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Abstract

Inverse imaging problems (IIPs) arise in various appli-
cations, with the main objective of reconstructing an im-
age from its compressed measurements. This problem is of-
ten ill-posed for being under-determined with multiple in-
terchangeably consistent solutions. The best solution in-
herently depends on prior knowledge or assumptions, such
as the sparsity of the image. Furthermore, the reconstruc-
tion process for most IIPs relies significantly on the imaging
(i.e. forward model) parameters, which might not be fully
known, or the measurement device may undergo calibration
drifts. These uncertainties in the forward model create sub-
stantial challenges, where inaccurate reconstructions usu-
ally happen when the postulated parameters of the forward
model do not fully match the actual ones. In this work, we
devoted to tackling accurate reconstruction under the con-
text of a set of possible forward model parameters that ex-
ist. Here, we propose a novel Moment-Aggregation (MA)
framework that is compatible with the popular IIP solution
by using a neural network prior. Specifically, our method
can reconstruct the signal by considering all candidate pa-
rameters of the forward model simultaneously during the
update of the neural network. We theoretically demonstrate
the convergence of the MA framework, which has a simi-
lar complexity with reconstruction under the known forward
model parameters. Proof-of-concept experiments demon-
strate that the proposed MA achieves performance compa-
rable to the forward model with the known precise param-
eter in reconstruction across both compressive sensing and
phase retrieval applications, with a PSNR gap of 0.17 to
1.94 over various datasets, including MNIST, X-ray, Glas,
and MoNuseg. This highlights our method’s significant po-
tential in reconstruction under an uncertain forward model.

*These authors contributed equally to this paper.
†Corresponding Author

Figure 1. The illustration of the Moment-Aggregation (MA)

framework for IIPs with a neural network that considers the effect

of all possible candidate parameters of the forward model simul-

taneously. MA loss is constructed after every forward propagation

(we call this time point a ”moment”) and then is used to update pa-

rameters in backward propagation. Left: The losses by candidate

forward model parameters, and one of them is the precise param-

eter. Their labels are unknown (i.e. the precise or not precise)

during training. Right: The loss at different moments by MA.

The loss is moment-wise convex/smooth, and the overall training

can achieve the global minima as reconstruction using the precise

parameter.

1. Introduction
Inverse imaging problems (IIPs) aim to reconstruct a

sought-after image x0 ∈ R
n from its measurements y ∈

R
m, where m is often much smaller than n and the obser-

vation is typically contaminated by some sort of observation

noise η. We have

y = A (x0; θ
∗) + η, (1)

where A(·) denotes the forward imaging model, which is

typically governed by different mathematical and physi-

cal principles and often parameterized by θ∗. Some real-

world examples of this paradigm include magnetic reso-

nance imaging (MRI) [7, 21, 24], tomographic imaging

[18, 41], lensless photography [26], microscopic imaging

[6, 22, 42], and even image processing [23, 29, 40], each

of which with its own forward modeling stemmed from the

underlying physics and utilized technology.

IIPs are typically ill-posed (underdetermined for m <

20
24

 IE
EE

/C
V

F 
Co

nf
er

en
ce

 o
n 

Co
m

pu
te

r V
isi

on
 a

nd
 P

at
te

rn
 R

ec
og

ni
tio

n 
W

or
ks

ho
ps

 (C
V

PR
W

) |
 9

79
-8

-3
50

3-
65

47
-4

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

CV
PR

W
63

38
2.

20
24

.0
01

49

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on December 16,2025 at 23:57:51 UTC from IEEE Xplore.  Restrictions apply. 



Figure 2. The typical workflow of IIPs. First, a forward model is

applied to a signal to obtain the measurement. Then the measure-

ment is used to reconstruct the original signal via machine learning

(ML) or deep learning (DL) algorithms.

n), which means they have multiple interchangeably con-

sistent solutions. The core idea to solve these problems

is incorporating prior information about the original signal

(e.g., prior distribution, smoothness, sparsity, etc.) into the

reconstruction algorithm. This enhances the reconstruction

quality by reducing the search space and steering the algo-

rithm toward the most probable and reality-compliant so-

lution [30]. Mathematically, an IIP is typically given in a

variational formulation:

argmin
x

1

2
‖y −A(x; θ∗)‖22 + λ0R(x), (2)

where x denotes the reconstructed image, R(x) denotes the

regularization term governed by prior knowledge, and λ0

controls the regularization strength. The typical workflow

is shown in Fig. 2.

It is worth mentioning that one key issue of IIPs is that

the quality of signal reconstruction can be severely declined

if the designed and implemented parameters of forward

models do not match. Fig.3(Left) shows reconstruction us-

ing a forward model with the known precise parameter can

successfully recover the signal while with a wrong parame-

ter fails. This issue is general when recording microscopic

images with low-cost equipment. The small scale and pre-

cision limitation of such equipment makes it challenging

to accurately depict the forward model. Furthermore, an-

other application scenario involves employing diverse setup

parameters to capture various samples, wherein, due to an

inadvertent mix-up or loss of the setup records, the for-

ward model aligning with corresponding samples is neces-

sary for accurate reconstruction. This process of rematching

different setup configurations for distinct samples is recog-

nized as a laborious and time-consuming endeavor, which

is widely neglected by existing methods.

To address this issue, we consider several possible can-

didate parameters of forward models, and we formulate

the recovery task under uncertain parameters of a forward

model as a two-variable optimization problem. We pro-

pose a general optimization framework named Moment-

Aggregation (MA) that is compatible with the state-of-the-

art method for IIPs based on untrained neural network pri-

ors. Here, the moment is defined as the time point after

forward propagation and before backward propagation. Ag-

gregation means considering the effects of all possible can-

didates simultaneously (shown in Fig.3(Right)). By using

the gradient-stopping trick, we construct aggregation func-

tions that are able to adjust according to the training pro-

cess automatically. Subsequently, leveraging the advan-

tages of neural network-based back-propagation for opti-

mization, our framework can achieve a recovery accuracy

comparable to the signal recovered by using the known pre-

cise parameter. An exemplary loss surface is shown in Fig.

1.

In summary, our contribution is two-fold: i) We propose

Moment-Aggregation, a general framework to solve IIPs

under uncertainty parameters of the forward model. ii) We

provide a theoretical analysis of MA. The experiments con-

ducted on two applications, including compressive sensing

and phase retrieval, confirm the feasibility of our method.

2. Related Work
IIPs by Neural Network Priors. The conventional meth-

ods to solve IIPs rely on handcrafted prior domain knowl-

edge; however, these methods are often sensitive to the hy-

perparameters (e.g., λ0 in Eq. 2. Note this is different

from the parameter of the forward model) and often yield

a poor recovery performance [30]. Recent deep-learning

methods, such as supervised learning [9] and unsupervised

learning [5, 43], demonstrate an outstanding ability to solve

several image tasks. Due to this powerful tool, authors in

[14, 27, 36, 38] show that inverse problems can be solved by

using the prior from pre-trained generative models, which

is known as learned network prior. Along with the prior

that is learned by massive training data, recently, the com-

munity [8, 38] has observed that even without training on

any dataset, the randomly initialized convolutional neural

networks (CNNs) already hold the prior for image signals.

This prior, often known as deep image prior (DIP), states

that CNNs are able to capture a significant amount of low-

level image statistics before any training on a specific image

dataset. Hence, DIP becomes the natural choice to serve as

the prior in IIPs (i.e. R(x) in Eq. 2) and is employed by

numerous works [1, 4, 6, 15, 18, 21, 22, 22, 23, 39]. These

works often involve a randomly initialized CNN-based gen-

erative model and solve the inverse problem via training the

network parameters. As these works often assume knowing

the precise or near-precise parameter of the forward model,

our work is orthogonal but complementary to them and aims

to recover signals under a set of candidate parameters.

Convergence Guarantee. There are numerous works [35]

provide the convergence and error guarantee for IIPs with
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Figure 3. Using CS-DIP to reconstruct x0 with measurement y. Left: The signal is successfully reconstructed under the forward model

with the precise parameter while failing under a wrong parameter. Right: Our method can successfully reconstruct x0 by optimizing under

a set of candidate parameters (we assume one of them is close to the precise parameter).

neural network prior. For example, authors in [2] prove

a near-linear convergence rate for a L−Lipschitz contin-

ues generative network. Afterward, authors in [11] inves-

tigate the convergence rate by projected gradient descent

with generative network prior, while authors in [27] study

an algorithm based on Langevin dynamics with learned

network prior. Likewise, with untrained network prior,

authors in [13] prove the convergence rate for under-

parameterized networks and authors in [10] prove it for the

over-parameterized networks.

It is observed that in order to ensure the derivation is

tractable, these works often employ multiple assumptions,

such as Lipschitz continues, the range of neural network,

and the network only has linear layers and Relu activation

functions [35]. We admit these assumptions simplify the

real optimization process of the reconstruction, but their

theoretical results offer enough insights for the community

to develop further works. Again, their works often assume

the forward model parameter is known, and in this work,

we build theoretical analysis in our scenarios based on their

conclusion.

Recovery with Uncertainty in CS. There are several works

[19, 32–34] studying the problem of mismatch measure-

ment in CS. However, they often assume the error of the

forward model is white additive noise and relatively small

to the precise parameter. Besides, their theoretical guar-

antee is often designed for CS problems and relies on the

Gaussianity assumption, which is difficult to generalize to

broader scenarios. More importantly, authors in [11, 14]

show using neural network prior is relatively robust to such

a noisy forward model. Contrastingly, we consider recon-

struction with a discrete set of parameter candidates, and

the distance among different measurements resulting from

these forward models can be arbitrarily large.

3. Problem Formulation
Consider an observation/measurement y obtained by apply-

ing a forward model with a known parameter A(·; θ∗) to

ground truth data x0, presented as,

y = A (x0; θ
∗) + η. (3)

Our problem now is to recover the signal from y and a set of

candidate forward model parameters Θ = {θ1, · · · , θnc
},

where nc denotes the total number of candidates. For

simplicity, following [27], we consider zero measurement

noise, i.e. η = 0. The objective function is now presented

as,

F (x; θi) =
1

2
‖y −A(x; θi)‖22, (4)

where θi ∈ Θ. We omit the term λ0R(x) as the prior is

included in the neural network. The straightforward solu-

tion to this problem is performing reconstruction multiple

times by traversing all possible candidates. However, this

solution is extremely inefficient, which is not friendly for

applications with computation resource constraints, espe-

cially when the number of candidates is large. To address

this issue, we present our framework and provide the theo-

retical insights from convex optimization.

4. Method
4.1. Preliminaries

We first adopt some general assumptions for IIPs similar to

these works. Suppose a generative deep neural network is
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denoted G, which is often a non-convex function. Formally,

the domain of the recovered signals is given by

S = {x ∈ R
n|x = G(z;w)}, (5)

where z denotes the input of the model, which is often a

fixed random number, and w denotes the weight of the neu-

ral network.

Assumption 1. The ground truth signal x0 belongs to the
range of G (i.e. the set of all potential outputs of G),

x0 ∈ S. (6)

This assumption ensures the feasibility of recovering the

original signal.

Assumption 2. F is α-strong convexity, β-strong smooth-
ness w.r.t x. This means for all x,x′ ∈ S, F satisfies,

α

2
‖x− x′‖22 ≤ F (x′; θi)− F (x; θi)− 〈∇F (x; θi),x

′ − x〉,
(7)

β

2
‖x− x′‖22 ≥ F (x′; θi)− F (x; θi)− 〈∇F (x; θi),x

′ − x〉.

The aforementioned works often use assumptions 1 and

2 to derive their theoretical guarantee under a known for-

ward model’s parameter. Hence, we make an assumption

as,

Assumption 3. A signal x0 can be accurately recon-
structed from its measurement with a known θ∗ under a con-
vergence guarantee if Assumptions 1 and 2 are fulfilled.

In our scenario, there is a set of candidate forward model

parameters; therefore, we make an additional assumption to

ensure the candidate set is reliable at least.

Assumption 4. There exists and only exists a ε-suboptimal
parameter θ̂∗ ∈ Θ, such that,

‖y −A
(
x0; θ̂

∗
)
‖22 < ε (8)

for a very small number 0 < ε << 1.

4.2. Moment-Aggregation Training Framework

To solve IIPs under a set of candidate parameters, the idea

is to construct a new loss L by using such a neural network

G presented in assumption 1. If the loss L satisfies the sim-

ilar properties with F (x; θ∗), the loss has a high probabil-

ity of converging to a similar optimal with F (x; θ∗). It is

noteworthy that the neural network G can only optimize x
through optimizing w since θi can be viewed as an inde-

pendent variable with w. Now, we define the new loss and

name it aggregation loss,

definition 1. Given a set of candidate parameters Θ and
neural network G, any aggregation loss should satisfies: i)
L is α-strong convexity, β-strong smoothness w.r.t x, and ii)
limx→x0

L(x,Θ) → 0.

Here, the first condition ensures its convergence rate is

tractable, while the second condition ensures the neural net-

work can converge to the same optima as recovery by using

the known precise parameter.

Nevertheless, constructing a loss L is still challenging

at this time because there is no prior knowledge about the

quality of each candidate forward model parameter. Our

solution is calculating the temporary quality of each candi-

date based on F (x; θi) after every forward propagation of

G. We define this time point as,

definition 2. The moment is the time point between the for-
ward propagation and backward propagation of each itera-
tion by the neural network G.

Note that the surrogate qualities may not be super reli-

able at the beginning. i.e., F (x; θ∗) ≥ F (x; θi) is possible

when the neural network does not converge well. However,

with this surrogate quality of candidates, we are able to con-

struct the moment-aggregation loss (MA loss) that satisfies

the conditions of aggregation loss presented in definition 1

at each moment. We conjecture the loss in the entire life-

time should also have similar properties with aggregation
loss if each moment an MA loss has similar properties with

aggregation loss

Theorem 1. At each moment, a loss has the following for-
mat is an MA loss:

LMA(x; Θ) =

nc∑
i=1

ωiF (x; θi), (9)

where

ωi = H(i;F (x; θ1), · · · , F (x; θnc)) ≥ 0, (10)

Stop Gradient for ωi,

Here, H(i;F (x; θ1), · · · , F (x; θnc)) is the function to cal-
culate the weight for each candidate based on the surrogate
qualities at each moment (i.e. ωi will be updated at each
iteration). Stopping gradient means when the neural net-
work performs backward propagation, we consider every
ωi as a constant. H should satisfy: i)

∑nc

i=1 ωi = 1, and ii)
limx→x0 H(θ∗;F (x; θ1), · · · , F (x; θnc)) → 1.

Remark 1. It is noteworthy that the stop gradient plays
a crucial role in the MA loss, since it preserves the
convexity/smoothness by allowing us to use distributive
law, i.e. ∇LMA(x; Θ) = ∇∑nc

i=1 ωiFθi(x).
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Figure 4. Left: Derivative of y w.r.t a1 without gradient stopping.

Right: Derivative with gradient stopping.

An example of how gradient stopping performs is shown

in Fig. 4.

Proof. First, we prove the convexity of LMA. For conve-

nience, we denote F (x; θi) as Fθi(x). According to as-

sumption 1, we easily obtain,

ωi
α

2
‖x− x′‖22 (11)

≤ ωi(Fθi(x
′)− Fθi(x)− 〈∇Fθi(x),x

′ − x〉),
= ωiFθi(x

′)− ωiFθi(x)− 〈ωi∇Fθi(x),x
′ − x〉,

Now we evaluate the convexity of LMA presented in Eq.

9,

LMA(x
′; Θ)− LMA(x; Θ)− 〈∇LMA(x; Θ),x′ − x〉

(12)

=

nc∑
i=1

ωiFθi(x
′)−

nc∑
i=1

ωiFθi(x)− 〈∇
nc∑
i=1

ωiFθi(x),x
′ − x〉

=

nc∑
i=1

ωi(Fθi(x
′)− Fθi(x)− 〈∇Fθi(x),x

′ − x〉)

(a)

≥
nc∑
i=1

ωi
α

2
‖x− x′‖22 =

α

2
‖x− x′‖22.

Here, (a) in Eq. 12 is applying the inequality presented in

Eq. 11. Until now, the α-convexity of LMA is proved. Like-

wise, the β-strong smoothness can be proved.

Then, we prove LMA that satisfies condition ii) in Defi-

nition 1. We substitute

lim
x→x0

H(θ∗;Fθ1(x), · · · , Fθnc
(x)) → 1 (13)

to Eq. 9,

lim
x→x0

LMA(x; Θ) → Fθ∗(x) (14)

Apparently, limx→x0
Fθ∗(x) → 0, hence the second con-

dition is proved. The proof is completed.

We propose one MA as ωi =
e
1/Fθi

(x)

∑
j e

1/Fθj
(x) . A summary

of the training framework is presented in Algorithm 1.

Algorithm 1 Moment-Aggregation Training Framework

Input: A neural network G, the set of candidate parameters

Θ, measurement x, and a fixed number z.

Output: recovered signal x∗.

1: while not meet the stop criterion do
2: x ← G(z;w).
3: Compute Fθi for all i ∈ [nc] (Eq. 4).

4: Compute ωi and Stop Gradient for ωi, for all i ∈
[nc] (Eq. 10).

5: Compute LMA (Eq. 9).

6: Update w via gradient-based optimization.

7: end while
8: x∗ ← x.

5. Experiment

We evaluate our proposed MA loss on two tasks: i) a stan-

dard CS problem and ii) a phase retrieval application.

5.1. Standard CS problem

Setup. We primarily evaluate our algorithm in the stan-

dard CS problem [3], where A (x0; θ
∗) = Φx0. The for-

ward model parameter is a random Gaussian kernel Φ ∈
R

m×n. Each element of Φ is Gaussian i.i.d and obeys

Φi,j ∼ N (
0, 1

m

)
. The set Θ consists 1 precise parameter

and 9 candidate parameters randomly generated by the same

distribution. We choose two datasets for our evaluation: i)

a toy dataset MNIST [20], each image has 28 × 28 pixels

and ii) Shenzhen Chest X-Ray Dataset [12], we downsam-

ple each image to 256×256 pixels.

Implementation. Our experiment is based on the unlearned

training pipeline CS-DIP provided by [39]. The neural net-

work is the generator of DCGAN [31] and is randomly ini-

tialized. We use Adam optimizer [16] with a fixed learning

rate 1e-3. The experiments are conducted on a cluster node

with a V100 16G GPU.

Baselines. We include: i) Upper-bound: The most impor-

tant baseline is the reconstruction with the known precise

parameter, which is treated as the upper bound of our prob-

lem. ii) Random Parameter: We random select a param-

eter from the set Θ. This is the blind reconstruction, and

we simply compute the expected value of reconstruction re-

sults by using every candidate. We include Lasso-wavelet,

lasso-DCT, BM3D-AMP [25], and CS-DIP [39]. iii) Uni-
form Aggregation: We consider every candidate parameter

to have the same quality (i.e. wi = 1/nc). and iv) Alter-
nating Optimization: In each epoch, this baseline involves

first updating the neural network, then finding a good θi that

has the minimum loss and backpropagating this loss.

Evaluation Metrics. We employ two widely used met-

rics to measure the reconstruction performance with ground

truth: i) Peak Signal-to-Noise Ratio (PSNR) and ii) Struc-
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Table 1. Comparison of reconstruction performance by different methods.

Dataset MNIST X-rayMethod
m 100 200 1000 2000

PSNR 10.224 10.604 7.733 8.274Random Parameter

(lasso-wavelet) SSIM 0.215 0.255 0.006 0.005

PSNR 10.224 10.607 7.376 8.036Random Parameter

(lasso-DCT) SSIM 0.215 0.255 0.004 0.001

PSNR 10.223 10.606 7.501 8.002Random Parameter

(BM3D-AMP) SSIM 0.214 0.250 0.004 0.003

PSNR 10.212 10.601 7.533 8.675Random Parameter

(CS-DIP) SSIM 0.204 0.247 0.005 0.007

PSNR 10.084 11.004 7.813 9.215
Uniform Aggregation

SSIM 0.224 0.295 0.006 0.009

PSNR 10.221 13.301 19.163 19.949
Alternating

SSIM 0.262 0.457 0.330 0.381

PSNR 15.542 19.464 23.669 25.081
Upper bound

SSIM 0.620 0.801 0.568 0.638

PSNR 15.204 18.293 22.051 23.141

Δ 0.337 1.171 1.618 1.940

SSIM 0.580 0.732 0.505 0.567
Ours

Δ 0.041 0.069 0.063 0.071

tural Similarity Index Measure (SSIM).

Results. The numerical results are shown in Table 1.

The first observation is that using Random Parameter to

reconstruct the signal blindly is not feasible, which only

achieves around 10dB PSNR, meaning almost nothing is

reconstructed. This is consistent with the fundamental prin-

ciple of IIPs. Then, we observe our methods can achieve

similar reconstruction results with the upper bound, which

is reconstructing using the known parameter. For example,

in both MNIST and X-ray datasets, our method only has a

0.04-0.07 SSIM reduction. Another interesting observation

is that alternating optimization shows obvious superiority

over blind reconstruction, and it can reconstruct the signal

sometimes, e.g. around 19 dB in PSNR for X-ray image

reconstruction. However, this method is not stable since

it quickly switches different candidate parameters to opti-

mize, which results in a high probability of failure to recon-

struct. Some samples of reconstructed signals for MNIST

and X-ray datasets are shown in Fig. 5(Left and Right), re-

spectively. Both of them illustrate that reconstructed signals

by our method can achieve very similar performance with

the upper bound. We also demonstrate the convergence rate

in Fig.6(Left), which shows our method can converge to

the same level of reconstruction error with a lagging. This

lagging is reasonable, because the upper bound using the

known precise parameter is easy to converge, while under

an uncertain set of candidates, the error landscape for opti-

mization is more complicated. Fig.6(Right) shows the run-

time for each epoch by using a set of candidate parame-

ters and only one precise parameter. Our method’s over-

head is caused by the computation of the forward process

for each candidate parameter. Although the overhead exists,

our method is still much faster than training different neu-

ral networks separately with different candidate parameters.

For example, if we only have one device that can train the

model, in the MNIST dataset, our method requires 0.007
seconds to update for every epoch; however, training 10

different neural networks for different candidates requires

approximately 0.005× 10 = 0.5 seconds.

5.2. Applications in Phase Retrieval

Setup. We also show the feasibility of our methods in phase

retrieval. Here, we take holographic imaging as an exam-

ple [42]. Suppose O(d = 0) denotes a complex-valued

object wave at location d = 0. We can use the angular

spectrum method to describe the propagation of the wave to

the sensor plane d = z as O(d = z) = F−1{P (λ, d =
z) · F{O(x, y; d = 0)}}, where λ denotes the wavelength,
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Figure 5. Comparison of different reconstruction strategies in Left: MNIST dataset when the m is 200. Right: X-ray dataset when m is

2000 (total pixel is 65536).

Figure 6. Comparison of the upper bound and our proposed method (MA) for Left: convergence and Right: runtime each iteration.i.e.

forward-propagation and backward-propagation.

x, y denotes the coordinate in the object space that is or-

thogonal with z, and F and F−1 denote Fourier transform

and inverse Fourier transform, respectively. P (λ, d = z) is

called the transfer function and is based on the experiment

equipment and setups (Refer to [42]). Similarly, a reference

plane wave can propagate to the sensor plane. The sensor

plane captures the superposition of the object wave and ref-

erence wave as H = ‖O2(d = z) +R2(d = z)‖2, known

as a hologram, and our goal is to retrieve O(d = 0) from

H . This problem is also an ill-posed IIP problem, and here

P (λ, d = z) can be considered as the forward model with

uncertain parameters due to the low-quality equipment or

an inaccurate precision optical rail. In our simulation, we

set the known wavelength and distance to λ = 0.520μm
and 5000μm to generate holograms, respectively. The set

of uncertain parameters Θ = {d1, · · · , d10} is generated

by di ∼ U(z − 500, z + 500). We choose samples from

the Gland segmentation dataset (GlaS) [37] and the Multi-

Organ Nucleus Segmentation (MoNuSeg) dataset [17] to

generate the simulated holograms.

Baseline. i) Upper-bound: the reconstruction with a

known forward model parameter. ii) Random Parameter:

We evaluate CS-DIP in this application, which presented in

[28]. iii) Uniform Aggregation, and iv) Alternating Opti-
mization.

Evaluation Metrics. PSNR, and SSIM.

Results. The results are shown in Table 2 and Fig. 7. In this

experiment, our method consistently demonstrates a small

gap in the reconstruction with the known precise parame-

ter. For example, there are 0.307 and 0.167 gaps in PNSR

for Glas and MoNuSeg, respectively. We also find that us-

ing Random Parameter, Uniform Aggregation and Alter-

nating Optimization can reconstruct the low-frequency in-

formation of the object (e.g. outline and shape, as shown

in the second column of Fig. 7 for Alternating Optimiza-

tion) while lacking the reconstruction of the detailed tex-

ture. This may be because the reproduced measurement (i.e.

ŷ the prediction after the forward process) in this task is still

like an image, which can be partially fitted by the neural net-

work. However, the detailed texture represents depth infor-
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Figure 7. The reconstructed phase by different methods based on Glas and MoNuSeg dataset. Please zoom in for a detailed comparison.

Table 2. Comparison of reconstruction performance by different

methods in the application of phase retrieval.

Method Dataset Glas MoNuSeg

Random Parameter
PSNR 19.8782 18.190

SSIM 0.6715 0.584

Uniform Aggregation
PSNR 19.626 19.107

SSIM 0.579 0.549

Alternating
PSNR 19.903 18.110

SSIM 0.685 0.530

Upper bound
PSNR 28.519 25.392

SSIM 0.959 0.934

ours

PSNR 28.212 25.225

Δ 0.307 0.167

SSIM 0.941 0.931

Δ 0.018 0.003

mation, which is crucial in this task; hence, these methods

are considered to fail to reconstruct the signal in this sense.

6. Discussion and Conclusion
This paper focuses on a scenario addressing inverse imag-

ing problems (IIPs), where the main challenge arises from

uncertainties in the parameters of the forward model used

for the imaging process. These uncertainties can stem from

various sources, such as calibration drifts in imaging de-

vices, imprecise knowledge of the device parameters, or

variations in experimental setups, making the task of recon-

structing the original image from its compressed measure-

ments particularly difficult. In this work, we consider there

are a set of candidate parameters. Instead of testing differ-

ent candidate parameters independently, our proposed MA

framework marks a significant step forward under this pa-

rameter uncertainty by effectively aggregating information

from all candidate parameters of the forward model. Our

theoretical analysis is built on the aforementioned works,

where they provide the convergence guarantee under the as-

sumption that the forward model parameter is known. We

take a step forward to show that we can construct a loss

under a set of candidate parameters with similar proper-

ties to the loss with a known parameter, and hence, conver-

gence by our method is ensured. Our experimental results

demonstrate that the MA framework achieves a close per-

formance to that of reconstructions using known forward

model parameters(upper bound). Specifically, our method

only has a 0.04-0.07 SSIM difference with the upper bound

in MNIST and X-ray dataset, respectively. Additionally,

there are only 0.307 and 0.167 reductions in PNSR for the

Glas and MoNuSeg datasets, respectively.

This proposed method demonstrates significant potential

in scenarios where accurate parameters remain unknown,

particularly in medical imaging, including fundus camera

imaging, microscopic imaging, MRI, and CT. We admit

performance gaps and occasionally unstable reconstruction

still exist, and we conjecture this is because of the compli-

cated error landscape in real optimization beyond our as-

sumptions, which will be investigated in the future. Future

work will explore extending the MA framework to more

complex imaging models and closer to real-world scenar-

ios.
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