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Abstract—Unmanned Aerial Vehicles (UAVs) play an increas-
ingly critical role in Intelligence, Surveillance, and Reconnais-
sance (ISR) missions such as border patrolling and criminal
detection due to their ability to access remote areas and transmit
real-time imagery to servers. However, UAVs face limitations
in payload, power, and communication bandwidth, necessitating
selective data transmission strategies. While traditional methods
strive to preserve maximal information in transferred video
frames, missing the fact that only certain parts of images/video
frames are relevant for Object Detection and Tracking (OD/OT)
in ISR missions. This paper adopts a different perspective and
offers an alternative AI-driven scheduling policy that prioritizes
selecting regions of the image that significantly contribute to
the mission objective. The key idea is tiling the image into
small patches and developing a Deep Reinforcement Learning
(DRL) framework that assigns higher transmission probabilities
to patches that present higher overlaps with the detected object
of interest while penalizing sharp transitions over consecutive
frames to promote smooth scheduling shifts. Although we used
YOLOv8 object detection and UDP transmission protocols as a
benchmark testing scenario, the idea is general and applicable to
different transmission protocols and OD/OT methods. To further
boost the system’s performance and avoid OD errors for cluttered
image patches, we integrate it with inter-frame interpolations.
With this method, we achieved about 45% improvement in terms
of OD accuracy for the proposed method (F1 score:98%) com-
pared to random selection (F1 score: 53%) when the transmission
budget is 50% (we afford sending half of the image patches).
Under an extremely constrained transmission budget (5%), this
gain can be as high as 87%. The only cost for such improvement
is a feedback channel from the ground server to drones.

Index Terms—Unmanned Aerial Vehicles (UAVs), Object De-
tection (OD), Selective Transmission, Deep Reinforcement Learn-
ing (DRL), AI-based Networking

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have evolved as crit-

ical components of modern cyber-physical systems, notably

for providing Intelligence, Surveillance, and Reconnaissance

(ISR) services. Their capability to access remote areas

and continuously monitor without human risk has led to

This material is based upon the work supported by the National Science
Foundation under Grant Number 2204721 and MIT Lincoln Laboratory under
Grant Number 7000612889.

Fig. 1. Overview of the UAV-based surveillance system with a feedback loop
between the UAV and GCS for real-time object detection and monitoring.

widespread use in applications such as disaster management,

border security, environmental monitoring, and search and res-

cue [1]. However, due to payload and power constraints, UAVs

are resource-limited [2]. UAVs transform ISR data into real-

time intelligence, leveraging advanced sensors for critical data

collection to enhance decision-making and mission success.

UAVs primarily provide ISR services through video stream-

ing, crucial for real-time decision-making. Standard video

compression methods such as HEVC, H.264/AVC, and VVC

effectively reduce transmission bitrates by leveraging spatial

and temporal correlations within frames, minimizing quality

loss during data reduction [3]. Techniques such as block-

based motion correction in H.264/AVC, enhanced block sizes

in HEVC, and VVC’s bitrate savings of up to 50% over HEVC

support high-resolution video transmission over bandwidth-

limited networks, typical in UAV surveillance. However, these

methods are less suited for ISR applications focused on

specific Regions of Interest (ROI) within frames [3].

In applications like object detection and target tracking,

selective transmission of relevant frame parts could optimize

compression further while maintaining critical functionality.

In a real-world scene, when we focus our eyes on an object,

we naturally filter out irrelevant background details, which
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allows us to concentrate solely on the object itself. Similar to

human visual focus, selective transmission reduces background

interference, adapting to environmental factors such as lighting

and noise. Traditional object detection, including CNN-based

methods [4], often processes entire images equally, which may

reduce accuracy due to noise from irrelevant regions, making

the system sensitive to visual variations in the background.

Manual or rule-based selection of image regions is often

inflexible and inefficient, particularly in dynamic ISR environ-

ments. As a result, there has been a growing shift toward using

Reinforcement Learning (RL) approaches, which enable more

efficient and autonomous selection by continuously adapting

to mission requirements in real time.

Several studies have explored the application of RL to en-

hance object detection by refining the selection and processing

of image regions. A notable example is the integration of RL

with region selection and bounding box refinement networks,

aimed at optimizing detection accuracy by refining region

proposals and improving feature integration [5]. This method

focuses on optimizing detection accuracy within computational

constraints. Uzkent et al. [6] use RL to optimize object

detection over large images by selectively changing the spatial

resolution in different image regions to reduce processing

time while maintaining accuracy. In contrast, our research

emphasizes object detection with minimal data, selectively

transmitting and processing only critical image segments,

which is essential for resource-constrained UAV ISR missions.

In our work, we propose an adaptive communication pro-

tocol that combines the speed of User Datagram Protocol

(UDP) with mechanisms to ensure that critical video data is

transmitted efficiently and reliably during real-time UAV ISR

missions. We leverage RL to automatically select key areas of

the video frame and integrate the YOLOv8 [7] object detection

algorithm to prioritize the most critical portions, ensuring

they are sufficient for accurate object detection and tracking.

Additionally, a feedback mechanism continuously refines the

transmission strategy in response to real-time dynamic changes

in network conditions and mission requirements, ensuring

optimal performance.

The main contributions of this work include:

• Design an RL-based intra-frame scheduling policy that

assigns transmission probability to image patches based

on their contribution to the mission-oriented objective.

This method is integrable with optimized compression

and scheduling methods to optimize resource utilization

for resource-constrained UAVs.

• Implement an object detection that integrates inter-frame

interpolation and YOLOv8 for accelerated performance.

• Incorporating a penalization term into the RL objective

function to penalize sharp transitions to avoid abrupt

policy shifts between consecutive frames.

II. SYSTEM MODEL

A. Network Architecture and Real-Time Data Transmission

The proposed system is designed to enhance UAV-based

surveillance missions by optimizing the transmission of real-

time video data. A UAV captures real-time video data and

transmits it frame by frame to the Ground Control Station

(GCS) after some preprocessing. F (n) represents the n-th

frame captured by the UAV, where each frame is divided

into a grid of K × K image patches, denoted as S
(n)
i×j for

i, j = 1, 2, . . . ,K.

It uses a UDP [8] protocol to ensure low-latency com-

munication, which is critical for real-time applications. In

the proposed scheme, each patch S
(n)
i×j is transmitted as

an independent packet, and the packet header includes all

necessary information to reconstruct the frame F (n) at the

GCS. The transmission probability P
(n)
i×j , determined by the

policy Π, dictates which patches are transmitted based on their

importance. This selective transmission reduces bandwidth

usage and increases transmission efficiency. Fig. 1 illustrates a

UAV-based surveillance system where the UAV continuously

monitors an area of interest and communicates with the GCS

through a feedback loop, enabling real-time analysis and

decision-making based on detected objects.

Upon receiving the packets, the GCS reassembles the frame

F (n) from the received patches. If some patches are lost, the

corresponding cells in the frame are initially replaced with

black filler sections, which are later replaced by interpolated

estimates of the patch. This step ensures that the reconstructed

image is smooth and visually coherent, enhancing the quality

of the data used for further analysis.

B. Deep Q-Network for Object Detection and Trajectory Pre-
diction

Upon receiving video frames, the Ground Control Sta-

tion (GCS) uses a Deep Q-Network (DQN) combined with

YOLOv8 for object recognition. The DQN is a reinforcement

learning model designed to optimize sequential decision-

making, which is crucial in dynamic and time-sensitive surveil-

lance scenarios. Basically, YOLOv8 identifies and classifies

items within grid cells, outputting bounding boxes to empha-

size areas of interest, while the DQN leverages this informa-

tion to predict trajectories, tracking object movement across

frames, which is crucial for situational awareness in dynamic

environments. The DQN assigns a Q-value Q(s
(n)
i , a

(n)
i ) for

cell i in frame F (n), representing the importance of the data

contained within that cell. Cells that are determined to be more

critical—such as those containing key objects or predicted

movement paths—are assigned higher weights wi. The Q-

value is calculated for cell i in frame F (n) using the Bellman

equation:

Q(s
(n)
i , a

(n)
i ) = r

(n)
i + γQ′(s(n)i+1, a

(n)
i+1) (1)

where r
(n)
i is the reward obtained by taking action a

(n)
i in

state s
(n)
i , s

(n)
i+1 represents the next state, and a

(n)
i+1 denotes

possible actions in the next state. The reward function is

designed to prioritize cells containing critical objects or sig-

nificant motion. Also, γ is the discount factor, which balances

the importance of immediate rewards versus future rewards

[9].
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The training of the DQN in our system is driven by a total

loss function that combines two essential components: the

Bellman error and a regularization term. The Bellman error,

the primary loss component, is computed as the Mean Squared

Error (MSE) between the predicted Q-values (Q(s
(n)
i , a

(n)
i ))

and the target Q-values. The target Q-value is calculated

using the Bellman equation, where the immediate reward

r
(n)
i is added to the discounted maximum expected future

reward (γQ′(s(n+1)
i+1 , a

(n+1)
i+1 )) in the subsequent frame F (n+1).

This term encourages the DQN to approximate the optimal

action-value function by minimizing the difference between

the current Q-values and the target Q-values. In addition to the

Bellman error, the loss function includes a regularization term

that penalizes significant changes in the action probabilities

over consecutive time steps. This regularization is critical for

maintaining stability in the learning process, as it discourages

abrupt shifts in the policy that could lead to erratic behavior.

The parameter λ controls the balance between accuracy and

smooth transitions in the policy. The total loss function is

therefore expressed as:

Total Loss =
1

N

N∑
n=1

M∑
i=1

(
Q(s

(n)
i , a

(n)
i )

− (r
(n)
i + γQ′(s(n+1)

i+1 , a
(n+1)
i+1 ))

)2

+ λ

N∑
n=2

|A|∑
j=1

(
P

(n)
j − P

(n−1)
j

)2

(2)

where N is the frame count, and M the cell count per frame.

Once the Q-values are calculated, the system assigns weights

wi to each selected cell Ŝ
(n)
i×j in the grid. The weight for cell

Ŝ
(n)
i×j can be represented as:

wi =
Q(si, ai)∑K2

j=1 Q(sj , aj)
(3)

This normalization ensures that the weights are proportional

to the relative importance of each cell, with higher weights

indicating cells that are more critical for transmission.

C. Feedback Loop and Adaptive Transmission

The feedback loop enhances data transmission by updating

the UAV’s strategy based on DQN-assigned weights wi. Using

this feedback, the UAV prioritizes cells for the next transmis-

sion cycle, focusing on those most critical for the GCS. The

transmission probability Pi for each cell can be defined as:

Pi =
wi∑K2

j=1 wj
(4)

This probabilistic approach ensures that the transmission strat-

egy is adaptive and focused on the most important data.

The feedback loop is continually refined as the DQN learns,

adjusting strategies based on transmission success rates and

detection consistency.

III. EXPERIMENT RESULTS

A. Training Phase

The AU-AIR dataset is designed for aerial object detection

and contains over 32,000 high-resolution, annotated video

frames from UAVs, capturing vehicles, pedestrians, cyclists,

and traffic signs in real-world settings [10]. It supports research

in computer vision and autonomous systems, focusing on UAV

applications.

In the initial setup, the UAV transmits the first four complete

frames to the server using UDP. These frames initiate the

training of a DQN paired with YOLOv8, which detects and

identifies target objects in the frames. With Single Object

Tracking (SOT) as the primary focus, the DQN utilizes re-

ceived frames to learn the significance of various regions,

producing a probability distribution across grid cells.

The binary mask, generated from the DQN’s probabilities,

identifies the most critical cells within each frame, ensuring

that only essential regions are selected for transmission to

optimize bandwidth. This mask is then sent back to the UAV

as feedback. In each consecutive frame, the UAV divides

the image into K × K (K=8) cells and applies the mask to

decide the number of cells to send to the server. The selection

process is based on varying percentages (5%, 10%, 25%, 50%,

75%, and 85%) of the total cells, prioritizing those with the

highest probabilities to adjust data prioritization according to

bandwidth constraints. The selected cells, Ŝ
(n)
i×j , in a single

frame for detecting the target truck.

Fig. 2. Illustration of the frame reconstruction process: the received frame,
containing only selectively transmitted cells, is shown on the left. The right
image demonstrates the result after applying interpolation to the missing areas,
effectively reconstructing a more coherent and visually complete frame.

Upon receiving the selected cells, the server reconstructs

the image with placeholders for missing cells, then applies

interpolation to improve visual quality, as shown in Fig. 2.

The black placeholders indicate the missing cells, while the

smooth transitions highlight the effectiveness of the interpola-

tion method. The DQN and the mask are continually updated

in this process, since new frames are added to the processing

queue; hence, the system allows a constant updating of which

parts of the image become the most important.

B. Evaluation and Performance Analysis

A key advantage of the proposed system is its reliable

object detection and tracking with minimal data transmission.

In this regard, we tested detection performance across selective
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section rates from 5% to 85% of grid cells, focusing on

cells with the highest probability scores. Object detection

was evaluated at each rate using the F1 score. As shown in

Fig. 3, the DQN-based strategy, especially with interpolation,

maintains high accuracy even at low transmission rates, down

to 5% of grid cells.

Fig. 3. Comparison of F1 scores across different transmission rates.

This capability to detect and track objects with minimal

data significantly reduces bandwidth requirements, enhancing

the efficiency and practicality of the proposed method for real-

time UAV surveillance in bandwidth-limited environments, as

shown in Fig. 4. Additionally, Fig. 5 displays the transmitted

data sizes at various selective section rates, underscoring

the method’s effectiveness in conserving bandwidth while

maintaining reliable object detection.

Fig. 4. Object detection results on both the received frame and the interpolated
frame.

Fig. 5. Comparison of Transmitted Data Size (bits) between sending the entire
image and independently sending split cells at varying percentages.

IV. CONCLUSION

This work presents a DQN-based selective transmission

approach to enhance object detection and tracking for real-time

UAV surveillance. Traditional methods focus on optimizing

video compression and transmission to stream entire frames

under resource constraints. In contrast, our approach prioritizes

transmitting only essential image regions that contribute di-

rectly to mission objectives. Incorporating interpolation further

improves object recognition quality with minimal data. The

results obtained from experiments illustrate that the proposed

approach yields dependable performance in constrained com-

munication environments. The gain in object detection and

tracking accuracy is about 45% with respect to random selec-

tion when the transmission budget is 50% (F1 score). This gain

can be as high as 90% for an extremely constrained transmis-

sion budget (5%). This is achieved with minimal processing

delay and a lightweight feedback channel, supporting real-

time streaming at 30 FPS. These findings confirm the system’s

utility in constrained communication environments. Future

enhancements could integrate this method with modern video

coding and compression for greater transmission efficiency.

Extending Multi-Object Tracking (MOT) capabilities would

also increase the system’s effectiveness in complex, multi-

target surveillance scenarios.
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