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Abstract

Despite recent progress in reducing road fatalities, the persistently
high rate of traffic-related deaths highlights the necessity for im-
proved safety interventions. Leveraging large-scale graph-based
nationwide road network data across 49 states in the USA, our
study first posits the Concurrency Hypothesis from intuitive obser-
vations, suggesting a significant likelihood of incidents occurring at
neighboring nodes within the road network. To quantify this phe-
nomenon, we introduce two novel metrics, Average Neighbor Crash
Density (ANCD) and Average Neighbor Crash Continuity (ANCC),
and subsequently employ them in statistical tests to validate the
hypothesis rigorously. Building upon this foundation, we propose
the Concurrency Prior (CP) method, a powerful approach designed
to enhance the predictive capabilities of general Graph Neural Net-
work (GNN) models in semi-supervised traffic incident prediction
tasks. Our method allows GNNs to incorporate concurrent incident
information, as mentioned in the hypothesis, via tokenization with
negligible extra parameters. The extensive experiments, utilizing
real-world data across states and cities in the USA, demonstrate
that integrating CP into 12 state-of-the-art GNN architectures leads
to significant improvements, with gains ranging from 3% to 13%
in F1 score and 1.3% to 9% in AUC metrics. The code is publicly
available at https://github.com/xiwenc1/Incident-GNN-CP?.

CCS Concepts

« Information systems — Location based services; Geographic
information systems; - Computing methodologies — Semi-
supervised learning settings.
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ANCD for Negative Nodes

0

Figure 1: The state-wise Average Neighbor Crash Density
(ANCD) for Top: negative nodes (i.e. nodes without incident
records) and Bottom: positive nodes (i.e. nodes with incident
records) when k = 1. For a specific class of nodes (i.e. posi-
tive/negative nodes), a deeper color denotes a higher density
of their neighbor nodes have incident. It is observed that,
within the same state, the neighbor nodes of positive nodes
often exhibit a higher crash density than those of negative,
which supports our Concurrency Hypothesis.
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1 Introduction

The significance of traffic safety is underscored by recent statistics,
which highlight the ongoing challenges and successes in reducing
road fatalities. In the early months of 2023, the National Highway
Traffic Safety Administration (NHTSA) [34] reported a decrease
in traffic fatalities, estimating that 9,330 people lost their lives in
traffic crashes in the first quarter, marking a 3.3% decline compared
to the previous year. This trend continued into the first half of
the year, with fatalities dropping to 19,515, also down by about
3.3% from the prior year. However, despite the positive trend in
these numbers, they still reflect a high rate of traffic-related deaths,
especially compared to the earlier years (2005-2019). This situation
emphasizes the ongoing need for enhanced traffic safety measures
and interventions to sustain and accelerate the reduction in road
fatalities.

The importance of modeling traffic incident risks is well rec-
ognized in the field of urban planning and public safety [11, 40].
Accurate predictions of where and when incidents are likely to
occur can significantly contribute to the development of more effec-
tive traffic management strategies and infrastructure improvements.
As urban areas continue to grow and also traffic volume increases,
the need for powerful analytical tools to assess risk and prevent
incidents becomes increasingly critical. It requires the integration
of comprehensive datasets and advanced analytical techniques to
understand the complex dynamics of road traffic and enhance safety
measures. By leveraging detailed geospatial data and traffic inci-
dent records, researchers and city planners can identify high-risk
areas and implement specific interventions to mitigate the possible
risks, while enhancing road safety [36]. Recently, many studies
have analyzed the effect of road features for predicting incident
occurrences, such as [37, 35, 7, 33, 61, 60]. More recently, Deep
Learning (DL)-based methods have gained significant attention in
traffic safety analysis since their powerful ability to characterize
the inherent complex features of large-scale data [54, 41, 58, 40].
Due to the nature that both the road network and traffic flow can
be viewed as graph structure data, Graph Neural Network (GNN)
[23, 47, 16, 10, 51, 26, 30, 57] is the rational choice to characterize
the relations in a network and has been adopted in recent works
[27, 56, 62].

Our work is motivated by two intuitive observations in traffic
incident occurrences in road networks: When people are driving
and notice a traffic incident, there is a high probability that they
observe another incident has occurred nearby. Another observation
is that there are always some accident-prone sections, meaning
the continuous areas included in the sections are likely to have
incidents even if they have not occurred necessarily at the same
time. We then make a unified hypothesis for them:

Concurrency Hypothesis. There is a high probability when a
node has an incident occurred, some of its neighbors have an incident
occurred.

Subsequently, we propose two novel metrics, the Average Neigh-
bor Crash Density (ANCD) and Average Neighbor Crash Continuity
(ANCC), to quantify these observations, and apply standard statis-
tical tests for these quantitative results to validate the proposed
hypothesis. An exemplary visualization of ANCD for each state
is shown in Fig. 1, which underscores the difference of the nodes
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between different categories for each state. We then conjecture that
this hypothesis indicates that there may be some important but
difficult-to-capture information and features that have not been
fully collected by the general datasets. Accordingly, in this work,
we proposed an enhancement method called Concurrency Prior (CP)
that explores the hidden information beyond the common features
from the crash label for semi-supervised traffic incident prediction.
This problem is built on a single monolithic graph representing an
entire state or city. Entire edge features, entire node features and
partial nodes’ labels are known. Our goal is to utilize the known
information to learn a model and predict the label for the rest of the
nodes with unknown labels. The formal problem description is in
Section 4. Our method is compatible and complementary with gen-
eral graph neural networks, such as Graph Convolutional Networks
[23], Graph Attention Networks [47], and Graph Transformers [44].
Our investigation is based on the nationwide real-world road net-
work data provided by [18]. This large-scale data source contains
the incident record from 49 states of the USA and provides various
edge features, such as length, type, number of lanes, max speed,
and road direction and angular information. We provide the details
of the data acquisition in Section 3.

In summary, our contribution is two-fold: (i) We are the first
to statistically validate the Concurrency Hypothesis in nationwide
graph-based data by using our proposed metrics; and (ii) We pro-
pose an enhancement method called Concurrency Prior that enables
boosting broad variations of graph neural networks in the semi-
supervised traffic incident prediction task by introducing negligible
parameters. Our intensive experiments on 12 state-of-the-art graph
neural networks demonstrate a 3%-13% and 1.3%-9% gain in F1 and
AUC, respectively.

2 Related Work

It is known that most traffic-related data can be viewed as network/-
graph structure data. For example, vehicles involved in an incident
can be treated as a network, where each node is a vehicle, and the
edge denotes the interaction between every two vehicles. Besides,
the road network can be treated as a graph, where the nodes denote
different physical locations, and the edges denote roads between
them. Hence several previous works focus on network analysis [8,
50, 12, 3, 24] and many works analysis it based on knowledge from
the complex network theories, such as small-world networks [48]
and random scale-free networks [1]. However, this type of data is
not as easy to process as usual data (e.g., images) in the machine
learning community. This is due to the fact the topology of graph
data is often variable and enormous [38]. For example, considering
a city as a graph, different cities apparently have totally different
topologies and may have massive intersections as nodes. Therefore,
graph Neural Networks (GNNs) have gained significant attention
for processing graph data.

The early concept of GNNs can be traced back to 2008 [42], when
the authors proposed a framework that leverages a recurrent neu-
ral network (RNN) structure for graph data. Afterward, authors in
[5, 17] apply spectral approaches to GNNs, where they perform
convolutions via graph Laplacian. However, spectral approaches
introduce an intensive computation cost and lack generalizability
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Figure 2: The graph-based data is obtained from real-world road networks.

across different graphs. To tackle these issues, authors in [23] pro-
pose Graph Convolutional Networks (GCNs), which significantly
reduce computational complexity while maintaining performance.
This method then becomes the cornerstone in the development
of GNNs, and subsequently, there are a large number of variants
[47, 16, 10, 51, 26]. For example, authors in [47] introduce attention
mechanisms to model the importance of nodes’ neighbors, while
authors in [16] propose an inductive framework that learns node
embeddings by sampling and aggregating features from a node’s
local neighborhood. Authors in [10] propose a topology adaptive
mechanism for graph convolution. In 2020, authors in [26] devel-
oped a framework for training very deep GCNs using differentiable
generalized aggregation functions and a novel normalization layer
called MsgNorm, effectively addressing vanishing gradients, over-
smoothing, and over-fitting issues in very deep GCN models. More
recently, authors in [44] propose an adaptation of the transformer
architecture to graph-structured data, providing an alternative to
convolution-based methods.

GNNs illustrate the obvious superiority of capturing the depen-
dencies of graph-based data in non-euclidean space, while these
dependencies are challenging to learn by the algorithms designed
for Euclidean space (e.g,. Convolutional Neural Networks (CNN)).
Therefore, GNNs have been widely used in traffic and intelligence
transportation fields [53, 39]. For instance, authors in [59, 15, 45,
20] employ GNN for traffic flow prediction. Demand Prediction
is also a popular task that can benefit from GNN. These demands
include ride-hailing demand forecasting [13, 22, 19], bike sharing
systems [28, 25], and passenger flow prediction [29]. Additionally,
GNN is used in point-cloud-based perception [43, 21], motion pre-
diction [46], and planning [6] in the studies of autonomous vehicles.
Likewise, there are several works aiming to predict the incident
occurrence. Specifically, [62] develops a novel differential time-
varying GCN to dynamically capture traffic variations and [56]
proposes a spatio-temporal GCN and employs the embedding layer
to remove noises and better extract semantic representations of
external information.

The most related work is [18], which performs the traffic analysis
with nationwide coverage and real-world network topology and
tries to solve the classification problem solely based on a single
monolithic graph. It is noteworthy that none of the previous works
mentioned above has performed analysis on such a large data scale.
Our work substantially enhances the prediction performance over
this work, as well as several popular aforementioned GNN variants,
by imposing our proposed concurrency prior to neural networks.

The proposed training strategy mentioned in Section 5.3 is related to
attribute masking used in [55, 30]; however, we use it to mimic the
real node-wise inference in the training phase when incorporating
the concurrency information (Eq. 9). Hence, our training strategy
is essentially different and orthogonal from theirs, since they only
employ it as a common data augmentation method.

3 Data Acquisition

In our study, we use nationwide traffic incident data consists over
1,000 U.S. city-level datasets and 49 U.S. state-level datasets [18].
In this section, we delve into the key concept behind the creation
of graph-based traffic incident benchmarks with datasets that con-
tain real-world geospatial features. The traffic incident processing
repository is developed by collecting a comprehensive set of raw
data on traffic incidents [32]. It involves detailed information about
incident records, the geographical layout of streets, and the rela-
tional structure of these locations represented in graph form. To
enhance the utility of the incident location data, a reverse geocoding
process is employed to convert geographic coordinates into more
accessible address formats. Afterward, the crash information is inte-
grated with the graph-structured data and geographical attributes
to create a cohesive and structured dataset, as shown in Fig. 2. The
foundational data for these datasets are sourced from Microsoft
Bing Map Traffic [31], extracted explicitly from the US-Accidents
benchmarks. These datasets serve as a valuable source of informa-
tion, documenting around 2.8 million traffic-related incidents over
a period from January 2016 through December 2021. They provide
a detailed account of traffic events during this time frame, offering
insights into patterns and trends.

In these datasets, OpenStreetMap (OSM) [4] is employed as the
primary resource for obtaining geospatial data information. The
collected data from OSM are enriched with a variety of geographi-
cal information, including roads, trails, railway stations, land Use,
land cover, transport networks and natural landmarks like forests
and rivers. This information is tagged under different OSM classes,
which serve to present the specific characteristics of the geographic
elements in the database, such as nodes (defining points like inter-
sections), ways (paths or open areas), and edges (logical or physical
relationships between elements). Hence, the datasets now have rich
features, including but not limited to the type of road, the length of
a road, the number of lanes, one-way indication, max speed, tunnel
indication, junction type, etc. Besides, directional and angular fea-
tures of road networks are identified, enhancing the dataset with
unique geometric insights.
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Afterward, incident data is first reverse geocoded to pinpoint
exact locations, and then systematically organized based on set-
tlement hierarchies from villages to states. Datasets are divided
into two main subsets: city-level and state-state, each tailored to
different scales of traffic analysis. The city-level datasets focus on
urban areas where traffic incident frequency is higher, reflecting
the denser road networks and population distribution. In contrast,
state-level datasets provide a broader perspective, suitable for re-
gional traffic trends and policy planning. Eventually, the integration
process involves sophisticated data processing techniques like one-
hot encoding and spatial analysis used to correlate accident sites
with nearby road network nodes.

In summary, each dataset (either a city or a state) is a single
monolithic graph, which refers to a unified and comprehensive
graph structure that includes all data points (nodes) and relation-
ships (edges) contained within one comprehensive graph without
division into subgraphs. Suppose a dataset (can be a specific state or
city) is a large graph that has N nodes and E edges, then the dataset
can be presented by three matrices A € RN*N_ X € RNXP1 and
E € REXD2 and Y € RV, denoting the adjacency matrix, node
embedding, edge embedding, and node labels, respectively. Here,
D1 and Dy denote the number of dimensions of node and edge
features, respectively. It also should be noted that these datasets are
significantly unbalanced, and a very low ratio of points is positive
(i.e. nodes with crash records). The statistics of the node labels
are shown in Fig. 3 and Table 2. We realize this may substantially
challenge most machine learning algorithms.

le6

1.0

0.8

0.6

0.4

0.2

0
Pos. Node Neg. Node Edge

Figure 3: The statistics of the graph-based datasets on 49
states.

4 Problem Formulation

Here, we give the problem formulation of our study. Suppose the
label for a node i is Y;. Our problem is semi-supervised and in
a transductive setting. It means some nodes have known labels
(Y;,Vi € Virain), and others are unknown (Y, Vi € Vyest) that we
aim to predict them. Note that A, X, and E are fully known in both
the training and inference phases. We use Y; = 1 to denote the pos-
itive nodes that there is an incident occurred while Y; = 0 denotes
the negative nodes that nothing happened here. An illustration of
the problem is shown in Fig. 4 (Left), where red and blue denote
the nodes with known labels (crash/no crash), and the question
marks denote the unknown labels.

Xiwen et al.

5 Methodology

In this section, we first adopt statistical tools to validate the concur-
rency hypothesis (Section 5.1), and then motivated by the effective-
ness of this hypothesis, we propose the concurrency prior, which
is an enhancement method for general graph neural networks in
crash prediction (Section 5.2 and Section 5.3).

5.1 Statistical Analysis of the Concurrency
Hypothesis

Recap our Concurrency Hypothesis: There is a high probability
when a node has an incident occurred, some of its neighbors have an
incident occurred.

To validate this hypothesis, we propose two quantitative tools,
and we expect to demonstrate that there is a statistical difference
between the incident occurrence of the neighbors of positive nodes
and negative nodes. The metrics are calculated state by state as
each state is a monolithic graph.

Average Neighbor Crash Density (ANCD). This metric is first
calculated for each node of a dataset (i.e. a state here) as,

Zjeneighbork(i) I[(Yj =1)

NCD; =
! |neighbory ()|

(1)

where neighbory (i) denotes the set of neighbor nodes of node i
that can arrive in most k hops through the connected edges. I(-)
and | - | denote the indicator function and the cardinality of a set,
respectively. Then, ANCD can be computed for positive nodes
(z = 1) and negative nodes (z = 0) of the dataset, respectively,

ANCD. = Zie{ily,=z} NCD;
T Hilvi=2}

where z € {0,1}. ANCD can be interpreted as the average density
of the neighbor nodes that have crashes for a specific class of nodes.

We are also interested in the distance of the nearest positive
nodes of nodes in a specific class. However, in a super-large graph,
computing the distance in the form of hops is challenging due to
the computation cost and memory issues; therefore, we propose the
surrogate metrics to estimate it. Average Neighbor Crash Conti-
nuity (ANCC). The metric aims to calculate how the continuity of
neighbor crash nodes.

: @

1, 3Y; =1, € neighbory (i),
0, Else.

The NCC;j can be interpreted as follows: if NCC; is equal to 1, the
nearest positive node of node i is at most k hops. In contrast, if
NCC; is equal to 0, the nearest positive node of node i requires at
least k + 1 hops. Subsequently, we can compute ANCC, similar to
Eq. 2,

NCC; = { (3)

ANCC, = Zictiltizz) AR
T il =2

Hence ANCC; is able to evaluate the average distance to the nearest
positive nodes of the class z nodes from a different perspective.
To comprehensively evaluate the difference between negative
nodes and positive nodes, after computing the two metrics for
each state, paired t-test is used to offer support from the standard
hypothesis test. To perform a paired t-test, we first compute the

©)

difference between paired observations, denoted as dl = M(J) - M{ ,



Enhancing Graph Neural Networks in Large-scale Traffic Incident Analysis with Concurrency Hypothesis

SIGSPATIAL ’24, October 29-November 1, 2024, Atlanta, GA, USA

Tokenization

Problem
Setup

Next layers

Training

‘ Masking

o Negative Nodes
O Positive Nodes
@ Unknown Nodes

@Iﬁ

Inference

Figure 4: Left: The problem is formulated in a single large graph. Nodes’ labels are known if the node is marked in colors, i.e.,
red (positive)/ blue (negative). The nodes with question marks are expected to be predicted. Middle: In the training phase, we
keep all unknown nodes with the uncertain token ’0’, and in each iteration, we also randomly mask some nodes with known
labels to 0’ to mimic the prediction process. Right: In the inference phase, we only keep to nodes to be predicted with the
uncertain token ’o’. Top: Imposing concurrency prior to the neural network.

where M denotes one of the proposed metrics with predefined k,
and j denotes the state index. Suppose the pi; represents the pop-
ulation mean difference. The null hypothesis (Hp) and alternative
hypothesis (H,) for the paired t-test are typically defined as follows:

o Null hypothesis (Hp): There is no significant difference be-
tween the paired observations, i.e., g = 0.

o Alternative hypothesis (Hy): There is a significant difference
between the paired observations, i.e., 17 < 0.

If there is statistical significance, the incident occurrence in a node’s
neighbors that has a correlation with the status of this node. We
present the results in Section 6.1.

5.2 Graph Neural Networks with Concurrency
Prior

As the Concurrency Hypothesis exists, we conjecture that there

is information included in the label Y; in addition to the original

features X and E. Hence, employing this information may enhance

the model’s learning ability. Here, a prediction for a node i by a

conventional graph neural work G in the problem is presented as,

Y; = Gi(A X, E). 5)

In our method, we want to explicitly adopt the information,
which results in a prediction as,

Yi=Fi(AX.EAY;|j € Virain})- (6)

Theorem 1. If we use the mutual information I(-;-) to denote the
upper bound of the learning ability of a network, apparently, F; should

have a stronger potential of learning ability. This is because,
I(Y;;AX,E) <I(Y;; A, X, E, {Y|j € Virain}). (7)

Since the concurrency information is usually presented as dis-
crete labels, it is now impossible to directly present any semantic
information to the neural network. Therefore, we tokenize labels as
a learnable dictionary, and each instance (one vector) of the dictio-
nary represents the latent feature of each category. This strategy is
much more friendly for learning the neural network because, with
tokenization, all operations are in continuous space, which allows
us to optimize a neural network with concurrency information just
like training a common network. Additionally, we use an efficient
way to embed the concurrency information without introducing
considerable parameters. Thereby, the Concurrency Prior can be
imposed to the neural network as,

X; « encode(X;) + Tokenization(Y;). (8)

We impose Concurrency Prior in the embedding space because the
original features consist of data from different concepts (see Section
3), and the encode(X;) can be viewed as these feature after fusion,
which offers a better representation. We aggregate the feature infor-
mation (X;) and Concurrency Prior (Tokenization(Y;)) by summa-
tion because this way allows us not to change the original network
architecture and hence not introduce extra parameters (except the
few parameters by tokenization). For example, if the original net-
work has one linear layer with d; X dz parameters. Alone with the
parameters introduced by tokenization, if aggregating by concate-
nating, the architecture should be modified and has ((d; +dcp) X d2
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parameters accordingly, where dj,d2, and dcp are the number of
the original input, output, and CP dimensions. In contrast, the total
parameters in our method are consistently dj X d2. Hence, the total
number of introduced parameters by imposing Concurrency Prior
is (C+1) x d for the set of learnable vectors for tokenization, where
C and d denote the number of classes and the embedding size of
the feature in the original architecture, respectively. The additional
one (i.e. 1in C + 1) in the term denotes the uncertain class, which
we will discuss in the next section. When C = 2 in our case, the
introduced parameters are negligible.

5.3 How to train the neural network?

To train the neural network, for each node i € V;,4in, we anticipate
minimizing the loss for each node,

ngnL(Yi)Fi(AaXa E) {Y]|J € (Vl’rain \Yl}))’ (9)

where F; denotes the classifier for node i. Another challenge is posed
here since a general graph neural network is designed to process a
graph with arbitrary shapes, and training a classifier for each node is
inefficient due to the massive number of nodes (e.g., 1169400 nodes
in California dataset); therefore, the network often has a unified
classifier for all nodes. A general training strategy is feeding A, X, E
to the network to predict all Y;, which assumes the prediction for all
nodes uses the same input (i.e. A, X, E), where our network is not
fulfilled. In our case, we need to feed the feature and label of a node
to the network; however, the label of the nodes from the test set
is unknown, and we also need to exclude the label information of
the target node (i.e. Y= Fi(A X, E, {Ylj € Virain \ Yi})) during
training. To tackle these issues, we first introduce the uncertain
token o as a placeholder for the nodes without knowing the label
information (i.e. test set). Then, in each iteration, we randomly set
the labels of partial training nodes to o to mimic the prediction
processing that excludes the label information of the target nodes
(shown in Fig. 4 (Middle)). With these proposed methods, we can
train any graph neural network with Concurrency Prior in the
same way as a common network. During inference, we will feed
all known labels of training nodes to the GNN for the prediction
(shown in Fig. 4 (Right)). A summary of our proposed method is
presented in Algorithm 1.

6 Experiment

6.1 Statistical Analysis Results

We consider the number of available hops k to k € {1,2,4,8,10}
in our experiments. The results of these paired t-tests conducted
in Section 5.1 are shown in Table 1, where p-values are tiny for all
tests (i.e. less than 1E-18). These results exhibit that we have very
high confidence to conclude: in each state, the metrics ANCD and
ANCC computed for positive nodes are statically higher than those
for negative nodes, which supports our hypothesis that if a node

has an incident occurred, its neighbors are likely to have incidents.

A summary of the metrics is presented in Fig. 5, which illustrates
another interesting observation. We find that as the k increases, the
difference between the value of positive nodes and negative nodes
decreases, which may suggest that the concurrency hypothesis has
a high locality that indicates a label of a node is related to its closer
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Algorithm 1 PyTorch Code for a general GNN with CP.

#input: Hidden dim: d, number of classes: C, Node
feature: X (N%*D1), Adj. Matrix: A (N*N), Edge
Feature: E (N%*D2), hard label: Y (shape N*1), and
train/valid/test indices: V_train, V_valid, V_test.
Y[V_test] is unknown. Mask rate: R (@<R<1).

#output: Predicted probability for each node.
#The loss is only computed for all training nodes.

class GNNwithCP(torch.nn.Module):
def __init__(self, hidden_dim=d, number_class =C):
super (GNNwithCP, self).__init__()
#define CP embedding
self.CP_embeeding = nn.Embedding(dataset.
num_classes+1,hidden_dim) #one class for masked
nodes

self.encoder_1 = ... #output size should be

hidden_dim
self.encoder_other = ...
self.fc = nn.Linear (..., C)#The unified

classifier for all nodes
def forward(self ,X,A,E,Y,M):

token = torch.zeros_like(Y).to(Y.device)

token[V_train] = Y[V_trainl+1 # We only know
training nodes' labels, and others set to @ meaning
unknown. Original label 0->1, 1->2.

if self.train: #only masking during training.
select_index = random.sample(range(len(Y)),
int(Rxlen(Y)))
token[select_index]=0

token_embeeding = self.CP_embeeding(token)
X,E = self.encoder_1(X,A,E)
X = X+token_embeeding #Eq. 8

X,E = self.encoder_other (X,A,E)
X = self.fc(X)
return F.log_softmax (X, dim=1)

neighbors. We also present the metrics for each state in Fig. 1 to
highlight their difference.

Table 1: The p-value of the paired-test. k denotes the number
of available hops.

k 1 2 4 8 10

ANCD 1.13E-29 1.90E-28 5.84E-26 2.69E-21 4.53E-19
ANCC 6.20E-32 2.13E-37 3.42E-34 1.56E-23 1.05E-19

6.2 Main Experiment

Datasets. We evaluate our proposed methods both city-wise and
state-wise. Following [18], we choose six representative cities, in-
cluding Miami, Los Angeles, Orlando, Dallas, Houston, and New
York. We also choose six representative states, including California,
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Figure 5: The statistics of ANCD and ANCC computed for
the available 49 states.

Table 2: The description of the selected datasets in our exper-
iments.

Dataset ‘ California Oregon Utah Maryland Minnesota Connecticut
# of Nodes 1169400 217619 142478 234475 370383 120642
# of Edges 2915853 544776 362667 557249 965962 304417
positive Ratio 0.106 0.072 0.059 0.057 0.052 0.042
Dataset Miami Los Angeles Orlando Dallas Houston New York
(Florida)  (California) (Florida) (Texas) (Texas) (New York)
# of Nodes 8461 49251 7513 36150 59711 55404
#of Edges 22648 135547 18216 92348 148937 140005
positive Ratio 0.133 0.130 0.302 0.258 0.221 0.083

Oregon, Utah, Maryland, Minnesota, and Connecticut. A summary
of these datasets is presented in Table 2. All datasets are stratified
split into 60% training/20% validation/20% testing.

Baselines. We select 12 state-of-the-art GNN models, including
(1) GCN: Graph Convolutional Networks [23], (2) ChebNet: Cheby-
shev spectral graph convolution networks [9], (3) ARMANet: Graph
neural networks with convolutional auto-regressive moving aver-
age (ARMA) filters [2]. (4) GraphSAGE: A general framework
for inductive representation learning on graphs [16], (5) TAGCN:
Topology adaptive graph convolutional networks [10], (6) GIN:
Graph Isomorphism Networks [52, 49], (7) GAT: Graph attention
networks [47], (8) MPNN: Message Passing Neural Network [14],
(9) CGC: Crystal graph convolutional neural network [51], (10)
GEN: GENeralized graph convolutional neural networks [26], (11)
Graphformer: Graph transformers [44], and (12) TRAVEL: a GNN
designed for road network analysis [18].

Evaluation Metrics. We use F1 score and Area Under the Receiver
Operating Characteristic Curve (AUC) to evaluate the performance,
since these datasets are obviously unbalanced, as presented in Sec-
tion 3 as well as Table 2.

Implementation Detail. Our training implementation strictly
follows [18] and keeps the exact same structure and training hyper-
parameters (e.g., Optimizer, learning rate, weight decay, dropout,
etc.). More details can be found in our source code. We find the
reported results in [18] are highly reproducible; hence, we directly
use their results in our comparison. For our methods, we report the
average result and its standard deviation over 10 runs.

Main Results. The numerical results are shown in Table 3 and
Table 4. The main observation is that by imposing our proposed
Concurrency Prior, all twelve GNN methods exhibit a considerable
improvement across the cities and states. Specifically, in the city-
wise datasets shown in Table 3, GNN can obtain a 1.31% to 12.05%
gain in F1 score and a 1.81% to 5.48% gain in AUC by imposing our
prior. We note that GCN and its early variants, including ChebNet,
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Figure 6: The ablation analysis for different masking rate.

ARMANet, GraphSAGE, TAGCN, GIN, and GAT are significantly
boosted to 46.58%, 44.94%, 42.99%, 48.06%, 46.82%, and 45.24% in F1
score, resulting in their performance being comparable with the
original version of Graphformer (45.13%). More importantly, our
methods can still improve the previous best method (TRAVEL) with
1.31% and 2.01% gain in F1 score and AUC, respectively. Likewise,
as shown in Table 4, our method can consistently enhance all GNN
methods in state-wise datasets, which is on a larger geographic scale.
We can observe a 3.26% to 13.67% and 1.33% to 9.07% gain in F1 and
AUC, respectively. Similarly, the previous best method, TRAVEL,
is boosted to 90.96% in AUC, which is a high enough performance
in such unbalanced datasets. These results underscore the value
of integrating the proposed Concurrency Prior enhancements into
GNN:ss for traffic incident prediction tasks. The visualization of
the prediction for different GNN models on different cities and
states is presented in Figs. 7 and 8, showcasing a remarkable visual
enhancement. Due to the page limit, we provide more visualization
in our GitHub repository: https://github.com/xiwenc1/Incident-
GNN-CP.

Ablation Analysis. The only hyperparameter in our proposed
method is the rate of masking; hence here, we conduct the exper-
iment to test the effect by different R € (0,0.5). We present the
average F1 and AUC across all selected states and cities in Fig. 6.

7 Conclusion

In this paper, we perform the traffic road network analysis using
a large-scale graph-based nationwide data source, including in-
cident records across 49 states in the USA. we first propose two
metrics, Average Neighbor Crash Density (ANCD) and Average
Neighbor Crash Continuity (ANCC), to statically validate the intu-
itive concurrency hypothesis, where there is a high probability of
incidents occurring in neighboring nodes of a road network. Based
on this validation, we then propose our novel Concurrency Prior
(CP) method that can incorporate this concurrency information into
various GNN models with neglectable extra parameters. Our experi-
ment showcases a remarkable improvement in the semi-supervised
graph-based traffic incident prediction tasks. We expect our contri-
butions will be able to offer promising directions for future research
and practical applications in urban planning and public safety.
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Table 3: City-wise accident occurrence prediction results in terms of F1 score and AUC. A denotes the gain obtained by imposing
our proposed Concurrency Prior (with the suffix "-CP") in the neural networks.

Dataset Mean Miami (FL) Los Angeles (CA) Orlando (FL) Dallas (TX) Houston (TX) New York (NY)

Method F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC
GCN 34.53 72.88 20.0£3.3 68.5£3.3 40.2+1.1 80.4£0.3 51.6£0.8 73.1£1.2 39.8+1.9 73.1£0.4 16.4+1.3 66.7+0.2 39.2£3.7 75.5£0.4
GCN-CP 46.58 76.32 46.49+2.83  80.35+0.88 53.68+1.57 83.56+0.17 56.38+3.15 77.40+1.15 45.15+£1.30 71.86+0.41 31.63+1.21 63.90+£0.22 46.13+0.81 80.83+0.25
A +12.05 +3.44 +26.49 +11.85 +13.48 +3.16 +4.78 +4.30 +5.35 -1.24 +15.23 -2.80 +6.93 +5.33
ChebNet 36.72 75.45 20.7+2.9 71.3+£3.6 39.8+1.8 81.0+0.3 53.1+0.6 76.7+1.6 42.0£0.5 75.8+£0.4 23.8+0.5 69.6£0.5 40.9+4.3 78.3x1.1
ChebNet-CP 44.94 79.61 41.39+3.05  81.40+1.10 53.32+1.38 85.59+0.37 60.71+1.74 80.44+0.65 47.02+0.73 77.05+£0.38 22.41+0.57 70.15+0.07 44.81x1.38 83.01+0.32
A +8.22 +4.16 +20.69 +10.10 +13.52 +4.59 +7.61 +3.74 +5.02 +1.25 =il +0.55 +3.91 +4.71
ARMANet 36.37 74.77 19.2+3.3 69.5£3.5 40.8+1.0 80.9+£0.4 51.5+1.3 75.7+1.4 41.2+0.5 75.6+0.2 23.1+0.4 69.2+0.7 42.4+1.1 77.7+0.6
ARMANet-CP 44.88 79.54 42.30+5.06  81.58+1.34 52.78+1.84 85.41+0.13 59.82+1.63 80.15+1.00 47.31+£1.49 77.03£0.48 23.56+1.79 70.16+0.16 43.50+£1.49 82.89+0.42
A +8.51  +4.77 +23.10 +12.08 +11.98 Gh4351 +8.32 445 +6.11 +1.43 +0.46 +0.96 +1.10 +5.19
GraphSAGE 37.55 73.57 20.7£2.4 67.6£2.8 41.6%0.5 80.5%0.3 52.6£1.3 74.1£1.2 44.240.5 74.4£0.3 23.7£0.4 68.5+0.4 42.5%1.1 76.3£0.1
GraphSAGE-CP 42.99 79.05 38.27+4.18  80.26+0.56 53.16+1.51 84.99+0.20 58.50+2.03 80.14+0.52 45.16+£1.88 76.56+0.54 18.96+2.79 69.63+0.20 43.89+1.68 82.72+0.40
A +5.44 +5.48 +17.57 +12.66 +11.56 +4.49 +5.90 +6.04 +0.96 +2.16 -4.74 +1.13 +1.39 +6.42
TAGCN 39.85 77.40 25.2+1.1 73.5+2.4 49.5+0.7 84.7+0.2 53.3+25 77.2+1.2 45.4+0.4 77.0£0.5 23.7+0.6 70.5+0.3 42.0£1.1 81.5+0.2
TAGCN-CP 48.06 82.38 45.83+2.24  85.44%0.59 56.61+0.97 88.67+0.30 62.42+1.68 82.67+0.58 49.11x0.99 79.00+£0.35 26.81+2.10 71.91+0.18 47.59£1.20 86.58+0.24
A +8.21  +4.98 +20.63 +11.94 +7.11 +3.97 +9.12 +5.47 +3.71 +2.00 +3.11 +1.41 +5.59 +5.08
GIN 37.17 75.57 22.8+1.2 72.7£2.6 41.6+0.7 81.8+0.2 54.7£1.4 76.6x1.1 41.3+2.0 75.2£0.3 20.9£1.0 68.0+0.3 41.7£2.1 79.1£0.5
GIN-CP 46.82 77.38 43.48+3.18  80.75+1.45 54.87+1.43 85.03+£0.18 57.68+1.59 78.03+0.54 47.44+2.02 73.00+0.55 30.91+1.29 64.24+0.24 46.55+0.91 83.25+0.16
A +9.65 +1.81 +20.68 +8.05 +13.27 +3.23 +2.98 +1.43 +6.14 -2.20 +10.01 -3.76 +4.85 +4.15
GAT 36.93 73.47 22.6£1.5 68.3£3.0 41.6+0.4 80.940.2 55.3£1.3 74.1£1.0 42.1£1.5 73.6+0.3 17.8+0.8 67.3£0.3 42.240.5 76.6+0.4
GAT-CP 45.24 76.06 | 40.07+10.92 78.96+1.70 50.71£1.09 83.11+0.19 55.09+6.56 76.83+0.65 47.07+1.38 71.76+0.14 35.14+0.90 65.29+0.33 43.36+3.32 80.41+0.63
A +8.31 +2.59 +17.47 +10.66 +9.11 22 -0.21 +2.73 +4.97 -1.84 +17.34 -2.01 +1.16 +3.81
MPNN 44.63 81.32 38.8+2.1 82.4+1.0 46.0+1.6 83.9+0.2 61.4+2.5 81.8+0.7 48.5+1.9 79.4+0.4 28.2+1.7 73.5+0.5 44.9+0.8 86.9+0.4
MPNN-CP 45.36 83.50 39.56+5.44  86.22+0.32 51.72+4.24 87.79+0.08 63.09+1.39 84.03+0.28 47.93+1.54 80.33+£0.38 23.34+2.26 73.82+0.27 46.56+3.49 88.83+0.57
A +0.73 +2.18 +0.76 +3.82 +5.72 +3.89 +1.69 +2.23 -0.57 +0.93 -4.86 +0.32 +1.66 +1.93
CGC 42.47 79.83 34.4£2.7 79.5£1.5 45.0+1.2 81.5+0.2 59.0£2.1 81.1£0.8 48.5%0.5 79.2£0.7 27.3%1.9 72.3x0.1 40.6+1.2 85.4£0.8
CGe-cp 48.55 82.84 42.94+334  86.18+0.44 53.55+1.37 87.08+0.21 64.19+1.88 83.68+0.73 48.12+5.22 79.69+0.16 35.68+6.53 72.39+0.24 46.82+3.02 88.00+0.62
A +6.08 +3.01 +8.54 +6.68 +8.55 +5.58 +5.19 +2.58 -0.38 +0.49 +8.38 +0.09 +6.22 +2.60
Graphformer 45.13 81.32 37.7+£3.3 81.0£1.9 48.9£0.3 83.8+0.3 62.9+1.6 82.0+0.7 49.8+0.7 80.0+0.7 28.4+0.7 73.9+0.4 43.1£0.7 87.2+0.4
Graphformer-CP | 50.14 83.36 49.18+2.74  85.58+0.80 54.82+1.53 86.93+0.26 66.08+0.66 84.19+0.56 51.76+0.93 80.59+0.36 31.01+1.91 74.04+0.24 47.97+1.75 88.85+0.47
A +5.01  +2.04 +11.48 +4.58 +5.92 +3.13 +3.18 +2.19 +1.96 +0.59 +2.61 +0.14 +4.87 +1.65
GEN 49.07 80.97 44.9+3.1 81.0+2.4 48.6+6.2 82.7+0.9 63.0+1.1 81.2+0.9 56.5+1.7 79.5+0.1 34.1+6.0 73.7+0.4 47314 87.7+0.9
GEN-CP 53.12 83.55 49.43+1.39  85.56+0.61 57.88+1.07 88.05+£0.62 66.18+1.81 83.89+0.3¢ 51.47+5.09 80.29+£0.08 40.62+6.89 74.28+0.21 53.12+0.78 89.21+0.23
A +4.05  +2.58 +4.53 +4.56 +9.28 $:5135) +3.18 +2.69 -5.03 +0.79 +6.52 +0.58 +5.82 +1.51
TRAVEL 54.62 82.77 51.9£1.0 84.9+0.9 55.3+0.9 85.9+0.5 65.0+0.4 82.3+0.4 58.0+0.9 80.8+0.7 46.4+0.7 74.5£0.3 51.1+0.9 88.2+0.2
TRAVEL-CP 55.93 84.78 56.84+2.57  88.05+0.41 59.56+1.11 89.02+0.44 67.85+0.97 85.15+0.58 56.63+1.23 81.35+0.24 43.55+4.49 75.59+0.22 51.18+1.56 89.52+0.07
A +1.31 +2.01 +4.94 +3.15 +4.26 +3.12 +2.85 +2.85 =I5 +0.55 -2.85 +1.09 +0.08 +1.32

Table 4: State-wise accident occurrence prediction results in terms of F1 score and AUC. A denotes the gain obtained by imposing
our proposed Concurrency Prior (with the suffix "-CP") in the neural networks.

Dataset Mean California Oregon Utah Maryland Minnesota Connecticut

Method F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC
GCN 28.58 73.85 24.0£0.0 71.5%0.0 20.6£0.5 68.7£0.7 32.7+0.1 76.3£0.3 26.1+1.3 79.5£0.4 28.1+0.4 70.9£0.3 40.0+0.6 76.2+0.8
GCN-CP ‘ 42.25 81.05 ‘ 45.61£1.20 79.24+0.21 45.58+0.83 81.48+0.15 45.54+0.90 83.56+0.25 36.00+£1.27 80.90+0.27 41.90+1.47 81.06+0.19 38.86+3.60 80.05+0.34
A +13.67 +7.20 +21.61 +7.74 +24.98 +12.78 +12.84 +7.26 +9.90 +1.40 +13.80 +10.16 -1.14 +3.85
ChebNet 29.87 75.73 23.2£1.0 72.9£0.2 21.0£0.2 73.1£0.3 34.3+1.2 77.3£0.5 28.5+0.3 80.4£0.1 30.2+2.1 74.1£1.3 42.0+0.4 76.6+0.2
ChebNet-CP ‘ 38.74 82.58 ‘ 38.66+0.69 81.09+0.11 35.68+9.84 82.72+0.10 42.78+1.81 84.46+0.18 35.20+1.35 83.61+£0.16 38.88+1.35 82.11+0.11 41.25%£1.37 81.49+0.19
A +8.87 +6.85 +15.46 +8.19 +14.68 +9.62 +8.48 +7.16 +6.70 +3.21 +8.68 +8.01 -0.75 +4.89
ARMANet 29.03 75.53 23.6+2.0 72.8+0.2 18.6+3.4 72.7+0.7 34.6+£0.3 77.2+0.3 28.6+1.6 80.6+0.2 26.4+1.7 72.7¢1.2 42.4+15 77.2+0.6
ARMANet-CP ‘ 38.45 82.60 ‘ 38.48+0.58 81.07+0.05 38.49+1.33 82.71+0.21 44.04+£1.83 84.82+0.35 33.54+1.66 83.48+0.12 37.57+1.55 81.96+0.08 38.56+1.19 81.54+0.24
A +9.42 +7.07 +14.88 +8.27 +19.89 +10.01 +9.44 +7.62 +4.94 +2.88 +11.17 +9.26 -3.84 +4.34
GraphSAGE 30.27 75.17 25.840.4 72.8+0.4 21.4+0.9 71.2+1.3 34.3%1.5 77.7+0.5 28.5+1.2 80.2+0.1 28.9+0.1 71.9+0.8 42.7+1.6 77.2+0.6
GraphSAGE-CP ‘ 37.67 82.23 ‘ 39.52+0.51 81.01+0.09 41.53+4.20 82.32+0.12 41.23%£5.77 83.93+0.18 30.64+8.28 82.83+0.06 34.91+3.06 81.50+0.23 38.18+1.73 81.78+0.39
A +7.40  +7.06 +13.72 +8.21 +20.13 +11.12 +6.93 +6.23 +2.14 +2.63 +6.01 +9.60 -4.52 +4.58
TAGCN 30.37 78.10 28.7+0.4 75.9+£0.1 24.7+1.0 76.6+0.1 34.1£1.0 78.9+0.4 26.1+£0.9 81.8+0.4 30.8+0.9 77.2+0.8 37.8+0.8 78.2+1.3
TAGCN-CP 43.13 87.17 | 47.25£1.50 85.81+0.15 46.08+1.80 88.67+0.12 46.79+1.3¢ 88.97+0.30 36.78+1.29 86.67+0.28 42.40+2.09 87.47+0.07 39.49+1.53 85.43+0.47
A +12.76  +9.07 +18.55 +9.91 +21.38 +12.07 +12.69 +10.07 +10.68 +4.87 +11.60 +10.27 +1.69 +7.23
GIN 31.78 76.45 28.0+0.2 72.740.2 24.3+0.4 74.2+0.2 36.24+0.3 78.9+0.5 28.240.6 80.8+0.2 32.0+1.8 74.9+1.3 42.0+1.2 77.24+0.4
GIN-CP 43.97 82.08 | 45.42+1.83 79.76+0.05 48.36+2.03 83.07+0.34 46.60+1.21 84.41£0.19 37.38+1.64 82.23+0.18 44.34+1.76 82.35+0.12 41.73£1.87 80.67+0.36
A +12.19 +5.63 +17.42 +7.06 +24.06 +8.87 +10.40 +5.51 +9.18 +1.43 +12.34 +7.45 -0.27 +3.47
GAT 30.12 74.47 24.5£0.3 72.240.1 21.8+0.4 70.2£1.0 35.6+2.2 76.8+0.6 27.840.2 80.4£0.2 29.1£0.2 71.3£1.1 41.9£2.6 75.9+1.5
GAT-CP 40.06 80.83 | 46.70+0.59 79.76+0.21 47.12+0.79 81.26+0.57 39.62+6.36 82.76+1.13 36.07+0.85 81.61+0.75 38.14+9.85 80.81+0.52 32.69+2.74 78.77+0.22
A +9.94  +6.36 +22.20 +7.56 +25.32 +11.06 +4.02 +5.96 +8.27 +1.21 +9.04 +9.51 -9.21 +2.87
MPNN 41.20 87.13 33.2£1.7 79.9£0.5 56.2%1.3 89.2+0.8 43.1+2.6 88.7£0.3 32.3%0.2 89.4£0.2 38.5+1.0 89.8+0.1 43.9£0.6 85.8+0.7
MPNN-CP ‘ 44.93 89.50 ‘ 43.84+1.93 84.45+0.23 57.06+1.95 90.83+0.17 45.30+4.70 91.59+0.12 34.03+£2.50 90.38+0.08 45.99+2.09 91.69+0.07 43.35+2.63 88.07+0.26
A +3.73 +2.37 +10.64 +4.55 +0.86 +1.63 +2.20 +2.89 +1.73 +0.98 +7.49 +1.89 -0.55 +2.27
CGC 44.80 86.50 34.4£2.8 79.0£0.1 53.1£3.3 88.5£0.1 47.1+0.8 88.3£0.2 43.0+1.9 88.6+0.4 48.1+1.7 88.7+0.5 43.1+0.2 85.94+0.7
cGe-cp ‘ 48.18 88.80 ‘ 46.02+£2.08 84.10+£0.06 58.00+2.53 90.34+0.16 52.05+3.34 90.89+0.11 41.65+4.13 89.84+0.07 48.01£5.12 90.74+0.17 43.34+3.75 86.89+0.40
A +3.38  +2.30 +11.62 +5.10 +4.90 +1.84 +4.95 +2.59 =155 +1.24 -0.09 +2.04 +0.24 +0.99
Graphformer 39.48 87.15 29.3+0.5 80.1£0.1 53.5+0.4 89.4+0.3 44.8+1.4 89.0+0.1 31.5+0.6 89.2+0.6 33.9+0.5 90.1+0.2 43.9+0.7 85.1£0.6
Graphformer-CP ‘ 47.77 88.48 ‘ 44.68+0.38  84.25+0.11 56.96+1.04 89.71+£0.14 53.18+1.72 90.35£0.25 38.97+2.81 89.33+0.14 49.43%£1.83 90.13+0.09 43.43+1.37 87.13+0.21
A +8.29 +1.33 +15.38 +4.15 +3.46 +0.31 +8.38 +1.35 +7.47 +0.13 +15.53 +0.03 -0.47 +2.03
GEN 48.88 84.92 43.9+0.1 77.3+0.4 59.4+0.8 87.2+0.7 53.840.8 86.1+0.3 40.8+2.8 88.4+0.8 52.3+15 88.7+0.4 43.1£1.1 81.8+0.7
GEN-CP ‘ 54.30 89.81 ‘ 53.30+1.70  86.03+0.10  62.40£0.80 91.28+0.09 56.93+1.14 91.28+0.24 46.44+3.35 90.03+£0.19 56.77+2.28 91.71+£0.37 49.94+1.11 88.53+0.49
A +5.42 +4.89 +9.40 +8.73 +3.00 +4.08 +3.13 +5.18 +5.64 +1.63 +4.47 +3.01 +6.84 +6.73
TRAVEL 51.78 88.02 46.1+0.7 81.1£1.0 60.8+0.0 90.5+0.2 55.6+0.6 89.9+1.9 46.4+1.4 90.1+0.3 55.2+1.0 91.3+0.7 46.6+0.3 85.2+0.6
TRAVEL-CP 55.04 90.96 | 54.85+0.58 87.22+0.18 62.46+1.03 92.24+0.23 57.42+1.84 92.49+0.22 47.44+1.17 90.99+0.16 58.93+0.25 92.87+0.17 49.17+£1.62 89.93+0.38
A +3.26 +2.94 +8.75 +6.12 +1.66 +1.74 +1.82 +2.59 +1.04 +0.89 LT +1.57 +2.57 E4%73
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GraphSAGE GraphSAGE-CP Ground Truth

ARMANet-CP Ground Truth

ChebNet ChebNet-CP Ground Truth

GIN GIN-CP Ground Truth

Figure 7: The visualization of the prediction by different methods on cities. Left columns: The original GNN methods. Middle
columns: GNN methods with our proposed concurrency prior. Right columns: The ground truth.
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GEN

MPNN MPNN-CP Ground Truth

GAT GAT-CP Ground Truth

CGC CGe-cp Ground Truth

Ground Truth

TRAVEL TRAVEL-CP Ground Truth

Figure 8: The visualization of the prediction by different methods on states. Left columns: The original GNN methods. Middle
columns: GNN methods with our proposed concurrency prior. Right columns: The ground truth.



Enhancing Graph Neural Networks in Large-scale Traffic Incident Analysis with Concurrency Hypothesis

References

(1]
(2]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[20]

[21]

[22]

[23]

[24]

Albert-Laszl6 Barabasi and Réka Albert. 1999. Emergence of scaling in random
networks. science, 286, 5439, 509-512.

Filippo Maria Bianchi, Daniele Grattarola, Lorenzo Livi, and Cesare Alippi. 2021.
Graph neural networks with convolutional arma filters. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 1-1. Dor: 10.1109/tpami.2021.3054830.
Stefano Boccaletti, Ginestra Bianconi, Regino Criado, Charo I Del Genio, Jesus
Gomez-Gardenes, Miguel Romance, Irene Sendina-Nadal, Zhen Wang, and
Massimiliano Zanin. 2014. The structure and dynamics of multilayer networks.
Physics reports, 544, 1, 1-122.

Geoff Boeing. 2017. Osmnx: new methods for acquiring, constructing, analyzing,
and visualizing complex street networks. Computers, Environment and Urban
Systems, 65, 126-139.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2013. Spectral

networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203.

Peide Cai, Hengli Wang, Yuxiang Sun, and Ming Liu. 2022. Dq-gat: towards safe
and efficient autonomous driving with deep g-learning and graph attention
networks. IEEE Transactions on Intelligent Transportation Systems, 23, 11, 21102
21112.

Ciro Caliendo, Maurizio Guida, and Alessandra Parisi. 2007. A crash-prediction
model for multilane roads. Accident Analysis & Prevention, 39, 4, 657-670.
Xiwen Chen, Hao Wang, Abolfazl Razi, Brendan Russo, Jason Pacheco, John
Roberts, Jeffrey Wishart, Larry Head, and Alonso Granados Baca. 2022. Network-
level safety metrics for overall traffic safety assessment: a case study. IEEE
Access, 11, 17755-17778.

Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-
tional neural networks on graphs with fast localized spectral filtering. Advances
in neural information processing systems, 29, 3844-3852.

Jian Du, Shanghang Zhang, Guanhang Wu, Jose M. F. Moura, and Soummya
Kar. 2018. Topology adaptive graph convolutional networks. (2018). arXiv:
1710.10370 [cs.LG].

Mohammed A Fadhel et al. 2024. Comprehensive systematic review of infor-
mation fusion methods in smart cities and urban environments. Information
Fusion, 102317.

Zhonghua Gao, Zhenjie Chen, Yongxue Liu, and Kang Huang. 2007. Study
on the complex network characteristics of urban road system based on gis.
In Geoinformatics 2007: Geospatial Information Technology and Applications.
Vol. 6754. International Society for Optics and Photonics, 67540N.

Xu Geng, Yaguang Li, Leye Wang, Lingyu Zhang, Qiang Yang, Jieping Ye,
and Yan Liu. 2019. Spatiotemporal multi-graph convolution network for ride-
hailing demand forecasting. In Proceedings of the AAAI conference on artificial
intelligence number 01. Vol. 33, 3656-3663.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George
E Dahl. 2017. Neural message passing for quantum chemistry. In International
conference on machine learning. PMLR, 1263-1272.

Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, and Huaiyu Wan. 2019.
Attention based spatial-temporal graph convolutional networks for traffic
flow forecasting. In Proceedings of the AAAI conference on artificial intelligence
number 01. Vol. 33, 922-929.

William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representa-
tion learning on large graphs. In Proceedings of the 31st International Conference
on Neural Information Processing Systems, 1025-1035.

Mikael Henaff, Joan Bruna, and Yann LeCun. 2015. Deep convolutional net-
works on graph-structured data. arXiv preprint arXiv:1506.05163.

Baixiang Huang, Bryan Hooi, and Kai Shu. 2023. Tap: a comprehensive data
repository for traffic accident prediction in road networks. In Proceedings of
the 31st ACM International Conference on Advances in Geographic Information
Systems, 1-4.

Ziheng Huang, Weihan Zhang, Dujuan Wang, and Yungiang Yin. 2022. A
gan framework-based dynamic multi-graph convolutional network for origin—
destination-based ride-hailing demand prediction. Information Sciences, 601,
129-146.

Weiwei Jiang and Jiayun Luo. 2022. Graph neural network for traffic forecasting:
a survey. Expert Systems with Applications, 207, 117921.

Weipeng Jing, Wenjun Zhang, Linhui Li, Donglin Di, Guangsheng Chen, and
Jian Wang. 2022. Agnet: an attention-based graph network for point cloud
classification and segmentation. Remote Sensing, 14, 4, 1036.

Jintao Ke, Xiaoran Qin, Hai Yang, Zhengfei Zheng, Zheng Zhu, and Jieping
Ye. 2021. Predicting origin-destination ride-sourcing demand with a spatio-
temporal encoder-decoder residual multi-graph convolutional network. Trans-
portation Research Part C: Emerging Technologies, 122, 102858.

Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with
graph convolutional networks. arXiv preprint arXiv:1609.02907.

Christopher Klinkhamer, Elisabeth Krueger, Xianyuan Zhan, Frank Blumen-
saat, Satish Ukkusuri, and P Suresh C Rao. 2017. Functionally fractal urban
networks: geospatial co-location and homogeneity of infrastructure. arXiv
preprint arXiv:1712.03883.

[25]

[26]

[27]

(28]

[29]

[30]

[34]

(35]

[36]

[41]

[42]

[44]

[45]

[46]

[47]

SIGSPATIAL ’24, October 29-November 1, 2024, Atlanta, GA, USA

Guanyao Li, Xiaofeng Wang, Gunarto Sindoro Njoo, Shuhan Zhong, S-H Gary
Chan, Chih-Chieh Hung, and Wen-Chih Peng. 2022. A data-driven spatial-
temporal graph neural network for docked bike prediction. In 2022 IEEE 38th
International Conference on Data Engineering (ICDE). IEEE, 713-726.

Guohao Li, Chenxin Xiong, Ali Thabet, and Bernard Ghanem. 2020. Deepergen:
all you need to train deeper gens. (2020). arXiv: 2006.07739 [cs.LG].
Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. 2017. Diffusion convolu-
tional recurrent neural network: data-driven traffic forecasting. arXiv preprint
arXiv:1707.01926.

Lei Lin, Zhengbing He, and Srinivas Peeta. 2018. Predicting station-level hourly
demand in a large-scale bike-sharing network: a graph convolutional neural
network approach. Transportation Research Part C: Emerging Technologies, 97,
258-276.

Lingbo Liu, Jingwen Chen, Hefeng Wu, Jiajie Zhen, Guanbin Li, and Liang Lin.
2020. Physical-virtual collaboration modeling for intra-and inter-station metro
ridership prediction. IEEE Transactions on Intelligent Transportation Systems,
23, 4, 3377-3391.

Xu Liu, Yuxuan Liang, Chao Huang, Yu Zheng, Bryan Hooi, and Roger Zimmer-
mann. 2022. When do contrastive learning signals help spatio-temporal graph
forecasting? In Proceedings of the 30th International Conference on Advances in
Geographic Information Systems, 1-12.

Microsoft Bing. 2021. Bing map traffic api. (2021). Retrieved Dec. 31, 2021 from
hhttps://www.bingmapsportal.com.

Moosavi Sobhan. 2022. Us accidents. (2022). https://www.kaggle.com/datasets
/sobhanmoosavi/us-accidents.

Alameen Najjar, Shun’ichi Kaneko, and Yoshikazu Miyanaga. 2017. Combin-
ing satellite imagery and open data to map road safety. In Thirty-First AAAT
Conference on Artificial Intelligence.

National Highway Traffic Safety Administration. 2023. Nhtsa report. (2023).
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/813514.

Jutaek Oh, Simon P Washington, and Doohee Nam. 2006. Accident prediction
model for railway-highway interfaces. Accident Analysis & Prevention, 38, 2,
346-356.

Yulong Pei and Lin Hou. 2024. Safety assessment and risk management of
urban arterial traffic flow based on artificial driving and intelligent network
connection: an overview. Archives of Computational Methods in Engineering,
1-19.

Bhagwant Persaud and Leszek Dzbik. 1992. Accident prediction models for
freeways. Transportation Research Record, 1401, 55-60.

Simon ].D. Prince. 2023. Understanding Deep Learning. The MIT Press. http://u
dlbook.com.

Saeed Rahmani, Asiye Baghbani, Nizar Bouguila, and Zachary Patterson. 2023.
Graph neural networks for intelligent transportation systems: a survey. IEEE
Transactions on Intelligent Transportation Systems.

Abolfazl Razi, Xiwen Chen, Huayu Li, Hao Wang, Brendan Russo, Yan Chen,
and Hongbin Yu. 2023. Deep learning serves traffic safety analysis: a forward-
looking review. IET Intelligent Transport Systems, 17, 1, 22-71.

Ahmad Sarlak, Abolfazl Razi, Xiwen Chen, and Rahul Amin. 2023. Diversity
maximized scheduling in roadside units for traffic monitoring applications. In
2023 IEEE 48th Conference on Local Computer Networks (LCN). IEEE, 1-4.
Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and
Gabriele Monfardini. 2008. The graph neural network model. IEEE transactions
on neural networks, 20, 1, 61-80.

Weijing Shi and Raj Rajkumar. 2020. Point-gnn: graph neural network for 3d
object detection in a point cloud. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 1711-1719.

Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and
Yu Sun. 2021. Masked label prediction: unified message passing model for
semi-supervised classification. (2021). arXiv: 2009.03509 [cs.LG].

Yuyol Shin and Yoonjin Yoon. 2020. Incorporating dynamicity of transportation
network with multi-weight traffic graph convolutional network for traffic
forecasting. IEEE Transactions on Intelligent Transportation Systems, 23, 3, 2082~
2092.

Lugi Tang, Fuwu Yan, Bin Zou, Wenbo Li, Chen Lv, and Kewei Wang. 2023.
Trajectory prediction for autonomous driving based on multiscale spatial-
temporal graph. IET Intelligent Transport Systems, 17, 2, 386—399.

Petar Velickovié¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2018. Graph attention networks. In International Con-
ference on Learning Representations. https://openreview.net/forum?id=rJXMpi
kCZ.

Duncan ] Watts and Steven H Strogatz. 1998. Collective dynamics of ‘small-
world networks. nature, 393, 6684, 440-442.

Boris Weisfeiler and Andrei Leman. 1968. The reduction of a graph to canonical
form and the algebra which appears therein. NTI, Series, 2, 9, 12-16.

Jianjun Wu, Ziyou Gao, Huijun Sun, and Haijun Huang. 2004. Urban transit
system as a scale-free network. Modern Physics Letters B, 18, 19n20, 1043-1049.
Tian Xie and Jeffrey C. Grossman. 2018. Crystal graph convolutional neural
networks for an accurate and interpretable prediction of material properties.



SIGSPATIAL ’24, October 29-November 1, 2024, Atlanta, GA, USA

[52]

[53]

[54]

[55]

[56]

[57]

Phys. Rev. Lett., 120, (Apr. 2018), 145301, 14, (Apr. 2018). por: 10.1103/PhysRev
Lett.120.145301.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How power-
ful are graph neural networks? arXiv preprint arXiv:1810.00826.

Jiexia Ye, Juanjuan Zhao, Kejiang Ye, and Chengzhong Xu. 2020. How to build
a graph-based deep learning architecture in traffic domain: a survey. IEEE
Transactions on Intelligent Transportation Systems, 23, 5, 3904-3924.

Xueyan Yin, Genze Wu, Jinze Wei, Yanming Shen, Heng Qi, and Baocai Yin. 2021.
Deep learning on traffic prediction: methods, analysis, and future directions.
IEEE Transactions on Intelligent Transportation Systems, 23, 6, 4927-4943.
Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and
Yang Shen. 2020. Graph contrastive learning with augmentations. Advances in
neural information processing systems, 33, 5812-5823.

Le Yu, Bowen Du, Xiao Hu, Leilei Sun, Liangzhe Han, and Weifeng Lv. 2021.
Deep spatio-temporal graph convolutional network for traffic accident predic-
tion. Neurocomputing, 423, 135-147.

Bohang Zhang, Jingchu Gai, Yiheng Du, Qiwei Ye, Di He, and Liwei Wang. 2024.
Beyond weisfeiler-lehman: a quantitative framework for GNN expressiveness.
In The Twelfth International Conference on Learning Representations. https://op
enreview.net/forum?id=HSKaGOi7Ar.

(58]

[59]

[62]

Xiwen et al.

Xinan Zhang, Yung-An Hsieh, Pingzhou Yu, Zhongyu Yang, and Yichang
James Tsai. 2023. Multiclass transportation safety hardware asset detection
and segmentation based on mask-renn with roi attention and ioma-merging.
Journal of Computing in Civil Engineering, 37, 5, 04023024.

Ling Zhao, Yujiao Song, Chao Zhang, Yu Liu, Pu Wang, Tao Lin, Min Deng, and
Haifeng Li. 2019. T-gen: a temporal graph convolutional network for traffic
prediction. IEEE transactions on intelligent transportation systems, 21, 9, 3848
3858.

Lai Zheng, Tarek Sayed, and Fred Mannering. 2021. Modeling traffic conflicts for
use in road safety analysis: a review of analytic methods and future directions.
Analytic methods in accident research, 29, 100142.

Zhengyang Zhou, Yang Wang, Xike Xie, Lianliang Chen, and Hengchang Liu.
2020. Riskoracle: a minute-level citywide traffic accident forecasting framework.
In Proceedings of the AAAI Conference on Artificial Intelligence number 01.
Vol. 34, 1258-1265.

Zhengyang Zhou, Yang Wang, Xike Xie, Lianliang Chen, and Chaochao Zhu.
2020. Foresee urban sparse traffic accidents: a spatiotemporal multi-granularity
perspective. IEEE Transactions on Knowledge and Data Engineering, 34, 8, 3786~
3799.



