

traffic incident risks is well-recognized in the field of urban

planning and public safety [3]–[5]. In the machine learning

community, the use of traffic data is often large-scale, and

it can be inherently possessed to a graph/network structure

[6], [7]. For example, nodes represent physical locations, and

edges represent the roads connecting them [8]. Therefore,

1This material is based upon the work supported by the National Science
Foundation under Grant Number 2204721 and partially supported by our
collaborative project with MIT Lincoln Lab under Grant Number 7000612889.

Figure 1: Top: Traffic Accident Map in Los Angeles shows

a strong correlation between traffic accidents and location

information. Positive denotes the crash/accident occurrence.

We mark some exemplary accident clusters. Bottom: The

proposed Geographic Information Alignment (GIA) through

the Transpose Cross-attention (TCA) mechanism.

learning graph-based representations of road networks enables

understanding traffic flow and identifying high-risk areas for

accidents. It is noteworthy that graph-based data is often

considered non-conventional due to its irregular structure with

dynamics topology. To address this issue, several Graph Neural

Networks (GNNs) are proposed [9]–[12]. Subsequently, many

of the following works [8], [13]–[16] apply GNN to different

traffic tasks.

However, a general issue with GNNs is their permutation-

invariant nature, which means they do not consider the order

of nodes. In the context of traffic analysis, these models

may neglect or do not explicitly exploit geographic position

information. This can be problematic in traffic accident
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Figure 2: Comparison of different fusion strategies. Left: Simply take addition, Middle: The conventional Cross-attention, and

Right: Our proposed Transpose Cross-attention (TCA) for feature-alignment.

prediction because geographical context and the precise location

of nodes are highly relevant. This is also aligned with our

observation of real-world datasets [8]. In Fig. 1(Left), we can

observe the accident distribution is often grouped according to

some geographical patterns. Areas with dense traffic networks

or critical intersections tend to experience higher accident

frequencies, highlighting the importance of geographic context

in traffic incident analysis.

Therefore, we aim to explicitly harness this geographical

information to GNN, and to this end, we propose a plug-in-and-

play technique termed Geographical Information Alignment
(GIA) as shown in Fig. 1(Right), which can be integrated

into general GNN frameworks. Intuitively, we can employ the

Cross-attention mechanism to fuse the node feature and the

geographical information. We note that the number of nodes

N often is substantial (e.g., over 10k), and directly applying

Cross-attention requires O(N2) complexity in memory and

time, which can challenge the computation resources (In

fact, we encountered out-of-memory issues when attempting

this approach using one NVIDIA V100 GPU). Instead, we

propose a Transpose Cross-attention mechanism, where we

construct attention between each dimension and attempt to

align features from edges and geographical information. This

substantially reduces the complexity from O(N2) to O(d2),
where d denotes the number of dimensions and is much smaller

than N (e.g., d = 16 in our experiments). Fig. 2 illustrates

the different fusion strategies. The left one simply takes the

addition of node features and position representation, which

tends to limited learning performance. The middle one shows

the conventional Cross-attention to fuse two features, which

has a high computational cost, and the right one shows our

proposed Transpose Cross-attention, which performs feature-

wise alignment.

Our analysis is based on a database of national traffic

accident reports provided by [8]. We select some representative

cities and states in our experiments, including Dallas, Houston,

Miami, Orlando, Los Angeles, and New York. We consider

two important tasks involving accident occurrence prediction

and severity prediction. The empirical results confirm the

effectiveness of our enhanced GNN model, showing significant

improvements in predictive performance across multiple state-

of-the-art GNN models.

II. RELATED WORK

Graph Neural Networks in Traffic Analysis. In current

mainstream research, network, and graph data are widely

used to deal with problems related to traffic flow [17], [18].

Therefore, many existing studies focus on network analysis [19]–

[21]. However, compared to common data types in the field

of machine learning (such as images) [18], graph data are

more difficult to process because their topological structure

is often dynamic and large in scale [22]. To tackle this issue,

the community developed and improved many methods, and

the most popular paradigm is GNN. At a very early stage,

spectral methods were introduced to perform convolution

operations using the graph Laplacian operator [23]. Afterward,

Graph Convolutional Networks (GCN) [24] significantly reduce

the computational complexity to enhance its generalizability.

Subsequently, many variants of GNN are developed with

different modules [10], [11], [25], [26], such as attention

mechanism [27] or Transformer [12].

Graph Neural Networks (GNNs) have become increasingly

important in traffic analysis due to their ability to model traffic

networks as graphs, where nodes represent traffic entities like

vehicles or road intersections, and edges represent interactions

such as traffic flow or road connections. GNNs are particularly

effective for tasks like traffic flow prediction, route optimization,

and accident risk assessment. For example, recent models such

as FPTN [13] enhance traffic forecasting by leveraging sensor-

based data division and a Transformer encoder, which reduces

computational demands while improving accuracy. Similarly,

DyHSL [14] utilizes a hypergraph neural network (HGNN) to

capture dynamic and interactive spatio-temporal relationships,

significantly improving forecasting performance across multiple

datasets. DSTAGNN [15] focuses on dynamically modeling

spatial-temporal interactions in road networks, employing en-

hanced multi-head attention mechanisms and multi-scale gated

convolutions for more precise traffic predictions. Moreover,

Bi-STAT [16] advances traffic forecasting by using adaptive

spatial-temporal transformers, effectively handling diverse tasks

and leveraging historical data for more accurate predictions.

Finally, STFGNN [28] integrates data-driven temporal and

spatial graphs and gated convolutions, successfully managing

long sequences of traffic data, making it a robust model for

traffic forecasting.
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Our work is based on [8] for the large-scale traffic accident

analysis with GNNs. In this work, the authors investigate a

series of recent state-of-the-art GNN models (such as [9]–[12])

and further propose a new GNN-based method to analyze the

traffic accident occurrence and severity. We reiterate that a

significant limitation of these approaches is their reliance on

topological features of the graph while often ignoring or not

explicitly employing the absolute spatial coordinates of the

nodes, making it difficult to fully exploit prior to the geographic

information. Accordingly, this may limit the models’ predictive

power for tasks such as traffic accident prediction. Hence, in

this work, we propose a method to align position information

with node features to mitigate this concern.

Positional Encoding. The proposed method is relevant to

positional encoding techniques; however, we realize that there

exists an essential difference between them. Position encoding

has been extensively studied in Natural Language Processing

(NLP), particularly in the context of the Transformer architec-

ture [29], where sinusoidal position encoding is used to help

models capture the sequential order of words. This technique

is unlearnable, which often leads to limited performance. In

the domain of GNNs, researchers have started to investigate

methods to encode positional information within graphs. A

known work presented in [30] introduced positional encoding

for GNN. However, similar to sinusoidal position encoding,

they directly add position information and latent features, which

apparently degenerate learning ability. Instead, we propose the

Transpose Cross-attention to better and efficiently integrate

position and node features. In traffic analysis, although some

recent studies have experimented with incorporating node

coordinates into GNNs by injecting the coordinate information

as node features [31], these efforts often lack a systematic

approach to position encoding. In contrast, our method offers a

universal strategy to elegantly impose the position information

to GNNs.

III. METHOD

In this section, we present the problem formulation for

traffic accident prediction, followed by our proposed method,

the Geographical Information Alignment (GIA) through a novel

Transpose Cross-attention mechanism.

A. Problem Formulation

Following [8], the task of traffic accident prediction is for-

mulated as a node-wise classification problem in a monolithic

graph under the popular transductive setup [32]. In this context,

each dataset (i.e., a city) is presented as a large graph with N
nodes and E edges. Subsequently, this graph can be presented

by three matrices A ∈ R
N×N , X ∈ R

N×D1 , and E ∈ R
E×D2 ,

denoting the adjacency matrix, node embedding, and edge

embedding, respectively. Here, D1 and D2 denote the number

of dimensions of node and edge features, respectively. We

also have partial node labels, with the index set of these

labeled nodes denoted as Vtrain. The set of nodes whose

labels are unknown and need to be predicted is denoted

as Vtest. The goal is to classify nodes based on accident

occurrence or severity. Accident occurrence prediction is

a binary classification, indicating whether an accident has

occurred at a node or not. In contrast, the severity prediction

involves eight categories, where each category is defined based

on an interval of recorded crash counts. Please refer to [8] for

more detail.

B. Proposed Method

Here, we delve into the proposed Geographical Information
Alignment and demonstrate how to incorporate it with general

GNN models.

1) Position Encoding: The goal is to encode the semantic

information of a node’s absolute positions into its feature

representation. First, we can obtain the embedding of the node

features as X̂ ← fembed(X) ∈ R
N×Dn . Here N and Dn

denote the number of nodes and the dimensions of latent

space, respectively. This is because, in the raw data space,

different features represent different physical meanings (e.g.,

junction types, speed limit, etc,. ). Directly imposing position

information in that space may constrain the learning ability.

We also want to mention that the embedding layer fembed(·)
comes from the original architecture of a GNN, and we do not

intend to modify it. Given a geographical position P ∈ R
N×2,

we then map it to a latent space via a linear layer to match

the dimensions of the input edge feature, which is denoted

as P̂ ← flinear(P ) ∈ R
N×Dn . Subsequently, we consider

to fuse it with P̂ ∈ R
N×Dn and X̂ ∈ R

N×Dn . An intuitive

solution is employing the cross-attention mechanism to perform

node-wise alignment:

H = softmax

(
X̂P̂

�
√
Dn

)
︸ ︷︷ ︸

N×N

P̂ . (1)

Following the common operation, we can apply the respec-

tive linear layers for the Query, Key, and Value. However, the

main concern here is that in our graph-based problem, the

number of nodes is often very large, and we have N >> Dn,

which leads to the computation and memory cost for the

attention matrix requiring an O(n2). This may be unacceptable

for a resource-constrained platform.

To address the concern, we propose the Transpose Cross-
attention mechanism. Instead of performing the node-wise

alignment, we prefer feature-wise alignment. Mathematically,

H = softmax

(
X̂�P̂√

N

)
︸ ︷︷ ︸

Dn×Dn

P̂
�
. (2)

This substantially reduces the complexity from O(n2) to

O(D2
n). Another justification is this operation can also con-

tain sufficient information from the perspective of linear

algebra. This is because rank(X̂P̂
�
) = rank(X̂

�
P̂ ) =
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min(N,Dn) = Dn. We also added a residual term to stabilize

the training as,

X̂ ← flinear(X) + softmax

(
X̂�P̂√

N

)
P̂

�
. (3)

The overall architecture is presented in Fig. 1.

IV. EXPERIMENTS

Setup. In this section, we evaluate the performance of the

proposed GNN-based model variants for traffic incident pre-

diction. We employ multiple model baselines and analyze their

performance on large-scale traffic datasets provided by [8].

We select representative cities and states, such as Miami, Los

Angeles and New York to ensure geographical diversity and

capture a wide range of traffic patterns. These datasets vary

in size and structure, providing a comprehensive testbed for

traffic analysis. Detailed information on the number of nodes

and edges for each dataset can be found in Table I. It is

noteworthy to mention that the datasets are very unbalanced,

which challenges most deep learning or machine learning

models.

Dataset Miami
(FL)

Los Angeles
(CA)

Orlando
(FL)

Dallas
(TX)

Houston
(TX)

New York
(NY)

# of Nodes 8461 49251 7513 36150 59711 55404

# of Edges 22648 135547 18216 92348 148937 140005

Table I: Summary of the datasets used in the experiments.

The dataset is stratified into training (60%), validation (20%),

and test (20%) sets, with stratification based on the incident

labels. All features are normalized using the MinMaxScaler

for each split.

Baselines. To validate that our proposed method is model-

agnostic, we choose 12 different state-of-the-art GNN models,

including (1) GCN: Graph Convolutional Networks [9], (2)

ChebNet: graph convolutional networks with spetral filtering

[10], (3) ARMANet: Graph neural networks with convolu-

tional auto-regressive moving average (ARMA) filters [25].

(4) GraphSAGE: inductive representation learning [11], (5)

TAGCN: Topology adaptive graph convolutional networks [26],

(6) GIN: Graph Isomorphism Networks [33], (7) GAT: Graph

attention networks [27], (8) MPNN: Message Passing Neural

Network [34], (9) CGC: Crystal graph convolutional neural

network [35], (10) GEN: GENeralized graph convolutional

neural networks [36], (11) Graphformer: Graph transformers

[12], and (12) TRAVEL: the recent GNN model proposed

for our problem [8]. For the sake of fair comparison, Each

model, including the baselines and our proposed variants,

applies a unified training regimen, where we adjust the training

epochs of 500 to make the model fully converge. The other

hyperparameters follow the default setting in [8].

Main Results. The main results are shown in Table II. The

primary observation is that by the proposed GIA, all GNN

models demonstrate significant improvements across different

cities. Specifically, in the occurrence prediction task (Table II),

GNN models achieve a 1.53% to 10.9% gain in F1 score and a

1.26% to 4.8% gain in AUC when incorporating our proposed

GIA. For instance, models like GCN-GIA, ChebNet-GIA,

and GIN-GIA demonstrate F1 score improvements of 1.53%,

2.6%, and 4.51%, respectively. The model GIN-GIA shows

an exceptional improvement in the city of Miami, achieving a

remarkable 10.9% increase in F1 score(see Fig. 3) and a 4.0%

increase in AUC.

More importantly, the TRAVEL-GIA model, which previ-

ously had the best performance, achieved an additional 1.74%

gain in F1 score and a 1.26% gain in AUC compared to its

non-PE variant. Likewise, in GEN-GIA, the F1 score shows a

4.69% improvement, with notable enhancements in cities like

Los Angeles and Dallas. These results underscore the critical

role of incorporating geographic positional information to boost

GNN performance on traffic prediction tasks.

Similarly, in severity prediction tasks (Table III), all GNN

models experience consistent improvements. In this task,

due to the already high performance of the original models

(around 85%), the improvements are relatively modest but still

significant. Notably, Transformer-GIA achieves the highest F1

score of 86.59%, with an improvement of 0.79%. The CGC-

GIA model also exhibits strong performance, reaching an F1

score of 86.48% with a 0.68% improvement. TRAVEL-GIA

shows the largest relative improvement of 1.12%, reaching an

F1 score of 85.82%. These results confirm that integrating GIA

leads to measurable performance gains, even in tasks where

baseline models already perform well.

In conclusion, the addition of GIA provides a consistent

performance boost across multiple models in the severity

prediction task despite the already high baseline performance.

This demonstrates that GIA is an effective enhancement

for traffic incident severity prediction, capable of improving

model performance even when the original models are already

achieving strong results. The observed improvements, while

modest in absolute terms, are significant given the high initial

performance levels and highlight the potential of GIA in

refining state-of-the-art models for this critical task.

Ablation Study. Table IV presents the results of our abla-

tion study, where we compare the performance of different

variations of GNN models across three methods: ARMANet,

GIN, and GEN. The first row corresponds to the original

model without any positional encoding. The second row shows

we only keep the linear residual term (i.e., the first term

presented in Eq.3). This can also be viewed as a simple

way for linear positional encoding. Finally, we will add the

most popular Sinusoidal PE for comparison. As shown in

Table IV, both linear and Sinusoidal positional encodings

provide improvements over the original models, with Linear

Encoding leading to a slightly higher improvement than

Sinusoidal Encoding across all three models. This may be

because it is learnable. Finally, we show the full model,

demonstrating the performance achieved when Geographic

Interaction Attention (GIA) is integrated into the system. This

yields the highest improvements, with F1 scores increasing

by 3.26%, 3.77%, and 4.9% for ARMANet, GIN, and GEN,

respectively, demonstrating the effectiveness of each component

in our design for these traffic analysis tasks.
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Figure 3: Comparison of traffic accident predictions in the Houston area using the GEN model(left), GEN-GIA model(middle),

and the ground truth(right). The GEN-GIA model shows improved accuracy in predicting high-accident areas by integrating

positional encoding.

Dataset Mean Miami (FL) Los Angeles(CA) Orlando (FL) Dallas (TX) Houston (TX) New York (NY)

Method F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC

GCN 34.53 72.88 20.0±3.3 68.5±3.3 40.2±1.1 80.4±0.3 51.6±0.8 73.1±1.2 39.8±1.9 73.1±0.4 16.4±1.3 66.7±0.2 39.2±3.7 75.5±0.4

GCN-GIA 36.06 75.54 21.73±2.77 72.69±0.18 40.74±0.47 82.79±0.15 52.32±0.18 76.65±0.16 41.16±0.80 74.00±0.11 18.83±1.47 67.57±0.20 41.57±0.91 79.52±0.13

Δ 1.53 2.66 1.7 4.1 0.5 2.3 0.7 3.5 1.3 0.9 2.4 0.8 2.3 4

ChebNet 36.72 75.45 20.7±2.9 71.3±3.6 39.8±1.8 81.0±0.3 53.1±0.6 76.7±1.6 42.0±0.5 75.8±0.4 23.8±0.5 69.6±0.5 40.9±4.3 78.3±1.1

ChebNet-GIA 39.32 77.29 25.80±0.83 73.16±0.87 42.43±1.35 83.86±0.33 55.52±1.50 78.16±0.63 43.46±0.07 76.64±0.08 25.30±0.96 70.26±0.27 43.41±0.74 81.68±0.16

Δ 2.6 1.84 5.1 1.8 2.6 2.8 2.4 1.4 1.4 0.8 1.5 0.6 2.5 3.3

ARMANet 36.37 74.77 19.2±3.3 69.5±3.5 40.8±1.0 80.9±0.4 51.5±1.3 75.7±1.4 41.2±0.5 75.6±0.2 23.1±0.4 69.2±0.7 42.4±1.1 77.7±0.6

ARMANet-GIA 39.51 77.25 25.69±0.29 74.32±0.06 43.70±1.30 83.55±0.35 57.43±0.20 78.44±0.45 43.66±1.13 76.23±0.14 24.53±0.69 69.90±0.34 42.03±0.78 81.04±0.42

Δ 3.14 2.48 6.4 4.8 2.9 2.6 5.9 2.7 2.4 0.6 1.4 0.7 -0.4 3.3

GraphSAGE 37.55 73.57 20.7±2.4 67.6±2.8 41.6±0.5 80.5±0.3 52.6±1.3 74.1±1.2 44.2±0.5 74.4±0.3 23.7±0.4 68.5±0.4 42.5±1.1 76.3±0.1

GraphSAGE-GIA 38.94 75.98 25.44±3.05 71.41±1.65 44.05±1.31 82.86±0.68 54.51±1.00 77.00±0.64 42.49±0.66 75.16±0.12 24.50±0.41 69.74±0.53 42.68±0.94 79.68±0.01

Δ 1.39 2.41 4.7 3.8 2.4 2.3 1.9 2.9 -1.8 0.7 0.8 1.2 0.1 3.3

TAGCN 39.85 77.40 25.2±1.1 73.5±2.4 49.5±0.7 84.7±0.2 53.3±2.5 77.2±1.2 45.4±0.4 77.0±0.5 23.7±0.6 70.5±0.3 42.0±1.1 81.5±0.2

TAGCN-GIA 42.77 79.11 30.43±1.68 75.64±0.75 53.35±1.78 86.24±0.21 57.87±0.62 80.13±0.46 47.38±0.65 77.66±0.01 25.20±0.92 70.95±0.26 42.40±0.60 84.06±0.30

Δ 2.92 1.71 5.2 2.1 3.8 1.5 4.5 2.9 1.9 0.6 1.5 0.4 0.4 2.5

GIN 37.17 75.57 22.8±1.2 72.7±2.6 41.6±0.7 81.8±0.2 54.7±1.4 76.6±1.1 41.3±2.0 75.2±0.3 20.9±1.0 68.0±0.3 41.7±2.1 79.1±0.5

GIN-GIA 41.68 77.94 33.77±0.15 76.71±3.35 46.51±0.54 84.37±0.49 57.81±1.27 78.94±0.08 43.81±0.61 76.93±0.35 24.50±1.49 68.78±0.07 43.66±0.47 81.92±0.28

Δ 4.51 2.37 10.9 4 4.9 2.5 3.1 2.3 2.5 1.7 3.6 0.7 1.9 2.8

GAT 36.93 73.47 22.6±1.5 68.3±3.0 41.6±0.4 80.9±0.2 55.3±1.3 74.1±1.0 42.1±1.5 73.6±0.3 17.8±0.8 67.3±0.3 42.2±0.5 76.6±0.4

GAT-GIA 39.13 76.11 27.69±2.23 72.03±2.31 45.28±1.24 83.92±0.49 56.55±1.11 77.59±0.08 42.01±0.05 74.59±0.10 20.91±1.15 68.28±0.33 42.37±0.03 80.24±0.03

Δ 2.2 2.64 5 3.7 3.6 3 1.2 3.4 -0.1 0.9 3.1 0.9 0.1 3.6

MPNN 44.63 81.32 38.8±2.1 82.4±1.0 46.0±1.6 83.9±0.2 61.4±2.5 81.8±0.7 48.5±1.9 79.4±0.4 28.2±1.7 73.5±0.5 44.9±0.8 86.9±0.4

MPNN-GIA 47.01 82.96 43.03±1.44 84.72±0.38 48.88±0.98 86.91±0.51 63.72±1.05 82.45±0.95 50.23±0.73 81.26±0.60 30.72±0.43 74.61±0.26 45.49±0.08 87.84±0.19

Δ 2.38 1.64 4.2 2.3 2.8 3 2.3 0.6 1.7 1.8 2.5 1.1 0.5 0.9

CGC 42.47 79.83 34.4±2.7 79.5±1.5 45.0±1.2 81.5±0.2 59.0±2.1 81.1±0.8 48.5±0.5 79.2±0.7 27.3±1.9 72.3±0.1 40.6±1.2 85.4±0.8

CGC-GIA 46.08 82.29 38.33±3.06 84.16±0.26 47.98±1.94 85.88±0.57 63.12±0.60 82.74±0.47 51.20±0.50 80.37±0.33 33.02±2.86 73.13±0.13 42.83±0.15 87.47±0.25

Δ 3.61 2.46 3.9 4.6 2.9 4.3 4.1 1.6 2.7 1.1 5.7 0.8 2.2 2

Graphformer 45.13 81.32 37.7±3.3 81.0±1.9 48.9±0.3 83.8±0.3 62.9±1.6 82.0±0.7 49.8±0.7 80.0±0.7 28.4±0.7 73.9±0.4 43.1±0.7 87.2±0.4

Transformer-GIA 48.02 83.17 42.04±1.35 85.04±0.47 51.74±1.45 86.59±0.51 64.52±0.83 83.02±0.63 51.33±0.80 80.96±0.21 33.22±0.58 74.83±0.24 45.26±0.74 88.56±0.16

Δ 2.89 1.85 4.3 4 2.8 2.7 1.6 1 1.5 0.9 4.8 0.9 2.1 1.3

GEN 49.07 80.97 44.9±3.1 81.0±2.4 48.6±6.2 82.7±0.9 63.0±1.1 81.2±0.9 56.5±1.7 79.5±0.1 34.1±6.0 73.7±0.4 47.3±1.4 87.7±0.9

GEN-GIA 53.76 83.62 51.96±0.66 86.14±0.55 55.44±0.17 87.67±0.22 65.42±1.04 82.79±1.08 56.14±0.99 81.06±0.49 42.95±0.94 75.35±0.89 50.65±2.37 88.70±0.07

Δ 4.69 2.65 7 5.1 6.8 4.9 2.4 1.5 -0.4 1.5 8.8 1.6 3.3 1

TRAVEL 54.62 82.77 51.9±1.0 84.9±0.9 55.3±0.9 85.9±0.5 65.0±0.4 82.3±0.4 58.0±0.9 80.8±0.7 46.4±0.7 74.5±0.3 51.1±0.9 88.2±0.2

TRAVEL-GIA 56.36 84.03 54.91±1.04 86.44±0.41 58.07±0.47 87.99±0.29 65.71±0.21 83.58±0.13 58.29±0.12 81.59±0.22 47.34±0.66 75.79±0.58 53.83±0.95 88.76±0.05

Δ 1.74 1.26 3 1.5 2.7 2 0.7 1.2 0.2 0.7 0.9 1.2 2.7 0.5

Table II: City-wise accident occurrence prediction results in terms of F1 score and AUC. Δ denotes the gain obtained by

imposing our proposed Geographical Information Alignment(with the suffix "-GIA") in the neural networks.

Model F1 (%) ΔF1%
Transformer-GIA 86.59 +0.79

CGC-GIA 86.48 +0.68

TRAVEL-GIA 85.82 +1.12

Table III: Comparison of different models on Severity Predic-

tion tasks.

For the severity prediction tasks (Table V), we observe

a similar trend, with GIA once again providing the largest

performance boost. Although the baseline models already

perform well, GIA enhances F1 scores by 0.95% for ARMANet,

0.64% for GIN, and 0.75% for GEN, confirming its positive

impact even in high-performing models.

Model
ARMANet GIN GEN

F1 Δ F1 F1 Δ F1 F1 Δ F1

Baseline 36.37 - 49.07 - 49.07 -

+GIA w/o TCA 38.81 +2.44 38.49 +1.32 51.59 +2.52

+GIA 39.63 +3.26 40.94 +3.77 53.97 +4.9
Sinusoidal 38.28 +1.91 38.33 +1.16 51.05 +1.98

Table IV: Ablation study comparing the performance of

different GNN variants on accident occurrence prediction tasks

with and without positional encoding techniques. The methods

include the original GNN models (baseline), models without

TCA (only linear residual term), models with Sinusoidal

Encoding, and the full model.
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Model
ARMANet GIN GEN

F1 Δ F1 F1 Δ F1 F1 Δ F1

Baseline 81.4 - 81.3 - 83.6 -

+GIA w/o TCA 81.42 +0.02 81.58 +0.28 83.67 +0.07

+GIA 82.35 +0.95 81.94 +0.64 84.35 +0.75
Sinusoidal 81.5 +0.1 81.41 +0.11 83.89 +0.29

Table V: Ablation study comparing the performance of different

GNN variants on severity prediction tasks with and without

positional encoding techniques. The methods include the

original GNN models (baseline), models without TCA (only

linear residual term), models with Sinusoidal Encoding, and

the full GIA model.

V. CONCLUSION

In this paper, we aim to address the common limitation

of GNNs, which often fail or explicitly incorporate spatial

information in traffic prediction tasks. To this end, we propose a

Geographical Information Alignment (GIA) module to enhance

GNNs for addressing this constraint. Specifically, the GIA

effectively integrates geographic positional information with

node features using the proposed Transpose Cross-attention

mechanism with a substantially low computation overhead.

Our extensive experiments, conducted on large-scale traffic

datasets from various cities, demonstrate significant perfor-

mance improvements across multiple state-of-the-art GNN

models, both in accident occurrence and severity prediction

tasks. For example, our method can obtain up to 10.9% and

4.8% gain in F1 score and AUC, respectively.
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