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We investigate a mechanism to produce superconductivity by strong purely repulsive interactions
for flat dispersion € ~ k*, without using pairing instability in Fermi-liquid. The resulting super-
conductors break both time-reversal and reflection symmetries in the orbital motion of electrons,
and exhibit non-trivial topological order. Our findings suggest that this topological chiral super-
conductivity is more likely to emerge near or between fully spin-valley polarized metallic phase and
Wigner crystal phase. These topological chiral superconductors can be fully or partially spin-valley
polarized. For partial spin-valley polarization, the ratios of electron densities associated with dif-
ferent spin-valley quantum numbers are quantized as simple rational numbers. Furthermore, many
of these topological chiral superconductors exhibit charge-4 or higher condensation, neutral quasi-
particles with fractional statistics, and/or gapless chiral edge states. Two of the topological chiral
superconductors are in the same phases as the “spin”-triplet or spinless p + ip BCS superconductor,
while others are in different phases than any BCS superconductors. The same mechanism is also
used to produce anyon superconductivity between fractional anomalous quantum Hall states in the

presence of a periodic potential.
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I. INTRODUCTION

After the discovery of superconductivity in 1911 [1],
the standard BCS mechanism for superconductivity was
developed in 1957 [2], based on the electron pairing in-
stability of Fermi liquid, caused by an effective attraction
between electrons. In this paper, we explore a very dif-
ferent mechanism of superconductivity, which is caused
by strong purely repulsive interaction. The supercon-
ductivity from our mechanism is very different from BCS
superconductivity.

In fact, the mechanism based on the charged anyons
in chiral spin liquid [3-5], and related models [6—12], be-
longs to this class of mechanism (i.e. driven by purely
repulsive interactions). In this paper, we obtain super-
conductivity directly from electrons with repulsive inter-
action, without going through charged anyons and the
associated anyon superconductivity. The resulting super-
conductivity may not be associated with electron pairing;
charge-4 (and higher) condensation is also possible [11].
As a result, the resulting superconductivity usually car-
ries non-trivial topological order [13, 14], which will be
referred to as topological chiral superconductivity.

The idea behind this non-BCS mechanism is the fol-
lowing. We first assume that electron hopping amplitude
is complex, due to spontaneous time reversal symmetry
breaking and/or spin-orbit coupling. We also assume
that electron interaction is larger than electron hopping
energy. In this case, when electrons have an incommen-
surate density, they may not form a Fermi liquid.

Certainly, when interaction is weak, electrons will form
a Fermi liquid. However, when interaction is strong, the
electron motions are highly correlated.! Since electron
hopping is complex, the two electrons exchange their
place via correlated motion, and the phase factor can be
arbitrary. In this case, electrons may forget their Fermi
statistics. Thus, electrons may form a superconducting
state via the mechanism of anyon or boson superconduc-
tivity. The above idea is very rough, but may point to a
right direction [12].

1 We remark that correlated hopping was used to generate effec-
tive attractions [15, 16], which may cause the pairing instability
of Fermi liquid. In our work, correlated hopping directly leads
to the proposed chiral superconductivity without involvement of
Fermi liquid and its paring instability.



In this paper, we discuss a concrete realization of the
above idea in 2-dimensional space. We argue that, for
flat dispersion € ~ k%, a strong repulsive interaction may
cause chiral superconductivity that spontaneously breaks
time reversal and space reflection symmetry in orbital
motion of electrons. Other sources of time-reversal sym-
metry breaking and/or spin-orbital coupling in orbital
motion may further help this chiral superconductivity.
Our theory is closely related to the theory of anyon super-
conductivity developed in Ref. 8 and 12. Since a fermion
is a special case of anyon, the theory of anyon supercon-
ductivity applies to fermion superconductivity with little
change.

Strong repulsive Coulomb interaction favor fully spin-
valley polarized Fermi liquid (referred to as quarter Fermi
liquid) and Wigner crystals, which have both been ob-
served in experiments at low densities where the in-
teraction effect is strong[l7]. Furthermore, a strong
coupling superconducting state that breaks time rever-
sal and reflection symmetries in electron orbital motion
was observed in Ref. between quarter Fermi liquid
and Wigner crystal, in tetralayer rhombohedral-stacked
graphene without Moire pattern. Other superconduc-
tivities were also observed in bilayer [18-21], trilayer
[22, 23], and Moire-tetralayer [24] rhombohedral-stacked
graphene systems.

Some BCS-pairing mechanisms for those supercon-
ducting states were explored in Ref. 25-33. In this paper,
we take a very different approach of using only strong
repulsive interaction. We find that, for flat dispersion
e ~ k* a repulsive Coulomb interaction may leads to
chiral superconductors, which are different from BCS su-
perconductors since they are not induced by pairing in-
stability of Fermi liquid.

Furthermore, based on our numerical calculations, we
find that, for ¢ ~ k2 dispersion, the proposed chiral
superconductors exhibit lower energy than the quarter
Fermi liquid only at very low densities. However, at these
low densities, we expect the Wigner crystal phase to have
an even lower energy. In contrast, for ¢ ~ k?* disper-
sion, the chiral superconductors demonstrate lower en-
ergy than the quarter Fermi liquid at densities near the
transition to the Wigner crystal phase. This observation
highlights that the ¢ ~ k* dispersion is a crucial factor
in realizing chiral superconductors driven by Coulomb
interactions.

Some of chiral superconductors are fully spin-valley po-
larized or half spin-valley polarized (with two spin-valley
components present and at equal density), while oth-
ers are spin-valley un-polarized (with all four spin-valley
components at equal density). The fully spin-valley po-
larized chiral superconductors are in the same phases as
the spinless p + ip BCS superconductor [34]. For partial
spin-valley polarization, the ratio of different species of
electrons are quantized as simple rational numbers. In
this case, in contrast to BCS superconductors of quarter
Fermi liquid, the transition from spin-valley partially-
polarized chiral superconductors to quarter Fermi liquid

cannot be continuous at zero temperature in the clean
limit.

Also, as we lower the electron density, a topological
chiral superconductor is likely to change into a Wigner
crystal, via a first order transition. Thus topological chi-
ral superconductivity is more likely to appear near the
transition between quarter Fermi liquid and Wigner crys-
tal, since all those phases are driven by strong repulsive
interactions. As a strong coupling superconductor, the
coherence length of a chiral superconductor is about the
same as the inter-electron separation.

All these chiral superconductors are topological
(i.e. carry non-trivial topological order, where another
example was given in Ref. 35). As a result, they carry
neutral excitations with fractional self/mutual statistics
and/or gapless chiral edge modes. They all break time
reversal and space reflection symmetry. We expect those
symmetry breaking and the associated chiral correlation
(such as chiral edge state) to persist even above the super-
conducting transition temperature T,.. Just above T, the
chiral superconductors should have non-zero Hall conduc-
tance of order e?/h. Except two chiral superconductors,
other chiral superconductors are not in the same phases
as any BCS superconductors. For example, many of chi-
ral superconductors have charge-4 [11] or higher conden-
sation.

Our calculation is not reliable enough to predict if a
chiral superconductor can appear or not (i.e. can have
energy below both quarter Fermi liquid and Wigner crys-
tal). However, if a chiral superconductor (i.e. a supercon-
ductor that breaks time reversal and reflection symme-
try) is observed in experiments near quarter Fermi liquid
and Wigner crystal as in Ref. 17, our calculation suggests
that it may be a topological chiral superconductor, with
properties described above.

The calculated ground-state energies of these topolog-
ical chiral superconductors are lower, but still close to
Hartree-Fock energy of a quarter Fermi liquid. To achieve
an even lower energy, additional time-reversal symmetry
breaking and/or spin-orbit interaction may be helpful.
The strong geometric phase curvature near the bottom
of the graphene band also contributes to breaking time-
reversal symmetry through partial spin-valley polariza-
tion.

We remark that, although most topological chiral su-
perconductors belong to different phases than BCS su-
perconductors, two of the topological chiral superconduc-
tors (which we denote as the Koy,-chiral superconductor
and Pfaffian chiral superconductor) belong to the same
phase as the “spin”-triplet or spinless p 4+ ip BCS super-
conductor. Here “spin” corresponds to a pair of spin-
valley quantum numbers, and may not be the electron
spin. Such Ky,-chiral superconductor and Pfaffian chiral
superconductor can be induced by a purely repulsive in-
teraction. They can also be induced by a pairing instabil-
ity of a half Fermi liquid (for Ks,-chiral superconductor)
or quarter Fermi liquid (for Pfaffian chiral superconduc-
tor) caused by an effective attractive interaction. Here,



half Fermi liquid refers to a Fermi liquid formed by two
species of electrons of equal density. We note that very
recently, a superconducting state has been observed next
to a half Fermi liquid in rhombohedral trilayer graphene
in Ref. 23. The Ks,-chiral superconductor and Pfaffian
chiral superconductor also have similarly low energies as
other chiral superconductors at lower densities. Thus,
it may also appear near the quarter Fermi liquid and
Wigner crystal, as in thombohedral tetralayer graphene
in Ref.

In the second part of paper, we will use the same
method to discuss possible anyon superconductivity be-
tween two fractional quantum anomalous Hall (FQAH)
states. The periodic potential in FQAH states play a cru-
cial role for the appearance of anyon superconductivity.

II. CHIRAL SUPERCONDUCTIVITY DRIVEN
BY PURELY REPULSIVE INTERACTIONS

To construct a topological chiral superconducting

state, let us consider a simple case of spin—% electrons
in 2-dimension space. We view each electron as a bound

state of a boson and 27-flux [36]. We then smear the
2m-flux into a uniform “magnetic” field b. In this case,
the interacting spin—% electrons are effectively described
by interacting spin-% bosons in a uniform magnetic field,
with a filling fraction v = 1. The interacting bosons can
form various states that correspond to various states of
interacting electrons.

When repulsive interaction is strong, the interacting
bosons may form an incompressible fractional quantum
Hall (FQH) state. In this case, the only low energy fluc-
tuations are the go—ﬂuctuations of the boson density and
“magnetic” field b keeping the filling fraction v = 1 fixed.
Such co-fluctuations are gapless and are the only gapless
modes of the system. In this case, the system is in a
superconducting state (i.e. a superfluid state) [37].

We remark that this FQH state does not emerge from
single-particle Landau levels produced by an external
magnetic field; it has purely many-body origins. Under
broken time-reversal symmetry, attaching 27 flux to the
fields is an allowed operation which may lower the energy
of the state. We model this with FQH wavefunctions,
which are the simplest way to implement flux attach-
ment while keeping density uniform. Indeed, the single-
particle orbitals are not eigenstates of a kinetic energy
operator without an external magnetic field, but they en-
force 1. statistics consistent with flux attachment, 2. ze-
ros in the wavefunction that favor repulsive interactions,
and 3. uniform density apart from the superfluid mode
controlled by a length scale I,. The precise form of the
many-body wavefunction may differ from the Laughlin
states studied here, but we use these as representatives
for phases which may arise from strong correlations.

For interacting spin—% bosons with filling fraction v =
1, the most natural FQH state is given by the following

wave function

S =242
O(z],27) =e i TG =202 -2 )
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where ,227 zf are complex numbers describing the boson
coordinates, and [, is the length scale of electron sep-
aration. Such a bosonic FQH state corresponds to the

following electron wave function
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where the factor HKJ(zZT*—ij*)(zj*—zj*) H”(zj*—zj*)
is the wave-function representation of the flux smearing
operation.

The superconducting mode in this system is a co-
fluctuation of up and down spins. Increasing the density
of up spins in a region increases the effective magnetic
field seen by the down spins, causing their density to in-
crease to keep the filling fraction fixed. The increased
down spin density in turn increases the effective mag-
netic field seen by the up spins, preserving their original
filling fraction. These density fluctuations appear as fluc-
tuations of [, in the wavefunction.

We now examine the energetics of this state. Let N;
(N}) be the total number of spin-1 (spin-|) electrons.
The total angular momentum of the above state is

LP' = Np(Ny — 1) + Ny(N, - 1)
1 1
= 5 ViV = 1) = 5NN} = 1) = Ny,

N¢+N¢

= ¥ - Ny - 2 g

We see that each pair of spin—% electrons has an angular
momentum L, = —1, just like a spin triplet p-wave paired
superconducting state. It is crucial that the leading N-
contribution to the angular momentum of each electron
is cancelled completely. Otherwise, the kinetic energy of
the wave-function \Il(zj, zf) will be too high.

This cancellation can be seen by comparing the total
angular momenta for Ny = N system and Ny = N +1
system. We can also fix the position of all other elec-
trons and consider the motion of, say, first spin-1 elec-
tron. From the wave function, we see that other spin-
1 electrons behave like 27-flux quanta and other spin-J
electrons behave like —27-flux quanta. The first spin-1
electron sees a zero average “magnetic” field. Thus its
angular momentum does not contain a linear-N term.

The electron wave-function \I!(zj, zf) has a third order
zero between two spin-1 (spin-}) electrons, and has a
first order zero between a spin-1 and a spin-| electrons.

So \Il(zT zzl) has a reduced interaction energy compared
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to Fermi liquid state. To estimate this reduction very
roughly, we assume the interaction energy per electron
to be

B =U <ni1> (4)

where U is the interaction strength at distance I, and
(%ﬂ> is the average of inverse order of zeros (shifted
by 1). For example, the wave-function W(z],z)) has an
interaction energy per electron

1 1
st 3
Eint:U%ng. (5)

In comparison, a Fermi liquid of spin—% electrons has an
interaction energy per electron

1 1
1 + 011 3
By = UX=2 = 20, (6)
since the order of zeros between two spin-1 (spin-J) elec-
trons is 1 and the order of zeros between a spin-1 and a
spin-| electrons is 0, for the Fermi liquid.

The electron wave-function \I/(z:, zj ) has a higher ki-
netic energy compared to the Fermi liquid, since each
electron has a larger momentum. The typical momen-
tum of each electron can be estimated as

p=((m)ne)'/?, (7)
where (n) is the average of order of zeros and n, is the
T4

electron density. For ¥(z,,z;), we have

p=(ne(3+1)/2)"/2 = Vang/?, (8)

while for Fermi liquid, we have
1
_1/2 /2 _ L 12
=n, 14+0)/2 = ng'”, 9

If the electron has an effective mass m, the chiral su-
perconducting state will have an energy (per electron)

n 3
EFQH = Rg + gU, (10)

while the Fermi liquid will have an energy (per electron)

ne 4 3y (11)

E rmi —
Fe dm 4

This will give us some idea when the chiral superconduct-
ing state is favored. Certainly, the above calculation is
crude, but we present it here to illustrate the reasoning
behind our idea. A more rigorous calculation is included
in the appendix.

Our above construction of electron chiral supercon-
ducting states also applies to the situation where we have
several species of electrons labeled by I. In the above
case, I =1,]. We can more generally view an electron as

a bound state of a boson and 27k s-flux for odd ky, or a
bound state of a fermion and 2mk;-flux for even kf. The
chiral superconducting state, from the flux smearing, is
given by

NN

Bl =e

[T GH==pit T ==
1<g,I 1,5, <J

k k
[TGE==0 T G- a2

i<j,I i, I<J

The exponents, K?JH form a K-matrix, which is a sym-
metric integral matrix, which describes a filling fraction

v= % FQH state [38]. Thus K must satisfy
QH\—1 1
(II(K )IJQJ:kiv qr =1,
!
fr=kp(K¥)}qs > 0. (13)

fr is the fraction of species-I electrons, and so f; > 0.
Also the diagonal elements of the K-matrix are even for
odd ky, to describe a FQH state of bosons. The diagonal
elements of the K-matrix contain odd integers for even
ks to describe a FQH state of fermions. K}QJH can also

Qu
! —2/)%:5" is understood as

be negative, in which case (z
(20 = /") K

We can more clearly distinguish the exponents of
the holomorphic and antiholomorphic components of the

wavefunction by defining
KF — KX it K& S
7700 if K& <0’
it K& >0

14
it K& <0 (14)

_ Ky
K - H
1 {kf _K?J

where KT and K~ are non-negative integral matrices.
The wave-function ¥ in (12) becomes

1,2
Xzl

I CRE R | A

U(zl)=e
i<j.I 04 1<

[T G == T G =25, (15)

1<g,1 4,5,1<J

When both K;f] and K7;; are nonzero for a pair IJ,
the wave-function ¥ contains a factor |z] — z]‘] |2. We can
modify this factor to 2] — z/[**, and deform «, trying
to lower the energy of the chiral superconductor further.
Since there is no phase winding protecting these zeros, we
expect such a deformation to be a smooth deformation,
that does not change the phase of the ground state.

We find that, at low densities, the ground state en-
ergy can be lowered if K;, and K, are increased (or
decreased) to sum to the maximum value of |K}, — K|,
which is referred to as K.x. Thus, we will consider



the following many-body wave-function for our chiral su-
perconductors characterized by a symmetric integral K-

matrix of odd diagonals:
I |2

\ z;

T S B | (e R

i<j,l 1,5, 1<J
[T G =25 I = 2%0, (16)
i<j,1 0,5, 1<J
where
K{;>0, K;;20, K=Kt—-K =K —K~,

KT, + Ky = Knax. (17)

Also, note that each species of electrons can have its own
“magnetic length” [;, which can be fully determined by
by K * (see Appendix). For example, after removing the
“unnecessary” zeros, the wave function (2) is simplified
to

=i 12 12412512
welh = [ - e -2

i<j
[IE -2
i,j

We will use (16) as a trial wave function for the as-
sociated chiral superconductor. Such a wave function is

(18)

determined by K i, which must satisfy some conditions,

as discussed in detail in the Appendix. In the main text,
we will just summarize the results. First,

_ _

Kiy=Kp;— Ky, (19)

must be a symmetric integer matrix with odd diagonal

elements, so that the wave function is single-valued and

anti-symmetric.
The wave function (16) has total angular momentum

Ni(N;y—1)
Z fKH + Z NiN;Kry
7 1<J

1 1
3 > NiEp;N; - 3 > NiKq;
IJ I

N2 N
5 ZfIKIJfJ -3 ZfIKII
17 T

where Nj is the number of species-I electrons, N =
S/ Np, and fr = 4L We remark that those N; elec-
trons occupy a circular area with an area A;. We adjust
7 in the wave function such that A; for different species
are all equal A; = A.

In order to describe a superconducting or superfluid
state, K is required to have a single zero eigenvalue so
that the total angular momentum does not contain the
N? term:

(20)

ZKIJfJ =0 (21)
7

The corresponding eigenvector f; describes a gapless
mode within the otherwise gapped chiral superconduct-
ing state. In order to be a superconducting state, we also
require the electron density fluctuations giving rise to this
mode to be net positive; otherwise, it would describe a
charge-neutral superfluid mode instead of a superconduc-

tor. f7 is the fraction of species-I electrons. Thus, we
also require
fr = all positive, (22)
By definition
o fr=1 (23)

I

We also note that the average angular momentum per
electron is given by

L)= —% ZfIKII
T

which is a topological invariant of the chiral supercon-
ductor.

There are many K-matrices that satisfy (21) and (22).
To determine which are favorable, we first quantify the
ground state energy of the chiral superconductor (16)
more precisely. As described in the introduction, we con-
sider an electron dispersion € = c2k? + c4k?*, where the
quartic term further flattens the bottom of the band com-
pared to a purely quadratic dispersion. From a deriva-
tion carried out in the Appendix, it can be shown that
the kinetic energy per electron has the form (A38)

(24)

Ekin = 27‘(’)7,66222 + (27‘(’17,5)264247 (25)

where n. is the total density of the electrons, and Zs, Z4
are dimensionless parameters with the form (A39)

ZfIKIJfJ +Zf12921
Z4 = ZQfI ZfJKIJ
+ ZfI%(Z FIK)+Y  fi 1:292’2],
I ¢ g I e

K=K!+k&;,

(26)

The dimensionless ratios, £ and gé, are computed nu-
.

merically via Monte Carlo method, ‘with a current error
about 10% (see Appendix).
If we assume the electrons interact via Coulomb in-

teraction g, then the interaction energy per electron is

given by (A46)

Eint =

/e (27)

vV, V= ZfIfJVIJ
7



where

[ (9r(2) - 1). (28)

VIJ = d2
and g7 (z) is the electron pair distribution function which
must be computed numerically. We find the following
approximate fitting for Vr; (A54)

0.408 —
v = {180+ 2 %3:1,)1)7 I=7

with error ~ 0.03 (see Appendix), where ©(0) = 0 and
O(z > 0) = 1. When K;j = Kpax, the energy iy
happen to be the same as the one component case K =
(Kmax).- We will use this property to compute Ej, for
the case K1 = Kmax.

To determine which K-matrices give rise to the most
stable chiral superconductors, we compute Zs, Z4, and
V. The total energy per electron is given by

2
EE (n.) = %néﬂv + o (2mn)2Z,,  (30)

where we have assumed the kinetic energy of an electron

to be cy k7, v = 2,4.
For two species of electrons, we have
1 -1
KQa = (_1 1 ) ) fI = (%7%)) (31)
V =-15705, Zy=1+2.05 Z4=2+920
3 -3
Ko = (—3 3 ) , fr=(33) (32)
V =-1.7116, Zy=3+420.38, Z; =18+ 254.3
5 —b
KQC = (_5 5 ) ) f] = (%a %) ) (33)
V =-1.75563, Zy=5+51.39, Zy=>50+1052.17

For three species

-3 2 -1
Ksa=|2 =1 0|, fr=(331), (34)
-1 0 1
V= —1.7116, Zo=3+3.27, Zi—= 18+ 40.87.
-3 1 0
K3b = 1 1 =2 ) fI (% % %) 5 (35)
0 -2 3
V =-1.7116, Z5=3+5.60, Z;=18469.94
-3 -1 5
KBC =(-1 3 -5 ) fl (% % %) ) (36)
5 =5 b
V = —1.7553, Zo = 5+3045,, Z4 =50+ 623.51.

For four species of electrons,

-1 1 -2 2
1 -1 3 -3
K4a: -9 3 1 —2|> fI: (iaia}p%)7 (37)
2 -3 -2 3
V= —1.7116, Zy =3+9.61, Z,—18+ 119.87.
-1 -1 -1 3
-1 1 3 -3
K4b: -1 3 1 =3 fI: (iaia%a%)7 (38)
3 -3 -3 3
V =-1.7116, Zy=3+11.94, Z, =18+ 148.93,
-1 -1 1 1
-1 -1 2 0
Ky = 1 2 —1 -9 fI: (%7&7%7%)7 (39)
1 0 -2 1
V =-1.6628, Zy=2+291, Z4=8+424.71.

In the above, the K and g2,4 contributions to Z3 4 was
separated by the sum.

Let us now consider tetralayer rhombohedral graphene
to compare the above states with competing Fermi lig-
uid states. The electron density m., measured from
charge neutrality, is of order 10'2cm=2. We will model
the electron interaction by a screened Coulomb inter-
action. Usually, the electron dispersion has a form
€ = cgk?® 4+ c4k*---. We may use a displacement field
to fine tune the dispersion to make ¢z = 0. So v in (30)
can be chosen to be v = 4. We will also consider v = 2
case.

There are 4 species of electrons, carrying a spin a =1, ]
index and a valley a = 1,2 index. Those electrons may
form a so called “full” Fermi liquid, in weak interaction
limit, where all four species of electrons have the same
density. But we are interested in the limit of strong repul-
sive interaction. In this case, as indicated by experiments
[39], the electrons form a so called “quarter” Fermi liquid,
where only 1 species of electrons is present, or a so called
“half” Fermi liquid, where only 2 species of electrons are
present.

The Hartree-Fock energy for the experimentally ob-
served quarter Fermi liquid is given by (30) with (see

eqn. (13) in [40])

8
VAL — = 15045,
3T
Lorkdk 1.2
ZQFL ﬁ) (2m)2 k -
2 1 27rkdk 1 2rkdk
(2 f (2m)2 (2m)2
1 orkdk 1.4
QFL _ fO (27r)2 k 4
4 (27 [} 27rkdk 1 onkdk 3 (40)
f 27) (2m)?

To plot the energy of the various states as a function
of electron density n., it is helpful to measure EE, (n.)
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Left: For dispersion ¢ ~ k* (i.e. v = 4) and z € [0,0.12].
The tetralayer graphene at v = 4 has 7, = 8.5 x 10"2cm 2.
Right: For dispersion ¢ ~ k? (i.e. v = 2) and z € [0,0.002],
The tetralayer graphene at v = 2 has 7, = 9.8 x 10*2cm~2.
We see that for v = 4 case, the chiral superconductivity ap-
pears around density 10*2cm ™2 (i.e. have energies less than
that of quarter Fermi liquids), while for v = 2 case, the
chiral superconductivity appears around 0.02 x 102cm™2.
The Wigner crystal was observed experimentally below ne ~
0.5 x 10*2ecm™2.

e\ /ne

€

in the unit of
be

. We find the normalized energy to

Et]gt (ne)

ec
“totiTe) vy 4 2 (2, )12 7
€2\ /ne/e + e2 (2mne) 7

=V 4207027 (41)

where z describes the total electron density in unit of 7.:

1 (62 )2/(v—1)

= (= (42)

Ne = XNe, MNe
GC'Y

To estimate 7. for the tetralayer graphene at v = 4,
we use the band dispersion 10meV = ¢4(0.1/ag)* where
ap = 0.246nm = 4.65ap, giving n. = 8.5 X 102 cm—2.
To estimate 7. for the tetralayer graphene at v = 2, we
use band dispersion 30meV = c3(0.1/ag)?, giving fi. =
9.8 x 10'2 cm™2.

In Fig. 1, we plot the normalized energy Bios ()

e?\/ne/e
nus that for quarter Fermi liquid) as a function of nor-

malized density = n./fie, for v = 4 and for v = 2 cases.
We find that for v = 4 case, the chiral superconductiv-
ity appears below a density n. ~ 102cm=2 (i.e. have
energies less than that of quarter Fermi liquid). Exper-
imentally, chiral superconductivity was observed around
ne ~ 0.5 x 102ecm™2 and a Wigner crystal was observed
below ne ~ 0.5 x 102ecm =2 [17, 41]. Our vy = 4 result fits
experimental result very well. For v = 2 case, the chi-
ral superconductors has energies less than that of quarter
Fermi liquid below a density n, ~ 0.02x10'2cm ™2, which
do not lead to chiral superconductivity, since at such a

(mi-

low density, Wigner crystal has lower energy. Thus, a flat
dispersion is very helpful for chiral superconductivity.

We remark that, for v = 2 and v = 4 cases, the energy
of K5, chiral superconductor in Fig. 1 is obtained with
a fixed wave function described by

=+ (10 ~— (01
“=G) ©=(0)

At low densities, the energy of Ks, chiral superconductor
can be lowered further by increasing K i

it (140K 0K\ o _( 0K 140K
ok 146k )" T 146K K

This further minimized energy of Ky, chiral supercon-
ductor is given by the dashed-curve in Fig. 1. So at
low densities, according to our calculation, many differ-
ent chiral superconductors have similar energies including
the Ky, chiral superconductor. Further study is needed
to determine which one has the lowest energy.

All the superconducting states studied in the paper,
Koy, Kop, etc., break the time-reversal and reflection
symmetry in the orbital motion of electrons, and thus
carry magnetic moment. The Ks,, K, and Ky, super-
conducting states has two spin-valley components with a
higher density, and the other two spin-valley components
with a lower density. The Ky, K45 and K4, supercon-
ducting states have all four spin-valley components at
equal density. The other superconducting state has one
spin-valley component with a highest density, and the
other three spin-valley components with lower densities.

Because the densities in different spin-valley compo-
nents have quantized ratios and is very different between
those chiral superconducting states and quarter Fermi
liquid, the zero-temperature transition between those K-
matrix chiral superconducting states and quarter Fermi
liquid is first order.

III. CHIRAL SUPERCONDUCTORS WITH
NON-TRIVIAL TOPOLOGICAL ORDERS

The above chiral superconductors described by (16)
usually have non-trivial topological orders and are be-
yond BCS. We now compute the topological order and
other properties of such chiral superconductors. Follow-
ing Ref. 8, 12, and 36, we start with the effective La-
grangian for the chiral superconductor described by (16):

Ky €r
E :Fam&,aﬂe‘“’)‘ - %Aﬂaua]AEHVA
— Cl[ol](S(ZB),

372(1’17...)’

where



TABLE I. Topological properties of the chiral superconductors. The table lists the number Niop of topological excitations (with
no A,-flux i.e. no vortitopologicalcity), the charge-esr condensation (which determine the minimal electromagnetic A,-flux
quantum), chiral central charge ¢ (i.e. the number of chiral edge modes), the fractions for each spin-valley components fr, the
average orbital angular momentum (L) per electron, and the type of topological order in the topological chiral superconductor.

K-matrix| Niop |€sF| € fr (L) type of topological order
‘ K'P = (1), e*? = (1)
K. D121 PO T ’
2a (31) 272 2| “spin”-triplet p + ip superconductor
Ko (32)| 3 | 2|1] 3,5 |-3 K*P = (3), e = (1)
Ko (33)| 5 | 2 |1 i1 -3 K'P = (5), e*P = (1)
-10
Kso (34) 1 | 4|0 5,4,2 |1 K®P = (0 1), e = (1,1)
‘ 111 | wop _ (L O) rop _
Kz, (35)| 1 | 6 |0 5,5,3 1| K*P = 0 1€ =(-3,1)
‘ 111 | top _ [ 79 0) top _
Ksc (36) | 10 | 4 | 0| 4,4 % 1 KtoP = 0 o) € =(9,4)
-1 0 0
Kio 37)| 1 | 4 |[—1|3, 3,4, 5|-L|K*" =] 0 -1 0], e" =(1,7,5)
0 0 1
-20 0
K (38) [ 12 | 4 |3 |1, 5,3, 4|-4|K""=]0 3 0 |,e""=(2,3,2)
0 0 —2
-1 0 0
Kie(39)| 1 | 4 |15, 5,35 5 |K*=]0 —-10],e"=(3,1,3)
0 0 1

and J ;5 = i&,a A" are the density and current of I*®
spin-valley component. The above effective theory is a
compact U(1) Chern-Simons theory with integral quan-
tized U(1) charges l;. The K has a zero eigenvalue which
gives rise to the gapless superfluid mode.

It is convenient to choose an integral basis to make K
to have the following block form

- K top T
K= 0 .
0 0

Such an integral basis always exists. First K can be
written as K = UDW, where U and W are unimodular
integral matrices, and D is the Smith normal form of K,
which is a diagonal matrix. Since K has an zero eigen-
value, diagonal of D has a form (D11, Dag, -+, Dy = 0),
where & is the dimension of K. Now we introduce ay,
via

(45)

arp = W11, (46)

and write the effective Lagrangian (43) in terms of ar,:

- zilol~15(ﬁf3)7

le = (e™P esr) (47)

Ry A
K=WT)lKkw!
We see that

e=(WT)~

K=W"'UD. (48)

Such a matrix is symmetric and integral. Since Dy, = 0,
the last column of K is zero. The last row of K is also
zero since K is symmetric.

When there is a gapless mode, we must include
Maxwell terms as the new leading order contribution in
the superfluid sector. Most generally, this includes terms
gIJfLWfJ , where fI = auaf v — Ovar,,. We further
decompose ¢ into g*°P purely in the topological sector, g
coupling the topological and superfluid sectors, and gsr
purely in the superfluid sector.

Fourier transforming and writing p*¥ = e***p,, the
effective Lagrangian (47) becomes at leading order

L= Aup“”al, —1-aéz) (49)
(B p g gtor ph pT g phop?t
gp',p’” gsr p'op

The splitting of the basis into a superfluid and topo-
logical sector is not well-defined, and in particular we are
free to add the superfluid mode to any topological ba-
sis vector (say with coefficients ¢;, where primed indices
go up to x — 1) and preserve the form of K'*P. Under
such a transformation, the gauge field labels transform
as asp — agp — tpay, the charge vector transforms as
ey — ep +tresr, the excitation label transforms as
l;r = lp +tplsp, and the gp/ transform as gr +trgsr.
Therefore we can block-diagonalize the gr; by choosing



t;r = —gr/gsr. This basis is no longer charge quantized,
but the superfluid mode is now decoupled from the topo-
logical sector.

1 to v >
~ [ KYPpH 0 - -
L= a, 4 . p a, + iA#pMuau
0 gsr p*op7" 2
—1-aéz) (50)

We have also dropped ¢*°P as a subleading contribu-
tion that will not contribute at any order relevant in the
transport calculations which follow. We stress that now
~ ~top .1, ~top . .
e = (e?, egr) with €°P no longer quantized as integers,
but egp is unchanged and is still an integer.

We see that the electron current is given by

Jh = ; Dy are™ . (51)

The gauge field agp, in the last component of a is
gapless and describes the gapless superfluid mode of the
chiral superconductor. The other gauge fields ay, are
gapped and describe the topological sector of the chiral
superconductor with topological order.

The chiral superconductor behaves like a usual super-
conductor stacked with a topological sector that may
have a non-zero Hall conductance. To understand the
responses, we integrate out the dynamical gauge fields.
The new Lagrangian describing a purely electromagnetic
response is formally

~to 1 ~top
Lo = 4 M/\A o ( KtOpp#VJr“)IJ QJ pPA,

—1
SF 2 At [TV . vp
+ 4(271_)217 Ay <gSF Jd -0 +ze) p"PA, (52)

where we added an ie identity term to the quadratic-in-a
term to make the integrals converge.
In the first term, a p** and (p,, ) ™! cancel each other

without poles, so we can simplify to find the transverse
conductance

1

LEM = g A0, A,

top
1 ~top . —1 ~top
o= & (K"),, &) (53)

To emphasize, this Hall conductance is not quantized be-
cause the e"™P chosen to block diagonalize g;; are not
integer.

Some care must be taken contracting the momenta
in the superfluid term. We work in Lorentz signature
(—,+,+), Fourier transform, and fix the gauge to ag = 0.
In a basis {a¢, ac} = {(0, —py, pz), (0, pz, py) } labeling the
transverse and longitudinal components respectively, we
obtain

w’+p2 +p2 0
AHA v : vp UJ2+Pi+p§+ie
PP +ie) . e

w?—p2 —p?+ie

The term in the transverse component has no pole, so we
can take € to zero and replace it by 1. The lowest order
term in the EM Lagrangian is obtained by contracting
this with A; and A, in the same basis. Some intuition
for this basis can be gained by Fourier transforming back
to position space. We have A;(x) = (0, =0y, 0z¢¢) and
Ai(x) = (0, 0290, Oythe) where the 9 are scalar functions
of position and time. The longitudinal part describes
pure electric field due to vanishing curl. The transverse
part describes a nonzero background magnetic field if
V24 # 0. Since we are interested in the case of zero
magnetic field, we deduce that ¢, is a solution of the
Laplace equation.

Returning to momentum space, a general vector poten-
tial A,, can be separated into longitudinal and transverse
parts via the projectors

;PP . €pperp®
A = 714], = 714] (54)
R "o

where we use Latin indices to emphasize that A only has
x and y vector potential components and Ag = 0.

We can now write the lowest order part of the EM
Lagrangian

2 2 2 2
e w’+p,+p
EEM _ SF AHA x Yy AMA
SF 4(271_)29517 t it u + w2 ) 7p:'2! + Z-E YRR
(55)
The supercurrent is
Jh eSr <€“ipi€jkpk
S 2(2m)%gsp \ P2+ D2
W +pi+p; iy

) Al (56)

w? —pi —py +ie P +p;

This is the London equation for superconductors, where
the gauge of A has been fixed by Ag = 0.
Thus the total response current is

2 it k
i ij € € PLELD
J' =o0ewA; + 55 < 5 J 5
2(2m)%gsr \ P2+ Pl

w2+pi+p§ pipj
w? —p2 —py +ie pr+p;

) Al (57)

where wA; is the electric field, and as before we use Latin
indices to indicate spatial degrees of freedom.

To obtain the topological order in the chiral supercon-
ductor, let us still use the basis in the effective Lagrangian
(50), where the superfluid sector and the topological sec-
tor completely decouple. We need to study its topolog-
ical excitations, which are labeled by vectors (I1/,lsr),
I = 17 .-+, k — 1. In this basis, ZSF is still an mteger
but l]/ may not be integer. However, when lsp =0, l]/
are quantized as integers.



The term —510715(3:) — ESF,OTSF(S(:B) in the effective
Lagrangian describes such a topological excitation lo-
cated at = 0. From the equation of motion for agr,

e .. ~
f%aiAjew = lgpd(x), (58)
we obtain
1 .. ~
%8i14j6” = —6511;15}7(5({1:). (59)

We see that if TS r # 0, the excitation corresponds to a
vortex in the chiral superconductor [8, 12]. Such a vortex
carries a e;}w unit of A,-flux:

A, -flux = —2meg . (60)

Thus, the chiral superconductor has a charge-esr con-
densation.

When lsrp = 0, the excitations labeled by integers
~top, T > . o . .
= (I;/) are finite energy excitations in the chiral

superconductor (i.e. not vortices). This kind of excita-
tions carry fractional electric charges

gprov = &P (KoP) T, (61)

which are not quantized. They also have statistics and
mutual statistics

1~topT ~to
Sop = §l P (K*°P)~1] p’
~topT ~to
spon gov = Iy (K*P) 71, (62)

1 b2

which are fully determined by the (K*P)-matrix. The S
and T matrices are defined as

1
S;i = Tmpe

which describes the topological order in the chiral super-
conductors.

Beside the S, T-matrices, there is another topological
invariant to describe topological order, which is the chi-
ral central charge ¢, defined as the number of positive
eigenvalues minus the number of negative eigenvalues of
K*®P_ Physically, the chiral central charge is the number
of right-moving edge modes minus the number of left-
moving edge modes, which can be measure via thermal
Hall conductance [42].

For the Ks, chiral superconductor (31), its topological
order is described by

727risi]~
)

7;]' = (5ij8i2ﬂsi (63)

K5 = (1), det(KEP) =1, e=1,

ESp = 2, etOp = (1) (64)
Since det(K32°) = 1 and ¢ = 1, the Ky, chiral supercon-
ductor is a topological superconductor, that has no bulk
anyons (since det(K35°P) = 1). The topological nature of
the superconductor is characterized by its single chiral
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edge mode (since ¢ = 1). Such kind of topological order
without non-trivial bulk anyons is called invertible topo-
logical order. Since the diagonal of Kj, contains odd
integers, the invertible topological order is a fermionic
invertible topological order. Such a fermionic invertible
topological order is characterized by the chiral centetral
charge ¢ = 1 plus the following S, 7-matrices

1 11 1 0
Serm = = y 7—erm = 65
: V2 (1 1) f (0 —1> (65)

We point out that chiral central charge ¢ = 0 plus the
above S, T-matrices will describe a trivial fermion prod-
uct state.

lesrp| = 2 indicates that the superconductor has a
charge-2 condensation. Such a chiral superconductor is
a BCS “spin”-triplet p + ip-wave superconductor.

For the Ky chiral superconductor (32), its topological
order is described by

K = (3), det(ky?) =3, c=1,

esp =2, e =(1) (66)
Since det(K3;") = 3 and ¢ = 1, the Ko chiral super-
conductor is a topological superconductor, that has non-
trivial bulk anyons. Such a chiral superconductor is a
beyond-BCS superconductor. The topological properties
of other chiral superconductors are summaries in Table
L.

IV. PFAFFIAN CHIRAL SUPERCONDUCTORS

The many-body wave function of the chiral supercon-
ductors discussed above has a product form — a product
of factors of form f(z; — z;) and g(z;). We can compute
the potential energy of these wave functions easily, allow-
ing us to propose a new class of superconducting states
beyond the BCS mechanism.

In this section, we discuss another class of chiral su-
perconductors — called secondary chiral superconductors
— whose wave function is more complicated than the sim-
ple product form (i.e. contains sums). In particular, we
consider the following Pfaffian wave function

wwnzmhi@%iam

[I)= —zj\mefﬁzilzi|2 (67)

i<j

where A generates an anti-symmetrization operation.
Because A(—1 L_...)is a Pfaffian

Z1—RZ2 23—Z24

1 1 )= Py 1

Z1 — k9 23 — 24 Zi — Zj

A(

) (68)

it is still possible to compute the average Coulomb energy
of the Pfaffian wave function.
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FIG. 2. The normalized ground state energy for the

e2 /n¢/e
Pfaffian superconductors (67), Pf2 and Pf3, Wi‘ghﬁm = 2,3,
minus the normalized ground state energy of quarter Fermi
B (ne)
e /e /e
T = Ne/Te.
Left: For dispersion ¢ ~ k* (i.e. ¥ = 4) and z € [0,0.12].
The tetralayer graphene at v = 4 has i, = 8.5 x 10"%cm™2.
Right: For dispersion € ~ k* (i.e. v = 2) and z € [0,0.02],
The tetralayer graphene at v = 2 has 7, = 9.8 x 102cm 2.
We see that for v = 4 case, the Pfaffian superconductors
appear around density 0.5 x 10'%?cm ™2, while for v = 2 case,
the Pfaffian superconductors appear around 0.2 x 10'2cm 2.
The Wigner crystal was observed experimentally below ne ~

0.5 x 10*%2cm 2.

liquid , is plotted as a function of normalized density

The energy for the Pfaffian superconductor (67) has a
form (41). For Pf2 state in (67) with m = 2, we have
4
V =-16108, Zo~1+2-0.99, Z4~ 3 + 8 + 0.46.
(69)

For Pf3 state in (67) with m = 3, we have

4
V=-17169, Zy~1+3—-148, Zy~ 3 + 18 4 0.65.
(70)
The kinetic energy of the Pfaffian superconductor (67) is

difficult to calculate. We calculate the kinetic energy of
the following state instead

H |2i — Zj|me_ﬁ Tilal®,

1<j

(71)

We then increase the resulting Zs and Z; by those of
quarter Fermi liquid, Z;QFL =1 and ZfFL = %, to simu-
late the effect of anti-symmetrization. We use the result-
ing Z5 and Z, to estimate the kinetic energy of Pfaffian
superconductor (67).

From Fig. 2, we see that for dispersion ¢ ~ k*, the
Pfaffian superconductor appears around 0.5 x 102cm~2,
while for dispersion € ~ k2, the Pfaffian superconduc-
tors appear around 0.2 x 10'2cm™2. The Wigner crystal
was observed experimentally below n, ~ 0.5 x 10'2cm~2.
This suggests that Pfaffian superconductors are not likely
to appear for dispersion ¢ ~ k2. For dispersion ¢ ~ k*,
the Pfaffian superconductors have similar energies as the

other chiral superconductors discussed before.
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FIG. 3. (left) The magnetic unit cell, where anyons have low-
est energy at the site of triangle lattice. The anyon hopping
on a triangle lattice has hopping amplitude —¢;; whose phase
is 0 on black links, and on colored link as indicated above.
The resulting lowest band in the magnetic Brillouin zone is
given by the middle-top graph, which has six minima (the
black regions between three white regions). (right) The mag-
netic unit cell, where the anyons have lowest energy at the
centers of the triangles. The resulting lowest band has three
minimal points (the middle-bottom graph).

1

We note that the Pfaffian superconductors are fully
spin-valley polarized. So fully spin-valley polarized chi-
ral superconductor, as realized by the Pfaffian supercon-
ductors, are also quite possible. We expect the Pfaffian
superconductors to belong to the same phase as the spin-
less p + ip BCS superconductor [34]. Thus the Pfaffian

superconductors are topological superconductors.

V. ANYON SUPERCONDUCTORS

Recently, fractional quantum anomalous Hall (FQAH)
states were discovered in Ref. 43-45. It was usually
stressed that FQAH states can appear at a zero mag-
netic field. Here, we stress that FQAH states are spe-
cial because they are realized in a periodic potential. If
we add electrons/holes to such lattice FQAH states, we
will obtain an anyon gas hopping in a background tri-
angle lattice. Such an anyon gas in triangle lattice has
been studied in Ref. 12, where anyon superconductivity
with intrinsic topological order was discovered. However,
Ref. 12 only studied certain possible anyon superconduct-
ing states. In this section, we will explore other possible
anyon superconducting states which may be simpler. We
hope among those possible anyon superconducting states,
some of them can be realized in neighborhood of FQAH
states, when the periodic potential for anyons is strong
enough. As stressed in Ref. 12, the anyon superconduc-
tivity near FQAH phases is actually induced by strong
Coulomb repulsion, and is a special case of chiral super-
conductors discussed in the previous sections.

The doped FQAH states are also independently stud-
ied in Ref. 46 recently. There, the lattice effects are more
explicitly explored, which allows some other states be-
sides the Abelian anyon superfluids to be studied.



Let us consider a filling fraction v = % FQAH state®
realized in a 2-dimension material with a moiré pattern.
The moiré pattern usually form a triangle lattice. The
FQAH state comes from a % filled flat Chern band of
Chern number 1. Thus the v = % FQAH state has an
electron density of % electron per moiré unit cell.

If we change the electron density, the added electrons
will form an anyon gas on the triangle lattice. The frac-
tional statistics of the anyon is 6, = 5. We first assume
that the anyons have lower energy at the sites of the
triangle lattice and the hopping of the anyons can be
described by a tight binding model on triangle lattice.

We note that an electron in the Chern band behaves
like a 27 flux to the anyon. Thus, the tight binding
model of anyon hopping contains %’T flux per moiré unit
cell, making the hopping amplitudes complex as given by
Fig. 3(left). The resulting anyon band is given by Fig.
3(right), which contain six minimal points. Therefore we
have six species of anyons at low energies.

If we assume, instead, the anyons have lower energy
at the centers of the triangles, we find that the resulting
anyon lowest band has three minimal points. In this sec-
ond case, we have three species of anyons at low energies.

A. Anyon superconductivity for six species of
anyons

The six-species case was discussed in Ref. 12, where
0, = 5 anyon is viewed as a fermion attached to

2?“ + 27 = 8?“ flux. The 271'% flux per fermion was then
smeared into an uniform effective “magnetic” field. This
changes the anyon gas to a fermion gas of six species
of fermions with a total filling fraction v = %. Such a
fermion gas can lead to several possible topological su-
perconducting states.

In this paper, we will use a different mean-field ap-
proach, which leads to different possible anyon supercon-
ducting states. We view the 6, = % anyon as a boson
attached to %’T flux. We then smear the 277% flux per
boson into an uniform effective “magnetic” field. This
changes the anyon gas to a boson gas of six species of
bosons with a total filling fraction v = 3.

To obtain the above results formally, we start with the

effective Lagrangian for the v = % FQH state of electrons

3.~ 1 ~ . o~
L= —Wauaya,\e“”’\ — ﬂAu&,a,\e‘“’A + 1(;5}(80 + iag)oér
1 _
~om |(8; + ia;)pr|* + Coulomb interaction (72)

where A, is the external electromagnetic field, J, =
%8,,5,\6“”)‘ is the electron current, and ¢;, I =1,--- ,6,

2 The discussions in this section also apply to v = 2/3 FQAH state
which can be viewed as v = % FQAH state of holes.
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are bosonic fields carrying unit of @, charge. Those
bosonic fields describe the six species of anyon excita-
tions.

The six species of bosons form a FQH state described
by K-matrix:

[f[ [T = =D [T [IGE = 2y et B,

I=1i<j I<J ij
(73)

where I, J =1,--- ,6 and K is a 6 x 6 integer matrix with
even diagonal elements. Such a K-matrix state, plus its
parent electron v = % FQH state, is described by the
following total effective theory

3 - ~ VA 1 ~ VA ar VA
L= Ea‘uaya)\ﬁu - %Aﬂaya)\eﬂ - ga#aya])\ﬁu
K
+anduand™,  qr=1, I,J=1,-- 6. (74)
/I

where %5‘,,5”6””)‘ is the current of I*" anyons. This
effective theory has been discussed before (see (43) and
setting ky = 3), which is the effective theory for anyon
superconductor.

There are many K-matrices that can give rise to anyon
superconductor. To determine which K-matrices are
more likely, we roughly estimate the energy of each K-
matrix quantum Hall state. We note that K  is the or-
der of zeros in the wave function as a species-I anyon ap-
proach a species-J anyon. For the potential energy, we do
not have the potential energy fitting for the anyon-anyon
interaction. However, we can make a crude ansatz based
on the b/(K;; + a) form we obtained for the electron-
electron interactions, given as

- 1
- Kr;+1

such that V7 represents the interaction energy between
a species-1 anyon and a species-J anyon. The core princi-
ple of higher order of zeros giving lower Coulomb energy
is therefore maintained. Since v; = (K~!);;q; is pro-
portional to the density of the species-I anyons, we can
estimate the total energy of a K-matrix quantum Hall
state as

Vis (75)

Eiot(K) =viVivg (76)

We remark that the kinetic energy of anyons is ignored
in the above estimate.

We find a few K-matrices whose energies are low and
close, and all the species of anyons have non-zero positive
densities. The first one is

00001

KGA = ) det(K6A) = —4, (77)

S O O O = =

== O O O
—_ o = O O
O = = O O
S O O = o=
o O O = O



which in fact has the lowest energy. A similar K-matrix
which also has the lowest energy is

011000
101000
110000
Kea — . det(Kga) =4, (T8
T looo011 (Koa) (78)
000101
000110

Other examples of K-matrices satisfying the superfluidity
conditions with low energy are

000121
001000
010000
Kop = - det(Kgp) = —16, (79
71100021 (Kos) (79)
200200
100102
000220
001000
010000
Koo = - det(Kge) = —36, (80
“““ 1200020 (oc) (80)
200201
000012
000220
001000
010000
K¢p = ; det(Kgp) = —64, (81
719200020 (Kop) (81)
200200
000004
000020
001100
010100
Kep = - det(Kgp) = —16. (82
71011000 (Kox) (82)
200000
000002

The sixth K-matrix that describes the anyon supercon-
ductor is given by

K@F = 25[], I, J = ].7 ce ,6; det(KGF) = 64. (83)

Such a K-matrix quantum Hall state has a higher en-
ergy. Unlike the other anyon superconductors, the above
anyon superconductor does not break the permutation
symmetry of the six-species of anyons.
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B. Anyon superconductivity for three species of
anyons

Now, let us consider the case of three species anyon.
We may still view the % anyon as a boson attached to
2?” flux. We then smear the 27r% flux per boson into
an uniform effective “magnetic” field. This changes the
anyon gas to a boson gas of three species of bosons with
a total filling fraction 7 = 3. Using 3 x 3 K-matrices, we
cannot find a K-matrix quantum Hall state with non-
negative K~'qgand v = q' K~ 'q = 3.

We, instead, view the % anyon as a boson attached
to 2?” + 47 X integer flux. We then smear the flux per
boson into an uniform effective “magnetic” field. This
changes the anyon gas to a boson gas of three species of
bosons with a total filling fraction v. If the bosons form
a quantum Hall state described by a 3 x 3 K-matrix,
such a state, plus its parent electron v = % FQH state,

is described by the following total effective theory

Kmn~ ~ by am ~ A
L= ?am#&,am\e“” — %Auauam)\e“”
Gl ~ r, Ko A
- ﬁamuayal,\e“" + Fam&,ap\e“” ) (84)
where I,J = 1,---.,3, myn = 1,---,3, =0,ar e is

2 ’ 2w
the current of I'*" anyons. The K and @ are given by
300 1
001f, g=]0 (85)
010 0

[}:

that also describe the v = % parent FQH state of elec-
trons. ¢,,r has a form

1 11

P1 P2 P3| s (86)
P4 D5 Pe

(qm1> =

where p1, - - - , pg are integers, describing different ways of
attaching 47 flux to bosons. The total effective theory is
described by a total K-matrix

_ I? _(qml)
Heor = <<qu>T K ) -

From the equation of motion 0L/0ame = 0L/Jary =

0:
I?mn ~ ij am i mI1 iJ
o 8Z‘anj6 J = gaiAjE J + ﬁaia]je J
amI 5~ 45 Ky ij
ﬁaiamjﬁ ) = ﬁaiajjf 7, (88)
The above two equations implies that
I?mn - UYm K_l n ~ ij ~m i
g IQET )IJQ Jaianje” = 3781'14]‘61], (89)
K - Ym [}71 n4n i m [?71/\1 17
1J —4q 12(7T )JmndnJ Diay el = G ~ am 0i A€,
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TABLE II. Physical properties of the anyon superconductors for 6- and 3-species of anyons. The table lists the number Nio, of
topological excitations (with no A,-flux i.e. no vorticity), the minimal A,-flux quantum, chiral central charge c of the fermionic
topological order, the T-matrix, the S-matrix, the anyon densities v, the total energy, the type of superconductor. Note that

a quasi-particle has @Q; = 0 (i.e. has no vorticity).

K-matrix | Niop | Ap-flux| ¢ T -matrix S-matrix vr Fiot | type of superconductor
Kea (77) ] 1 1/2 0 1 1 %, %, %, %7 %, % 7.50 electron-pair s-wave
Kegar (78) 1/2 | -2 1 1 %, %, %, %, %, % 7.50 electron-pair g-wave
Kep (79) | 1 1/4 0 1 1 i, 1,1, i, i, % 7.60 | 4-electron condensation
Kec (80) | 1 1/6 0 1 1 é, 1,1, %7 %, % 7.63 | 6-electron condensation
Kep (81) | 4 /2 |0 Tz, (99) Sz, (99) 1,1,1,4,%,4|7.70|  Zz-topological order
Kep (82) | 4 1/2 | 0 |Teem @ Teem (98) | Ssem ® Ssem (98) | 3,3.3, 3+ 5,3 | 7.75 | double-semion top. order
Kor (83) | 16 1/2 | 6 | Tz, ® Tz, (99) | Sz, ® Sz, (99) |3,%,4,5,5,2(8.00] double Z; top. order
Kza (95) | 1 /2 |1 1 1 3,1 2.87| electron-pair d-wave
Ksp (96) | 2 1/2 1 Teem (98) Ssem (98) 31,1 3.33 | single-semion top. order
Ksc 97) | 7 /2 |1 Tz (100) Sz (100) 11,3 6.34 K=- <§ i)

which relates the electron density i@ﬁil jeij to the mag-
netic field B = 9;A;€”. If the above equation can be sat-
isfied by a finite electron density even for zero magnetic
field B = 0, then the effective Lagrangian (84) describes
an anyon superconductor, i.e. an electron superconduct-
ing state. This is realized by K and g,,; such that

Amn - Kmn - qu(K_l)IJQn.]~ (90)
has a zero eigenvalue and the corresponding eigenvector
Um has a non-zero 1st component v, # 0, and such that

Ay =Kr5 = qmi(K™ ) mntn- (91)
has a zero eigenvalue and the components of the corre-
sponding eigenvector f; are all non-zero and have the
same sign: f;y > 0. Note that f; is proportional to the
density of I*" anyons. The second requirement corre-
sponds to all three species of anyons having positive den-

sities. Note that the electron density is given by

K=Y 1mam y
_ 2)1 Il agied =
U

81‘51]' €

‘Rﬁ_l m4Ym
5y ( JimAmIpf1

Te

where pf; is the density of I*" anyons. Thus we also
require that

pe = (K™ )1mmipfs > 0. (92)
From the above, we find that

Ne
(K=Y 1m@mrf1

Thus the anyon density is given by (in the unit of n.)

fr
(K_l ) 17anIfI

p= (93)

vy = > 0.

(94)

This allows us to estimate the energy of anyon supercon-
ductor via (76).

There are many K, (g,,7) pairs that satisfy the above
conditions. The first one with lowest energy is given by

231 111
Ksa=1322], (gmi)sa=]|111 (95)
126 111

The above choice of (gmr)se corresponds to viewing the

% anyon as a boson attached to 2?” + 47 flux. We then

smear the flux 27r% per boson into an uniform effective
“magnetic” field. This changes the anyon gas to a boson

gas of three species of bosons with a total filling fraction
V= % Such a boson gas can form a v = % quantum Hall

state described by the above K-matrix.
Other examples include

24 2 111
Ksp=1420 ) (QmI)SB =111/, (96)
204 111
and
060 111
Ksc=|[600|; (gmnr)sc=[101 (97)
004 111

C. Physical properties of anyon superconducting
state

As discussed above, both six-anyon superconductors
and three-anyon superconductors are described by effec-
tive theory (47), with K. given in the previous two sub-
sections. Using such an effective theory, we can calculate
the topological order in the anyon superconductors.



The form of the K-matrix indicates that the gapped
modes belong to an Abelian fermionic topological order.
We extract out the intrinsic bosonic topological order by
factoring out the trivial fermions so that the S and T
matrices satisfy the modular relations (ST')? = e!7¢/45?
obeyed by the bosonic topological orders. The 3- and
6-species K-matrices produce topological orders (both
singly and stacked) characterized by

1 1 1 1 10
Ssem = ﬁ (1 _1>7 Tsem = ﬁ (O Z) (98)

11 1 1 100 0
111 =121 010 0
Sz. =+ L Ta =
279111 41 271001 0
1 -1 -1 1 000 —1
(99)

1
S; = —=exp (—8abmi/7),

7 T7 = 8ap €Xp (4a2ﬂ'i/7)

(100)

The modular relations between S and T" matrices then
gives the chiral central charge of the bosonic TO, and we
have obtained the full modular data of the topological
order. Note that the original fermionic TO only provides
the chiral central charge to mod-1/2 [17], but the decom-
posed bosonic TO is defined mod-8. The above results
are summarized in Table II, along with the bosonic K-
matrices corresponding to the S and T matrices given.
As in the previous case in Table I, we find possible su-
perfluid states with 4e and 6e condensations, manifested
by its vortex quantization.

VI. SUMMARY

Electron gas in 2-dimension with strong Coulomb in-
teraction will form a Wigner crystal below a critical den-
sity. In this paper, we use Laughlin-type wave functions
(16) to construct many chiral superconducting states. In
light of the experimental finding,[17] we find that, if the
electron has a flat dispersion ¢ ~ k*, some of the chi-
ral superconducting states may have lower energy then
Wigner crystal near the critical density.

This is because chiral superconductors have larger mo-
mentum fluctuations and larger inter-particle separation
compared to the fully spin-valley polarized Fermi liquid.
Thus, the topological chiral superconductors are favored
when the electron band bottom is very flat. In this limit,
the Wigner crystal phase may also be favored. According
to our estimate, we find that chiral superconductors have
energies close to that of fully spin-valley polarized Fermi
liquid and Wigner crystal. Therefore, chiral supercon-
ductors, if they do appear, are more likely to appear near
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the transition between fully spin-valley polarized Fermi
liquid and Wigner crystal. All these phases are driven
by strong repulsive interaction; this is why the exper-
imentally observed superconducting phase [17] between
fully spin-valley polarized Fermi liquid phase and Wigner
crystal phase may be a topological chiral superconductor
discussed in this paper.

The low energy effective theory of those superconduct-
ing states is derived, which is used to compute the prop-
erties of their corresponding superconducting states. We
find that chiral superconducting states carry non-trivial
topological order and are usually not in the same phase
with any BCS superconductors. Namely, they often have
charge-4 or higher condensation and gapless chiral edge
modes.

Certainly, a chiral superconductor induced by pairing
instability of the quarter Fermi liquid is also possible,
if there is an effective attractive interaction. The chi-
ral superconductors induced by Coulomb repulsion have
an energy scale 0.16271(1//2/6, which is about 2meV. Com-
pared to this, the observed superconducting state [17] has
a transition temperature about 0.3K. Such a low transi-
tion temperature may be due to the strong U(1) phase
fluctuations. The time reversal symmetry breaking in
correlated electron orbital motion of chiral superconduc-
tors should persist beyond the superconducting transi-
tion temperature.

Topological chiral superconductors exhibit several
characteristics that distinguish them from conventional
BCS superconductors. The discovery of such a beyond-
BCS topological superconductor would be of significant
interest. In particular, when chiral superconductivity
emerges in a system with a flat dispersion relation, such
as € = cu4k?, its energy scale from the Coulomb inter-

4/3 _
action is large O.Iezﬁém/e = 0.04(%) Cy Y , pointing

to a potential pathway for achieving high-temperature
superconductivity.

We would like to thank Xiaodong Xu for help-
ful discussions last year which motivated the anyon-
superconducter part of the work. This work was par-
tially supported by NSF grant DMR-2022428 and by the
Simons Collaboration on Ultra-Quantum Matter, which
is a grant from the Simons Foundation (651446, XGW).
LJ acknowledges the support from a Sloan Fellowship.
AT was supported by NSF Graduate Research Fellow-
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Appendix A: Computations of kinetic and
interaction energies

In this section, we calculate the kinetic energy and in-
teraction energy of the wave function (16) of chiral super-
conductor. To calculate kinetic energy, we first compute
the equal-time correlation function for a If® species of



particle

GI ( 0 10*72107510*)

N /H 22w (2%, {2}, {2]})

N

12112 |z|2 1Z]

-> 3 i
:/HdQZ{Ne ”2’%e4lfoe4lo
1

H‘Z,L‘I_ZJI‘|2KII H ‘Z _2J|2K]J
i<j,I i5,I<J
[T = =ty ion [T = =)o
i i1
H(ZIO* _ ZZ.IO*)RI_OIO H(ZIO* _ Zil*)kl_ol
i i1
H(EIO* B ZIO*)KIOIO H('ZVIO* ZI*)KI I
i i1
[1G" —i)Soo [TE" = =)0 (A1)
% i1
where N is the normalization coefficient and
— —_ + i
K=K+ Kq; (A2)

The above integral has sign changes, and it is hard to
evaluate it via Monte Carlo method. In the following, we
convert the integral into to one that has no sign changes,

via holomorphic extension. Let us consider a related
_=2 _E?

412 412
Iy e Iy

function by dropping the term e

Gr, (21,25, 23, 25)

I,2
Ed

:/Hsz.Ie_Z“ 2
3
H |Z IQKII H |217ZJ‘2K1J

i J
1<j,I 4,5, 1<J
[Tz = =)o [T(ea = 2
i il
* To* KI()IO LI £ KIOI
(23 ) (5 —%7)
i i1
* Iox* KIOIO * _ Ix KIOI
(25 —2°") (21 — %)
i i1
[1(zs = 2lo)nomo [z — =)0 (A3)
i i1

We note that G 1,(#1, 25, 23, 2f) is a holomorphic func-
tion of z1, z3 and an anti-holomorphic function of z3, z4.
Such a function can be determined by its values on the
subspace z; = z4 and 25 = 23.

élo (Z17 257 22, Zik)

> EHE
= [aeste =05
I.i
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IT 1= -

IQK“ H |z-I—z‘-]|2K”

7 J
1<g,1 3,5, 1<J
Io 12K} 2K}
T 2 — =t v [T s - 217
i i1
Ig 2K, 2K
H‘ZQ_ZO| 1010H|Z2_Z1| 1ol
7 i,1
> 1= 12
7
_ 2.1 i1 92
= H d<z; e
I

i LI T 7 I_J

QEK“ 2K 1 log|z; _ZjleZi,j,I<J2KIJ10g|Zi —zj |
_ I _ B
ezi 21{?010 log ‘zl_zz‘o‘ezi,l 2KI+OI log |z1—z; |

_ I _ I
ezi 2K1010 log \ZQ—ZiO‘eZU 2KIOI log |z2—z; | (A4)

Since (K 17) is a positive definite matrix, it can be written
as

dim(K)
2Ky = Z a4y

a=1

(A5)

via Cholesky decomposition. Here we assume the K is
invertible. If it is not, we can shift K KT by a small
positive matrix to make K invertible. Now we can rewrite

—2Kslog|s! — 27| = —qfq5log |2' — 27|, (A6)

which can be viewed as the 2-dimensional Coulomb inter-
action energy between two charged particles at 2/ and z”.
Each charged particle carries dim(K) types of charges, la-
beled by a. The I-particle carries type-a charge ¢f and
the J-particle carries type-a charge ¢5.

Therefore, part of C:'[O (21,25, 22, 27),

12§12
Z:/HdQZiIe noeg
[T 1=l =P T 1 ==/ A
i<j,I 4,5,1<J

is the partition function of the above Coulomb gas at
|={ 2
212
tial energy of a species-I particle produced by an uniform
background charge. We note that a background charge
12

density p = —i will produce a potential % There-
fore, the background charge density p, must satisfy

CL -~a 1
212 Z —2mp ar —EI:QIWT?

(A8)

temperature 7' = 1. The term

represents the poten-

—  Pa =

where the matrix (¢.) is the inverse of the matrix (¢%):

Zq?@{ = Oab
I

(A9)



The relative densities ny of species-I particles are fixed by
filling fractions of the effective flux via ), Kryny = 0.
One way to see this is by requiring the kinetic energy
to scale linearly in particle number in zero background
magnetic field. The total angular momentum at N2 order
is given by

%Z(NIK-I‘FJNJ — NiK;Ny) (A10)
J

If we change Ny by 1, the change of total angular mo-
mentum is given by

S (K{;N;—Kp;Ny) (A11)
J
Thus, we require
S(KTN;— KNy =0 (A12)

J

in order for the kinetic energy to be finite. This is also
the species ratio of the superfluid mode, which is why it
persists at zero external magnetic field.

We can now determine the background charge densities
pa- The charge neutrality condition of the Coulomb gas
gives

Z nrqi + pa = 0. (A13)
I

This equivalently determines the inter-particle spacing
parameters [ ;

a, a __
ZnIQIQJ =
I,a

We see that

1
*;Paqg = rl?]

- 1
ZK]JTLJ:W. (A14)
J

J

which is also the condition fixing the size of each
species droplet. The maximal power of |z| is given by
> K1yNjy, and the most probable radius occupied by
this orbital is

=212 ZK,JNJ

reproducing A14. If K is invertible, we can now express
the densities using

nr = Z 7(1_(_1)”.

2 o2 (A15)
If K is non-invertible, we cannot readily express n; in
terms of the /;'. However, we must remember that n;
are the parameters fixed topologically by K. In contrast,
I; and K adjust to minimize energy while keeping these
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densities fixed. We can then perturbe K a little bit to
make it invertible.

The term —2[?;:,1 log |21 — z!| can also be viewed as a
Coulomb energy between the zi-particle and a species-1
particle if we assume the zj-particle carries charge q¢,
which satisfies
STdtah = ot =D 2K,

a I

zj(;rol = (A16)

Similarly, the term —2K ;log|z; — z!| can be viewed
as a Coulomb energy between z-particle and a species-I
particle if we assume the zo-particle carries charge ¢%,

which satisfies
2Ky =D q%af — ¢ = 2K
a I
Therefore, the following is the partition function of the

Coulomb gas with two extra charged particles, z; and zo,
present:

(A7)

- 2 2
Cro (21, 25, 22, 25 e~ T T ~2mpadt — 4= 5, —2mpag?
0

_ =] 12 2 )
- /Hsz.Ie i 213 ew‘zle‘ > Paqi‘*‘L?‘ > e Paql
3

- I_ I 7 I__J
ez'i<j.1 2K 1 log|z; —z; | ezi,j,l<‘, 2K ylog|z; —z |

_ T _ I
ezi QK;rOIO log |z1—2;° | eZi,I QKfOI log |z1—2; |

GZ” 21_(1_010 log|z2—z1{0|ezi112l_(1_0110g|zgfz{|. (A18)
the term
mla |
- TZP
|21‘QZ 2l2 I]Kfo]+|22| Z2l2 )IJK;OJ
(A19)

= |z1‘2Z7mJI_(IOJ+|22| ZﬁnJI_(I_OJ
J J

is the interaction energy between z; o-particle and the
background charge. In the above we have used
et

1 -1 =+

Z Pa(J+— Z K14 —Zﬁ(K )IJKIOJ
a,1,J J

(A20)

We remark that the direct interaction energy between z1-
and zo-particles,

> q4q* log|z — 2, (A21)
a

is not included.

If K;; is not too large, the Coulomb gas is in
the plasma phase. Due to the perfect screen-
ing of the plasma phase, the partition function



~ _ 12112 _ a_ lzal? B N
GIO(217Z>2!<72272>1K)6 4 Ed 27rpaq+ 1 Ea 2mpaql
only depend on the difference of the positions z; — 2z of

the added charges, if z1, 2o are in the plasma droplet of
radius R. Therefore

G1y(21, 25, 22,21) = g(|21 = 22))
e# > —2ﬂpaqi+# > —2mpag
When |25 — 21 is small, Gy, (21, 23, 22, ) has a form
Gro(21,23, 22, 21) = C(L + gal21 — 2| + galz1 — 22*)
e¢ 2, —2mpagi+ 1220 5, —2mpad”

where C' = constant. This implies that

510(217'2;’733’22)
= C(1+ ga(2; — 23) (21 — 23) + ga(2;

z12} 2325
e T Xa +=r% X, —2mpagl

— 25)%(21 — 23)°)

—27paqy

Finally, we find

(A22)
z—2)?)
2

Gr,(2,2",2,2%)
= C’(l + go(ZF — 2*) (2 — 2) + ga(ZF — 2%)?

_ o, ,|z2\2 12|
ZJTI'TLJKIOJZZ e VI, 47

eZJTran(;rOJZZ*e o
We note that Gy, (z, 2%, 2, 2*) = p1,(2) is the density pro-
file of a species-I particle. pr,(z) should be a constant
1/7R? in a disk of radius R, and should become zero
outside the disk. Indeed, we find that Gp,(z, z*, z, 2*) is
independent of z, since when z =z

L _
eEJ g K7 ;22 62‘7 g Ky 22" R

e Io Io
2

z
_ 5 —
eZJTrnJKIOJ\z\ e 21%0

2

= 2
_ GZ" 7TnJKI+OJ|z|

|z

— Xy mmsKigslalfe ¥y (A23)

where we have used (A14). Thus C = —k.

If the species-Iy particle has a kinetic energy operator
-2 — 55 = —40,+0,, then the average kinetic energy is
given by

—4/ @z (00,01, (2.2 25))
TR2 z=z
d?z 1
/W TR2\ Az P

+|Z|2(Z7TTLJK}:J 4[2 ZWTLJK[OJ 4[2 ))
J

1
= l2 +492
Ip

ZQT(TL]KI]O —|—492
I

(A24)

In the above calculation, we have required %2 to satisfy
I

1
Io
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which implies that

_ 11
ZK[ J’Trn] = v (A26)

o 417

J 0
If such a condition is not satisfied, the average kinetic
energy of the single particle will be of order R?/I%, which
approaches co as R — oo. This is equivalent to the
condition we found earlier based on angular momentum

(21).

learned that

From the above
contain constant term and

(0:-0.Gy (2,2, 2.7))
z=z
|z|2-term. The |z|?-term must be zero if the average ki-

netic energy is finite, which is ensured by the condition
(21). In this case, we only need to compute the constant

calculation, we

term in (82* 0.Gr,(%,2",%2,2%)

If the species-Ip particle has a kinetic energy oper-
ator (97 + 92)° 1602.02, then we need to com-

pute (83*856110(2,2*,5, Z*))
z=z
term, |z|%-term, and |z|4—term. The |z|*-term has a form
* -+
(z gwnJKIOJ 412 anJKIOJ 412)

(A27)

_, which contain constant

which vanishes due to (A26). The |z|>-term has a form

* -+
¢ ZJ: s 4z2 Z””JK foJ ~ 41%0 )
(A28)
which vanishes again due to (A26). To compute the con-

stant term, we expend Gy, (z,2*,%,2*) and isolate the
term containing 2?(2*)%:

=C(1— gozz* + gs2° (") + )
(1_&_1'_ (||2) _|_)
4l2 412

P i |Z|4
= C(gulel" + 92 ITERETTY

G, (z,2",2,2%)

+- ) (A29)
Thus the average kinetic energy is given by

16/ A%z 02.0°Gr, (2, 2%,72,2") |z (A30)
TR2

d2z 1 2 g2
—16 ez 4 1692 4+ 64
/,rRz TR? 8I} + 130 th0a = i + 2 040

= Q(Z 27TnII_(HO)2 + 1692(2 2mnr K1) + 6494
T T

assuming l% satisfy (A25) and (A26).
I
The conditions (A25) and (A26) imply that

Z Kpms =0,
7

where K =K — K. (A31)



So ny is an eigenvector of K with zero eigenvalue. They
also imply

(A32)

_ 1
g K = —
1Jng 2#[%’
J

which determines that are always all positive as

1
Tl
long as ny are all positive.
Since K = 2K — K, the condition Y1 Ky =
%K}Jnj becomes
_ 1, -4
ZKIJnJ = 5(2KU -
1J

Kryng (A33)

which is valid for any choices of K L, as long as ny is an
eigenvector of K with zero eigenvalue.

Therefore, to obtain a wave function for a chiral super-
conductor, we first choose an integral symmetric matrix
K with odd diagonal elements, such that it has a single
zero eigenvalue with eigenvector nj satisfying

ny = all positive. (A34)

J
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Then we choose a KZ to satisfy

Ki;>0, K; =K, —Ki;>0. (A35)
One choice of I_(}FJ and K, is given by
—+ Ky, itKp;>0
Kr;= ;
0, otherwise
- —Kry, if —K;;>0
K, = A36
L { 0, otherwise ( )

Such a choice gives rise to a wave function with all “un
necessary zeros”’ removed. The other choice satisfies

_ L _ _

KI.]+KIJ :K[.] :max(|KU|). (A37)
The second choice has lower energies at low densities.
Our results are valid for any choices of K ;FJ and K.

To summarize, if species-I particle has a kinetic energy

operator ¢3(02 + 9;) + ca(92 + 92)?, the kinetic energy
per particle is given by

N, _ N, _ _
Bin = Y 02# (Z 2mn Ky + 492,1) + 04# (2(2 2mny K1) + 16921 (D 2mn 1 K 1) + 649471>
i 7 T 7

= 2MNeCy (Z fiKiifr+ Zfl%fff)
1J I ¢
+ (27n,)? <Z 2fr Z frKr;)? Z

I
= 2Mnecals + (27rne) C4Z4,

where,

= 2901
Zy = ZfIKIJfJ + Zf[ﬁ

J

892,71 = 1694, 1
) K })
fITne (EJ frK 1)+ E[ 1 2n?

(A38)

(A39)

Z4—Z2f1 ZfJKIJ +Zf 921 ZfJKJI +Zf116g“-

Now let us compute the interaction energy between a
species-Iy particle and a species-.Jy particle:
UL jo = / [ 2= v
I

w2 {7

(A40)

Let us introduce the density correlation function

do [T %195 o)

(A41)

gIoJo zlo — 2
(mR?)?

[
Since g1, ., (2%° —27°) becomes a constant when |z10 — 27|
is larger than a finite correlation length, and since

/ d2,10 42,7 105 (2 ) —1,
mR?

ORE (A42)

we see that gy, s, (270 — 27°) = 1 when |210 — 270] is larger
than the correlation length. We find

910Jo (ZIO - ZJO)
(mR?)?
(A43)

Uty o :/ d?zloa?z’o vzl — 270)
mR?



For Coulomb interaction, we also need include back-
ground charge:

Zlo — 200y —1

Ur,g, = /R2 a?zlod?z% vzl — zJO)gIOJU(
s

(mR?)?
e? gr,7,(2) — 1
= [ d?p — 0l A44
/ ? elz]  wR? (Ad)
The interaction energy per particle is
Bt = — > Ur;NIN
int = 5 17NN g
IJ
1
=5 fitm. [ ﬁgmz) ~1)  (A45)
J
The typical separation between particles is ne 1/2, Thus,

we rewrite the above as

2
Fawt = Zfsz v [

(2) = 1)

= 67\6/7?6 > Vi = %V (A46)
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where
Vi = [ @ P -,
(A47)

V= Z frfiVis.
%

Let us consider the Coulomb energy for a species-I
electron

Eine,1 =

62\/7“7e
‘ Z,: Visfs. (A48)

To estimate such a Coulomb energy, we note that a
species-Io electron behave like a charge g7 particle in
the Coulomb gas model of the many-body wave func-
tion. Such a particle will create a hole of area A; for the
species-Iy electrons due to the charge-neutral condition
of the plasma phase of the Coulomb gas. A; satisfies

Z Ajniqs = qi,, (A49)
J

Since ¢ is an invertible matrix, We find that, on average,

A1n1 = 5110. (A50>
So the species-Ij electron density has a hole of size
v/1/ny, while the average density of other electrons is
not changed. This allows us to estimate

€2 Ne e2
Bint,r = f > Visfr - (A51)
J

6\/1/71[
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or
1

NiTR

In fact, even though the average density of other elec-
trons is not changed, the density of other species electrons
should also has a hole of size ~ \/1/n., if K17, # 0 due
to the repulsive interaction in the Coulomb gas model.
Including such an interaction effect, we have an improved
estimate

Vig=— (A52)

(A53)

Vijg= W(a1+ K11+a3) I=J
@(K[J)(CM‘F I;ﬁ J

where ©(0) = 0, ©(x > 0) = 1, and we have included
parameters aq, - -+ ,ag to fit numerical calculations. We

KIJ+CL6)

find
0.408 _
Vi = W( 1830+Ku+0%3:131)7 (A54)
@(K[J)( 1093-1-7[(” 0596) I#J

with error ~ 0.03.

A single MC step constitutes of selecting one electron,
and moving its position randomly. The update proba-
bility ratio is given by the probability densities of the
wavefunction at that configuration, namely

log |1/}(Zl,22,"' ,Z?ewa"' 7ZN|2 (A55)
WJ(ZleQa"' 7Z;)ld7"' aZN|2
gnew 2 _ Z(_)ld 2
ZQZKIJ(‘zinew_zjl_|Zl{>ld_zj|)_ | i |2l2 | i |
j#i 1B

When the probability ratio is higher than 1 (or if the log
value is positive), we accept the change. If the ratio is
lower than 1, then we accept the change with a probabil-
£ | (21,22, 521" 7"',21\7)\2.

[t (21,22, 20, zN) |2

For the pair distribution function, we only want to ex-
tract the bulk properties of the wavefunction. Therefore,
we first pick electrons sufficiently inside the liquid, chosen
to be within R/5 from the origin where R is the radius of
the FQH droplet. We then sample the distances between
these electrons and all electrons, making sure that for the
electron pair in question at least one electron is close to
the origin.

We ignore the first 2 x 10° MC steps for the system
to equilibrate, and sample until 3 x 10° steps for a MC
configuration. We have sampled from 128 independent
MC configurations.

To verify our potential energy ansatz, we run our
Monte Carlo routine for single-species K-matrices from

ew

ity o

K = 1to K = 6 and for two-species K-matrices
K = Zg) fora = 1,---,4and b = 1,--- ,a and
¢=1,--- ,min(a,b) for 200 electrons.

Looking at the single-species case first, V7 can be writ-
ten as

Vin (K = m) = 7= [y [ (0(0) - )

(A56)



TABLE III. V;; for various single- and double-species K,
2
alongside their per electron correlation energy (in unit le;)

K [ fi [ Bt [(Ki)| Vi1 | Vaa | Viza | V
(1) [ (» [o0617] 1 -1.545

(2) | (1) [-0472] 2 -1.671

(3) [ (@) [-0.400] 3 -1.737

(4) (1) [-0.351| 4 -1.758

(5) [ (@) [-0.319] 5 -1.788

(6) [ (1) [-0.293] 6 -1.801
((1) ?) (3,%)]-0.617| 0.5 -2.185 0 |-1.093
20 (3, H]-0472| 1 -2.362 0 |-1.181
02)[\202
(f %) (1,%)]-0.519| 1.5 -2.334  |-0.854|-1.594
30 (%,1)]-0.400| 1.5 -2.457 0 [-1.229
0 3)[\202
(:1)’ ;) (3,%)]-0.446| 2 -2.405  |-0.755|-1.580
(g’ ?)) (1,3)]-0.426| 2.5 -2.346  [-1.028]-1.687
(4 O) (3, 4)]-0.351 2 -2.486 0 |-1.243
0 4)|\272
(‘1L D (3,%)]-0.402| 25 -2.474  |-0.715|-1.594
(3 i) (1,%)]-0.385| 3 -2.412  |-0.926|-1.669
(3 i) (3,%)]-0.359| 1.67 -2.325  |-1.044|-1.684
((1) g) (2,%)|-0.568| 0.67 |-1.893(-2.893| 0 |-1.163
((1) g) (3,5)]-0.562| 0.75 |-1.784]-3.475| 0 |-1.221
((1) Z) (2,%)]-0.563| 0.8 |-1.728(-3.931| 0 |-1.263
((2) g) (2,2)]-0.443| 1.2 |-2.157(-2.747| 0 |-1.216
G é) (2,1)]-0.496| 2.55 |-1.997(-2.963|-0.876 |-1.606
((2) Z) (2,1)]-0.431| 1.33 |-2.046(-3.045| 0 |-1.248
(f le) (2,1)]-0.482| 1.75 |-1.893|-3.435|-0.852|-1.599
30
(0 4> (2,2)]-0.379| 1.714 |-2.298(-2.685| 0 |-1.244
(i’ i) (2,2)]-0.433| 2.2 |-2.215|-2.771|-0.767 |-1.609
3 2
(2 4) (2,2)]-0.419| 2.67 |-2.038(-2.977|-1.074 |-1.714

For K = 1 the analytical form of the pair distribution
function is known:

glry=1—e¢ *i (A57)

21

T/ZB

FIG. 4. Pair correlation function for intra- and inter-species

12
for single-species K-matrix K = 1 (solid) and K = 2 (dotted).

of (2 1). The black lines are the pair correlation functions

We find
o _2
V(K =1) = — 12/ dre % = -2 — _1.5707
22 J, 2

(A58)

Our Monte Carlo simulation gave the result —1.55, where
the small deviation of around 1% comes comes from the
finite-size effects. For the sake of uniformity, we will keep
N = 200 for all K-matrices. Viy values and the elec-
tron correlation energies for the K-matrices considered
are given in Table. III.

Next, we describe our computation of V7 ;. For single-
species FQH state

_Zi\zi\2 _
U(z)=e 0 H(Z’ — )k (A59)
i<j
the electron density is given by n. = ﬁ Using
b

the Metropolis Monte Carlo method, we can numeri-
cally estimate the pair distribution function g(r). For
this, we first place the electrons randomly, and follow
the Metropolis-Hastings algorithm. We extend this to
2-species K-matrix. The general 2-species K-matrix is

a c

given as K = (c b> For simplicity we maintain the

same [ g values, meaning that the f; may not be equal to
each other. We maintain the condition that v; > 0 for

all species. In Ejhis case, the filling fraction is v = a;;f_;%a

giving n. = 5>. For example, Fig. 4 denotes the pair
B

correlation function for the K-matrix , with the

21
12
black lines being the pair correlation function for K =1
and K = 2 respectively. We observe that there is higher
inter-species electron pair density and lower intra-species
electron pair density.

The reason for this deviation is that as intra-species
electrons are more strongly repelled compared to inter-



species electrons, compared to the default case the intra-
species electrons can spread further from each other due
to the lower repulsion with the inter-species electrons,
and vice versa. Therefore, intra-species electrons con-
tribute to lower Coulomb energy compared to the default

22

one-species case as they are more further apart whereas
the intra-species are more close to each other and con-
tribute more Coulomb energy compared to the single-
species case. Our numerical results are summarized in
Table III.
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