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Abstract

Despite recent progress in reducing road fatalities, the persistently

high rate of traffic-related deaths highlights the necessity for im-

proved safety interventions. Leveraging large-scale graph-based

nationwide road network data across 49 states in the USA, our

study first posits the Concurrency Hypothesis from intuitive obser-

vations, suggesting a significant likelihood of incidents occurring at

neighboring nodes within the road network. To quantify this phe-

nomenon, we introduce two novel metrics, Average Neighbor Crash

Density (ANCD) and Average Neighbor Crash Continuity (ANCC),

and subsequently employ them in statistical tests to validate the

hypothesis rigorously. Building upon this foundation, we propose

the Concurrency Prior (CP) method, a powerful approach designed

to enhance the predictive capabilities of general Graph Neural Net-

work (GNN) models in semi-supervised traffic incident prediction

tasks. Our method allows GNNs to incorporate concurrent incident

information, as mentioned in the hypothesis, via tokenization with

negligible extra parameters. The extensive experiments, utilizing

real-world data across states and cities in the USA, demonstrate

that integrating CP into 12 state-of-the-art GNN architectures leads

to significant improvements, with gains ranging from 3% to 13%

in F1 score and 1.3% to 9% in AUC metrics. The code is publicly

available at https://github.com/xiwenc1/Incident-GNN-CP1.

CCS Concepts

• Information systems→ Location based services;Geographic

information systems; • Computing methodologies → Semi-

supervised learning settings.

Keywords

Road Network Analysis, Graph Analysis, Graph Neural Network

1We tend to use the term incident rather than accident according to the preference
of the Department of Transportation. They may be interchangeably used in our paper.
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Figure 1: The state-wise Average Neighbor Crash Density

(ANCD) for Top: negative nodes (i.e. nodes without incident

records) and Bottom: positive nodes (i.e. nodes with incident

records) when 𝑘 = 1. For a specific class of nodes (i.e. posi-

tive/negative nodes), a deeper color denotes a higher density

of their neighbor nodes have incident. It is observed that,

within the same state, the neighbor nodes of positive nodes

often exhibit a higher crash density than those of negative,

which supports our Concurrency Hypothesis.
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1 Introduction

The significance of traffic safety is underscored by recent statistics,

which highlight the ongoing challenges and successes in reducing

road fatalities. In the early months of 2023, the National Highway

Traffic Safety Administration (NHTSA) [34] reported a decrease

in traffic fatalities, estimating that 9,330 people lost their lives in

traffic crashes in the first quarter, marking a 3.3% decline compared

to the previous year. This trend continued into the first half of

the year, with fatalities dropping to 19,515, also down by about

3.3% from the prior year. However, despite the positive trend in

these numbers, they still reflect a high rate of traffic-related deaths,

especially compared to the earlier years (2005-2019). This situation

emphasizes the ongoing need for enhanced traffic safety measures

and interventions to sustain and accelerate the reduction in road

fatalities.

The importance of modeling traffic incident risks is well rec-

ognized in the field of urban planning and public safety [11, 40].

Accurate predictions of where and when incidents are likely to

occur can significantly contribute to the development of more effec-

tive trafficmanagement strategies and infrastructure improvements.

As urban areas continue to grow and also traffic volume increases,

the need for powerful analytical tools to assess risk and prevent

incidents becomes increasingly critical. It requires the integration

of comprehensive datasets and advanced analytical techniques to

understand the complex dynamics of road traffic and enhance safety

measures. By leveraging detailed geospatial data and traffic inci-

dent records, researchers and city planners can identify high-risk

areas and implement specific interventions to mitigate the possible

risks, while enhancing road safety [36]. Recently, many studies

have analyzed the effect of road features for predicting incident

occurrences, such as [37, 35, 7, 33, 61, 60]. More recently, Deep

Learning (DL)-based methods have gained significant attention in

traffic safety analysis since their powerful ability to characterize

the inherent complex features of large-scale data [54, 41, 58, 40].

Due to the nature that both the road network and traffic flow can

be viewed as graph structure data, Graph Neural Network (GNN)

[23, 47, 16, 10, 51, 26, 30, 57] is the rational choice to characterize

the relations in a network and has been adopted in recent works

[27, 56, 62].

Our work is motivated by two intuitive observations in traffic

incident occurrences in road networks: When people are driving

and notice a traffic incident, there is a high probability that they

observe another incident has occurred nearby. Another observation

is that there are always some accident-prone sections, meaning

the continuous areas included in the sections are likely to have

incidents even if they have not occurred necessarily at the same

time. We then make a unified hypothesis for them:

Concurrency Hypothesis. There is a high probability when a

node has an incident occurred, some of its neighbors have an incident

occurred.

Subsequently, we propose two novel metrics, the Average Neigh-

bor Crash Density (ANCD) and Average Neighbor Crash Continuity

(ANCC), to quantify these observations, and apply standard statis-

tical tests for these quantitative results to validate the proposed

hypothesis. An exemplary visualization of ANCD for each state

is shown in Fig. 1, which underscores the difference of the nodes

between different categories for each state. We then conjecture that

this hypothesis indicates that there may be some important but

difficult-to-capture information and features that have not been

fully collected by the general datasets. Accordingly, in this work,

we proposed an enhancement method called Concurrency Prior (CP)

that explores the hidden information beyond the common features

from the crash label for semi-supervised traffic incident prediction.

This problem is built on a single monolithic graph representing an

entire state or city. Entire edge features, entire node features and

partial nodes’ labels are known. Our goal is to utilize the known

information to learn a model and predict the label for the rest of the

nodes with unknown labels. The formal problem description is in

Section 4. Our method is compatible and complementary with gen-

eral graph neural networks, such as Graph Convolutional Networks

[23], Graph Attention Networks [47], and Graph Transformers [44].

Our investigation is based on the nationwide real-world road net-

work data provided by [18]. This large-scale data source contains

the incident record from 49 states of the USA and provides various

edge features, such as length, type, number of lanes, max speed,

and road direction and angular information. We provide the details

of the data acquisition in Section 3.

In summary, our contribution is two-fold: (i) We are the first

to statistically validate the Concurrency Hypothesis in nationwide

graph-based data by using our proposed metrics; and (ii)We pro-

pose an enhancement method called Concurrency Prior that enables

boosting broad variations of graph neural networks in the semi-

supervised traffic incident prediction task by introducing negligible

parameters. Our intensive experiments on 12 state-of-the-art graph

neural networks demonstrate a 3%-13% and 1.3%-9% gain in F1 and

AUC, respectively.

2 Related Work

It is known that most traffic-related data can be viewed as network/-

graph structure data. For example, vehicles involved in an incident

can be treated as a network, where each node is a vehicle, and the

edge denotes the interaction between every two vehicles. Besides,

the road network can be treated as a graph, where the nodes denote

different physical locations, and the edges denote roads between

them. Hence several previous works focus on network analysis [8,

50, 12, 3, 24] and many works analysis it based on knowledge from

the complex network theories, such as small-world networks [48]

and random scale-free networks [1]. However, this type of data is

not as easy to process as usual data (e.g., images) in the machine

learning community. This is due to the fact the topology of graph

data is often variable and enormous [38]. For example, considering

a city as a graph, different cities apparently have totally different

topologies and may have massive intersections as nodes. Therefore,

graph Neural Networks (GNNs) have gained significant attention

for processing graph data.

The early concept of GNNs can be traced back to 2008 [42], when

the authors proposed a framework that leverages a recurrent neu-

ral network (RNN) structure for graph data. Afterward, authors in

[5, 17] apply spectral approaches to GNNs, where they perform

convolutions via graph Laplacian. However, spectral approaches

introduce an intensive computation cost and lack generalizability
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Figure 2: The graph-based data is obtained from real-world road networks.

across different graphs. To tackle these issues, authors in [23] pro-

pose Graph Convolutional Networks (GCNs), which significantly

reduce computational complexity while maintaining performance.

This method then becomes the cornerstone in the development

of GNNs, and subsequently, there are a large number of variants

[47, 16, 10, 51, 26]. For example, authors in [47] introduce attention

mechanisms to model the importance of nodes’ neighbors, while

authors in [16] propose an inductive framework that learns node

embeddings by sampling and aggregating features from a node’s

local neighborhood. Authors in [10] propose a topology adaptive

mechanism for graph convolution. In 2020, authors in [26] devel-

oped a framework for training very deep GCNs using differentiable

generalized aggregation functions and a novel normalization layer

called MsgNorm, effectively addressing vanishing gradients, over-

smoothing, and over-fitting issues in very deep GCN models. More

recently, authors in [44] propose an adaptation of the transformer

architecture to graph-structured data, providing an alternative to

convolution-based methods.

GNNs illustrate the obvious superiority of capturing the depen-

dencies of graph-based data in non-euclidean space, while these

dependencies are challenging to learn by the algorithms designed

for Euclidean space (e.g,. Convolutional Neural Networks (CNN)).

Therefore, GNNs have been widely used in traffic and intelligence

transportation fields [53, 39]. For instance, authors in [59, 15, 45,

20] employ GNN for traffic flow prediction. Demand Prediction

is also a popular task that can benefit from GNN. These demands

include ride-hailing demand forecasting [13, 22, 19], bike sharing

systems [28, 25], and passenger flow prediction [29]. Additionally,

GNN is used in point-cloud-based perception [43, 21], motion pre-

diction [46], and planning [6] in the studies of autonomous vehicles.

Likewise, there are several works aiming to predict the incident

occurrence. Specifically, [62] develops a novel differential time-

varying GCN to dynamically capture traffic variations and [56]

proposes a spatio-temporal GCN and employs the embedding layer

to remove noises and better extract semantic representations of

external information.

The most related work is [18], which performs the traffic analysis

with nationwide coverage and real-world network topology and

tries to solve the classification problem solely based on a single

monolithic graph. It is noteworthy that none of the previous works

mentioned above has performed analysis on such a large data scale.

Our work substantially enhances the prediction performance over

this work, as well as several popular aforementioned GNN variants,

by imposing our proposed concurrency prior to neural networks.

The proposed training strategymentioned in Section 5.3 is related to

attribute masking used in [55, 30]; however, we use it to mimic the

real node-wise inference in the training phase when incorporating

the concurrency information (Eq. 9). Hence, our training strategy

is essentially different and orthogonal from theirs, since they only

employ it as a common data augmentation method.

3 Data Acquisition

In our study, we use nationwide traffic incident data consists over

1,000 U.S. city-level datasets and 49 U.S. state-level datasets [18].

In this section, we delve into the key concept behind the creation

of graph-based traffic incident benchmarks with datasets that con-

tain real-world geospatial features. The traffic incident processing

repository is developed by collecting a comprehensive set of raw

data on traffic incidents [32]. It involves detailed information about

incident records, the geographical layout of streets, and the rela-

tional structure of these locations represented in graph form. To

enhance the utility of the incident location data, a reverse geocoding

process is employed to convert geographic coordinates into more

accessible address formats. Afterward, the crash information is inte-

grated with the graph-structured data and geographical attributes

to create a cohesive and structured dataset, as shown in Fig. 2. The

foundational data for these datasets are sourced from Microsoft

Bing Map Traffic [31], extracted explicitly from the US-Accidents

benchmarks. These datasets serve as a valuable source of informa-

tion, documenting around 2.8 million traffic-related incidents over

a period from January 2016 through December 2021. They provide

a detailed account of traffic events during this time frame, offering

insights into patterns and trends.

In these datasets, OpenStreetMap (OSM) [4] is employed as the

primary resource for obtaining geospatial data information. The

collected data from OSM are enriched with a variety of geographi-

cal information, including roads, trails, railway stations, land Use,

land cover, transport networks and natural landmarks like forests

and rivers. This information is tagged under different OSM classes,

which serve to present the specific characteristics of the geographic

elements in the database, such as nodes (defining points like inter-

sections), ways (paths or open areas), and edges (logical or physical

relationships between elements). Hence, the datasets now have rich

features, including but not limited to the type of road, the length of

a road, the number of lanes, one-way indication, max speed, tunnel

indication, junction type, etc. Besides, directional and angular fea-

tures of road networks are identified, enhancing the dataset with

unique geometric insights.



SIGSPATIAL ’24, October 29-November 1, 2024, Atlanta, GA, USA Xiwen et al.

Afterward, incident data is first reverse geocoded to pinpoint

exact locations, and then systematically organized based on set-

tlement hierarchies from villages to states. Datasets are divided

into two main subsets: city-level and state-state, each tailored to

different scales of traffic analysis. The city-level datasets focus on

urban areas where traffic incident frequency is higher, reflecting

the denser road networks and population distribution. In contrast,

state-level datasets provide a broader perspective, suitable for re-

gional traffic trends and policy planning. Eventually, the integration

process involves sophisticated data processing techniques like one-

hot encoding and spatial analysis used to correlate accident sites

with nearby road network nodes.

In summary, each dataset (either a city or a state) is a single

monolithic graph, which refers to a unified and comprehensive

graph structure that includes all data points (nodes) and relation-

ships (edges) contained within one comprehensive graph without

division into subgraphs. Suppose a dataset (can be a specific state or

city) is a large graph that has 𝑁 nodes and 𝐸 edges, then the dataset

can be presented by three matrices 𝑨 ∈ R𝑁×𝑁 , 𝑿 ∈ R𝑁×𝐷1 , and

𝑬 ∈ R𝐸×𝐷2 , and 𝒀 ∈ R𝑁 , denoting the adjacency matrix, node

embedding, edge embedding, and node labels, respectively. Here,

𝐷1 and 𝐷2 denote the number of dimensions of node and edge

features, respectively. It also should be noted that these datasets are

significantly unbalanced, and a very low ratio of points is positive

(i.e. nodes with crash records). The statistics of the node labels

are shown in Fig. 3 and Table 2. We realize this may substantially

challenge most machine learning algorithms.

Figure 3: The statistics of the graph-based datasets on 49

states.

4 Problem Formulation

Here, we give the problem formulation of our study. Suppose the

label for a node 𝑖 is 𝒀 𝑖 . Our problem is semi-supervised and in

a transductive setting. It means some nodes have known labels

(𝒀 𝑖 ,∀𝑖 ∈ V𝑡𝑟𝑎𝑖𝑛), and others are unknown (𝒀 𝑖 ,∀𝑖 ∈ V𝑡𝑒𝑠𝑡 ) that we

aim to predict them. Note that 𝑨, 𝑿 , and 𝑬 are fully known in both

the training and inference phases. We use 𝒀 𝑖 = 1 to denote the pos-

itive nodes that there is an incident occurred while 𝒀 𝑖 = 0 denotes

the negative nodes that nothing happened here. An illustration of

the problem is shown in Fig. 4 (Left), where red and blue denote

the nodes with known labels (crash/no crash), and the question

marks denote the unknown labels.

5 Methodology

In this section, we first adopt statistical tools to validate the concur-

rency hypothesis (Section 5.1), and then motivated by the effective-

ness of this hypothesis, we propose the concurrency prior, which

is an enhancement method for general graph neural networks in

crash prediction (Section 5.2 and Section 5.3).

5.1 Statistical Analysis of the Concurrency
Hypothesis

Recap our Concurrency Hypothesis: There is a high probability

when a node has an incident occurred, some of its neighbors have an

incident occurred.

To validate this hypothesis, we propose two quantitative tools,

and we expect to demonstrate that there is a statistical difference

between the incident occurrence of the neighbors of positive nodes

and negative nodes. The metrics are calculated state by state as

each state is a monolithic graph.

Average Neighbor Crash Density (ANCD). This metric is first

calculated for each node of a dataset (i.e. a state here) as,

𝑁𝐶𝐷𝑖 =

∑
𝑗∈𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑘 (𝑖 ) I(𝒀 𝑗 = 1)

|𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑘 (𝑖) |
. (1)

where 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑘 (𝑖) denotes the set of neighbor nodes of node 𝑖
that can arrive in most 𝑘 hops through the connected edges. I(·)

and | · | denote the indicator function and the cardinality of a set,

respectively. Then, ANCD can be computed for positive nodes

(𝑧 = 1) and negative nodes (𝑧 = 0) of the dataset, respectively,

𝐴𝑁𝐶𝐷𝑧 =

∑
𝑖∈{𝑖 |𝑌𝑖=𝑧} 𝑁𝐶𝐷𝑖

|{𝑖 |𝑌𝑖 = 𝑧}|
, (2)

where 𝑧 ∈ {0, 1}. ANCD can be interpreted as the average density

of the neighbor nodes that have crashes for a specific class of nodes.

We are also interested in the distance of the nearest positive

nodes of nodes in a specific class. However, in a super-large graph,

computing the distance in the form of hops is challenging due to

the computation cost and memory issues; therefore, we propose the

surrogate metrics to estimate it. Average Neighbor Crash Conti-

nuity (ANCC). The metric aims to calculate how the continuity of

neighbor crash nodes.

𝑁𝐶𝐶𝑖 =

{
1, ∃𝒀 𝑗 = 1, 𝑗 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑘 (𝑖),

0, Else.
(3)

The 𝑁𝐶𝐶𝑖 can be interpreted as follows: if 𝑁𝐶𝐶𝑖 is equal to 1, the

nearest positive node of node 𝑖 is at most 𝑘 hops. In contrast, if

𝑁𝐶𝐶𝑖 is equal to 0, the nearest positive node of node 𝑖 requires at
least 𝑘 + 1 hops. Subsequently, we can compute 𝐴𝑁𝐶𝐶𝑧 similar to

Eq. 2,

𝐴𝑁𝐶𝐶𝑧 =

∑
𝑖∈{𝑖 |𝑌𝑖=𝑧} 𝐻𝑅𝑖

|{𝑖 |𝑌𝑖 = 𝑧}|
. (4)

Hence𝐴𝑁𝐶𝐶𝑧 is able to evaluate the average distance to the nearest
positive nodes of the class 𝑧 nodes from a different perspective.

To comprehensively evaluate the difference between negative

nodes and positive nodes, after computing the two metrics for

each state, paired t-test is used to offer support from the standard

hypothesis test. To perform a paired t-test, we first compute the

difference between paired observations, denoted as 𝑑 𝑗 = 𝑀
𝑗
0 −𝑀

𝑗
1 ,
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Figure 4: Left: The problem is formulated in a single large graph. Nodes’ labels are known if the node is marked in colors, i.e.,

red (positive)/ blue (negative). The nodes with question marks are expected to be predicted. Middle: In the training phase, we

keep all unknown nodes with the uncertain token ’o’, and in each iteration, we also randomly mask some nodes with known

labels to ’o’ to mimic the prediction process. Right: In the inference phase, we only keep to nodes to be predicted with the

uncertain token ’o’. Top: Imposing concurrency prior to the neural network.

where 𝑀 denotes one of the proposed metrics with predefined 𝑘 ,
and 𝑗 denotes the state index. Suppose the 𝜇𝑑 represents the pop-

ulation mean difference. The null hypothesis (𝐻0) and alternative

hypothesis (𝐻𝑎) for the paired t-test are typically defined as follows:

• Null hypothesis (𝐻0): There is no significant difference be-

tween the paired observations, i.e., 𝜇𝑑 = 0.

• Alternative hypothesis (𝐻𝑎): There is a significant difference

between the paired observations, i.e., 𝜇𝑑 < 0.

If there is statistical significance, the incident occurrence in a node’s

neighbors that has a correlation with the status of this node. We

present the results in Section 6.1.

5.2 Graph Neural Networks with Concurrency
Prior

As the Concurrency Hypothesis exists, we conjecture that there

is information included in the label 𝒀 𝑖 in addition to the original

features 𝑿 and 𝑬 . Hence, employing this information may enhance

the model’s learning ability. Here, a prediction for a node 𝑖 by a

conventional graph neural work 𝐺 in the problem is presented as,

𝒀̂ 𝑖 = 𝐺𝑖 (𝑨,𝑿 , 𝑬). (5)

In our method, we want to explicitly adopt the information,

which results in a prediction as,

𝒀̂ 𝑖 = 𝐹𝑖 (𝑨,𝑿 , 𝑬 , {𝒀 𝑗 | 𝑗 ∈ V𝑡𝑟𝑎𝑖𝑛}). (6)

Theorem 1. If we use the mutual information 𝐼 (·; ·) to denote the
upper bound of the learning ability of a network, apparently, 𝐹𝑖 should

have a stronger potential of learning ability. This is because,

𝐼 (𝒀 𝑖 ;𝑨,𝑿 , 𝑬) ≤ 𝐼 (𝒀 𝑖 ;𝑨,𝑿 , 𝑬 , {𝒀 𝑗 | 𝑗 ∈ V𝑡𝑟𝑎𝑖𝑛}). (7)

Since the concurrency information is usually presented as dis-

crete labels, it is now impossible to directly present any semantic

information to the neural network. Therefore, we tokenize labels as

a learnable dictionary, and each instance (one vector) of the dictio-

nary represents the latent feature of each category. This strategy is

much more friendly for learning the neural network because, with

tokenization, all operations are in continuous space, which allows

us to optimize a neural network with concurrency information just

like training a common network. Additionally, we use an efficient

way to embed the concurrency information without introducing

considerable parameters. Thereby, the Concurrency Prior can be

imposed to the neural network as,

𝑿𝑖 ← 𝑒𝑛𝑐𝑜𝑑𝑒 (𝑿𝑖 ) +𝑇𝑜𝑘𝑒𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝒀 𝑖 ) . (8)

We impose Concurrency Prior in the embedding space because the

original features consist of data from different concepts (see Section

3), and the 𝑒𝑛𝑐𝑜𝑑𝑒 (𝑿𝑖 ) can be viewed as these feature after fusion,

which offers a better representation. We aggregate the feature infor-

mation (𝑿𝑖 ) and Concurrency Prior (𝑇𝑜𝑘𝑒𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝒀 𝑖 )) by summa-

tion because this way allows us not to change the original network

architecture and hence not introduce extra parameters (except the

few parameters by tokenization). For example, if the original net-

work has one linear layer with 𝑑1 × 𝑑2 parameters. Alone with the

parameters introduced by tokenization, if aggregating by concate-

nating, the architecture should be modified and has ((𝑑1 +𝑑𝑐𝑝 ) ×𝑑2
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parameters accordingly, where 𝑑1,𝑑2, and 𝑑𝑐𝑝 are the number of

the original input, output, and CP dimensions. In contrast, the total

parameters in our method are consistently 𝑑1 ×𝑑2. Hence, the total
number of introduced parameters by imposing Concurrency Prior

is (𝐶 + 1) ×𝑑 for the set of learnable vectors for tokenization, where

𝐶 and 𝑑 denote the number of classes and the embedding size of

the feature in the original architecture, respectively. The additional

one (i.e. 1 in 𝐶 + 1) in the term denotes the uncertain class, which

we will discuss in the next section. When 𝐶 = 2 in our case, the

introduced parameters are negligible.

5.3 How to train the neural network?

To train the neural network, for each node 𝑖 ∈ V𝑡𝑟𝑎𝑖𝑛 , we anticipate

minimizing the loss for each node,

min
𝐹𝑖

L(𝒀 𝑖 , 𝐹𝑖 (𝑨,𝑿 , 𝑬 , {𝒀 𝑗 | 𝑗 ∈ V𝑡𝑟𝑎𝑖𝑛 \ 𝒀 𝑖 })), (9)

where 𝐹𝑖 denotes the classifier for node 𝑖 . Another challenge is posed
here since a general graph neural network is designed to process a

graphwith arbitrary shapes, and training a classifier for each node is

inefficient due to the massive number of nodes (e.g., 1169400 nodes

in California dataset); therefore, the network often has a unified

classifier for all nodes. A general training strategy is feeding𝑨,𝑿 , 𝑬
to the network to predict all 𝒀 𝑖 , which assumes the prediction for all

nodes uses the same input (i.e. 𝑨,𝑿 , 𝑬 ), where our network is not

fulfilled. In our case, we need to feed the feature and label of a node

to the network; however, the label of the nodes from the test set

is unknown, and we also need to exclude the label information of

the target node (i.e. 𝒀̂ 𝑖 = 𝐹𝑖 (𝑨,𝑿 , 𝑬 , {𝒀 𝑗 | 𝑗 ∈ V𝑡𝑟𝑎𝑖𝑛 \ 𝒀 𝑖 })) during
training. To tackle these issues, we first introduce the uncertain

token o as a placeholder for the nodes without knowing the label

information (i.e. test set). Then, in each iteration, we randomly set

the labels of partial training nodes to o to mimic the prediction

processing that excludes the label information of the target nodes

(shown in Fig. 4 (Middle)). With these proposed methods, we can

train any graph neural network with Concurrency Prior in the

same way as a common network. During inference, we will feed

all known labels of training nodes to the GNN for the prediction

(shown in Fig. 4 (Right)). A summary of our proposed method is

presented in Algorithm 1.

6 Experiment

6.1 Statistical Analysis Results

We consider the number of available hops 𝑘 to 𝑘 ∈ {1, 2, 4, 8, 10}
in our experiments. The results of these paired t-tests conducted

in Section 5.1 are shown in Table 1, where p-values are tiny for all

tests (i.e. less than 1E-18). These results exhibit that we have very

high confidence to conclude: in each state, the metrics ANCD and

ANCC computed for positive nodes are statically higher than those

for negative nodes, which supports our hypothesis that if a node

has an incident occurred, its neighbors are likely to have incidents.

A summary of the metrics is presented in Fig. 5, which illustrates

another interesting observation. We find that as the 𝑘 increases, the

difference between the value of positive nodes and negative nodes

decreases, which may suggest that the concurrency hypothesis has

a high locality that indicates a label of a node is related to its closer

Algorithm 1 PyTorch Code for a general GNN with CP.

#input: Hidden dim: d, number of classes: C, Node

feature: X (N*D1), Adj. Matrix: A (N*N), Edge

Feature: E (N*D2), hard label: Y (shape N*1), and

train/valid/test indices: V_train , V_valid , V_test.

Y[V_test] is unknown. Mask rate: R (0<R<1).

#output: Predicted probability for each node.

#The loss is only computed for all training nodes.

class GNNwithCP(torch.nn.Module):

def __init__(self , hidden_dim=d,number_class =C):

super(GNNwithCP , self).__init__ ()

#define CP embedding

self.CP_embeeding = nn.Embedding(dataset.

num_classes +1, hidden_dim) #one class for masked

nodes

self.encoder_1 = ... #output size should be

hidden_dim

self.encoder_other = ...

self.fc = nn.Linear (..., C)#The unified

classifier for all nodes

def forward(self ,X,A,E,Y,M):

token = torch.zeros_like(Y).to(Y.device)

token[V_train] = Y[V_train ]+1 # We only know

training nodes' labels , and others set to 0 meaning

unknown. Original label 0->1, 1->2.

if self.train: #only masking during training.

select_index = random.sample(range(len(Y)),

int(R*len(Y)))

token[select_index ]=0

token_embeeding = self.CP_embeeding(token)

X,E = self.encoder_1(X,A,E)

X = X+token_embeeding #Eq. 8

X,E = self.encoder_other(X,A,E)

X = self.fc(X)

return F.log_softmax(X, dim=1)

neighbors. We also present the metrics for each state in Fig. 1 to

highlight their difference.

Table 1: The p-value of the paired-test. 𝑘 denotes the number

of available hops.

k 1 2 4 8 10

ANCD 1.13E-29 1.90E-28 5.84E-26 2.69E-21 4.53E-19

ANCC 6.20E-32 2.13E-37 3.42E-34 1.56E-23 1.05E-19

6.2 Main Experiment

Datasets.We evaluate our proposed methods both city-wise and

state-wise. Following [18], we choose six representative cities, in-

cluding Miami, Los Angeles, Orlando, Dallas, Houston, and New

York. We also choose six representative states, including California,
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Figure 5: The statistics of ANCD and ANCC computed for

the available 49 states.

Table 2: The description of the selected datasets in our exper-

iments.

Dataset California Oregon Utah Maryland Minnesota Connecticut

# of Nodes 1169400 217619 142478 234475 370383 120642

# of Edges 2915853 544776 362667 557249 965962 304417

positive Ratio 0.106 0.072 0.059 0.057 0.052 0.042

Dataset
Miami

(Florida)

Los Angeles

(California)

Orlando

(Florida)

Dallas

(Texas)

Houston

(Texas)

New York

(New York)

# of Nodes 8461 49251 7513 36150 59711 55404

# of Edges 22648 135547 18216 92348 148937 140005

positive Ratio 0.133 0.130 0.302 0.258 0.221 0.083

Oregon, Utah, Maryland, Minnesota, and Connecticut. A summary

of these datasets is presented in Table 2. All datasets are stratified

split into 60% training/20% validation/20% testing.

Baselines. We select 12 state-of-the-art GNN models, including

(1)GCN: Graph Convolutional Networks [23], (2)ChebNet: Cheby-

shev spectral graph convolution networks [9], (3)ARMANet: Graph

neural networks with convolutional auto-regressive moving aver-

age (ARMA) filters [2]. (4) GraphSAGE: A general framework

for inductive representation learning on graphs [16], (5) TAGCN:

Topology adaptive graph convolutional networks [10], (6) GIN:

Graph Isomorphism Networks [52, 49], (7) GAT: Graph attention

networks [47], (8)MPNN: Message Passing Neural Network [14],

(9) CGC: Crystal graph convolutional neural network [51], (10)

GEN: GENeralized graph convolutional neural networks [26], (11)

Graphformer: Graph transformers [44], and (12) TRAVEL: a GNN

designed for road network analysis [18].

Evaluation Metrics.We use F1 score and Area Under the Receiver

Operating Characteristic Curve (AUC) to evaluate the performance,

since these datasets are obviously unbalanced, as presented in Sec-

tion 3 as well as Table 2.

Implementation Detail. Our training implementation strictly

follows [18] and keeps the exact same structure and training hyper-

parameters (e.g., Optimizer, learning rate, weight decay, dropout,

etc.). More details can be found in our source code. We find the

reported results in [18] are highly reproducible; hence, we directly

use their results in our comparison. For our methods, we report the

average result and its standard deviation over 10 runs.

Main Results. The numerical results are shown in Table 3 and

Table 4. The main observation is that by imposing our proposed

Concurrency Prior, all twelve GNN methods exhibit a considerable

improvement across the cities and states. Specifically, in the city-

wise datasets shown in Table 3, GNN can obtain a 1.31% to 12.05%

gain in F1 score and a 1.81% to 5.48% gain in AUC by imposing our

prior. We note that GCN and its early variants, including ChebNet,

Figure 6: The ablation analysis for different masking rate.

ARMANet, GraphSAGE, TAGCN, GIN, and GAT are significantly

boosted to 46.58%, 44.94%, 42.99%, 48.06%, 46.82%, and 45.24% in F1

score, resulting in their performance being comparable with the

original version of Graphformer (45.13%). More importantly, our

methods can still improve the previous best method (TRAVEL) with

1.31% and 2.01% gain in F1 score and AUC, respectively. Likewise,

as shown in Table 4, our method can consistently enhance all GNN

methods in state-wise datasets, which is on a larger geographic scale.

We can observe a 3.26% to 13.67% and 1.33% to 9.07% gain in F1 and

AUC, respectively. Similarly, the previous best method, TRAVEL,

is boosted to 90.96% in AUC, which is a high enough performance

in such unbalanced datasets. These results underscore the value

of integrating the proposed Concurrency Prior enhancements into

GNNs for traffic incident prediction tasks. The visualization of

the prediction for different GNN models on different cities and

states is presented in Figs. 7 and 8, showcasing a remarkable visual

enhancement. Due to the page limit, we provide more visualization

in our GitHub repository: https://github.com/xiwenc1/Incident-

GNN-CP.

Ablation Analysis. The only hyperparameter in our proposed

method is the rate of masking; hence here, we conduct the exper-

iment to test the effect by different 𝑅 ∈ (0, 0.5). We present the

average F1 and AUC across all selected states and cities in Fig. 6.

7 Conclusion

In this paper, we perform the traffic road network analysis using

a large-scale graph-based nationwide data source, including in-

cident records across 49 states in the USA. we first propose two

metrics, Average Neighbor Crash Density (ANCD) and Average

Neighbor Crash Continuity (ANCC), to statically validate the intu-

itive concurrency hypothesis, where there is a high probability of

incidents occurring in neighboring nodes of a road network. Based

on this validation, we then propose our novel Concurrency Prior

(CP) method that can incorporate this concurrency information into

various GNNmodels with neglectable extra parameters. Our experi-

ment showcases a remarkable improvement in the semi-supervised

graph-based traffic incident prediction tasks. We expect our contri-

butions will be able to offer promising directions for future research

and practical applications in urban planning and public safety.
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Table 3: City-wise accident occurrence prediction results in terms of F1 score and AUC. Δ denotes the gain obtained by imposing

our proposed Concurrency Prior (with the suffix "-CP") in the neural networks.

Dataset Mean Miami (FL) Los Angeles (CA) Orlando (FL) Dallas (TX) Houston (TX) New York (NY)

Method F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC

GCN 34.53 72.88 20.0±3.3 68.5±3.3 40.2±1.1 80.4±0.3 51.6±0.8 73.1±1.2 39.8±1.9 73.1±0.4 16.4±1.3 66.7±0.2 39.2±3.7 75.5±0.4

GCN-CP 46.58 76.32 46.49±2.83 80.35±0.88 53.68±1.57 83.56±0.17 56.38±3.15 77.40±1.15 45.15±1.30 71.86±0.41 31.63±1.21 63.90±0.22 46.13±0.81 80.83±0.25

Δ +12.05 +3.44 +26.49 +11.85 +13.48 +3.16 +4.78 +4.30 +5.35 -1.24 +15.23 -2.80 +6.93 +5.33

ChebNet 36.72 75.45 20.7±2.9 71.3±3.6 39.8±1.8 81.0±0.3 53.1±0.6 76.7±1.6 42.0±0.5 75.8±0.4 23.8±0.5 69.6±0.5 40.9±4.3 78.3±1.1

ChebNet-CP 44.94 79.61 41.39±3.05 81.40±1.10 53.32±1.38 85.59±0.37 60.71±1.74 80.44±0.65 47.02±0.73 77.05±0.38 22.41±0.57 70.15±0.07 44.81±1.38 83.01±0.32

Δ +8.22 +4.16 +20.69 +10.10 +13.52 +4.59 +7.61 +3.74 +5.02 +1.25 -1.39 +0.55 +3.91 +4.71

ARMANet 36.37 74.77 19.2±3.3 69.5±3.5 40.8±1.0 80.9±0.4 51.5±1.3 75.7±1.4 41.2±0.5 75.6±0.2 23.1±0.4 69.2±0.7 42.4±1.1 77.7±0.6

ARMANet-CP 44.88 79.54 42.30±5.06 81.58±1.34 52.78±1.84 85.41±0.13 59.82±1.63 80.15±1.00 47.31±1.49 77.03±0.48 23.56±1.79 70.16±0.16 43.50±1.49 82.89±0.42

Δ +8.51 +4.77 +23.10 +12.08 +11.98 +4.51 +8.32 +4.45 +6.11 +1.43 +0.46 +0.96 +1.10 +5.19

GraphSAGE 37.55 73.57 20.7±2.4 67.6±2.8 41.6±0.5 80.5±0.3 52.6±1.3 74.1±1.2 44.2±0.5 74.4±0.3 23.7±0.4 68.5±0.4 42.5±1.1 76.3±0.1

GraphSAGE-CP 42.99 79.05 38.27±4.18 80.26±0.56 53.16±1.51 84.99±0.20 58.50±2.03 80.14±0.52 45.16±1.88 76.56±0.54 18.96±2.79 69.63±0.20 43.89±1.68 82.72±0.40

Δ +5.44 +5.48 +17.57 +12.66 +11.56 +4.49 +5.90 +6.04 +0.96 +2.16 -4.74 +1.13 +1.39 +6.42

TAGCN 39.85 77.40 25.2±1.1 73.5±2.4 49.5±0.7 84.7±0.2 53.3±2.5 77.2±1.2 45.4±0.4 77.0±0.5 23.7±0.6 70.5±0.3 42.0±1.1 81.5±0.2

TAGCN-CP 48.06 82.38 45.83±2.24 85.44±0.59 56.61±0.97 88.67±0.30 62.42±1.68 82.67±0.58 49.11±0.99 79.00±0.35 26.81±2.10 71.91±0.18 47.59±1.20 86.58±0.24

Δ +8.21 +4.98 +20.63 +11.94 +7.11 +3.97 +9.12 +5.47 +3.71 +2.00 +3.11 +1.41 +5.59 +5.08

GIN 37.17 75.57 22.8±1.2 72.7±2.6 41.6±0.7 81.8±0.2 54.7±1.4 76.6±1.1 41.3±2.0 75.2±0.3 20.9±1.0 68.0±0.3 41.7±2.1 79.1±0.5

GIN-CP 46.82 77.38 43.48±3.18 80.75±1.45 54.87±1.43 85.03±0.18 57.68±1.59 78.03±0.54 47.44±2.02 73.00±0.55 30.91±1.29 64.24±0.24 46.55±0.91 83.25±0.16

Δ +9.65 +1.81 +20.68 +8.05 +13.27 +3.23 +2.98 +1.43 +6.14 -2.20 +10.01 -3.76 +4.85 +4.15

GAT 36.93 73.47 22.6±1.5 68.3±3.0 41.6±0.4 80.9±0.2 55.3±1.3 74.1±1.0 42.1±1.5 73.6±0.3 17.8±0.8 67.3±0.3 42.2±0.5 76.6±0.4

GAT-CP 45.24 76.06 40.07±10.92 78.96±1.70 50.71±1.09 83.11±0.19 55.09±6.56 76.83±0.65 47.07±1.38 71.76±0.14 35.14±0.90 65.29±0.33 43.36±3.32 80.41±0.63

Δ +8.31 +2.59 +17.47 +10.66 +9.11 +2.21 -0.21 +2.73 +4.97 -1.84 +17.34 -2.01 +1.16 +3.81

MPNN 44.63 81.32 38.8±2.1 82.4±1.0 46.0±1.6 83.9±0.2 61.4±2.5 81.8±0.7 48.5±1.9 79.4±0.4 28.2±1.7 73.5±0.5 44.9±0.8 86.9±0.4

MPNN-CP 45.36 83.50 39.56±5.44 86.22±0.32 51.72±4.24 87.79±0.08 63.09±1.39 84.03±0.28 47.93±1.54 80.33±0.38 23.34±2.26 73.82±0.27 46.56±3.49 88.83±0.57

Δ +0.73 +2.18 +0.76 +3.82 +5.72 +3.89 +1.69 +2.23 -0.57 +0.93 -4.86 +0.32 +1.66 +1.93

CGC 42.47 79.83 34.4±2.7 79.5±1.5 45.0±1.2 81.5±0.2 59.0±2.1 81.1±0.8 48.5±0.5 79.2±0.7 27.3±1.9 72.3±0.1 40.6±1.2 85.4±0.8

CGC-CP 48.55 82.84 42.94±3.34 86.18±0.44 53.55±1.37 87.08±0.21 64.19±1.88 83.68±0.73 48.12±5.22 79.69±0.16 35.68±6.53 72.39±0.24 46.82±3.02 88.00±0.62

Δ +6.08 +3.01 +8.54 +6.68 +8.55 +5.58 +5.19 +2.58 -0.38 +0.49 +8.38 +0.09 +6.22 +2.60

Graphformer 45.13 81.32 37.7±3.3 81.0±1.9 48.9±0.3 83.8±0.3 62.9±1.6 82.0±0.7 49.8±0.7 80.0±0.7 28.4±0.7 73.9±0.4 43.1±0.7 87.2±0.4

Graphformer-CP 50.14 83.36 49.18±2.74 85.58±0.80 54.82±1.53 86.93±0.26 66.08±0.66 84.19±0.56 51.76±0.93 80.59±0.36 31.01±1.91 74.04±0.24 47.97±1.75 88.85±0.47

Δ +5.01 +2.04 +11.48 +4.58 +5.92 +3.13 +3.18 +2.19 +1.96 +0.59 +2.61 +0.14 +4.87 +1.65

GEN 49.07 80.97 44.9±3.1 81.0±2.4 48.6±6.2 82.7±0.9 63.0±1.1 81.2±0.9 56.5±1.7 79.5±0.1 34.1±6.0 73.7±0.4 47.3±1.4 87.7±0.9

GEN-CP 53.12 83.55 49.43±1.39 85.56±0.61 57.88±1.07 88.05±0.62 66.18±1.81 83.89±0.34 51.47±5.09 80.29±0.08 40.62±6.89 74.28±0.21 53.12±0.78 89.21±0.23

Δ +4.05 +2.58 +4.53 +4.56 +9.28 +5.35 +3.18 +2.69 -5.03 +0.79 +6.52 +0.58 +5.82 +1.51

TRAVEL 54.62 82.77 51.9±1.0 84.9±0.9 55.3±0.9 85.9±0.5 65.0±0.4 82.3±0.4 58.0±0.9 80.8±0.7 46.4±0.7 74.5±0.3 51.1±0.9 88.2±0.2

TRAVEL-CP 55.93 84.78 56.84±2.57 88.05±0.41 59.56±1.11 89.02±0.44 67.85±0.97 85.15±0.58 56.63±1.23 81.35±0.24 43.55±4.49 75.59±0.22 51.18±1.56 89.52±0.07

Δ +1.31 +2.01 +4.94 +3.15 +4.26 +3.12 +2.85 +2.85 -1.37 +0.55 -2.85 +1.09 +0.08 +1.32

Table 4: State-wise accident occurrence prediction results in terms of F1 score and AUC. Δ denotes the gain obtained by imposing

our proposed Concurrency Prior (with the suffix "-CP") in the neural networks.

Dataset Mean California Oregon Utah Maryland Minnesota Connecticut

Method F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC

GCN 28.58 73.85 24.0±0.0 71.5±0.0 20.6±0.5 68.7±0.7 32.7±0.1 76.3±0.3 26.1±1.3 79.5±0.4 28.1±0.4 70.9±0.3 40.0±0.6 76.2±0.8

GCN-CP 42.25 81.05 45.61±1.20 79.24±0.21 45.58±0.83 81.48±0.15 45.54±0.90 83.56±0.25 36.00±1.27 80.90±0.27 41.90±1.47 81.06±0.19 38.86±3.60 80.05±0.34

Δ +13.67 +7.20 +21.61 +7.74 +24.98 +12.78 +12.84 +7.26 +9.90 +1.40 +13.80 +10.16 -1.14 +3.85

ChebNet 29.87 75.73 23.2±1.0 72.9±0.2 21.0±0.2 73.1±0.3 34.3±1.2 77.3±0.5 28.5±0.3 80.4±0.1 30.2±2.1 74.1±1.3 42.0±0.4 76.6±0.2

ChebNet-CP 38.74 82.58 38.66±0.69 81.09±0.11 35.68±9.84 82.72±0.10 42.78±1.81 84.46±0.18 35.20±1.35 83.61±0.16 38.88±1.35 82.11±0.11 41.25±1.37 81.49±0.19

Δ +8.87 +6.85 +15.46 +8.19 +14.68 +9.62 +8.48 +7.16 +6.70 +3.21 +8.68 +8.01 -0.75 +4.89

ARMANet 29.03 75.53 23.6±2.0 72.8±0.2 18.6±3.4 72.7±0.7 34.6±0.3 77.2±0.3 28.6±1.6 80.6±0.2 26.4±1.7 72.7±1.2 42.4±1.5 77.2±0.6

ARMANet-CP 38.45 82.60 38.48±0.58 81.07±0.05 38.49±1.33 82.71±0.21 44.04±1.83 84.82±0.35 33.54±1.66 83.48±0.12 37.57±1.55 81.96±0.08 38.56±1.19 81.54±0.24

Δ +9.42 +7.07 +14.88 +8.27 +19.89 +10.01 +9.44 +7.62 +4.94 +2.88 +11.17 +9.26 -3.84 +4.34

GraphSAGE 30.27 75.17 25.8±0.4 72.8±0.4 21.4±0.9 71.2±1.3 34.3±1.5 77.7±0.5 28.5±1.2 80.2±0.1 28.9±0.1 71.9±0.8 42.7±1.6 77.2±0.6

GraphSAGE-CP 37.67 82.23 39.52±0.51 81.01±0.09 41.53±4.20 82.32±0.12 41.23±5.77 83.93±0.18 30.64±8.28 82.83±0.06 34.91±3.06 81.50±0.23 38.18±1.73 81.78±0.39

Δ +7.40 +7.06 +13.72 +8.21 +20.13 +11.12 +6.93 +6.23 +2.14 +2.63 +6.01 +9.60 -4.52 +4.58

TAGCN 30.37 78.10 28.7±0.4 75.9±0.1 24.7±1.0 76.6±0.1 34.1±1.0 78.9±0.4 26.1±0.9 81.8±0.4 30.8±0.9 77.2±0.8 37.8±0.8 78.2±1.3

TAGCN-CP 43.13 87.17 47.25±1.50 85.81±0.15 46.08±1.80 88.67±0.12 46.79±1.34 88.97±0.30 36.78±1.29 86.67±0.28 42.40±2.09 87.47±0.07 39.49±1.53 85.43±0.47

Δ +12.76 +9.07 +18.55 +9.91 +21.38 +12.07 +12.69 +10.07 +10.68 +4.87 +11.60 +10.27 +1.69 +7.23

GIN 31.78 76.45 28.0±0.2 72.7±0.2 24.3±0.4 74.2±0.2 36.2±0.3 78.9±0.5 28.2±0.6 80.8±0.2 32.0±1.8 74.9±1.3 42.0±1.2 77.2±0.4

GIN-CP 43.97 82.08 45.42±1.83 79.76±0.05 48.36±2.03 83.07±0.34 46.60±1.21 84.41±0.19 37.38±1.64 82.23±0.18 44.34±1.76 82.35±0.12 41.73±1.87 80.67±0.36

Δ +12.19 +5.63 +17.42 +7.06 +24.06 +8.87 +10.40 +5.51 +9.18 +1.43 +12.34 +7.45 -0.27 +3.47

GAT 30.12 74.47 24.5±0.3 72.2±0.1 21.8±0.4 70.2±1.0 35.6±2.2 76.8±0.6 27.8±0.2 80.4±0.2 29.1±0.2 71.3±1.1 41.9±2.6 75.9±1.5

GAT-CP 40.06 80.83 46.70±0.59 79.76±0.21 47.12±0.79 81.26±0.57 39.62±6.36 82.76±1.13 36.07±0.85 81.61±0.75 38.14±9.85 80.81±0.52 32.69±2.74 78.77±0.22

Δ +9.94 +6.36 +22.20 +7.56 +25.32 +11.06 +4.02 +5.96 +8.27 +1.21 +9.04 +9.51 -9.21 +2.87

MPNN 41.20 87.13 33.2±1.7 79.9±0.5 56.2±1.3 89.2±0.8 43.1±2.6 88.7±0.3 32.3±0.2 89.4±0.2 38.5±1.0 89.8±0.1 43.9±0.6 85.8±0.7

MPNN-CP 44.93 89.50 43.84±1.93 84.45±0.23 57.06±1.95 90.83±0.17 45.30±4.70 91.59±0.12 34.03±2.50 90.38±0.08 45.99±2.09 91.69±0.07 43.35±2.63 88.07±0.26

Δ +3.73 +2.37 +10.64 +4.55 +0.86 +1.63 +2.20 +2.89 +1.73 +0.98 +7.49 +1.89 -0.55 +2.27

CGC 44.80 86.50 34.4±2.8 79.0±0.1 53.1±3.3 88.5±0.1 47.1±0.8 88.3±0.2 43.0±1.9 88.6±0.4 48.1±1.7 88.7±0.5 43.1±0.2 85.9±0.7

CGC-CP 48.18 88.80 46.02±2.08 84.10±0.06 58.00±2.53 90.34±0.16 52.05±3.34 90.89±0.11 41.65±4.13 89.84±0.07 48.01±5.12 90.74±0.17 43.34±3.75 86.89±0.40

Δ +3.38 +2.30 +11.62 +5.10 +4.90 +1.84 +4.95 +2.59 -1.35 +1.24 -0.09 +2.04 +0.24 +0.99

Graphformer 39.48 87.15 29.3±0.5 80.1±0.1 53.5±0.4 89.4±0.3 44.8±1.4 89.0±0.1 31.5±0.6 89.2±0.6 33.9±0.5 90.1±0.2 43.9±0.7 85.1±0.6

Graphformer-CP 47.77 88.48 44.68±0.38 84.25±0.11 56.96±1.04 89.71±0.14 53.18±1.72 90.35±0.25 38.97±2.81 89.33±0.14 49.43±1.83 90.13±0.09 43.43±1.37 87.13±0.21

Δ +8.29 +1.33 +15.38 +4.15 +3.46 +0.31 +8.38 +1.35 +7.47 +0.13 +15.53 +0.03 -0.47 +2.03

GEN 48.88 84.92 43.9±0.1 77.3±0.4 59.4±0.8 87.2±0.7 53.8±0.8 86.1±0.3 40.8±2.8 88.4±0.8 52.3±1.5 88.7±0.4 43.1±1.1 81.8±0.7

GEN-CP 54.30 89.81 53.30±1.70 86.03±0.10 62.40±0.80 91.28±0.09 56.93±1.14 91.28±0.24 46.44±3.35 90.03±0.19 56.77±2.28 91.71±0.37 49.94±1.11 88.53±0.49

Δ +5.42 +4.89 +9.40 +8.73 +3.00 +4.08 +3.13 +5.18 +5.64 +1.63 +4.47 +3.01 +6.84 +6.73

TRAVEL 51.78 88.02 46.1±0.7 81.1±1.0 60.8±0.0 90.5±0.2 55.6±0.6 89.9±1.9 46.4±1.4 90.1±0.3 55.2±1.0 91.3±0.7 46.6±0.3 85.2±0.6

TRAVEL-CP 55.04 90.96 54.85±0.58 87.22±0.18 62.46±1.03 92.24±0.23 57.42±1.84 92.49±0.22 47.44±1.17 90.99±0.16 58.93±0.25 92.87±0.17 49.17±1.62 89.93±0.38

Δ +3.26 +2.94 +8.75 +6.12 +1.66 +1.74 +1.82 +2.59 +1.04 +0.89 +3.73 +1.57 +2.57 +4.73
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Figure 7: The visualization of the prediction by different methods on cities. Left columns: The original GNN methods. Middle

columns: GNN methods with our proposed concurrency prior. Right columns: The ground truth.
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Figure 8: The visualization of the prediction by different methods on states. Left columns: The original GNN methods. Middle

columns: GNN methods with our proposed concurrency prior. Right columns: The ground truth.
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