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Abstract

Generalized symmetries often appear in the form of emergent symmetries
in low energy effective descriptions of quantum many-body systems. Non-
invertible symmetries are a particularly exotic class of generalized symmetries,
in that they are implemented by transformations that do not form a group.
Such symmetries appear generically in gapless states of quantum matter con-
straining the low-energy dynamics. To provide a UV-complete description of
such symmetries, it is useful to construct lattice models that respect these
symmetries exactly. In this paper, we discuss two families of one-dimensional
lattice Hamiltonians with finite on-site Hilbert spaces: one with (invertible)
S3 symmetry and the other with non-invertible Rep(S3) symmetry. Our mod-
els are largely analytically tractable and demonstrate all possible spontaneous
symmetry breaking patterns of these symmetries. Moreover, we use numer-
ical techniques to study the nature of continuous phase transitions between
the different symmetry-breaking gapped phases associated with both symme-
tries. Both models have self-dual lines, where the models are enriched by
(intrinsic) non-invertible symmetries generated by Kramers-Wannier-like du-
ality transformations. We provide explicit lattice operators that generate these
non-invertible self-duality symmetries. We show that the enhanced symme-
try at the self-dual lines is described by a 2+1D symmetry-topological-order
(SymTO) of type JK4 × JK4. The condensable algebras of the SymTO deter-
mine the allowed gapped and gapless states of the self-dual S3-symetric and
Rep(S3)-symmetric models.
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1 Introduction

In quantum many-body physics, global internal symmetries are conventionally represented
by unitary (or anti-unitary) operators that act non-trivially on all degrees of freedom,
everywhere in space. The elementary charged objects under such symmetries are local
operators with support over a finite region of space.

This conventional picture of symmetries was recently generalized in several directions.
For example, the symmetry transformations were generalized to act on lower dimensional
subspaces [1, 2] with the elementary charged objects being higher dimensional [3, 4]. In
the language of field theory, a p-form symmetry is generated by (d − p)-dimensional,
i.e., co-dimension p, topological defects that can be inserted into the partition functions
of theories defined on (d + 1) spacetime dimensions. The corresponding charges then
live in a (p + 1)-dimensional worldsheet in spacetime. The conventional global internal
symmetries correspond to the case of p = 0. The mathematical structure that captures
a collection of several higher-form symmetries of different order is that of a higher-group:
a p-group involves 0-form through (p − 1)-form symmetries. Higher-form symmetries
can be treated within Hamiltonian formalism as well, by choosing a time slice together
with a corresponding Hilbert space. Then higher-form symmetry operators acting on this
Hilbert space are defined by restricting to the topological defects that are supported only
on the time slice. Although typical lattice models for condensed matter systems do not
have higher-group symmetries, they can appear as emergent symmetries [5] or even exact
emergent symmetries at low energies [6, 7].

In many ways, higher-form symmetries behave just like ordinary symmetries: they
can be spontaneously broken leading to degenerate ground states or Goldstone bosons
[8, 9], depending on whether the symmetry is discrete or continuous; they can have ’t
Hooft anomalies themselves, or have mixed ’t Hooft anomalies with crystalline symmetries
leading to Lieb-Schultz-Mattis (LSM)-type theorems [10]; they can lead to new symmetry
protected topological (SPT) phases [11, 12]. A generic way to construct models with
higher-form symmetries in (2+1) dimensions and higher, is via gauging (some subgroup
of) an ordinary symmetry [13,14].

A further generalization of symmetries comes from considering operators that commute
with the Hamiltonian but are not invertible, and hence have non-trivial kernels. These
are the so-called non-invertible symmetries [15]. The composition law, or fusion rule,
of these symmetry operators does not satisfy a group-like multiplication rule. Instead,
given two non-invertible symmetry operators, their fusion results in a sum of symmetry
operators which may be invertible or non-invertible. When the symmetries of the system
form a finite collection, the structure that unifies invertible and non-invertible 0-form and
higher-form symmetries is that of a fusion higher category C [16,17]. In (d+1) spacetime
dimensions, C is a fusion d-category. In this work, we will focus on (1 + 1) dimensions so
that the symmetry structure is described by ordinary fusion categories, instead of fusion
higher categories. In this case, symmetry operators in a fusion category C are labeled by
the simple objects a of C. The fusion of two symmetry operators ˆ︂Wa and ˆ︂Wb, labeled by
objects a and b delivers the sum

ˆ︂Wa
ˆ︂Wb =

∑︂
α

Nc
a b
ˆ︂Wc, (1.1)

where integers Nc
a b are the fusion coefficients.

Non-invertible symmetries were explored in the realm of quantum field theory (QFT) in
the form of topological defect lines of (1+1)d rational conformal field theories (RCFT) [18–
23]. More recently, such topological defect lines have been established as non-invertible
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symmetries within the framework of generalized symmetries [15,24]. Realizations of non-
invertible symmetries and implications of their presence have been extensively studied
in QFTs [25–27]. Realizations of non-invertible symmetries and phases of matter with
these symmetries in lattice models are far less understood. On the one hand, the long-
distance and low-energy limit – usually referred to as the infrared (IR) limit – of many
body quantum systems often have an effective QFT description. Since by now we know
many examples of QFTs that possess non-invertible symmetries, one expects that there is
a natural place for such symmetries in many body physics, e.g., in labeling the symmetry
structure of the zero temperature phases of many-body quantum systems. On the other
hand, näıve lattice regularization of QFTs may break emergent symmetries of the contin-
uum theory (see, e.g., Ref. [28]). In that spirit, it is desirable to construct lattice models
that respect generalized symmetries, putting them on the same footing as ordinary sym-
metries. To be precise, by “lattice model” we mean local Hamiltonians acting on a Hilbert
space that is a tensor product of finite-dimensional local Hilbert spaces – we will refer to
such lattice models, somewhat glibly, as “spin chains”. We will require that the lattice
Hamiltonians we construct possess certain non-invertible symmetries, i.e., they commute
with such non-invertible symmetry operators.

One strategy to obtain non-invertible symmetries in the lattice setting is to start
from a model with ordinary (finite) non-Abelian G symmetry and gauge either the entire
G. In the corresponding gauge theory, the Wilson loops obey the fusion rules dictated
by the representations of G and form a fusion (higher) category Rep(G), which is not
group-like whenever G is non-Abelian. This strategy was used to construct various lattice
models with non-invertible symmetries [29, 30]. Recently, another class of examples have
been obtained by gauging internal symmetries that participate in a mixed anomaly with
translation symmetry such as in the case of Lieb-Schultz-Mattis (LSM) anomalies [31–33].

An alternative perspective on finite generalized symmetries was proposed in Refs. [13,
34]; the authors argued that such symmetries can be viewed as special kinds of non-
invertible gravitational anomalies. In other words, symmetry data can be stored in a
non-invertible field theory in one higher dimension such that the physical theory with
generalized symmetries is realized as a boundary theory of the former. This leads to
a holographic theory of generalized symmetries in terms of topological orders in one
higher dimension [16,35–38]. This idea goes by various names: symmetry-topological-order
(SymTO) correspondence [16,35,36], 1 symmetry-topological-field-theory (SymTFT) [37],
topological symmetry [38], or topological holography [39–41].

Another complementary way to view generalized symmetries comes from considering
the algebra of a subset of all local operators. Given a set of symmetry transformations,
the subset of local operators invariant under these transformations forms the algebra of
local symmetric operators (also called a bond algebra [42, 43]). One can turn this idea
on its head and consider subsets of local operators as (indirectly) defining a generalized
symmetry, provided the subset forms an algebra. Ref. [44] took this point view and showed
that isomorphic algebras of local symmetric operators correspond one-to-one to topological
orders in one higher dimension, by considering simple examples. The commutant algebra
of the subset of local operators contains operators that implement (generalized) symmetry
transformations [45, 46]. The structure of commutant algebras is rich enough to contain
the above-mentioned non-invertible symmetries. Notably, this structure is less rigid than
that of fusion (higher) categories since the fusion coefficients need not be non-negative

1SymTO was referred to as “categorical symmetry” in some early papers [13,16,36]. It was referred to as
SymTFT [37] and topological symmetry [38] in later works. In present literature, “categorical symmetry” is
used to refer to non-invertible symmetry (which was referred to as algebraic higher symmetry in Ref. [16]).
See Appendix B for a review of SymTO.
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integers. Making contact between the commutant algebraic approach and the topological
defect approach of generalized symmetries is an interesting open question. [AC: Let’s be
careful with the commutant language, e.g., in a commuting projector hamiltonian all terms
of the Hamiltonian live in the commutant algebra. There may also be other local operators
that commute with the Hamiltonian. Are all of them symmetries?]

There has been an exciting flurry of recent work classifying [16, 36] and exploring
[30, 33, 47–51] gapped phases of systems with fusion category symmetries (or algebraic
higher symmetries). A generalized Landau paradigm [52–54], classifying both gapped
and gapless phases in systems with general fusion category symmetries in 1+1d has been
formulated based condensable algebra in the topological order in one higher dimension.
These results were obtained within the framework of SymTO [52, 53], SymTFT [37], and
topological symmetry [38].

In this paper, we contribute to this rapidly developing literature by exploring the possi-
ble phases, gapped or gapless, and continuous phase transitions realized in spin chains with
non-invertible symmetries. In particular, we study the example of the smallest anomaly-
free symmetry category: Rep(S3). Building up to that, in Sec. 2 we introduce a spin chain
with S3 symmetry constructed out of qubit and qutrit degrees of freedom. In Sec. 3, we
show how gauging either the entire S3 symmetry or its non-normal Z2 subgroup delivers
a spin chain with Rep(S3) symmetry. We explore the phase diagrams of both spin chains
using analytical arguments and numerical tensor network techniques. Section 5 is a syn-
thesis of the salient aspects of our results from the point of view of the SymTO framework.
In section 6 we discuss connections with gauging of general fusion category symmetries
and order parameters for such symmetries. We close with some comments on directions
for future exploration in Section 7.

Note added: While this manuscript was being completed, we became aware of po-
tentially overlapping work in Ref. [55]. We thank the authors for coordinating their arXiv
submission with us.

2 S3-symmetric spin chain

2.1 Definitions

We consider lattice Λ in one spatial dimension with |Λ| = L sites. We associate a tensor
product Hilbert space H with lattice Λ, where the each site i ∈ Λ supports an on-site
Hilbert space Hi that is 12-dimensional. We label the orthonormal basis vectors spanning
Hi by a Z2 × Z2 × Z3-valued triplet (ai, bi, ci), i.e.,

H = ⊗L
i=1Hi, Hi = span{|ai, bi, ci⟩ | ai ∈ Z2, bi ∈ Z2, ci ∈ Z3}. (2.1)

On each local Hilbert space Hi, we define Z2 (qubit) and Z3 (qutrit) clock operators that
satisfy the algebras

σ̂zi σ̂
x
j = (−1)δij σ̂xj σ̂

z
i , (σ̂zi )

2 = (σ̂xi )
2 = 1̂, (2.2a)

τ̂ zi τ̂
x
j = (−1)δij (τ̂ zi )

2 = (τ̂xi )
2 = 1̂, (2.2b)ˆ︁Zi

ˆ︁Xj = ωδij ˆ︁Xj
ˆ︁Zi,

(︂ ˆ︁Zi

)︂3
=
(︂ ˆ︁Xi

)︂3
= 1̂, (2.2c)

with ω = exp{i2π/3} such that the operators σ̂zi , τ̂
z
i , and ˆ︁Zi are diagonal in the basis

(2.1), i.e.,

σ̂zi |a, b, c⟩ = (−1)ai |a, b, c⟩ , τ̂ zi |a, b, c⟩ = (−1)bi |a, b, c⟩ , ˆ︁Zi |a, b, c⟩ = ωci |a, b, c⟩ .
(2.2d)
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Figure 1: Schematic of the Hamiltonian (2.3) showing the couplings between
qutrit (depicted by a tripartitioned disk) and qubit (depicted by a bipartitioned
disk) degrees of freedom. Single-body terms J2, J4 are suppressed.

We impose periodic boundary conditions on the Hilbert space H by identifying operators
at site i with those at site i+ Lˆ︁Xi+L ≡ ˆ︁Xi, ˆ︁Zi+L ≡ ˆ︁Zi, σ̂xi+L ≡ σ̂xi , σ̂zi+L ≡ σ̂zi , τ̂xi+L ≡ τ̂xi , τ̂ zi+L ≡ τ̂ zi . (2.2e)

Our starting point is the Hamiltonianˆ︁HS3
:= ˆ︁HP + ˆ︁HI +

ˆ︁HPI, (2.3a)

ˆ︁HP := −J1
L∑︂
i=1

(︂ ˆ︁Zi
ˆ︁Z†
i+1 +

ˆ︁Z†
i
ˆ︁Zi+1

)︂
− J2

L∑︂
i=1

(︂ ˆ︁Xi +
ˆ︁X†
i

)︂
, (2.3b)

ˆ︁HI := −J3
L∑︂
i=1

(︁
σ̂zi τ̂

z
i + τ̂ zi σ̂

z
i+1

)︁
− J4

L∑︂
i=1

(σ̂xi + τ̂xi ) , (2.3c)

ˆ︁HPI := −J5
L∑︂
i=1

i τ̂ zi

(︂ ˆ︁Zi
ˆ︁Z†
i+1 − ˆ︁Z†

i
ˆ︁Zi+1

)︂
− J6

L∑︂
i=1

i σ̂zi

(︂ ˆ︁Xi − ˆ︁X†
i

)︂
, (2.3d)

with six positive coupling constants Ji > 0 for i = 1, · · · , 6. Hamiltonians ˆ︁HP and ˆ︁HI

describe the quantum three-state Potts model on a chain of L sites and transverse-field
Ising model defined on 2L sites, respectively 2. The last Hamiltonian ˆ︁HPI then describes
the coupling between Z2- and Z3-valued degrees of freedom. A schematic description of
the couplings in Hamiltonian (2.3) is shown in Fig. 1.

Hamiltonian (2.3) is invariant under an S3 symmetry generated by the unitary opera-
tors

ˆ︁Ur :=
L∏︂
i=1

ˆ︁Xi,
ˆ︁Us :=

L∏︂
i=1

σ̂xi τ̂
x
i
ˆ︁Ci , (2.4)

where ˆ︁Ci :=
∑︁2

α=0
ˆ︁Xα
i
ˆ︁PZi=ωα

and ˆ︁PZi=ωα
is the projector onto the subspace of ˆ︁Zi = ωα.

The operator ˆ︁Ci implements the charge conjugation on the Z3 degrees of freedom, i.e., it

maps ˆ︁Xi ↦→ ˆ︁X†
i and ˆ︁Zi ↦→ ˆ︁Z†

i . On the local operators, the S3 symmetry generators, ˆ︁Ur

and ˆ︁Us, implement the transformations

ˆ︁Ur

(︂ ˆ︁Xi
ˆ︁Zi σ̂xi σ̂zi τ̂xi τ̂ zi

)︂ ˆ︁U †
r =

(︂
+ ˆ︁Xi ω2 ˆ︁Zi +σ̂xi +σ̂zi +τ̂xi +τ̂ zi

)︂
,

ˆ︁Us

(︂ ˆ︁Xi
ˆ︁Zi σ̂xi σ̂zi τ̂xi τ̂ zi

)︂ ˆ︁U †
s =

(︂
+ ˆ︁X†

i + ˆ︁Z†
i +σ̂xi −σ̂zi +τ̂xi −τ̂ zi

)︂
,

(2.5)

2The reason for choosing number of Z2 degrees of freedom to be twice that of Z3 degrees of freedom
will be clear in Sec. 2.3 when we discuss the self-dual points in the phase diagram of Hamiltonian (2.3).
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respectively. Any operator that commutes with ˆ︁Ur and ˆ︁Us can be written as linear com-
binations of products of eight local operators. These are precisely those that appeared in
the Hamiltonian (2.3). Accordingly we define the bond algebra [42, 43] of S3-symmetric
operators

BS3
:=
⟨︂
σ̂zi τ̂

z
i , τ̂

z
i σ̂

z
i+1, σ̂

x
i , τ̂

x
i ,
(︂ ˆ︁Xi + ˆ︁X†

i

)︂
,
(︂ ˆ︁Zi

ˆ︁Z†
i+1 +

ˆ︁Z†
i
ˆ︁Zi+1

)︂
,

σ̂zi

(︂ ˆ︁Xi − ˆ︁X†
i

)︂
, τ̂ zi

(︂ ˆ︁Zi
ˆ︁Z†
i+1 − ˆ︁Z†

i
ˆ︁Zi+1

)︂ ⃓⃓⃓
i ∈ Λ

⟩︂
. (2.6)

We identify the S3 symmetry as the commutant algebra ofBS3
, i.e., algebra of all operators

that commute with all elements of BS3
.

In Sections 2.2, 3.1, and 3.2, we are going to construct the dual bond algebras BS3/Z3
,

BS3/Z2
, and BS3/S3

, that are delivered by gauging the subgroups Z3, Z2, and S3, respec-

tively. As we shall see, the precise statement of the duality will then be expressed as
isomorphisms between appropriately defined “symmetric” subalgebras of these bond alge-
bras. Therein, for each dual bond algebra, we will identify the corresponding commutant
algebras, i.e., the corresponding dual symmetry structure.

2.2 Gauging Z3 subgroup: non-invertible self-duality symmetry

Gauging the Z3 subgroup is achieved in two steps. First, on the each link between sites i
and i+ 1, we introduce Z3 clock operators {x̂i+1/2, ẑi+1/2} that satisfy the algebra

ẑi+1/2 x̂j+1/2 = ωδij x̂j+1/2 ẑi+1/2,
(︂
ẑi+1/2

)︂3
=
(︂
x̂i+1/2

)︂3
= 1̂,

ẑi+1/2+L = ẑi+1/2, x̂i+1/2+L = x̂i+1/2,
(2.7a)

where we imposed periodic boundary conditions. This enlarges the dimension of the
Hilbert space (2.1) by a factor of 3L. Second, we define the Gauss operators on every site

ˆ︁GZ3
i := ẑ†i−1/2

ˆ︁Xi ẑi+1/2,
[︂ ˆ︁GZ3

i

]︂3
= 1̂. (2.7b)

Hereby, the link operators ẑi+1/2 and x̂i+1/2 take the roles of Z3-valued electric field and
Z3-valued gauge field, respectively. The physical Hilbert space consists of those states for

which the Gauss constraint ˆ︁GZ3
i = 1 is satisfied. Imposing each of one of the L Gauss

constraints reduces the dimension of the extended Hilbert space by a factor of 1/3. The S3-
symmetric algebra (2.6) is not invariant under local gauge transformations. By minimally
coupling it to the gauge field x̂i+1/2, we define the gauge invariant extended algebra

Bmc
S3/Z3

:=
⟨︂
σ̂zi τ̂

z
i , τ̂

z
i σ̂

z
i+1, σ̂

x
i , τ̂

x
i ,
(︂ ˆ︁Xi +

ˆ︁X†
i

)︂
,
(︂ ˆ︁Zi x̂i+1/2

ˆ︁Z†
i+1 +

ˆ︁Z†
i x̂

†
i+1/2

ˆ︁Zi+1

)︂
,

σ̂zi

(︂ ˆ︁Xi − ˆ︁X†
i

)︂
, τ̂ zi

(︂ ˆ︁Zi x̂i+1/2
ˆ︁Z†
i+1 − ˆ︁Z†

i x̂
†
i+1/2

ˆ︁Zi+1

)︂ ⃓⃓⃓ ˆ︁GZ3
i = 1, i ∈ Λ

⟩︂
.

(2.8)

It is convenient to do a basis transformation to impose the Gauss constraint explicitly. To
this end, we apply a unitary operator ˆ︁U which implements the transformation

ˆ︁U σ̂xi ˆ︁U † = σ̂xi ,
ˆ︁U σ̂zi ˆ︁U † = σ̂zi ,ˆ︁U τ̂xi ˆ︁U † = τ̂xi ,
ˆ︁U τ̂ zi ˆ︁U † = τ̂ zi ,ˆ︁U ˆ︁Xi

ˆ︁U † = ẑi−1/2
ˆ︁Xi ẑ

†
i+1/2,

ˆ︁U ˆ︁Zi
ˆ︁U † = ˆ︁Zi, (2.9)ˆ︁U x̂i+1/2

ˆ︁U † = ˆ︁Z†
i x̂i+1/2

ˆ︁Zi+1, ˆ︁U ẑi+1/2
ˆ︁U † = ẑi+1/2.
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In particular, this unitary simplifies the Gauss operator to ˆ︁U ˆ︁GZ3
i
ˆ︁U † = ˆ︁Xi. After the

unitary transformation, we project down to the ˆ︁Xi = 1 subspace and relabel the link
degrees of freedom by i + 1/2 ↦→ i + 1 for notational simplicity. This delivers the dual
bond algebra

BS3/Z3
:= ˆ︁U Bmc

S3/Z3

ˆ︁U †
⃓⃓⃓
ˆ︁Xi=1

=
⟨︂
σ̂zi τ̂

z
i , τ̂

z
i σ̂

z
i+1, σ̂

x
i , τ̂

x
i ,
(︂
ẑi ẑ

†
i+1 + ẑ†i ẑi+1

)︂
,
(︂
x̂i + x̂†i

)︂
,

σ̂zi

(︂
ẑi ẑ

†
i+1 − ẑ†i ẑi+1

)︂
, τ̂ zi

(︂
x̂i+1 − x̂†i+1

)︂ ⃓⃓⃓
i ∈ Λ

⟩︂
. (2.10)

We note that the dual bond algebra contains the same type of terms as algebra (2.6) and,
hence, is the algebra of S∨

3 -symmetric operators 3. The generators of dual S∨
3 symmetry

are represented by the unitary operators 4

ˆ︁U∨
r :=

L∏︂
i=1

x̂i, ˆ︁U∨
s :=

L∏︂
i=1

σ̂xi τ̂
x
i ĉi, ĉi :=

2∑︂
α=0

x̂αi ˆ︁P zi=ωα
. (2.11)

We note that the duality as we described does not hold between entirety of algebras
BS3

and BS3/Z3
. On the one hand, because we imposed periodic boundary conditions

on the operators {x̂i, ẑi}, the product of all Gauss operators is equal to the generator of
global Z3 transformations, i.e.,

L∏︂
i=1

ˆ︁GZ3
i = ˆ︁Ur = 1. (2.12a)

On the other hand, since we imposed periodic boundary conditions on the operators{︂ ˆ︁Xi,
ˆ︁Zi

}︂
, the image of the product

∏︁L
i=1

ˆ︁Zi
ˆ︁Zi+1, which is the dual Z∨

3 symmetry gener-

ator, must be equal to identity, i.e.,

L∏︂
i=1

ˆ︁Zi
ˆ︁Zi+1 ≡ ˆ︁U∨

r = 1. (2.12b)

Therefore, the duality holds when both conditions (2.12a) and (2.12b). In other words,
the isomorphism

BS3

⃓⃓⃓
ˆ︁Ur=1

∼= BS3/Z3

⃓⃓⃓
ˆ︁U∨
r =1

, (2.12c)

holds 5.
3We use the superscript ∨ to differentiate the dual S∨

3 symmetry of the dual algebra (2.10) from the
S3 symmetry of the algebra (2.6).

4The dual symmetry ˆ︁U∨
s is obtained from the operator ˆ︁Us by demanding the covariance of the Gauss

operator ˆ︁GZ3
i , i.e., demanding

ˆ︁Umc
s

ˆ︁GZ3
i

(︂ˆ︁Umc
s

)︂†
=

(︂ ˆ︁GZ3
i

)︂†
,

where ˆ︁Umc
s is an operator acting on the extended Hilbert space and contains both site and link degrees

of freedom. The dual symmetry ˆ︁U∨
s is then obtained by applying the unitary transformation (2.9) and

projecting to the ˆ︁Xi = 1 subspace.
5We could have also gauged the Z3 symmetry of the bond algebra (2.6) in the presence of a Z3 twist.

However, such twisted boundary conditions lead to a reduced Z3 symmetry due to the fact that Z2 elements
of S3 act nontrivially the Z3 twist. Here, we keep the periodic boundary conditions on both sides of the
gauging duality to ensure both bond algebrasBS3

andBS3/Z3
have full S3 and S∨

3 symmetries, respectively.
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Using the mapping between the two operator algebras BS3
and BS3/Z3

, we obtain the

Hamiltonian

ˆ︁HS∨
3
:=− J1

L∑︂
i=1

(︂ˆ︁xi + ˆ︁x†i)︂− J2

L∑︂
i=1

(︂ˆ︁zi ˆ︁z†i+1 + ˆ︁z†i ˆ︁zi+1

)︂
− J3

L∑︂
i=1

(︁
σ̂zi τ̂

z
i + τ̂ zi σ̂

z
i+1

)︁
− J4

L∑︂
i=1

(σ̂xi + τ̂xi )

− J5

L∑︂
i=1

i τ̂ zi

(︂ˆ︁xi+1 − ˆ︁x†i+1

)︂
− J6

L∑︂
i=1

i σ̂zi

(︂ˆ︁zi ˆ︁z†i+1 − ˆ︁z†i ˆ︁zi+1

)︂
. (2.13)

This Hamiltonian is unitarily equivalent to the Hamiltonian (2.3) under exchanging the
couplings J1 and J2, and the couplings J5 and J6. The unitary transformation connecting
the two Hamiltonians is a half-translation of the Z2 degrees of freedom implemented by
the unitary operator

t̂Z2

(︂
τ̂xi τ̂ zi σ̂xi σ̂zi

)︂
t̂
†
Z2

=
(︂
σ̂xi+1 σ̂zi+1 τ̂xi τ̂ zi

)︂
, (2.14)

This equivalence between the Hamiltonian (2.3) and (2.13) is the Z3 Kramers-Wannier
(KW) duality due to gauging the Z3 subgroup of the S3 symmetry group. When J1 =
J2 and J5 = J6, both Hamiltonians (2.3) and (2.13) become self-dual under the KW
duality. In this submanifold of parameter space, the KW duality becomes a genuine non-
invertible symmetry of the Hamiltonian. Without loss of generality, we focus on the dual
Hamiltonian (2.3). The full KW duality operator takes the form

ˆ︁DKW := t̂Z2

ˆ︁PUr=1ˆ︂W (︂ˆ︁H†
1
ˆ︃CZ†

2,1

)︂ (︂ˆ︁H†
2
ˆ︃CZ†

3,2

)︂
· · ·
(︂ˆ︁H†

L−1
ˆ︃CZ†

L,L−1

)︂
, (2.15a)

where (i) the unitary operator t̂Z2
is the half-translation operator defined in Eq. (2.14)

that is necessary to preserve the form of the Hamiltonian (2.3), (ii) the operator

ˆ︁PUr=1 :=
1

3

2∑︂
α=0

L∏︂
i=1

ˆ︁Xα
i , (2.15b)

is the projector to the ˆ︁Ur = 1 subspace, (iii) the unitary operator

ˆ︂W :=
2∑︂

α=0

ˆ︁Zα
L
ˆ︁PZ†

1 ZL=ωα
, ˆ︂W ˆ︁X1

ˆ︂W † = ˆ︁Z†
L
ˆ︁X1, ˆ︂W ˆ︁XL

ˆ︂W † = ˆ︁ZL
ˆ︁XL
ˆ︁ZL
ˆ︁Z†
1, (2.15c)

that contains the projector ˆ︁PZ†
1 ZL=ωα

to the ˆ︁Z†
1
ˆ︁ZL = ωα subspace and acts nontrivially

only on operators ˆ︁X1 and ˆ︁XL, and finally (iv) the unitary operators ˆ︁H†
i and ˆ︃CZ†

i+1,i are
Hadamard and control Z operators with their only nontrivial actions being

ˆ︁H†
i

(︄ ˆ︁Xiˆ︁Zi

)︄ ˆ︁Hi =

(︄ ˆ︁Ziˆ︁X†
i

)︄
, ˆ︃CZ†

i+1,i

(︄ ˆ︁Xi+1ˆ︁Xi

)︄ˆ︃CZi+1,i =

(︄ˆ︁Z†
i
ˆ︁Xi+1ˆ︁Xi
ˆ︁Z†
i+1

)︄
. (2.15d)

As written in eqn. (2.15a), KW duality operator can be thought as a circuit of control Z
and Hadamard operators that are applied sequentially from site L down to site 1.

The KW duality operator (2.15a) is non-invertible since it contains the projectorˆ︁PUr=1. It becomes unitary in the subspace ˆ︁Ur = 1, where the self-duality holds. Its
action on the local operators can be read from the identitiesˆ︁DKW

ˆ︁Xi =
ˆ︁Zi
ˆ︁Z†
i+1

ˆ︁DKW,
ˆ︁DKW

ˆ︁Zi
ˆ︁Z†
i+1 = ˆ︁Xi+1

ˆ︁DKW,ˆ︁DKW

(︂
σ̂xi σ̂zi

)︂
=
(︂
τ̂xi τ̂ zi

)︂ ˆ︁DKW, ˆ︁DKW

(︂
τ̂xi τ̂ zi

)︂
=
(︂
σ̂xi+1 σ̂zi+1

)︂ ˆ︁DKW.
(2.16)
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In the parameter space where self-duality holds, the symmetry algebra is appended to

ˆ︁DKW
ˆ︁Ur = ˆ︁Ur

ˆ︁DKW = ˆ︁DKW, (2.17)ˆ︁D†
KW = ˆ︁T † ˆ︁DKW, (2.18)ˆ︁D2
KW = ˆ︁PUr=1 ˆ︁T , (2.19)

where ˆ︁T is the operator that implements translation by one lattice site for both Z2 and

Z3 degrees of freedom. Hence, action of the operator ˆ︁DKW can be thought of as a half-

translation operator in the subspace ˆ︁Ur = 1. We note that the operator t̂Z2
in Eq. (2.14)

implements this half-translation for Z2 degrees of freedom. This operator exists owing
to the fact that each unit cell contains two flavors of Z2 degrees of freedom for a single
flavor of Z3 degree of freedom. Had we defined a 6 dimensional local Hilbert space which
supports single flavor of Z2- and Z3-clock operators, KW self-duality would only hold when
the couplings J5 and J6 are zero, i.e., when Z2 and Z3 degrees of freedom are decoupled.

The symmetry algebra above includes eqn. (2.17) as a lattice analogue of the fusion
rules of the Z3 Tambara-Yamagami fusion category symmetry. In the continuum limit,

we expect that the Z3 symmetry generator ˆ︁Ur flows to a Z3 topological line ξ, while both√
3 ˆ︁DKW and its Hermitian conjugate flow to the continuum duality topological line D.

They satisfy the fusion rules

ξD = D ξ = D , D2 = 1 + ξ + ξ2 , ξ3 = 1 , (2.20)

where the operator that implements single lattice site translation becomes an internal
symmetry in the continuum limit. This interpretation follows the approach presented in
Ref. [?] [31]

2.3 Phase diagram

To discuss the phase diagram of the Hamiltonian (2.3), we first reparameterize it as

ˆ︁HS3
=− J1 cos θ

L∑︂
i=1

(︂ ˆ︁Zi
ˆ︁Z†
i+1 +

ˆ︁Z†
i
ˆ︁Zi+1

)︂
− J1 sin θ

L∑︂
i=1

i τ̂ zi

(︂ ˆ︁Zi
ˆ︁Z†
i+1 − ˆ︁Z†

i
ˆ︁Zi+1

)︂
− J2 cos θ

L∑︂
i=1

(︂ ˆ︁Xi +
ˆ︁X†
i

)︂
− J2 sin θ

L∑︂
i=1

i σ̂zi

(︂ ˆ︁Xi − ˆ︁X†
i

)︂
− J3

L∑︂
i=1

(︁
σ̂zi τ̂

z
i + τ̂ zi σ̂

z
i+1

)︁
− J4

L∑︂
i=1

(σ̂xi + τ̂xi ) .

(2.21)

In what follows, we will explore the phase diagram of this Hamiltonian as a function of
dimensionless ratios J1/J2 and J3/J4, for the cases of θ = 0, non-zero but small θ ≈ 0,
and large θ ∼ 0.7.

2.3.1 Analytical arguments

When θ = 0, the Hamiltonian (2.21) describes decoupled quantum Ising and 3-state Potts
chains, for which the phase diagram is known. There are four gapped phases which
correspond to four different symmetry breaking patterns for S3. At four fixed-points, we
can write the wave-functions exactly:

10



Figure 2: Phase diagram of Hamiltonian (2.21) based on analytical arguments
for θ ≈ 0. The ground state degeneracy (GSD) for each of the SSB phases are
labeled. The vertical and horizontal critical lines correspond to the Potts (6,5)
and Ising (4,3) minimal model CFTs, respectively. They intersect at a multi-
critical point belonging to the 3-state Potts ⊠ Ising universality class.

(i) When J1 = J3 = 0, there is only a single ground state

|GSS3
⟩ :=

L⨂︂
i=1

|σxi = 1, τxi = 1, Xi = 1⟩ , (2.22)

which describes the S3-disordered phase.

(ii) When J1 = J4 = 0, there are two degenerate ground states

|GS±Z3
⟩ :=

L⨂︂
i=1

|σzi = ±1, τ zi = ±1, Xi = 1⟩ , (2.23)

that describe the phase where Z2 degrees of freedom are ordered and S3 symmetry
is broken down to Z3.

(iii) When J2 = J3 = 0, there are three degenerate ground states

|GSαZ2
⟩ :=

L⨂︂
i=1

|σxi = +1, τxi = +1, Zi = ωα⟩ , (2.24)

with α = 0, 1, 2, that describe the phase where Z3 degrees of freedom are ordered.
One each ground state, S3 symmetry is broken down to a Z2 subgroup.

(iv) When J2 = J4 = 0, there are six degenerate ground states

|GS±,α
Z1

⟩ :=
L⨂︂
i=1

|σzi = ±1, τ zi = ±1, Zi = ωα⟩ , (2.25)

with α = 0, 1, 2 that describe the S3 ordered phase.

See Sec. 6.2 for the discussion of expectation values of the correlation functions and disorder
operators in these ground states.

11



The lines J1/J2 = 1 and J3/J4 = 1 correspond to the transition points between the
gapped phases 1 and 2, and 3 and 4, respectively. They are described by the 3-state Potts
CFT and the Ising CFT, respectively. The 3-state Potts CFT is one of the (6, 5) minimal
models with c = 4/5, while the Ising CFT is the (4, 3) minimal model wth c = 1/2. At
J1/J2 = 1 and J3/J4 = 1, there is a multicritical point described by the stacking of the
two CFTs, with total central charge c = 13/10.

If we turn on small and non-zero θ, the gapped phases are expected to remain un-
affected by the virtue of finiteness of the gap (in the thermodynamic limit). However,
one may wonder what the fate of the critical lines and the multicritical point is under
these perturbations. We argue that both terms with coefficient sin θ are irrelevant at the
multicritical point as follows. First, we note that both τ̂ zi and σ̂zi are odd under the Ising
symmetry and hence should flow to the Z2 odd primary in the low-energy limit, which
is the primary σ with scaling dimension ∆σ = 1/8. Then in the low-energy limit, the
terms with sin θ together flow to an operator σO where O is a primary or descendant
operator in 3-state Potts CFT such that (i) it is odd under the charge-conjugation sym-
metry and (ii) it carries 0 conformal spin. Using modular bootstrap techniques [34,52], we
can identify possible operators in the 3-state Potts CFT satisfying these criteria. We find
that (see Appendix E.1), all appropriate operators are irrelevant, making the operator σO
irrelevant.

To understand what happens away from the multicritical point, it is sufficient to look
at what happens at four extreme points. Both 3-state Potts and Ising CFTs are stable to
non-zero θ as follows. Along the line J3/J4 = 1 when J2 = 0, Z3 degrees of freedom are

ordered and gapped. This means that both ˆ︁Xi − ˆ︁X†
i and ˆ︁Zi

ˆ︁Z†
i+1 − ˆ︁Z†

i
ˆ︁Zi+1 vanish below

the gap. The same line of thought holds when J1 = 0 for which Z3 degrees of freedom are
disordered and gapped. Similarly, along the line J1/J2 = 1, when J3 = 0, Z2 degrees of
freedom are disordered and gapped. Both σ̂zi and τ̂ zi vanish below the gap. The situation
is slightly different when J3 = 0 for which Z2 degrees of freedom order, i.e., the terms
with sin θ are not trivially vanishing. However, in this case the 3-state Potts CFT still
remains stable owing to the fact that charge-conjugation odd operators being irrelevant, as
discussed in the previous paragraph. In summary, we conclude that the phase diagram at
perturbatively small θ has the same form, up to renormalization of the position of critical
lines, as that for θ = 0. The phase diagram at θ = 0 plane is shown in Fig. 2. We verify
our predictions for non-zero and small θ in Fig. 3.

2.3.2 Numerical results

We mapped out the phase diagram of Hamiltonian (2.21) numerically, using the tensor
entanglement filtering renormalization (TEFR) algorithm [56, 57]. The ground state de-
generacies of each gapped phase and the central charges associated with continuous phase
transitions were obtained using this algorithm. The results are shown in Fig. 3 as a func-
tion of J1 and J3 with θ = 0.1. We chose a 2d slice in the full parameter space such that
at every point of the phase diagram shown here, J2 = 1− J1 and J4 = 1− J3.

The TEFR algorithm does not give numerically precise values of central charge even
though it is extremely precise at extracting ground state degeneracy 6 In order to extract
numerically precise central charges, we used the density matrix renormalization group
(DMRG) algorithm from the iTensor library [58, 59]. On the phase diagram shown in
Fig. 3, we make two cuts, one horizontal and one vertical, and compute the central charges
using finite size bipartite entanglement entropy scaling that is computed using DMRG
calculation. Our results for finite chain of L = 100 sites are shown in Figs. 3c and 3d.

6The interested reader is referred to Appendix D for more details on this point.

12



(a) (b)

(c) (d)

Figure 3: Numerical phase diagram obtained from the TEFR algorithm showing
1− 1

GSD (a) and central charge (b) as a function of J1 ∈ [0.4, 0.6] (horizontal) and
J3 ∈ [0.4, 0.6] (vertical). The effective system sizes for these plots are L = 256
(blue), L = 128 (green), L = 64 (red). Figs. (c) and (d) show the central
charges computed from bipartite entanglement entropy scaling in the ground
state obtained from DMRG, as discussed in the main text. We plot the central
charges along a vertical (J1 = 0.5) and a horizontal (J3 = 0.5) slice of the phase
diagram shown in Fig. (b), for a chain of L = 100 sites. We fix θ = 0.1, with
J2 = 1− J1, J4 = 1− J3 in all of these plots.

We find that the both Ising CFT and Potts CFT lines are stable against small values
of θ, in agreement with our argument in the previous section. For large values of θ, a
gapless region opens up in the Ising ordered regime, surrounding the Z3 KW symmetric
line J1 = J2 in the parameter space of the Hamiltonian (2.21). From numerical estimation,
we find the critical value of θ to be around θ∗ ≃ π

8 . Heuristically, the gapless region appears
first in the Z2 ordered phase as the terms in Hamiltonian (3.25) with sin θ are proportional
to σ̂zi and τ̂ zi operators which have vanishing expectation values when the Z2 subgroup of
S3 is unbroken. The multicritical point is engulfed by the gapless region beyond a certain
value of θ ∈ (π/8, 2π/9). Several comments are due:

(i) Since the Z3 KW duality symmetry is anomalous, the only compatible phase without
symmetry breaking is gapless [15]. This is compatible with the gapless region we
numerically observe. Also, because of the KW duality, the gapless phase must be
symmetrically placed about the J1 = 0.5 = J2 line of the phase diagram, consistent
with the numerically obtained phase diagram in Fig. 4.
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(a) (b)

(c)

Figure 4: Numerical phase diagram obtained from the TEFR algorithm with
fixed θ = 0.7 ≈ 2π

9 , showing 1 − 1
GSD (Fig. (a)), and central charge (Fig. (b))

as a function of J1 ∈ [0.4, 0.6] (horizontal) and J3 ∈ [0.4, 0, 6] (vertical), setting
J2 = 1−J1 and J4 = 1−J3 everywhere. In these figures, the effective system size
is L = 256 (blue), L = 128 (green), L = 64 (red). The stripe feature in c ̸= 0 area
suggests an incommensurable gapless phase. Fig. (c) shows the absolute value
of the Fourier transform of ground state expectation value ⟨σ̂zi ⟩ for J1 = 0.5 and
J1 = 0.52 with fixed J3 = 0.5 and L = 101 sites. We compute the corresponding
periods to be 63/11 and 63/12 lattice constants, respectively. The sensitivity
of the position of peak value to J1 suggests a sliding density wave phase in the
gapless region where the low-energy states are at a non-zero quasi-momentum
that smoothly varies as a function of parameters.

(ii) Extraction of the central charge in the gapless region is somewhat subtle. The
phase diagram obtained from TEFR (Fig. 4b) shows fluctuations in c throughout the
gapless region. From DMRG calculations, we find that the ground state expectation
value ⟨σ̂zi ⟩ shows oscillatory behavior around its mean value. In Fig. 4c, we plot
the absolute value of Fourier transform of this expectation value (minus its mean)
for two points in the gapless region of the parameter space for L = 101 sites. We
find that the position of the peak value changes for J1 = 0.50 and J1 = 0.52 for
fixed J3 = 0.5, with corresponding periods being 63/11 and 63/12 lattice constants,
respectively. This suggests a smooth variation of the oscillation period as a function
of J1 and J3 in the thermodynamic limit. We conjecture that in this gapless region,
the system realizes a sliding density wave phase with central charge c = 1. In other
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(a) J⊥ = 0.05

(b) J⊥ = −0.05

Figure 5: Numerical phase diagram from TEFR algorithm, with fixed J⊥ and
θ = 0, showing GSD (left) and central charge(right) as heatmaps, in the J1, J3
plane (with J2 = 1 − J1 and J4 = 1 − J3 everywhere). (a) For positive J⊥, we
find the multicritical point widens into a critical line between the S3 symmetric
and S3 SSB phases. (b) For negative J⊥, we find the multicritical point widens
into a critical line between the phases which spontaneously break S3 down to Z3

and Z2, instead.

words, the ground state contains low-energy states at a non-zero quasi-momentum
which smoothly varies as a function of the couplings J1 and J3. This echoes the
behavior of the self-dual deformed Ising model, which is exactly solvable, discussed
in Appendix ??.

(iii) Results from the TEFR algorithm also show that the interface between the gapless
region and the neighboring gapped phases has a vanishing central charge. Since the
transition from a gapless phase to a gapped one is expected to not be a first-order
transition, we conjecture that this must correspond to a continuous transition with
a dynamical critical exponent z > 1.

2.3.3 Explicitly breaking KW self-duality symmetry

Hamiltonian (2.21) consists of terms such that the lines J1 = J2 is symmetric under
the Z3 KW self-duality symmetry generated by the operator (2.15). As explained in the
previous section, the multicritical point, J1 = J2 and J3 = J4, is described by 3-state
Potts ⊠ Ising CFT with central charge c = 13/10. This multicritical point has three
relevant perturbations, see Appendix E.2. Two of these are generated when J1 − J2 ̸= 0
and J3 − J4 ̸= 0, which gap out the Z3 and Z2 degrees of freedom, respectively. In the
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continuum description, these perturbations correspond to the “energy” primaries ϵI and
ϵP of the Ising and 3-state Potts CFTs, respectively. The former is self-dual under the Z3

KW duality and gaps out the Z2 degrees of freedom. In contrast, the latter breaks KW
duality symmetry explicitly and gaps out the Z3 degrees of freedom.

The third and final relevant perturbation is given by the product of two energy pri-
maries ϵI ϵP which is odd under the Z3 self-duality symmetry. In the lattice model, this
perturbation is generated by

ˆ︁H⊥ := −J⊥
L∑︂
i=1

{︂(︁
τ̂ zi σ̂

z
i+1 − σ̂xi+1

)︁ (︂ ˆ︁Zi
ˆ︁Z†
i+1 +H.c.

)︂
− (τ̂ zi σ̂

z
i − τ̂xi )

(︂ ˆ︁Xi +H.c.
)︂}︂

, (2.26)

which is odd under the Z3 KW duality symmetry (2.15).
From the TEFR algorithm, we find that adding this term has the effect of replacing

the multicritical point by a critical line which separates the S3 symmetric and the S3
completely broken phases for positive J⊥ and by a critical line which separates the Z3

symmetric and Z2 symmetric phases for negative J⊥. This is shown in the GSD and
central charge plots obtained from the TEFR algorithm in Fig. 5.

While it is rather hard to precisely determine the points on the critical lines, we know
that the point with J1 = J2 = 0.5 and J3 = J4 = 0.5 must be critical. This is because
when θ = 0 the Hamiltonian (2.3) has an additional non-invertible Z2 KW self-duality
symmetry along the J 3 = J4 line. In the continuum limit, the perturbation (2.26) flows to
ϵIϵP, i.e., product of energy primaries, which is odd under both Z2 and Z3 KW self-duality
symmetries 7. Under both of these dualities, the point with J1 = J2 and J3 = J4 = 0.5
is invariant, and hence must be gapless in both phase diagrams with J⊥ > 0 and J⊥ < 0.
At this point the DMRG results suggest a central charge of c ≈ 1.2 which we believe to
hold for the entire the critical line; a precise characterization of this transition in terms of
an associated conformal field theory is beyond the scope of the present paper.

We note that the continuous phase transition which separates the Z3 symmetric and
Z2 symmetric phases for J⊥ < 0 is a beyond Landau-Ginzburg (LG) transition as it is
between phases that break different subgroups of the full symmetry group. Under the
Z3 KW-duality symmetry, i.e., when J⊥ becomes positive, this beyond-LG transition is
mapped to the ordinary LG-type transition between the S3 symmetric and the S3 SSB
phases.

3 Rep(S3)-symmetric spin chain

In Sec. 2, we studied a spin chain with S3 symmetry. We discussed how this S3 is enriched
by non-invertible Z3 Kramers-Wannier self-duality symmetry, at special points in the
parameter space. Therein, the presence of KW duality symmetry ensures that the ground
is either gapless or degenerate.8 In this section, we are going to show that our S3-symmetric
spin chain is dual to another model which has non-invertible symmetries in its entire
parameter space. As we shall see in Sec. 3.1, this duality follows from gauging a Z2

subgroup of S3, which delivers a dual model with Rep(S3) fusion category symmetry.
We discuss the gapped phases and phase transitions of this Rep(S3)-symmetric model in
Sec. 3.3. As it was the case for Hamiltonian (2.3), we will see in Sec. 3.2, its dual with
Rep(S3) symmetry also has an additional non-invertible symmetry at special points in the

7At the lattice level, the perturbation (2.26) is exactly odd only under the Z3 KW self-duality operator
(2.15). While it explicitly breaks the Z2 KW self-duality symmetry too, it does not go to minus itself
under Z2 KW self-duality transformation.

8This is because this non-invertible symmetry is anomalous [15,60,61].
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parameter space. We are going to describe how this additional symmetry is also associated
with a gauging procedure which can be implemented through a sequential circuit.

3.1 Gauging Z2 subgroup: dual Rep(S3) symmetry

We shall gauge the Z2 subgroup of S3. We follow the same prescription as in Sec. 2.2. As
we shall see, as opposed to gauging Z3 subgroup, the dual symmetry will be the category
Rep(S3), owing to the fact that Z2 is not a normal subgroup of S3.

In order to gauge the Z2 symmetry, on each link between sites i and i+1, we introduce

Z2 clock operators
{︂
µ̂xi+1/2, µ̂

z
i+1/2

}︂
that satisfy the algebra

µ̂zi+1/2 µ̂
x
j+1/2 = (−1)δij µ̂xj+1/2 µ̂

z
i+1/2,(︂

µ̂zi+1/2

)︂2
=
(︂
µ̂xi+1/2

)︂2
= 1̂,

µ̂zi+1/2+L = µ̂zi+1/2, µ̂xi+1/2+L = µ̂xi+1/2,

(3.1)

where we have imposed periodic boundary conditions. Accordingly, we define the Gauss
operator

ˆ︁GZ2
i := µ̂zi−1/2 σ̂

x
i τ̂

x
i
ˆ︁Ci µ̂

z
i+1/2,

[︂ ˆ︁GZ2
i

]︂2
= 1̂. (3.2)

The physical states are those in the subspace ˆ︁GZ2
i = 1 for all i = 1, · · · , L. By way of

minimally coupling the bond algebra (2.6), we obtain the gauge invariant bond algebra 9

Bmc
S3/Z2

:=
⟨︂
σ̂z
i τ̂

z
i , τ̂

z
i µ̂

x
i+1/2 σ̂

z
i+1, σ̂

x
i , τ̂

x
i ,
(︂ ˆ︁Xi + ˆ︁X†

i

)︂
,
(︂ ˆ︁Zµ̂x

i+1/2

i
ˆ︁Z†
i+1 +

ˆ︁Z−µ̂x
i+1/2

i
ˆ︁Zi+1

)︂
,

σ̂z
i

(︂ ˆ︁Xi − ˆ︁X†
i

)︂
, τ̂zi µ̂

x
i+1/2

(︂ ˆ︁Zµ̂x
i+1/2

i
ˆ︁Z†
i+1 − ˆ︁Z−µ̂x

i+1/2

i
ˆ︁Zi+1

)︂ ⃓⃓⃓ ˆ︁GZ2
i = 1, i ∈ Λ

⟩︂
. (3.3)

As it was in Sec. 2.2, we can simplify the Gauss constraint by applying the unitary trans-
formation ˆ︁U σ̂xi ˆ︁U † = µ̂zi−1/2 σ̂

x
i τ̂

x
i
ˆ︁Ci µ̂

z
i+1/2,

ˆ︁U σ̂zi ˆ︁U † = σ̂zi ,ˆ︁U τ̂xi ˆ︁U † = τ̂xi ,
ˆ︁U τ̂ zi ˆ︁U † = τ̂ zi σ̂

z
i ,ˆ︁U ˆ︁Xi

ˆ︁U † = ˆ︁X σ̂z
i

i , ˆ︁U ˆ︁Zi
ˆ︁U † = ˆ︁Z σ̂z

i
i ,ˆ︁U µ̂xi+1/2

ˆ︁U † = σ̂zi µ̂
x
i+1/2 σ̂

z
i+1, ˆ︁U µ̂zi+1/2

ˆ︁U † = µ̂zi+1/2.

(3.4)

Under this unitary the Gauss operator simplifies ˆ︁U ˆ︁GZ2
i
ˆ︁U † = σ̂xi . We apply this unitary

to the minimally coupled algebra (3.3) and project onto the σ̂xi = 1 sector. After shifting
the link degrees of freedom by i+ 1/2 ↦→ i+ 1, we obtain the dual algebra

BS3/Z2
:= ˆ︁U Bmc

S3/Z2

ˆ︁U †
⃓⃓⃓
σ̂x
i =1

=
⟨︂
τ̂ zi , τ̂

z
i µ̂

x
i+1, µ̂

z
i τ̂

x
i
ˆ︁Ci µ̂

z
i+1, τ̂

x
i ,
(︂ ˆ︁Xi +

ˆ︁X†
i

)︂
,
(︂ ˆ︁Z µ̂x

i+1

i
ˆ︁Z†
i+1 +

ˆ︁Z−µ̂x
i+1

i
ˆ︁Zi+1

)︂
,(︂ ˆ︁Xi − ˆ︁X†

i

)︂
, τ̂ zi µ̂

x
i+1

(︂ ˆ︁Z µ̂x
i+1

i
ˆ︁Z†
i+1 − ˆ︁Z−µ̂x

i+1

i
ˆ︁Zi+1

)︂ ⃓⃓⃓
i ∈ Λ

⟩︂
. (3.5)

9Here, we introduce the short-hand notations

ˆ︁Zµ̂x
i+1/2

i ≡
1 + µ̂x

i+1/2

2
ˆ︁Zi +

1− µ̂x
i+1/2

2
ˆ︁Z†
i ,

ˆ︁Z−µ̂x
i+1/2

i ≡
1− µ̂x

i+1/2

2
ˆ︁Zi +

1 + µ̂x
i+1/2

2
ˆ︁Z†
i .
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What is the symmetry described by the dual algebra (3.5)? We claim that BS3/Z2

is the algebra of Rep(S3)-symmetric operators. The fusion category Rep(S3) consists of
three simple objects, 1, 1′, and 2, which are labeled by the three irreducible representations
(irreps) of S3. The object 1 is represented by the unitary identity operator ˆ︂W1 = 1̂, while
the object 1′ is represented by the unitary operator

ˆ︂W1′ :=
L∏︂
i=1

µ̂xi , (3.6)

which is the generator of Z2 dual symmetry associated with gauging the Z2 subgroup of
S3. Consistency in gauging with imposing periodic boundary conditions on the operator
{µ̂xi , µ̂zi } and the operators {σ̂xi , σ̂zi } requires the conditions

ˆ︁Us = 1, ˆ︂W1′ = 1, (3.7a)

to be satisfied, respectively. In other words, the duality holds between the subalgebras

BS3

⃓⃓⃓
ˆ︁Us=1

∼= BS3/Z2

⃓⃓⃓
ˆ︂W

1′=1
, (3.7b)

where conditions in Eq. (3.7a) are satisfied.
Finally, we notice that gauging Z2 subgroup breaks the Z3 symmetry, since the former

is not a normal subgroup. Under conjugation by ˆ︁Ur, the Gauss operator (3.2) transforms
nontrivially

ˆ︁Ur
ˆ︁GZ2
i
ˆ︁U †
r = ˆ︁GZ2

i
ˆ︁Xi. (3.8)

Therefore, ˆ︁Ur cannot be made gauge invariant by coupling to the gauge fields µ̂xi+1/2.
However, the non-unitary and non-invertible operator

ˆ︁Ur⊕r2 := ˆ︁Ur + ˆ︁U †
r =

L∏︂
i=1

ˆ︁Xi +
L∏︂
i=1

ˆ︁X†
i (3.9)

commutes with all the generators of the algebra (2.6) and the global symmetry operatorˆ︁Us when periodic boundary conditions for all operators in the algebra (2.6). This is the
representation of direct sum r ⊕ r2 of simple objects r and r2 in the symmetry category
VecS3

. Since it commutes with ˆ︁Us, ˆ︁Ur⊕r2 can be made gauge invariant. Minimally coupling

the operator (3.9), and applying the unitary transformation (3.4) delivers the operator 10

ˆ︂W2 :=
1

2

(︄
1 +

L∏︂
i=1

µ̂xi

)︄[︄
L∏︂
i=1

ˆ︁X∏︁i
k=2 µ̂

x
k

i + ˆ︁X−
∏︁i

k=2 µ̂
x
k

i

]︄
. (3.10)

This is the representation of simple object 2 in the category Rep(S3). It can be expressed
as a matrix product operator (MPO) with a 2-dimensional virtual index, as follows 11

ˆ︂W2 = Tr

⎡⎣δα1,αL+1

L∏︂
j=1

ˆ︂M (j)
αjαj+1

⎤⎦ , ˆ︂M (j) =

(︄ ˆ︁Xj P
µ̂x
j+1=1 ˆ︁X†

j P
µ̂x
j+1=−1ˆ︁Xj P

µ̂x
j+1=−1 ˆ︁X†

j P
,µ̂x

j+1=1

)︄
(3.11)

10Each of the two terms in square brackets individually commutes with the Gauss operators associated
with Gauss operators ˆ︁GZ2

2 through ˆ︁GZ2
L , while ˆ︁GZ2

1 simply exchanges them so that the sum is still gauge
invariant.

11See Appendix F for construction of Rep(G) operators in terms of MPOs that results from gauging a
finite G symmetry.
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Figure 6: Schematic of the Hamiltonian (3.13) showing the couplings between
qutrit (depicted by a tripartitioned disk) and qubit (depicted by a bipartitioned
disk) degrees of freedom. Single-body terms J2, J6 are suppressed.

Together with ˆ︂W1 and ˆ︂W1′ , they satisfy the fusion rules of Rep(S3), i.e.,

ˆ︂W1′ ˆ︂W1′ = ˆ︂W1, ˆ︂W1′ ˆ︂W2 = ˆ︂W2, ˆ︂W2
ˆ︂W2 = ˆ︂W1 +ˆ︂W1′ +ˆ︂W2. (3.12)

We note that because of the projector, ˆ︂W2 is non-invertible. This projector to the∏︁L
i=1 µ̂

x
i = 1 subspace ensures that there is no Z2 twist in the S3-symmetric algebra

(2.6). This is needed as ˆ︁Ur⊕r2 is not a symmetry of the algebra (2.6) when Z2-twisted

boundary conditions are imposed 12. In other words, in the presence of a Z2 twist, one

expect the dual symmetry to be Z∨
2 generated by ˆ︂W

1̄
instead of the full Rep(S3).

We now use the duality mapping between the local operator algebras BS3
and BS3/Z2

(recall Eqs. (2.6) and (3.5)) to construct a local Hamiltonian with Rep(S3) symmetry.
Under this map, the image of Hamiltonian (2.3) is

ˆ︁HRep(S3)
:=− J1

L∑︂
i=1

(︂ ˆ︁Z µ̂x
i+1

i
ˆ︁Z†
i+1 +

ˆ︁Z−µ̂x
i+1

i
ˆ︁Zi+1

)︂
− J2

L∑︂
i=1

(︂ ˆ︁Xi + ˆ︁X†
i

)︂
− J3

L∑︂
i=1

(︁
τ̂ zi + τ̂ zi µ̂

x
i+1

)︁
− J4

L∑︂
i=1

(︂
µ̂zi τ̂

x
i
ˆ︁Ci µ̂

z
i+1 + τ̂xi

)︂
− J5

L∑︂
i=1

i τ̂ zi µ̂
x
i+1

(︂ ˆ︁Z µ̂x
i+1

i
ˆ︁Z†
i+1 − ˆ︁Z−µ̂x

i+1

i
ˆ︁Zi+1

)︂
− J6

L∑︂
i=1

i
(︂ ˆ︁Xi − ˆ︁X†

i

)︂
.

(3.13)

In what follows, we are going to study the phase diagram of this Hamiltonian and identify
spontaneous symmetry breaking patterns for Rep(S3) symmetry as well as the transitions
between various ordered phases. Before doing so, we will briefly digress to discuss a duality
that delivers a dual Rep(S∨

3 ) symmetric bond algebra 13.

3.2 Another non-invertible self-duality symmetry

As we discussed in Sec. 2.2, S3-symmetric Hamiltonian (2.3) enjoys a self-duality when
J1 = J2 and J5 = J6, which is induced by gauging the Z3 subgroup. We hence expect the
same self-duality to hold for Rep(S3)-symmetric Hamiltonian (3.13) too. To understand
the self-duality of Hamiltonian (3.13), we will show that gauging the entire S3 symmetry
delivers another bond algebra with Rep(S∨

3 ) symmetry. This can be achieved by first
gauging Z3 and then Z∨

2 symmetry of dual S∨
3 symmetry. Starting from the bond algebra

12A g ∈ G twist reduces the full symmetry G to the centralizer CG(g) of g. Since S3 is non-Abelian,
imposing Z3- and Z2-twisted boundary conditions, reduce S3 down to Z3 and Z2, respectively.

13We use the superscript ∨ to differentiate the Rep(S3) symmetry of the bond algebra (3.5) from the
Rep(S∨

3 ) symmetry of the bond algebra (3.14).
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(2.10) and gauging the Z∨
2 symmetry generated by ˆ︁U∨

s defined in Eq. (2.11), we find the
bond algebra

BS3/S3
:=
⟨︂
τ̂ zi , τ̂

z
i µ̂

x
i+1, µ̂

z
i τ̂

x
i ĉi µ̂

z
i+1, τ̂

x
i ,
(︂
ẑ
µ̂x
i+1

i ẑ†i+1 + ẑ
−µ̂x

i+1

i ẑi+1

)︂
,
(︂
x̂i + x̂†i

)︂
,

µ̂xi+1

(︂
ẑ
µ̂x
i+1

i ẑ†i+1 − ẑ
−µ̂x

i+1

i ẑi+1

)︂
, τ̂ zi µ̂

x
i+1

(︂
x̂i+1 − x̂†i+1

)︂ ⃓⃓⃓
i ∈ Λ

⟩︂
, (3.14)

that is dual to the algebra (2.10) under gauging the Z∨
2 symmetry. We notice that this

algebra has the same terms as algebra (3.5). Therefore, its commutant algebra is that of
the category Rep(S∨

3 ). The simple objects in Rep(S∨
3 ) are represented by the operators

ˆ︂W∨
1 := 1̂, ˆ︂W∨

1′ :=
L∏︂
i=1

µ̂xi ,
ˆ︂W∨

2 :=
1

2

(︄
1 +

L∏︂
i=1

µ̂xi

)︄[︄
L∏︂
i=1

x̂

∏︁i
k=2 µ̂

x
k

i + x̂
−

∏︁i
k=2 µ̂

x
k

i

]︄
. (3.15)

To find in which subalgebra the duality holds, we combine Eqs. (2.12) and (3.7) that
describe the consistency conditions imposed by gauging Z3 and Z2 subgroups, respec-
tively. We find that the duality induced by gauging the entire group S3 holds between the
subalgebras

BS3

⃓⃓⃓
ˆ︁Us=

ˆ︁Ur=1

∼= BS3/S3

⃓⃓⃓
ˆ︂W∨

1′=1,ˆ︂W∨
2 =2

. (3.16)

This consistency condition says that the duality maps the S3-singlet subalgebra of BS3

to the subalgebra of BS3/S3
where the representation of each simple object is equal to

its quantum dimension. The image of Hamiltonian (2.3) under gauging the entire S3
symmetry is

ˆ︁HRep(S∨
3 ) :=− J1

L∑︂
i=1

(︂
x̂i + x̂†i

)︂
− J2

L∑︂
i=1

(︂
ẑ
µ̂x
i+1

i ẑ†i+1 + ẑ
−µ̂x

i+1

i ẑi+1

)︂
− J3

L∑︂
i=1

(︁
τ̂ zi + τ̂ zi µ̂

x
i+1

)︁
− J4

L∑︂
i=1

(︂
µ̂zi τ̂

x
i
ˆ︁Ci µ̂

z
i+1 + τ̂xi

)︂
− J5

L∑︂
i=1

i τ̂ zi µ̂
x
i+1

(︂
x̂i+1 − x̂†i+1

)︂
− J6

L∑︂
i=1

i µ̂xi+1

(︂
ẑ
µ̂x
i+1

i ẑ†i+1 − ẑ
−µ̂x

i+1

i ẑi+1

)︂
.

(3.17)

This Hamiltonian is unitarily equivalent to the Hamiltonian (3.13) under the interchange
(J1, J5) ↔ (J2, J6). The unitary transformation connecting the two Hamiltonians is the
unitary t̂Rep(S3)

, whose definition and action on the Rep(S3)-symmetric bond algebra gen-
erators are described in Appendix C.2.

In Sec. 2.2, we gave the explicit form of an operator that performs the Z3 Kramers-
Wannier duality transformation for the S3-symmetric Hamiltonian (2.3). Gauging the Z2

subgroup of the original S3 symmetry leads to the Rep(S3) symmetry. So we would like

to apply the same Z2 gauging map to ˆ︁DKW to obtain the sequential quantum circuit that
implements the duality under the (J1, J5) ↔ (J2, J6) exchange. To that end, we follow how
the individual operators (or, gates in the quantum circuit language) in (2.15) transform
under this gauging map. The full gauged operator has the formˆ︁DRep(S3)

:= t̂Rep(S3)
ˆ︁Preg

ˆ︁D0 , (3.18)

where (i) the unitary ˆ︁D0 is defined as

ˆ︁D0 :=

(︄
2∑︂

α=0

ˆ︁Z α
L
ˆ︁P
Z

µx1
1 ZL=ωα

)︄⎛⎝L−1∏︂
j=1

ˆ︁H†
j
ˆ︂CZ−µ̂x

j+1

j+1,j

⎞⎠ , (3.19)
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(ii) the projector ˆ︁Preg := 1
6
ˆ︂Wreg is defined in terms of the operator ˆ︂Wreg, corresponding

to the (non-simple) regular representation object reg = 1⊕ 1̄⊕ 2 2 of the Rep(S3) fusion
category, i.e., ˆ︂Wreg := ˆ︂W1 +ˆ︂W1̄ + 2ˆ︂W2 ,

and (iii) the unitary t̂Rep(S3)
is the operator obtained under the action of the Z2-gauging

map on the half-translation operator t̂Z2
defined in Eq. (2.14). The explicit details of this

operator are provided in Appendix C.2. The projector ˆ︁Preg annihilates any state that is
not Rep(S3) symmetric since for any irrep R = 1, 1′, 2 of S3, the identities

ˆ︁Preg

1

dR

ˆ︂WR = ˆ︁Preg, ˆ︁Preg

(︃
1̂− 1

dR

ˆ︂WR

)︃
= 0,

hold. The duality operator ˆ︁DRep(S3)
acts on the Rep(S3)-symmetric bond algebra (see

Appendix C.2 for details) as

ˆ︁DRep(S3)

⎛⎜⎜⎜⎜⎜⎜⎝

ˆ︁Xj +H.c.ˆ︁Z µ̂x
j+1

j
ˆ︁Z†
j+1 +H.c.ˆ︁Xj −H.c.

τ̂ zi µ̂
x
i+1

(︂ ˆ︁Z µ̂x
i+1

i
ˆ︁Z†
i+1 − h.c.

)︂

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
ˆ︁Z µ̂x

j+1

j
ˆ︁Z†
j+1 +H.c.ˆ︁Xj+1 +H.c.

τ̂ zj µ̂
x
j+1

(︂ ˆ︁Z µ̂x
j+1

j
ˆ︁Z†
j+1 −H.c.

)︂
ˆ︁Xj+1 −H.c.

⎞⎟⎟⎟⎟⎟⎟⎠ ˆ︁DRep(S3)
,

(3.20)
which implements the self-duality transformation (J1, J5) ↔ (J2, J6) of Eq. (3.13). The

operator ˆ︁DRep(S3)
is non-invertible since it contains the projector ˆ︁Preg. The operatorˆ︁DRep(S3)

obeys the algebraic relations 14

ˆ︁DRep(S3)
ˆ︂WR = ˆ︂WR

ˆ︁DRep(S3)
= dR ˆ︁DRep(S3)

, (3.21a)(︂ ˆ︁DRep(S3)

)︂2
= ˆ︁Preg

(︂
t̂Rep(S3)

ˆ︁D0

)︂2
= ˆ︁Preg

ˆ︁T , (3.21b)(︂ ˆ︁DRep(S3)

)︂†
= ˆ︁Preg

(︂
t̂Rep(S3)

ˆ︁D0

)︂†
= ˆ︁T † ˆ︁DRep(S3)

, (3.21c)

where dR is the dimension of the irreducible representation R, and ˆ︁T is the operator
translating both Z2 and Z3 degrees of freedom by one lattice site. Let us note that, the
second line in the above set of equations implies(︂√

6 ˆ︁DRep(S3)

)︂2
=
(︂ˆ︂W1 +ˆ︂W1̄ + 2ˆ︂W2

)︂ ˆ︁T . (3.22)

Following the discussion for Eq. (2.20), an analogous calculation of the quantum dimension
suggests

d2ˆ︁D
Rep(S3)

= 1 + 1 + 2 · 2 = 6 =⇒ d ˆ︁D
Rep(S3)

=
√
6 (3.23)

The quantum dimension calculated above as well as the fusion rule in Eq. (3.22) are
in tension with the category theoretic result [62] which suggests that a duality defect
symmetry D arising from “half-gauging” by an algebra object A must satisfy

D2 = A, dD =
√︁

⟨A⟩. (3.24)

In our case, the self-duality symmetry generated by ˆ︁DRep(S3)
corresponds to a duality

defect associated with gauging by the algebra object A = 1 ⊕ 2, as we argue in Sec. 6.1.

14We use the fact that t̂Rep(S3)
and ˆ︁D0 commute with ˆ︁Preg.
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Therefore we should expect the quantum dimension to be
√
3. This highlights an important

subtlety in calculating quantum dimension of self-duality symmetries on the lattice when
considering self-duality symmetries associated with gauging of non-invertible symmetries
by general algebra objects. A more careful way to compute the quantum dimension, as
well as the fusion rules, involves unitary operators that move non-invertible symmetry
defects on a lattice Hamiltonian as is done in Ref. [33].

3.3 Phase diagram

To discuss the phase diagram of the Hamiltonian (3.13), we first reparameterize it as

ˆ︁HRep(S3)
=− J1 cos θ

L∑︂
i=1

(︂ ˆ︁Z µ̂x
i+1

i
ˆ︁Z†
i+1 +H.c.

)︂
− J1 sin θ

L∑︂
i=1

i τ̂ zi µ̂
x
i+1

(︂ ˆ︁Z µ̂x
i+1

i
ˆ︁Z†
i+1 −H.c.

)︂
− J2 cos θ

L∑︂
i=1

(︂ ˆ︁Xi + ˆ︁X†
i

)︂
− J2 sin θ

L∑︂
i=1

i
(︂ ˆ︁Xi − ˆ︁X†

i

)︂
− J3

L∑︂
i=1

(︁
τ̂ zi + τ̂ zi µ̂

x
i+1

)︁
− J4

L∑︂
i=1

(︂
µ̂zi τ̂

x
i
ˆ︁Ci µ̂

z
i+1 + τ̂xi

)︂
.

(3.25)
As in Sec. 2.3, we will explore the phase diagram of this Hamiltonian as a function of
dimensionless ratios J1/J2 and J3/J4, for the cases of θ = 0, non-zero but small θ ≈ 0,
and large θ ∼ 0.7.

3.3.1 Analytical arguments

When studying the phase diagram of (3.25), we can utilize its duality to the Hamiltonian
(2.21), under the Z2-gauging map. When θ = 0, we again identify four gapped phases
that correspond to four distinct symmetry breaking patterns for Rep(S3) as follows.

(i) When J1 = J4 = 0, Hamiltonian (3.25) becomes

ˆ︁HRep(S3);2,3
:= −

L∑︂
i=1

[︂
J2

(︂ ˆ︁Xi + ˆ︁X†
i

)︂
+ J3

(︁
τ̂ zi + τ̂ zi µ̂

x
i+1

)︁]︂
. (3.26)

The Z3 and Z2 degrees of freedom are decoupled and all terms in the Hamiltonian
pairwise commute. There is a single nondegenerate gapped ground state

|GSRep(S3)
⟩ :=

L⨂︂
i=1

|τ zi = 1, µxi = 1, Xi = 1⟩ , (3.27)

which is symmetric under the entire Rep(S3) symmetry. At this point, it is instruc-
tive to note that there is a subtle distinction between states symmetric under invert-
ible and non-invertible symmetries that is implicitly used in the above discussion.
Namely, the state |GSRep(S3)

⟩ transforms as

ˆ︂W1̄ |GSRep(S3)
⟩ = |GSRep(S3)

⟩ , ˆ︂W2 |GSRep(S3)
⟩ = 2 |GSRep(S3)

⟩ (3.28)

where the factor of 2 reflects the quantum dimension of the non-invertible symmetry
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Figure 7: Phase diagram of Hamiltonian (3.25) based on analytical arguments at
θ = 0. The critical points are guesses based on duality arguments and various
simple limits.

ˆ︂W2
15. This is the lattice analogue of the field theory result that the vacuum expecta-

tion value (vev) of a non-invertible topological line defect is its quantum dimension.
More generally, we say that a state spontaneously breaks a non-invertible symmetry
if its expectation value is vanishing.

The S3-symmetric Hamiltonian (2.21) has twofold degenerate ground states (2.23)
when J1 = J4 and θ = 0. Under the duality mapping, the unique ground state
(3.27) is the image of the symmetric linear combination of these ground states, i.e.,
|GS+Z2

⟩+ |GS−Z2
⟩. This is because the duality only holds in the subspace specified in

Eq. (3.7).

(ii) When J2 = J4 = 0, Hamiltonian (3.25) becomes

ˆ︁HRep(S3);1,3
:= −

L∑︂
i=1

[︂
J1

(︂ ˆ︁Z µ̂x
i+1

i
ˆ︁Z†
i+1 +H.c.

)︂
+ J3

(︁
τ̂ zi + τ̂ zi µ̂

x
i+1

)︁]︂
. (3.29)

Z2 degrees of freedom again are in the disordered phase which pins their value to
τ̂ zi = 1 and µ̂xi = 1 subspace. This means that the J1 term simply reduces to the
classical 3-state Potts model. There are three degenerate ground states

|GSα1̄⟩ :=
L⨂︂
i=1

|τ zi = 1, µxi = 1, Zi = ωα⟩ . (3.30)

These ground states preserve the Z2 subgroup generated by ˆ︂W
1̄
while they break the

non-invertible ˆ︂W2 symmetry. Under the latter each ground state is mapped to equal
superposition of the the other two, i.e.,ˆ︂W2 |GS11̄⟩ = |GS21̄⟩+ |GS31̄⟩ ,ˆ︂W2 |GS21̄⟩ = |GS31̄⟩+ |GS11̄⟩ ,ˆ︂W2 |GS31̄⟩ = |GS11̄⟩+ |GS21̄⟩ .

(3.31)

15To ensure the consistency with the fusion rules of Rep(S3), the numerical pre-factor in Eq. (3.28) is

essential. On the one hand, ˆ︂W 2
2 |GSRep(S3)

⟩ = ˆ︂W2

(︂ˆ︂W2 |GSRep(S3)
⟩
)︂

= 4 |GSRep(S3)
⟩, while on the other,ˆ︂W 2

2 |GSRep(S3)
⟩ =

(︂ˆ︂W1 + ˆ︂W1̄ + ˆ︂W2

)︂
|GSRep(S3)

⟩ = (1+1+2) |GSRep(S3)
⟩ = 4 |GSRep(S3)

⟩. For a general non-

invertible symmetry, its eigenvalue corresponding to a symmetric state must match its quantum dimension
dσ.
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Note that the expectation value of ˆ︂W2 is zero in any of these ground states. We call
this phase Rep(S3)/Z2 SSB phase.

The S3-symmetric Hamiltonian (2.21) has sixfold degenerate ground states (2.25)
when J2 = J4 and θ = 0. Under the duality mapping, each ground state |GSα1̄⟩ is the
image of the linear combinations |GS+,α

Z1
⟩+ |GS−,α

Z1
⟩ that are in the subspace (3.7).

(iii) When J1 = J3 = 0, the Hamiltonian (3.25) becomes

ˆ︁HRep(S3);2,4
:= −

L∑︂
i=1

[︂
J2

(︂ ˆ︁Xi +
ˆ︁X†
i

)︂
+ J4

(︂
µ̂zi τ̂

x
i
ˆ︁Ci µ̂

z
i+1 + τ̂xi

)︂]︂
. (3.32)

First, we note that all terms in the Hamiltonian pairwise commute. Therefore we
can set τ̂xi = 1. Second, we can minimize the J2 term by setting ˆ︁Xi = 1, for whichˆ︁Ci = 1 too. This leaves us with the J4 that is reduced to J4 µ̂

z
i µ̂

z
i+1, This term favors

twofold degenerate ground states for µ̂ degrees of freedom, i.e.,

|GS±2 ⟩ :=
L⨂︂
i=1

|τxi = 1, µzi = ±1, Xi = 1⟩ . (3.33)

These ground states break the entire Rep(S3) symmetry. First, the two ground states

are mapped to each other under the Z2 symmetry generated by ˆ︂W
1̄
. Second, one

verifies ˆ︂W2 |GS±2 ⟩ = |GS+2 ⟩+ |GS−2 ⟩ , (3.34)

i.e., both ground states are mapped to the same linear combination under ˆ︂W2. This

is to say that the vev of ˆ︂W2 is 1 in both of the ground states. While this does

not match the quantum dimension of by ˆ︂W2, we say that the non-invertible ˆ︂W2

symmetry is not spontaneously broken. For this reason we call this phase Z2 SSB
phase 16. We provide further motivation for this interpretation in Sec. 6.2 where we
computed expectation values of order and disorder operators in ground states (3.33).

The S3-symmetric Hamiltonian (2.21) has a non-degenerate ground state (2.22) when
J1 = J3 and θ = 0. Under the duality mapping, the cat state, |GS+2 ⟩+ |GS−2 ⟩ is the
image of this non-degenerate ground state |GSS3

⟩.

(iv) When J2 = J3 = 0, the Hamiltonian (3.25) becomes

ˆ︁HRep(S3);1,4
:= −

L∑︂
i=1

{︂
J1

(︂ ˆ︁Z µ̂x
i+1

i
ˆ︁Z†
i+1 +H.c.

)︂
+ J4 µ̂

z
i
ˆ︁Ci µ̂

z
i+1

}︂
+ const . (3.35)

Again, the two set of operators commute, so we can simultaneously diagonalize the
operators and minimize their eigenvalues. There are three degenerate ground states.
Two of them are quite simple, because they are obtained by setting ˆ︁Zi = 1 for all
sites. As in the discussion of Eq. (3.32), such states are eigenvalue +1 eigenstates of
the charge conjugation operators ˆ︁Ci. The second term of Eq. (3.35) simply becomes
an Ising-like term for the Z2 degrees of freedom, which favors a twofold degenerate
ground state manifold spanned by

⃓⃓
GS±1

⟩︁
:=

L⨂︂
i=1

|τxi = 1, µzi = ±1, Zi = 1⟩ . (3.36a)

16See also Ref. [50] where the same terminology is used.

24



(a) (b)

Figure 8: Numerical phase diagram showing GSD (a) and central charge (b) as
heatmaps, as a function of J1 and J3, with J2 = 1− J1, J4 = 1− J3 everywhere
and with fixed θ = 0.1. The effective system size for these plots is L = 64.

The third degenerate ground state is

⃓⃓
GS31

⟩︁
:=

1

2L/2

∑︂
{si=±1}

L⨂︂
i=1

⃓⃓
τxi = 1, µxi = si si−1, Zi = ωsi

⟩︁
. (3.36b)

The assignment of the µ̂x eigenvalues ensures that the J1 term of Eq. (3.35) is
minimized in each summand of (3.36b), while the superposition over different {si}
configurations ensures that the J4 term is minimized 17. All three of these states
have the minimum possible energy associated with minimizing the eigenvalue of each
of the two set of commuting terms. Under the action of Rep(S3) symmetry these
ground states transform as

ˆ︂W1̄

⃓⃓
GS+1

⟩︁
=
⃓⃓
GS−1

⟩︁
, ˆ︂W1̄

⃓⃓
GS−1

⟩︁
=
⃓⃓
GS+1

⟩︁
, ˆ︂W1̄

⃓⃓
GS31

⟩︁
=
⃓⃓
GS31

⟩︁
, (3.37a)

and

ˆ︂W2

⃓⃓
GS31

⟩︁
=
⃓⃓
GS+1

⟩︁
+
⃓⃓
GS−1

⟩︁
+
⃓⃓
GS31

⟩︁
, ˆ︂W2

(︁⃓⃓
GS+1

⟩︁
+
⃓⃓
GS−1

⟩︁)︁
= 2

⃓⃓
GS31

⟩︁
. (3.37b)

We interpret this as the Rep(S3) SSB pattern as the vev ˆ︂W2 is vanishing in ground
states |GS±1 ⟩. We provide further motivation for this interpretation in Sec. 6.2 where
we computed expectation values of order and disorder operators in ground states
(3.36).

The S3-symmetric Hamiltonian (2.21) has a threefold degenerate ground states (2.24)
when J2 = J3 and θ = 0. Under the duality mapping, the linear combination⃓⃓
GS+1

⟩︁
+
⃓⃓
GS−1

⟩︁
is the image of the linear combination |GS1Z2

⟩ + |GS2Z2
⟩ while the

ground state
⃓⃓
GS31

⟩︁
is the image of |GS0Z2

⟩.

In conclusion, we have identified 4 fixed-point gapped ground states of the Rep(S3)-
symmetric Hamiltonian (3.25). On general grounds (see Sec. 6), this symmetry category

17Even though it is not immediately obvious that
⃓⃓
GS3

1

⟩︁
is a short-range entangled state, in fact,

it is related to a product state by the action of a finite depth local unitary circuit,
⃓⃓
GS3

1

⟩︁
=∏︁L

j=1

(︂ˆ︃Cµz
j,j

ˆ︃Cµz
j,j+1

)︂⨂︁L
i=1

[︂
|τx

i = 1, µx
i = 1⟩ ⊗ 1√

2
(|Zi = ω⟩+ |Zi = ω∗⟩)

]︂
, where ˆ︃Cµz

i,j is a kind of

CZ operator that acts as the identity operator if Zi = ω and as µ̂z
j if Zi = ω∗.
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is indeed expected to have 4 gapped phases. Therefore, we find consistency between our
lattice model and general category theoretic arguments. Again, for the gapped phases,
turning on small non-zero θ makes no difference.

The continuous phase transitions between these gapped phase can also be obtained
from those between the gapped phases of S3-symmetric Hamiltonian (2.21). More pre-
cisely, in the language of conformal field theory, the gauging procedure we performed in
Sec. 3.1 corresponds to the orbifold construction. Namely, for the Ising and 3-state Potts
CFTs, gauging the Z2 subgroup of S3 can be achieved by orbifolding the Ising symmetry
and charge conjugation symmetry of these CFTs, respectively. Under orbifolding the cen-
tral charge of the CFT does not change while the local operator content does [63–67]. As
a result, we expect the same reasoning behind the stability of the critical lines and mul-
ticritical point to small non-zero θ to hold for the Rep(S3)-symmetric Hamiltonian (3.25)
as well. In the following section, we verify these expectations by providing numerical
evidence obtained through the TEFR and DMRG algorithms.

3.3.2 Numerical results

As we did in Sec. 2.3.2, we implement the TEFR algorithm to obtain the phase diagram
of the Hamiltonian (3.25). We extract the ground state degeneracies and the central
charges using the approach described in Sec. 2.3.2. For simplicity, we only focus on the
case of small θ ≈ 0 limit. The results are shown in Fig. 8. We find, as expected, four
gapped phases of the Rep(S3)-symmetric Hamiltonian (3.25) along with continuous phase
transitions separating them from each other. We confirm using DMRG that the central
charges at the continuous transition lines matches those for the phase diagram of S3-
symmetric Hamiltonian (2.3). In contrast, the ground state degeneracies of four gapped
phases differ as they follow the Rep(S3) SSB patterns. The duality between the gapped
ground states then holds only in the symmetric subspaces (3.7).

In fact, the above reasoning also holds in the large θ limit of Hamiltonian (3.13). Just
as it was the case for the Hamiltonian (2.3) with S3 symmetry, around θ∗ ∼ π

8 an extended
gapless region opens up in the phase diagram. Similarly, we can add a term that breaks
the non-invertible self-duality symmetry implemented by ˆ︁DRep(S3)

(recall Eq. (3.18)). This

can be achieved by dualizing the perturbation (2.26). Under gauging the Z2 subgroup of
S3 perturbation (2.26) is mapped to

ˆ︁H⊥ :=− J⊥

L∑︂
i=1

(︂
τ̂ zi µ̂

x
i+1 − µ̂zi+1 τ̂

x
i+1

ˆ︁Ci+1 µ̂
z
i+2

)︂(︂ ˆ︁Z µ̂x
i+1

i
ˆ︁Z†
i+1 +

ˆ︁Z−µ̂x
i+1

i
ˆ︁Zi+1

)︂
+ J⊥

L∑︂
i=1

(τ̂ zi − τ̂xi )
(︂ ˆ︁Xi +

ˆ︁X†
i

)︂
,

(3.38)

which is odd under the non-invertible ˆ︁DRep(S3)
symmetry. When this term is added to the

Rep(S3)-symmetric Hamiltonian (3.13), depending on the sign of J⊥, shape of the phase
diagram matches either that in Fig. 5b or Fig. 5a. This allows the direct continuous phase
transitions between Rep(S3)-symmetric and Rep(S3) SSB phases or between Rep(S3)/Z2

SSB and Z2 SSB phases.

4 Incommensurate phase and z > 1 continuous transition

In a phase diagram Fig. 4 of the S3-symmetric model, we see a region of gapless phase
which include the self-dual line. We have argued that such a gapless phase is an incom-
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Figure 9: The fermion dispersion (4.3) for λ = 2−h−J and (a) h = 0.9, h = 0.9
(the c = 1

2 self-dual critical point), (b) h = 0.8, h = 0.8 (the z = 2 self-dual
multi-critical point), (c) h = 0.7, h = 0.7 (the c = 1 self-dual gapless phase), (d)
h = 0.8, h = 0.7 (the c = 1 gapless phase),

mensurate phase. Here, an incommensurate state is defined as a gapless state that has
gapless excitations with crystal momentum incommensurate with the size of the Brillouin
zone. As a result, an incommensurate state contain gapless excitations whose crystal mo-
menta form a dense set that covers the whole Brillouin zone. To better understand such
an incommensurate phase, we will consider the following Ising chain in this section

ˆ︁H := −
N∑︂
j=1

{︂
J σ̂zj σ̂

z
j+1 + h σ̂xj + λ(σ̂yj σ̂

z
j+1 − σ̂zj σ̂

y
j+1)

}︂
, (4.1)

which also has an incommensurate phase. However, now the incommensurate phase can be
solved exactly. Our model is the transverse field Ising model perturbed by a Dzyaloshinskii-
Moriya-type interaction. The latter is one of the simplest two-body interactions that is
symmetric under the (non-invertible) Kramers-Wannier symmetry of the critical point of
the Ising model. Thus the model has the self-dual symmetry when h = J .

The model can be solved exactly by mapping to a fermionic Hamiltonian with only
quadratic interactions by JW transformation Ref. [96]. After the JW transformation, one
can diagonalize the fermionic Hamiltonian via a Bogoliubov transformation which yields

ˆ︁H =
∑︂

−π<k≤π

Ek ψ̂
†
kψ̂k + E0 (4.2)

where

Ek = 4λ sin k ± 2

√︂
J2 sin2 k + (h− J cos k)2 (4.3)

Here, we note that electrons at quasi-momentum k are identified with holes at quasi-
momentum −k. We can either choose to only look at both electrons and holes for quasi-
momenta in [0, π] or only the electrons (or, equivalently only the holes) for all k ∈ (−π, π].
We take the latter point of view.

The fermion dispersion (4.3) is plotted in Fig. 9 for some values of h, J, λ. From
the above spectrum, we can identify the low-energy degrees of freedom and whether the
ground state is gapped or not. Whenever there are linear dispersing modes at zero energy
with left and right moving partners, we interpret the low energy effective field theory as
a c = 1/2 Majorana CFT. Whenever there are two pairs of such linear dispersing modes,
we identify the low energy effective field theory to be a c = 1 compact boson theory. The
phase diagram we obtain from this analysis is shown in Fig. 10.

The extended gapless regions labeled c = 1 have gapless linear-dispersing modes at
wave vector that smoothly vary throughout those regions. This behavior is seen only
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Figure 10: Phase diagram of Hamiltonian (4.1) in the (h, J) plane with λ =
2 − J − h at each point. The unshaded regions are gapped. The h = J line has
the self-dual symmetry.

when λ is larger than ≈ 0.4 or smaller than ≈ −0.66. Moreover, we see that the Ising
CFT is actually stable to a finite non-zero value of λ.

We also see that

• The time reversal symmetry and reflection symmetry are broken.

• The self-dual symmetry pins a pair of left- and right-moving fermions to k = 0 point.

• In the c = 1 gapless phase, there is at least one pair of left- and right-moving fermions
that has non-zero Fermi momenta kF . The non-zero Fermi momenta kF implies that
the c = 1 gapless phase is incommensurate.

• Without the self-dual symmetry, there are two pairs of left- and right-moving fermions
that have non-zero Fermi momenta kF .

• The h = J line is a continuous transition line even in the c = 1 phase.

We like to point out that the fermions near an incommensurate kF become fermion field
in the low energy effective field theory that carry a conserved U(1) charge. Such a U(1)
symmetry in the low energy effective field theory comes directly from lattice translation
symmetry. This is a general feature: The low energy effective field theory of incommen-
surate state contain U(1) symmetries which come from lattice translation symmetry.

We find the notion of incommensurate state very useful. It allows us to make the fol-
lowing conjecture: Some continuous transitions add gapless mode, such as Mott insulator
to superfluid transition. If the added mode is incommensurate (i.e., if the transition is
between commensurate and incommensurate phases), then the dynamical exponent z > 1.
The transition along the self-dual h = J line at h = J = 0.8 in Fig. 10 is an example of
such type of transitions.

In Fig. 11, we present a tensor network for the Ising chain (4.1). We find that the
calculated the central charge c shows a stripe pattern in the gapless incommensurate phase.
The understand the appearance of stripe, we note that central charge is the 1/L term in
the ground state energy

Egrnd = Lϵ− cv

24

2π

L
. (4.4)

As we change parameters, the U(1) charge (i.e., the crystal momentum) of the ground
state may jump, which cause a change of ground state energy of order 1/L. This leads to
the stripe pattern in the calculated central charge.
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Figure 11: (Middle) Central charge c computed via tensor network numerical
approach as a function of h ∈ [0, 2] (horizontal) and J ∈ [0, 2] (vertical) with
λ = 2− J − h, for the Ising chain (4.1) of sizes L = 256 (blue), L = 128 (green),
L = 64 (red). The range of the color intensity [0,1] corresponds to the range of
the central charge c ∈ [0, 2]. The stripe pattern in the gapless c ̸= 0 area comes
from incommensurate nature of the gapless phase. (Left) A plot of vc for the
same range of h and J . (Right) A plot of c/v for the same range of h and J .
Here v is the velocity of the gapless mode.

Figure 12: (Middle) Central charge c computed via tensor network numerical
approach as a function of J1 ∈ [0.4, 0.6] (horizontal) and J3 ∈ [0.4, 0, 6] (vertical)
for the S3-symmetric model (2.21) of sizes L = 256 (blue), L = 128 (green),
L = 64 (red). We have chosen J2 = 1 − J1, J4 = 1 − J3 and θ = 0.7 ≈ 2π

9 .
The range of the color intensity [0,1] corresponds to the range of the central
charge c ∈ [0, 2]. The stripe pattern in the gapless c ̸= 0 area comes from
incommensurate nature of the gapless phase. (Left) A plot of vc for the same
range of h and J . (Right) A plot of c/v for the same range of h and J . Here v
is the velocity of the gapless mode.

By computing ground state energy at size L and L/2, we can extract the 1/L and
obtain the value of vc. By doing the similar calculation with space and time exchanged,
we can compute c/v. Then the central charge of geometric mean of vc and c/v. This is
Fig. 11 was calculated. From those results, we see that vc is small at the boundary of the
incommensurate phase, while c/v is large at the boundary. This consistent with our exact
result, which implies that v = 0 at the boundary.

Armed with this understanding, we compute the central charge c, as wel as vc and
c/v, for the S3 symmetric Hamiltonians (see Fig. 12). The similarity between Fig. 12
and Fig. 11 suggest that the gapless phase in Fig. 12 is incommensurate. The continuous
transition between commensurate and incommensurate phase has a dynamical exponent
z > 1.

The parameter θ in our S3 and Rep(S3) symmetric models, (2.21) and (3.25), plays a
very similar role to that of λ in the deformed Ising model above. At large enough values
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of θ and λ in respective models, a incommensurate phase appears.

5 Self-dual spin chains and their SymTO description

Emergent symmetry is the most important invariant for gapless liquid states. However,
the emergent symmetry are usually generalized symmetries that can be anomalous, higher-
form, higher-group, and/or even non-invertible. We need a general theory for all those
symmetries, in order to use emergent generalized symmetries to understand gapless states.

Fortunately, a general theory for generalized symmetries is given by topological orders
in one higher dimension, which is called SymTO. Using emergent generalized symmetries
to understand gapless states becomes using the corresponding topological order in one
higher dimension (the SymTO) to understand gapless states.

The self-dual lattice models discovered in last a few sections contain exact non-invertible
symmetries. To understand how those non-invertible symmetries constrain the low energy
dynamics of the lattice model, we need to use the Symmetry-Topological-Order correspon-
dence, and find out which SymTO’s describe those non-invertible symmetries. Let us first
use Symmetry-Topological-Order correspondence to understand the usual S3-symmetric
spin chain

5.1 SymTO of S3 symmetry

The symmetry data of a 1+1d bosonic system with S3 symmetry can be encapsulated
more completely in its symmetry-topological-order (SymTO), [13] which is D(S3), the S3
quantum double, i.e., S3 topological order in 2+1d.18 From this point of view, we [16,52]
argued that the gapped phases allowed by S3 symmetry are in one-to-one correspondence
to the gapped boundaries of the SymTO D(S3).

19

The D(S3) symTO has eight types of point-like excitations, whose topological spins s,
quantum dimensions d, S-matrix, and fusion rule are given below

D(S3) 1 1′ 2 r r1 r2 s s1

s: 0 0 0 0 1
3

2
3 0 1

2

d: 1 1 2 2 2 2 3 3

S =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1, 1, 2, 2, 2, 2, 3, 3

1, 1, 2, 2, 2, 2, −3, −3

2, 2, 4, −2, −2, −2, 0, 0

2, 2, −2, 4, −2, −2, 0, 0

2, 2, −2, −2, −2, 4, 0, 0

2, 2, −2, −2, 4, −2, 0, 0

3, −3, 0, 0, 0, 0, 3, −3

3, −3, 0, 0, 0, 0, −3, 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5.1)

18See Appendix B for a review of SymTO.
19Similar statements have also appeared elsewhere in the literature. [39, 50,61]
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1 1′ 2 r r1 r2 s s1

1 1 1′ 2 r r1 r2 s s1

1′ 1′ 1 2 r r1 r2 s1 s

2 2 2 1⊕ 1′ ⊕ 2 r1 ⊕ r2 r ⊕ r2 r ⊕ r1 s⊕ s1 s⊕ s1

r r r r1 ⊕ r2 1⊕ 1′ ⊕ r 2⊕ r2 2⊕ r1 s⊕ s1 s⊕ s1

r1 r1 r1 r ⊕ r2 2⊕ r2 1⊕ 1′ ⊕ r1 2⊕ r s⊕ s1 s⊕ s1

r2 r2 r2 r ⊕ r1 2⊕ r1 2⊕ r 1⊕ 1′ ⊕ r2 s⊕ s1 s⊕ s1

s s s1 s⊕ s1 s⊕ s1 s⊕ s1 s⊕ s1 1⊕ 2⊕ r ⊕ r1 ⊕ r2 1′ ⊕ 2⊕ r ⊕ r1 ⊕ r2

s1 s1 s s⊕ s1 s⊕ s1 s⊕ s1 s⊕ s1 1′ ⊕ 2⊕ r ⊕ r1 ⊕ r2 1⊕ 2⊕ r ⊕ r1 ⊕ r2

We may view S3 as Z3⋊Z2, where Z3 is generated by 2π/3 rotations r and Z2 is generated
by y → −y reflection s. The particle 1′ is the 1-dimensional representation of Z3 ⋊ Z2

and can be viewed as the Z2 charge. From the S matrix, we see that moving particle 1′

around particle s generates −1, and thus s is the Z2 flux.
There are four Lagrangian condensable algebras of D(S3), which correspond to four

maximal subsets of bosonic anyons in D(S3) with trivial mutual statistics between them.
We can condense all the anyons in Lagrangian condensable algebra on 1+1d boundary of
the 2+1d SymTO, which will give rise to a gapped boundary, which in turn correspond to
a gapped state for systems with S3 symmetry. The four Lagrangian condensible algebras
of D(S3) are denoted as follows:

(i) A1 = 1⊕ 1′ ⊕ 22 corresponds to S3 SSB completely (S3 ferromagnet)

(ii) A2 = 1⊕ 1′ ⊕ 2r corresponds to S3 SSB to Z3

(iii) A3 = 1⊕ 2⊕ s corresponds to S3 SSB to Z2

(iv) A4 = 1⊕ r ⊕ s corresponds to S3 symmetric phase (S3 paramagnet)

Here we have noted which gapped S3-symmetric phase each of the Lagrangian algebra
corresponds to. This is an example how SymTO determines low energy phases.

5.2 SymTO of Rep(S3) symmetry

It turns out that S3-symmetry and Rep(S3)-symmetry are holo-equivalent, in the following
sense: There is one-to-one correspondence between between S3-symmetric models and
Rep(S3)-symmetric models, such that the corresponding S3-symmetric model and Rep(S3)-
symmetric model are identical when restricted to the corresponding symmetric sub-Hilbert
space. As a result, S3-symmetric models and Rep(S3)-symmetric models have identical
phase diagram and phases transitions. However, the corresponding phases and phase
transitions may be given different names.

The holo-equivalence between S3-symmetry and Rep(S3)-symmetry is obtain by re-
alizing that they have the same SymTO. The SymTO can be calculated by computing
the algebra of the associated patch operators; some related examples were discussed in
Refs. [44, 68].

So the four four Lagrangian condensible algebras of D(S3) also give rise to four gapped
phases for our Rep(S3) symmetric models. In terms of the holo-equivalent Rep(S3) symme-
try, the first Lagrangian condensible algebra is the symmetric gapped phase while the last
one is one that corresponds to a completely symmetry broken phase. The other two are
more subtle, and we investigate a lattice model with Rep(S3) symmetry below to better un-
derstand the symmetry-breaking patterns of these phases better. We find that the second
one is only symmetric under a Rep(Z2) sub-fusion category symmetry of Rep(S3), while
the third one breaks this Rep(Z2) while respecting the symmetry of Rep(S3) associated
with the element 2.
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5.3 SymTO of the self-dual symmetry

In Ref. [52], the authors also highlighted the importance of a duality associated with the
permutation of the anyons 2 and r, which is the automorphism of D(S3). Such an auto-
morphism in SymTO can lead to a new non-invertible symmetry, which we call self-dual
symmetry.

Here, we would like stress an important difference between D(S3) SymTO and D(S3)
SymTFT. In D(S3) SymTFT, the automorphism 2 ↔ r implies a symmetry of SymTFT.
In contrast, D(S3) SymTO is just an 2+1D S3 lattice gauge theory with matter. Thus
in general, the SymTO (i.e. the lattice gauge theory) does not have any symmetry.
This corresponds to the fact that our S3 and Rep(S3) lattice models, in general, do not
have the self-dual symmetry, and their SymTO is the D(S3) SymTO, without the 2 ↔ r
automorphism symmetry Z2↔r

2 .
However, the presence of 2 ↔ r automorphism implies that we can fine tune the

D(S3) SymTO to make it to have the automorphism symmetry Z2↔r
2 . This, in turn,

implies that we can fine tune the S3 and Rep(S3) symmetric lattice models, so that the
fine-tuned models have an additional self-dual symmetry. Such an existence of lattice
self-dual symmetry used to be a conjecture. [53] In the last a few sections, we explicitly
constructed such lattice self-dual symmetry, and confirm the conjecture.

The fine-tuned self-dual lattice models have a larger symmetry which include both
the self-dual symmetry and one of the S3 or Rep(S3) symmetries. Thus, the self-dual
lattice models have a larger SymTO. Such a larger SymTO can be obtained by gauging
the Z2↔r

2 automorphism symmetry in D(S3) SymTO. Ref. [?] computed this gauging, and
find that the larger SymTO is SU(2)4 × SU(2)4 or JK4 × JK4 topological order. Note
that there remains to be a two-fold ambiguity, which comes from the possibility of the
stacking a Z2↔r

2 SPT state to the SymTO, before the Z2↔r
2 gauging. The anyon data for

the SU(2)4 × SU(2)4 and JK4 × JK4 topological orders are given below:

SU(2)4 1 e m m1 q
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8

5
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1
3

d: 1 1
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3
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3 2
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√
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√
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√
3, 0

2, 2, 0, 0, −2
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e e 1 m1 m q

m m m1 1⊕ q e⊕ q m⊕m1

m1 m1 m e⊕ q 1⊕ q m⊕m1

q q q m⊕m1 m⊕m1 1⊕ e⊕ q

(5.2)

and
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S =
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√
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3, 0

2, 2, 0, 0, −2

⎞⎟⎟⎟⎟⎟⎟⎠
1 e m m1 q

1 1 e m m1 q

e e 1 m1 m q

m m m1 1⊕ q e⊕ q m⊕m1

m1 m1 m e⊕ q 1⊕ q m⊕m1

q q q m⊕m1 m⊕m1 1⊕ e⊕ q

(5.3)

From the fusion e⊗ e = 1, we see that e carries a Z2 charge. From the S-matrix, we see
that m (and m1) carries the corresponding Z2-flux.

Later, we will show that the generalized symmetries in our self-dual S3-symmetric and
our self-dual Rep(S3)-symmetric models are both described by the JK4 × JK4 SymTO.
So in the following, we will concentrate on JK4 × JK4 SymTO.

The JK4 × JK4 SymTO and D(S3) SymTO can have a gapped domain wall between
them, which describes the breaking of the Z2↔r

2 self-dual symmetry and reduce the JK4×
JK4 SymTO and D(S3) SymTO. The domain wall is caused by the condensation of eē
in JK4 × JK4 SymTO (and no condensation in the D(S3) SymTO). More precisely, the
domain wall is described by the following condensible algebra in the topological order
JK4 × JK4 ×D(S3) = JK4 × JK4 ×D(S3):

A = (1,1,1)⊕ (e, ē,1)⊕ (1, ē,1′)⊕ (e,1,1′)⊕ (q, q̄,2)⊕ (q, q̄, r)⊕ (q,1, r1)⊕ (q, ē, r1)

⊕ (1, q̄, r2)⊕ (e, q̄, r2)⊕ (m, m̄, s)⊕ (m1, m̄1, s)⊕ (m, m̄1, s1)⊕ (m1, m̄, s1) (5.4)

The condensible algebra allow us to related the anyons in D(S3) SymTO and in JK4×
JK4 SymTO. The term (1, ē,1′) in A means that the anyon 1′ in D(S3) SymTO and
the anyon 1 ⊗ ē = ē in JK4 × JK4 SymTO can condense on the domain wall. In other
words, after going through the domain wall, the ē-anyon in JK4 × JK4 SymTO turns
into the 1′-anyon in D(S3) SymTO. Similarly, the term (e,1,1′) in A means that, after
going through the domain wall, the e-anyon in JK4 × JK4 SymTO turns into the 1′-
anyon in D(S3) SymTO. Thus the e-anyon and the ē-anyon in JK4×JK4 SymTO carries
the Z2-charge of the S3 = Z3 ⋊ Z2 symmetry. The corresponding Z2-flux is carries by
mm̄-anyon in JK4 × JK4 SymTO, which has a π-mutual statistics with both e-anyon
and ē-anyon. This is also consistent with the term (m, m̄, s) in A, which implies that
after going through the domain wall, the mm̄-anyon in JK4×JK4 SymTO turns into the
s-anyon (the Z2-flux) in D(S3) SymTO. Thus, the string operator that creates a pair of
mm̄-anyons generates the Z2 (of S3) transformation.

The Abelian anyon eē in JK4 × JK4 SymTO does not carries the Z2 charge of the
S3. But it carries the Z2↔r

2 charge of the self-dual symmetry. This is consistent with the
fact that the condensation A = 1 ⊕ eē breaks the self-dual symmetry and reduces the
JK4 × JK4 SymTO to D(S3) SymTO: [52–54]

(JK4 × JK4)/1⊕eē = D(S3). (5.5)

To summarize, the anyons in JK4 × JK4 and D(S3) SymTOs have the following relation

eē→ 1, e→ 1′, ē→ 1′, mm̄→ s, qq̄ → 2, qq̄ → r, q → r2, q̄ → r1. (5.6)
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Figure 13: (Left) The bulk JK4×JK4 SymTO and theAS3-condensation induced
topological boundary ˜︁R describes the S3-symmetry plus the self-dual symmetry
in the self-dual S3-symmetric models. (Right) The bulk JK4×JK4 SymTO and
theARep(S3)-condensation induced topological boundary ˜︁R describes the Rep(S3)-
symmetry plus the self-dual symmetry in the self-dual Rep(S3)-symmetric models.

Since eē has π-mutual statistics with m and m̄ in JK4 × JK4 SymTO, thus m and m̄
are Z2↔r

2 -flux for the self-dual symmetry. In other words, the string operator that creates
a pair of m-anyons generates the self-dual transformation. Similarly, the string operator
that creates a pair of m̄-anyons also generates the self-dual transformation. However, the
two transformations differ by a Z2 transformation. Becausem’s quantum dimension is

√
3,

the transformation generated by the string operator ofm is an intrinsic non-invertible sym-
metry.20 The non-integral quantum dimension also implies the symmetry to be anomalous
21, since anomaly-free generalized symmetry are classified in Ref. [16, 36], which always
have integral quantum dimensions.

In Ref. [16, 35, 36], an isomorphic holographic discomposition (ϵ, ˜︁R) of a model is
introduced to expose the symmetry and the SymTO in the model (see Fig. 13):

model
(ϵ, ˜︁R)∼= ˜︁R⊠JK4×JK4

QFTano, (5.7)

where the boundary ˜︁R and the bulk JK4 × JK4 are assumed to have infinity energy gap.
A similar picture was also obtained later in Ref. [37,38]. Also see Ref. [53] and Appendix
B for a short review.

The isomorphic holographic decomposition (5.7) has the following physical meaning:
the model is exactly simulated by the composite system ˜︁R⊠JK4×JK4

QFTano. The local
low energy properties of the model are exactly simulated by a quantum field theoryQFTano
(which has a gravitational anomaly characterized by the JK4 × JK4 SymTO). The fully
gapped boundary ˜︁R and the bulk JK4 × JK4 SymTO cover the global properties of the
model.

Using the above Symmetry-Topological-Order correspondence, we find that the JK4×
JK4 SymTO has only two holo-equivalent symmetries, characterized by two different
choices of the gapped boundary ˜︁R in Fig. 13. This is because the JK4×JK4 SymTO has
only two Lagrangian condensible algebras that can give rise to two gapped boundaries ˜︁R:

ARep(S3)
= (1,1)⊕ (e, ē)⊕ (m, m̄)⊕ (m1, m̄1)⊕ (q, q̄)

AS3 = (1,1)⊕ (1, ē)⊕ (e,1)⊕ (e, ē)⊕ 2(q, q̄). (5.8)

Using (5.6), we see that the AS3-condensation corresponds to the condensation of S3-
charges 1′ and 2, as well as the condensation of Z2↔r

2 -charge of the self-dual symmetry.
This leads us to conjecture that AS3 gives rise to the S3-symmetry plus the self-dual

20By defintion, a symmetry is intrinsically non-invertible, if all its holo-equivalent symmetries are non-
invertible.

21By defintion, a (generalized) symmetry is anomaly-free if it allows gapped non-degenerate ground state
on any closed space.
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symmetry, i.e. the symmetry of the self-dual S3 symmetric model studied in Section 2
(see Fig. 13(left)).

Similarly, ARep(S3)-condensation corresponds to the condensation of S3-flux s and r,
as well as the condensation of Z2↔r

2 -charge of the self-dual symmetry. This leads us to
conjecture that ARep(S3) gives rise to the Rep(S3)-symmetry plus the self-dual symmetry,
i.e. the symmetry of the self-dual Rep(S3) symmetric model studied in Section 3 (see Fig.
13(right)).

Using the Symmetry-Topological-Order correspondence, we can classify the gapped
phases of the self-dual S3 symmetric model, which is modeled by Fig. 13(left) with ˜︁R
boundary given by theAS3-condensation. The gapped phases of the self-dual S3 symmetric
model is given by gapped boundary QFTano, which is induced by Lagrangian condensible
algebras in (5.8). So the self-dual S3 symmetric model has only two gapped phases. If the
boundary QFTano is induced by ARep(S3)-condensation, then the ground state degeneracy
is given by the inner product of the two Lagrangian condensible algebras that give rise to
the ˜︁R and QFTano boundaries: [53]

GSD = (AS3 ,ARep(S3)) = 4. (5.9)

Here the inner product (AS3 ,ARep(S3)) is defined by viewing condensible algebra as integral
vector whose components are the integral coefficients in front of anyons in the expension
of A. [53] This gapped phase is a degeneracy of the Z2-state (with GSD = 3) and the
S3-state (with GSD = 1) of the S3 symmetric model. The second gapped phase of the
self-dual S3 symmetric model is given by QFTano boundary induced by AS3-condensation.
The ground state degeneracy is given by

GSD = (AS3 ,AS3) = 8. (5.10)

The second gapped phase is a degeneracy of the Z3-state (with GSD = 2) and the Z1-state
(with GSD = 6) of the S3 symmetric model. We see that the self-dual S3 symmetric model
does not have any gapped phase with non-degenerate ground state. Thus the combined
S3 and self-dual symmetries is an anomalous symmetry.

Similarly, the self-dual Rep(S3) symmetric model is given by Fig. 13(right), with ˜︁R
boundary given by the ARep(S3)-condensation. The self-dual Rep(S3) symmetric model
also has only two gapped phases, with ground state degeneracy:

GSD = (AS3 ,ARep(S3)) = 4, GSD = (ARep(S3),ARep(S3)) = 5. (5.11)

Again, the self-dual Rep(S3) symmetric model does not have any gapped phase with non-
degenerate ground state. Thus the combined Rep(S3) and self-dual symmetries is an
anomalous symmetry.

In the above, we use Lagrangian condensible algebras of a SymTO to classify all pos-
sible gapped phases for systems with that SymTO. The Lagrangian condensible alge-
bras classify the ways in which the SymTO can be maximally broken. Those maximal
SymTO-broken states are the gapped states. Next, we consider the minimal SymTO-
broken states (i.e. the SymTO-unbroken states), which are alway gapless if the SymTO
is non-trivial. Those SymTO-unbroken states are described by the 1-condensed bound-
aries of the SymTO [52] (i.e. the boundaries induced by the minimal condensible algebra
A = 1). We find that two of the 1-condensed boundaries of the JK4 × JK4 SymTO
are described by (6, 5) minimal model. The first one has the following multi-component
partition function [13,52]
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m1;ē = χm6×m6

4, 13
8
;5,−3

+ χm6×m6
7, 1

40
;6,− 2

5

ZJK4×JK4
m1;m̄ = χm6×m6

4, 13
8
;2,− 1

8

+ χm6×m6
7, 1

40
;9,− 21

40

ZJK4×JK4
m1;m̄1

= χm6×m6
4, 13

8
;4,− 13

8

+ χm6×m6
7, 1

40
;7,− 1

40

ZJK4×JK4
m1;q̄ = χm6×m6

4, 13
8
;3,− 2

3

+ χm6×m6
7, 1

40
;8,− 1

15

ZJK4×JK4
q;1 = χm6×m6

3, 2
3
;1,0

+ χm6×m6
8, 1

15
;10,− 7

5

ZJK4×JK4
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The second one has
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The various terms in each component of the partition function are conformal characters

of the (6,5) minimal model. The expression χm6×m6
a,ha; b,−hb

is a short-hand notation for the
product of the left moving chiral conformal character associated with the primary operator
labeled a (set by an arbitrary indexing convention) with conformal weight (ha, 0), and the
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right moving chiral conformal character associated with the primary operator labeled b
with conformal weight (0, hb). The superscript m6×m6 indicates that both the left and
right moving chiral conformal characters are picked from the same (6,5) minimal model.

Note that in the above multi-component “SymTO-resolved” partition function, the 1
sector contains all the primary operators that respect the symmetry. We see that the
scaling dimensions of the symmetric operators to be 7

5 +
7
5+ even integers (from the term

χm6×m6
10, 7

5
;10,− 7

5

in ZJK4×JK4
1;1 ), for both gapless states. Such a operator are irrelavent. There-

fore, both of the above two gapless states are gapless phases with no relavent perturbation
that respects the JK4 × JK4 SymTO.

We remark that we have performed the above calculation for another candidate SU(2)4×
SU(2)4 SymTO. We find that for systems with SU(2)4×SU(2)4 SymTO, all gapless states
described by (6,5) minimal model contain at least one relavent perturbation that respects
the SU(2)4 × SU(2)4 SymTO. This contradicts with our numerical calculation where we
find a stable gapless phase described by (6,5) minimal model in the presence of S3 and
self-dual symmetry. This allows us to conclude that the SymTO in our self-dual S3-
symmetric model and self-dual Rep(S3)-symmetric model is given by JK4 × JK4, not by
SU(2)4 × SU(2)4.

The operators that breaks the self-dual symmetry live in the eē sector. From above

ZJK4×JK4
e;ē , we find that the scaling dimensions of the self-dual-symmetry breaking opera-

tors to be 2
5+

2
5+ even integers and 3+3+ even integers, for both gapless states. Thus, the

two gapless state has only one relavent self-dual-symmetry breaking operator that does
not break the S3 symmetry. In fact, the self-dual-symmetry breaking caused by eē con-
densation can be seen from the following relation between JK4 × JK4-SymTO-resolved
partition function, (5.12) and (5.13), and D(S3)-SymTO-resolved partition function (E.1):

Z
D(S3)
1 = ZJK4×JK4

1;1 + ZJK4×JK4
e;ē , Z

D(S3)
1′ = ZJK4×JK4

e;1 + ZJK4×JK4
1;ē ,

ZD(S3)
s = ZJK4×JK4

m;m̄ + ZJK4×JK4
m1;m̄1

, · · · (5.14)

where the sectors in JK4×JK4 SymTO connected by eē are combined into a single sector
in D(S3) SymTO.

The above two gapless states with self-dual symmetry are very similar. The only

difference is that Z
D(S3)
s splits differently when we add the self-dual symmetry:

ZD(S3)
s = χm6×m6

2, 1
8
;2,− 1

8

+ χm6×m6
9, 21

40
;9,− 21

40⏞ ⏟⏟ ⏞
Z

JK4×JK4
m;m̄

+χm6×m6
4, 13

8
;4,− 13

8

+ χm6×m6
7, 1

40
;7,− 1

40⏞ ⏟⏟ ⏞
Z

JK4×JK4
m1;m̄1

ZD(S3)
s = χm6×m6

4, 13
8
;4,− 13

8

+ χm6×m6
7, 1

40
;7,− 1

40⏞ ⏟⏟ ⏞
Z

JK4×JK4
m;m̄

+χm6×m6
2, 1

8
;2,− 1

8

+ χm6×m6
9, 21

40
;9,− 21

40⏞ ⏟⏟ ⏞
Z

JK4×JK4
m1;m̄1

(5.15)

In addition to the two Lagrangian condensible algebras (5.8), M = JK4×JK4 SymTO
also has the following six non-Lagrangian condensible algebras:

1. A1 = (1,1) ⊕ (e, ē) ⊕ (q, q̄)
M/A1

contains topological spins (0) and has DM/A1
= 2.

M/A3
= D(Z2)

2. A2 = (1,1) ⊕ (1, ē) ⊕ (e,1) ⊕ (e, ē)
M/A2

contains topological spins (0, 13 ,
2
3) and has DM/A2

= 3.

M/A3
= D(Z3)
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3. A3 = (1,1) ⊕ (e, ē)
M/A3

contains topological spins (0, 13 ,
1
2 ,

2
3) and has DM/A3

= 6.

M/A3
= D(S3)

4. A4 = (1,1) ⊕ (e,1)
M/A4

contains topological spins (0, 1
24 ,

1
3 ,

3
8 ,

13
24 ,

2
3 ,

7
8) and has DM/A4

= 6

M/A3
= Z3 × JK4

5. A5 = (1,1) ⊕ (1, ē)
M/A5

contains topological spins (0, 18 ,
1
3 ,

11
24 ,

5
8 ,

2
3 ,

23
24) and has DM/A5

= 6
M/A3

= JK4 × Z3

6. A6 = (1,1)
M/A6

= JK4 × JK4.

The A-condensation reduces the SymTO M = JK4 × JK4 to a smaller SymTO M/A. In

the above, we also list some properties of the induced SymTOM/A. Here DM/A =
√︂∑︁

i d
2
i

is the total quantum dimension ofM/A. Those information helps us to identify the reduced
SymTOM/A, which is also listed above. Here Z3 is the Abelian topological order described

by K-matrix

(︄
2 1

1 2

)︄
, where the fusion of the anyons form a Z3 group.

Those condensible algebras describe the possible spontaneous symmetry breaking pat-
terns of the JK4 × JK4 SymTO, where the unbroken SymTO is given by M/A = (JK4 ×
JK4)/A. Because the unbroken SymTO is non-trivial, those non-maximal SymTO broken

states are gapless, and are given by the 1-condensed bounaries of M/A = (JK4×JK4)/A.
Those 1-condensed bounaries are some possible gapless states of our self-dual S3-symmetric
or Rep(S3)-symmetric models.

6 Discussion

Let us recap and give a detailed discussion of the main lessons from Secs. 2 and 3. We
collect our key results under three directions. Sec. 6.1 reviews the web of dualities we
have obtained by gauging various subgroups of S3. In Sec. 6.2, we describe symmetry-
breaking patterns in terms of patch operators, and compute their expectation values in
the gapped fixed-point ground states. We argue that these can be used to detect ordered
and disordered phases of models with general fusion category symmetries. Finally, Sec.
?? complements our discussion of gapped phases of S3 and Rep(S3) symmetries from the
perspective of symmetry topological order (SymTO) correspondence.

6.1 Gauging-induced dualities

In Secs. 2 and 3, we presented several dualities that are induced by gauging subgroups of
S3 symmetry. In Fig. 14, we summarize the corresponding web of dualities. The corners
of the diagram label the symmetry categories of the dual bond algebras while the each
arrow implies a duality map induced by gauging. It has been shown in Ref. [24], distinct
gaugings of a symmetry category C are in one-to-one correspondence with the left (or right)
module categories over C. Accordingly, we label each arrow in Fig. 14 by the choice of the
corresponding module category.22 Alternatively, each left (or right) module category over

22Module categories over VecG (Rep(G)) are given by the categories VecH (Rep(H)) where H ⩽ G,
i.e., H is a subgroup of G [69].
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Figure 14: The web of dualities obtained induced by gauging. The four categories
VecS3 , VecS∨

3
, Rep(S3), and Rep(S∨

3 ) at the corners of the diagram denote the
fusion category symmetry of the bond algebras (2.6), (2.10), (3.5), and (3.14),
respectively. Each directed arrow between these fusion categories denote a duality
induced by gauging. The label on each arrow denotes the corresponding module
category over the category at the source of the arrow.

C is equivalent to the category of right (or left) A-modules over C where A ∈ C is some
algebra object (see Appendix A of Ref. [60]). This correspondence forms the connection
between the module categories over C and the perspective on gauging as summing over
symmetry defect insertions in two-dimensional spacetime. In the context of fusion category
symmetries, gauging can then be understood as summing over all insertions of A-defects
in the partition function in two-dimensional spacetime.

In Fig. 14, for the fusion category VecS3
,23 the module categories label the symmetry

category of the subgroups that are not gauged. Note that the module categories are in
one-to-one correspondence with (conjugacy classes) of subgroups of S3. In particular, the
module categories VecS3

and VecZ2
of VecS3

correspond to gauging by the algebra objects e
(the trivial algebra object, implementing trivial gauging) and e⊕r⊕r2, respectively. These
gauging maps give back the same symmetry category VecS3

. The latter, in particular, is
what we would ordinarily describe as the Z3 Kramers-Wannier duality. We provided a
recipe for implementing this gauging map in Sec. 2.2. On the other hand, the module
categories VecZ3

and VecZ1 , where Z1 is the trivial group, correspond to gauging VecS3
by

the algebra objects e⊕ s and e⊕ r ⊕ r2 ⊕ s⊕ sr ⊕ sr2, respectively. These gauging maps
lead to the dual Rep(S3) symmetry category. The first of these is exactly the gauging map
we used to construct the Rep(S3) spin chain in Sec. 3, starting from the S3 spin chain of
Sec. 2. The second one of these can be implemented by first gauging Z3 in S3 and then
gauging the Z2 subgroup of the dual S∨

3 , as discussed in Sec. 3.2.
For the fusion category Rep(S3), we find that the algebra objects corresponding to

three distinct gaugings of Rep(S3) labeled by module categories Rep(Z3), Rep(Z2), and
Rep(Z1) to be 1 ⊕ 1̄, 1 ⊕ 2, and 1 ⊕ 1̄ ⊕ 22, respectively.24 Gauging by certain algebra
objects can give back the same symmetry category. For other algebra objects, one gets
a new (dual) symmetry category. This is a generalization of Kramers-Wannier duality to

23For any group G, the fusion category VecG consists of simple objects that can be thought of as G-
graded vector spaces, which fuse according to group multiplication law. The morphisms of this category
are graded G-graded linear maps. In this subsection, we will refer to S3 symmetry as VecS3

to emphasize
the general language of fusion category symmetry.

24These were derived using the internal Hom construction outlined in Appendix A.3 of Ref. [60].
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Table 1: Expectation values of S3 order and disorder operators defined in Eq.
(6.1) in the fixed point ground state wavefunctions defined in Eqs. (2.22), (2.23),
(2.24), and (2.25), respectively. The non-zero (zero) expectation values of order
(disorder) operators detect the spontaneous symmetry breaking and long-range
order in the ground states.

GS ˆ︁CZ2
(j, ℓ) ˆ︁U[s](j, ℓ)

ˆ︁CZ3
(j, ℓ) ˆ︁U[r](j, ℓ)

|GSS3
⟩ 0 +3 0 +2

|GS±Z3
⟩ +1 0 0 +2

|GSαZ2
⟩ 0 +1 +2 0

|GS±,α
Z1

⟩ +1 0 +2 0

arbitrary fusion category symmetries. In our example with Rep(S3) symmetry, we find that
gauging by either of the algebra objects 1⊕ 1̄ or 1⊕ 1̄⊕22 (i.e., the regular representation
object) of Rep(S3) gives rise to S3 symmetry. On the other hand, gauging by either the
trivial algebra object 1 (i.e., implementing trivial gauging) or the algebra object 1 ⊕ 2
gives back a “dual” Rep(S∨

3 ) symmetry. Like the familiar KW duality associated with
gauging Abelian groups, the gauging by 1 ⊕ 2 implements a duality transformation that
exchanges pairs of gapped phases of the system. In our analysis, we did not provide an
explicit description of how gauging by algebra objects, via the insertion of defects approach
put forward in Ref. [24], works at the level of microscopic Hamiltonians. However, we note
that gauging by the 1 ⊕ 1̄ algebra object should proceed very identically to gauging of
an ordinary Z2 symmetry since ˆ︂W1̄ indeed generates a Z2 sub-symmetry of Rep(S3), and
gauging by the regular representation algebra object should be identical to first gauging
by 1 ⊕ 1̄ and then gauging the Z3 subgroup of the resulting S3 symmetry. Finally, we
identify a sequential quantum circuit (3.18), that implements a duality transformation
of our Rep(S3) spin chain, which therefore must correspond to the remaining option of
gauging by the 1⊕ 2 algebra object.

6.2 SSB patterns and order/disorder operators

Ordered phases in which symmetries are spontaneously broken can be detected by non-
zero values of appropriate correlation functions of order operators. In contrast, disordered
phases can be detected by non-zero values of appropriate correlation functions of disorder
operators. The expectation values of correlation functions of order and disorder operators,
considered together, have been found to be a tool that can detect gaplessness Ref. [70]. The
idea of order and disorder operators can be generalized to non-invertible symmetries in the
form of patch operators [13, 44, 68]. Depending on which gapped phase the system is in,
different patch operators will get a non-zero expectation value in the ground state(s). This
gives a way to detect symmetry-breaking even if we restrict to the symmetric sub-Hilbert
space so that ground state degeneracy is no longer a reliable tool.

For the S3 symmetry, we have the patch operators 25

ˆ︁CZ2
(j, ℓ) := σ̂zj σ̂

z
j+ℓ,

ˆ︁CZ3
(j, ℓ) := ˆ︁Zj

ˆ︁Z†
j+ℓ +

ˆ︁Z†
j
ˆ︁Zj+ℓ, (6.1a)

25We choose, without loss of generality, σ̂z
j σ̂

z
j+ℓ to be the Z2 order operator. Alternatively, we could

have chosen σ̂z
j τ̂

z
j+ℓ, τ̂

z
j σ̂

z
j+ℓ, or τ̂

z
j τ̂

z
j+ℓ as well. Any of these choices for the order operators produce the

same expectation values in the ground states of gapped fixed-points of the Hamiltonian (2.21).
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Table 2: Expectation values of Rep(S3) order and disorder operators defined in
Eq. (6.2) in the fixed point ground state wavefunctions defined in Eqs. (3.27),
(3.30), (3.33), (3.36a), and (3.36b), respectively. The non-zero (zero) expectation
values of order (disorder) operators detect the spontaneous symmetry breaking
and long-range order in the ground states.

GS ˆ︁C
1̄
(j, ℓ) ˆ︂W

1̄
(j, ℓ) ˆ︁C2(j, ℓ)

ˆ︂W2(j, ℓ)

|GSRep(S3)
⟩ 0 +1 0 +2

|GSα1̄⟩ 0 +1 +2 0

|GS±2 ⟩ +3 0 0 +2

|GS±1 ⟩ +1 0 +2 0

|GS31⟩ +1 0 +2 0

that are associated with Z2 and Z3 order operators, respectively, and the patch operators

ˆ︁U[s](j, ℓ) :=
2∑︂

α=0

j+ℓ∏︂
k=j

σ̂xk τ̂
x
k
ˆ︁Ck
ˆ︁Xα
k ,

ˆ︁U[r](j, ℓ) :=

j+ℓ∏︂
k=j

ˆ︁Xk +

j+ℓ∏︂
k=j

ˆ︁X†
k, (6.1b)

that are associated with Z2 and Z3 disorder operators, respectively. We note that both
of these classes of patch operators are symmetric under the entire S3 group, i.e., they are
constructed out of the generators of S3-symmetric bond algebra (2.6), while the disorder
operators are closed under the action of S3. Both order and disorder operators can be
thought of as transparent patch operators [44] in the sense that they commute all the
terms in the S3 Hamiltonian (2.21) that are supported between sites j + 1 and j + ℓ− 1.
On the Hamiltonian their nontrivial actions only appear at their boundaries.

The expectation values attained by the patch operators in the gapped fixed-point
ground states (2.22), (2.23), (2.24), and (2.25) are given in Table 1. In the fixed-point
ground states, non-zero expectation values of order operators accompany the vanishing
expectation values of disorder operators and detect spontaneous symmetry breaking in
the ground states. We note that when the group S3 is broken down to Z2, each of the
threefold degenerate ground states preserve a different Z2 subgroup which reflected in the
non-vanishing expectation value of Z2 disorder operators on only one of the degenerate
ground states. Away from the fixed-points the zero expectation values are expected to be
replaced by an exponential decay ∝ e−|j−ℓ|/ξ with a finite non-zero correlation length ξ
(with gapped fixed-points corresponding to ξ → 0 limit).

For the Rep(S3) symmetry, we can apply the Z2 gauging map, derived in Sec. 3, to
obtain the Rep(S3) patch operators. Since we are gauging Z2 subgroup of S3, we expect
the Z2 order and disorder operators to be mapped to disorder and order operators of the

dual Z2 symmetry generated byˆ︂W
1̄
operator. Accordingly, we identify the patch operators

ˆ︁C1̄(j, ℓ) := µ̂zj

2∑︂
α=0

⎛⎝j+ℓ∏︂
k=j

ˆ︁X∏︁k
q=j+1 µ̂

x
q

k

⎞⎠α

µ̂zj+ℓ, (6.2a)

ˆ︂W1̄(j, ℓ) :=

j+ℓ∏︂
k=j+1

µ̂xk, (6.2b)
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that correspond to ˆ︂W
1̄
order and disorder operators, respectively. In contrast to this,

under gauging Z2 subgroup of S3 symmetry, the Z3 order and disorder operators are
mapped to

ˆ︁C2(j, ℓ) :=
ˆ︁Z∏︁j+ℓ

k=j+1 µ̂
x
k

j
ˆ︁Z†
j+ℓ +

ˆ︁Z−
∏︁j+ℓ

k=j+1 µ̂
x
k

j
ˆ︁Zj+ℓ, (6.2c)

ˆ︂W2(j, ℓ) :=

j+ℓ∏︂
k=j

ˆ︁X∏︁k
q=j+1 µ̂

x
q

k +

j+ℓ∏︂
k=j

ˆ︁X−
∏︁k

q=j+1 µ̂
x
q

k , (6.2d)

which are the order and disorder operators, respectively, associated with the non-invertible
symmetry operatorˆ︂W2. We note that for Rep(S3) symmetry, order operators are non-local
string-like objects, as opposed to the case of S3 symmetry for which order operators are
bilocal, i.e., products of two local operators. In other words, the spontaneous breaking of
non-invertible Rep(S3) is detected by non-local string order parameters. The expectation
values attained by the patch operators in the gapped fixed-point ground states (3.27),
(3.30), (3.33), and (3.36) are given in Table 2. We see that the expectation values of oper-
ators (6.2) in these ground states are consistent with interpreting the corresponding phases
as Rep(S3)-symmetric, Rep(S3)/Z2 SSB, Z2 SSB, and Rep(S3) SSB phases, respectively.

7 Conclusion

In this paper, we have studied the consequences of non-invertible symmetries that are re-
alized as genuine UV symmetries (i.e., not emergent IR symmetries) of 1+1d Hamiltonian
lattice models defined on a Hilbert space that has a tensor product decomposition with
finite-dimensional on-site Hilbert spaces, which we referred to as spin chains in short.
We constructed a spin chain with (invertible) S3 symmetry that realizes all of its spon-
taneous symmetry breaking (SSB) patterns. Along specific lines in the parameter space,
the model demonstrates a Z3 Kramers-Wannier (KW) self-duality, which is in fact a non-
invertible symmetry. We also motivated the definition of a spin chain that respects the
Rep(S3) fusion category symmetry through gauging the non-normal Z2 subgroup of S3.
This provides an explicit microscopic verification of an instance of the fact that gauging
non-normal subgroups in a theory with an ordinary group-like symmetry leads to a dual
theory with a non-invertible symmetry, which was known using more abstract methods in
the literature. [24,71] As a function of various coupling constants, this spin chain realizes
all SSB patterns of the Rep(S3)-symmetric spin chain. We also defined order parameters
to diagnose the pattern of symmetry-breaking in each phase. With the use of both ana-
lytical arguments and tensor network algorithms, we were able to confirm the nature of
the CFTs that describe continuous phase transitions between gapped phases in both of
the spin chains.

There are various directions for future work. It would be interesting to study how
gauging by algebra objects may be implemented at the lattice level. This requires deeper
understanding of how symmetry twists of non-invertible symmetries are implemented in
the context of spin chain Hamiltonians. Such an understanding would also be extremely
useful in making statements about the gauging-related dualities in the context of non-
invertible symmetries, including those discussed in this paper, more precise. We note that
similar questions have been addressed in the context of lattice models built on Hilbert
spaces that do not necessarily have a tensor product decomposition, such as in Refs. [30,
47, 48]. We believe that our treatment of these questions is complementary to these
previous works. In fact, it is not clear that all fusion category symmetries can be realized
in spin chain Hamiltonians as strictly internal symmetries (cf. footnote 32 of Ref. [33]).
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Using our lattice model, we also explored KW-symmetric perturbations to the analytically
tractable limit of the S3 spin chain and uncovered a stable gapless phase. We find evidence
that the numerically computed central charge vanishes at the phase boundaries of this
gapless region, which is consistent with a dynamical critical exponent z > 1. It would be
interesting to characterize this gapless phase and transitions out of it, on or away from the
KW-symmetric line, from a low-energy field theory perspective. Lastly, it is possible to
gauge the Z2 sub-symmetry of the S3 symmetric spin chain using fermionic Z2 variables
instead of bosonic ones. This leads to a theory of fermions coupled to spin variables with
a fermionic SRep(S3) symmetry. We discuss this in Appendix G as a straightforward
generalization of the story presented in Sec. 3.1 to fermionic lattice models with non-
invertible symmetries. The fermion parity symmetry ZF

2 becomes a part of the symmetry
category in the gauged model. We leave a discussion of more non-trivial examples for
future work.
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A Group S3

The group S3 has cardinality |S3| = 6 and generated by two elements s and r such that
s2 = r3 = e, s r = r2 s, where e is the identity element of the group. It has four non-trivial
proper subgroups that we denote by

Zr
3 :=

{︁
e, r, r2

}︁
, Zs

2 := {e, s} , Zsr
2 := {e, s r} , Zsr2

2 :=
{︁
e, s r2

}︁
, (A.1)

respectively. From now on, we will choose Zs
2 as the Z2 subgroup and drop the superscripts

r and s when referring to the Z3 and Z2 subgroups of S3.
There are 3 irreducible representations (irreps) of the group S3. The trivial one, with

all group elements represented by the number 1, is denoted 1,

U1(g) = 1 , ∀g ∈ S3. (A.2)

There is a second one-dimensional irrep, denoted 1′, with

U1′(e) = U1′(r) = U1′(r2) = 1 , U1′(s) = U1′(sr) = U1′(sr2) = −1. (A.3)

The third irrep is a two-dimensional one, denoted 2, with

U2(e) =

(︄
1 0

0 1

)︄
, U2(r) =

(︄
e i

2π
3 0

0 e− i 2π
3

)︄
, U2(r

2) =

(︄
e− i 2π

3 0

0 e i
2π
3

)︄
,

U2(s) =

(︄
0 1

1 0

)︄
, U2(sr) =

(︄
0 e− i 2π

3

e i
2π
3 0

)︄
, U2(sr

2) =

(︄
0 e i

2π
3

e− i 2π
3 0

)︄
.
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The irrep 2 is the only faithful irrep of S3. The tensor product of the irreps forms a
so-called fusion ring with 1 as the identity of the ring. The product operation (or, fusion)
is commutative with the following non-trivial fusion rules:

1′ ⊗ 1′ = 1, 1′ ⊗ 2 = 2, 2⊗ 2 = 1⊕ 1′ ⊕ 2 (A.4)

The group S3 has three conjugacy classes

[e] := {e}, [s] := {s, s r, s r2}, [r] := {r, r2}, (A.5a)

labeled by a representative element. For each of these conjugacy classes, the centralizer of
the representative are

CS3
(e) = S3, CS3

(s) = Zs
2, CS3

(r) = Zr
3, (A.5b)

respectively. These centralizers have the irreps

πe := 1, 1′, 2, (A.5c)

πs := 1, 1′, (A.5d)

πr := 1, 1ω, 1ω∗ , (A.5e)

respectively. Here, all irreps are one-dimensional except 2. 1′ denotes the non-trivial
one-dimensional irrep of Z2, while 1ω and 1ω∗ are the non-trivial one-dimensional irreps
of Zr

3 where ω = exp{i2π/3}.

B Brief review of SymTO

The wide variety of (finite) generalized symmetries considered in the context of quantum
field theories and quantum many body physics can be provided a unified description in the
language of topological order in one higher dimension. This general philosophy was put
forward and discussed in Refs. [13,16,34,36,38,44,72–74], while a related connection with
noninvertible gravitational anomaly was explored in Ref. [35,75]. The correspondence be-
tween finite symmetries in d spacetime dimensions and topological order in d+1 spacetime
dimensions was referred to as Symmetry/Topological Order correspondence in older work
of two of the present authors [53]. Closely related constructions have been referred to
by various other names in the generalized symmetries literature – SymTFT, topological
holography, categorical symmetry, topological symmetry etc. Similar ideas were discussed
for specialized situations, including for 1+1d systems, for rational conformal field theories,
or in the context of duality and gauging in Refs. [15, 21, 23, 76–86]. In this appendix, we
summarize the aspects of the Sym/TO correspondence that are relevant for the present
paper.

B.1 Algebra of local symmetric operators

The most general way to define generalized symmetry is to start with a subset of local
operators, that is closed under addition and multiplication, i.e., to start with a sub-algebra
of the local operator algebra. We define the operators in sub-algebra as the symmetric
operators of a yet-to-be-determined symmetry. The symmetry transformations are defined
as the commutant of the algebra of the local symmetric operators. The symmetry defined
this way is very general, which include anomalous, higher-form, higher-group, and/or
non-invertible symmetries. What is the mathematical frame work that can describe and
classify the generalized symmetry defined this way?
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To reveal the underlying mathematical structure of the algebra of the local symmetric
operators, Refs. [13, 44] introduced the notion of transparent patch operators to capture
the essence of isomorphic algebras of the local symmetric operators. Even though the
algebra is generated by local symmetric operators, the algebra must contain extended
operators. Patch operators are a type of extended operators, that have an extended spatial
support and are created by a combination of a large number of so-called local symmetric
operators.26 The set of patch operators has the transparent property that they commute
with all local symmetric operators far away from the patch boundary.

So the bulk of the transparent patch operators is invisible, and can be ignored phys-
ically. The boundaries of the transparent patch operators correspond to fictionalized
topological excitations, or the super selection sectors of the corresponding generalized
symmetry. With this understanding, now it is easy to believe that operator algebra of
transparent patch operators reflects braiding and fusion of topological excitations (which
is encoded in the algebra of transparent string and membrane operators – in the quan-
tum many-body system in consideration, “system” in short, henceforth). This gives a
correspondence between the boundaries of transparent patch operators in d dimensional
quantum systems and topological excitations of the d+ 1 dimensional topological order.

Through such consideration, Refs. [13, 44] reveals a close connection between isomor-
phic algebras of the local symmetric operators and topological orders in one higher di-
mension. Such topological order in one higher dimension is called symmetry topological
order (SymTO). (In Refs. [13, 16, 44] SymTO was referred to as “categorical symmetry”.
The name is motivated by the following consideration: “categorical symmetry” contains
conservation of both symmetry charges and symmetry defects, plus the additional braiding
structure of the those symmetry objects. Conservation corresponds to “symmetry” and
the additional braiding structure corresponds to “categorical” in the name.) This leads to
the topological holographic principle in an operator algebraic manner.

Note that the patch operators have many equivalent definitions which all capture the
data of the same SymTO. This reflects the topological holographic principle: boundary
determines bulk [35, 75], but bulk does not determine boundary. The different equivalent
symmetries captured by the different patch operators are known in the math literature as
Morita equivalent. In some sense, the approach in Refs. [44] can be viewed as a derivation
of topological holographic principle. The algebra of local symmetric operators correspond
to the “boundary”, and obtained topological order in one higher dimension is the “bulk”.

B.2 Phases and phase transitions from SymTO

Through the Sym/TO correspondence, the gapped boundaries of the SymTO can be
mapped to gapped phases of the symmetric systems. The gapped boundaries of topological
orders were classified by Lagrangian condensible algebras in Ref. [87], and thus the gapped
phases of the symmetric systems can be classified by Lagrangian condensible algebras of
the corresponding SymTO.

More generally, Ref. [52] argued that the non-Lagrangian condensable algebras cor-
respond to gapless phases or critical points of the system – see also Ref. [54], for a
closely-related discussion. Each non-Lagrangian algebra, in turn, has an associated re-
duced SymTO which constrains the CFT that can describe the corresponding gapless
state. In more concrete terms, gapped phases described by Lagrangian condensable al-
gebras A1 and A2 have a phase transition corresponding to the non-Lagrangian algebra
A12 = A1 ∩ A2. Anyon permutation symmetries that preserve A12 are associated with

26The italicized terms can be made more precise. For a system with linear size L, the patch operators
have a support on a number of sites that is somewhere between O(1) and O(L), say O(

√
L).
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emergent symmetries of the IR theory that describes the corresponding phase transition.
In Ref. [52], the algebraic structure of the condensable algebras did not play any explicit
role. There is a suggestion that the algebraic properties of the order parameters for vari-
ous gapped phases allowed by the SymTO may be encoded in the algebra product of the
corresponding Lagrangian algebra. This connection has not been explored in the literature
yet.

B.3 Holo-equivalence and gauging

Symmetries whose SymTOs are identical were referred to as “holo-equivalent” in previous
literature [16]. This is a much more general statement than the Morita equivalence of
symmetry (fusion) categories in 1+1d, but they coincide in the latter case [88]. In 1+1d,
for instance, the symmetry categories VecG and Rep(G) are related under gauging. More
specifically, gauging the entire group G in VecG, which can be achieved by gauging by the
algebra object AG =

∑︁
g ag ∈ VecG, gives the dual symmetry category Rep(G). Here, by

ag we refer to the simple object of VecG labeled by the group element g ∈ G. On the other
hand, gauging by the regular representation algebra object Areg =

∑︁
R dRaR ∈ Rep(G),

where dR is the dimension of the irreducible representation R, gives the dual symmetry
category VecG. For more details on gauging by algebra objects, the reader is encouraged
to refer to Ref. [24].

Following the discussion in Sec. B.2, we conclude that the phases of systems with
Morita equivalent symmetries should have a one-to-one correspondence in their local, low
energy properties. One way to see this is that since these Morita equivalent symmetries
are related to each other by gauging, only certain global features of the corresponding
phase diagrams should be altered. In particular, we expect the same CFTs (up to global
modifications, e.g., orbifolding) to describe the phase transitions related under this corre-
spondence.

C Details of duality transformations

C.1 Z3 Kramers-Wannier duality

The duality transformation of the model ˆ︁HS3
is implemented by the operator

ˆ︁DKW := t̂Z2

ˆ︁PUr=1ˆ︂W (︂ˆ︁H†
1
ˆ︂CZ†

2,1

)︂ (︂ˆ︁H†
2
ˆ︂CZ†

3,2

)︂
· · ·
(︂ˆ︁H†

L−1
ˆ︂CZ†

L,L−1

)︂
, (C.1)

as discussed in the main text. As written in Eq. (C.1), it has the form of a sequential
circuit where each operator can be thought of as a unitary quantum gate acting on ket
states sequentially starting from the rightmost operator. The unitary operators in ˆ︁DKW

are defined as follows:

(i) We denote by ˆ︂CZ†
i,j the controlled-Z operator

ˆ︂CZ†
i,j :=

2∑︂
α=0

ˆ︁Z−α
j

ˆ︁PZ=ωα

i , (C.2a)

where ˆ︁PZ=ωα

i is the projector onto the ˆ︁Zi = ωα subspace.

(ii) We denote by ˆ︁H†
i the Hadamard operator

ˆ︁H†
i :=

1√
3

2∑︂
α,β=0

ωαβ ˆ︁Xα−β
i

ˆ︁PZ=ωβ

i . (C.2b)
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(iii) We denote by ˆ︂W the unitary operator

ˆ︂W :=
2∑︂

α=0

ˆ︁Zα
L
ˆ︁PZ†

1
ˆ︁ZL=ωα

, (C.2c)

where ˆ︁PZ†
1
ˆ︁ZL=ωα

is the projector onto ˆ︁Z†
1
ˆ︁ZL = ωα subspace. This unitary acts

non-trivially only at sites 1 and L.

(iv) We denote by ˆ︁PUr=1 the projector

ˆ︁PUr=1 :=
1

3

2∑︂
α=0

L∏︂
i=1

ˆ︁Xα
i , (C.2d)

which projects onto the ˆ︁Ur ≡
∏︁

i
ˆ︁Xi = 1 subspace.

(v) Finally, we denote by t̂Z2
the unitary operator

t̂Z2
:=

1 + σ1 · τ1
2

L−1∏︂
i=1

1 + τi · σi+1

2

1 + σi+1 · τi+1

2
, (C.2e)

which implements a “half-translation” of Z2-valued degrees of freedom. We note that
as written t̂Z2

also has the form of a sequential quantum circuit.

In what follows, we list the non-trivial action of the Z3 KW duality operator (C.1) on
generators of the bond algebra (2.6) at each step of the sequential circuit.

(i) Step 1: The only non-trivial action of the operator ˆ︂CZ†
L,L−1 by conjugation is

ˆ︁XL ↦→ ˆ︁Z†
L−1

ˆ︁XL,ˆ︁XL−1 ↦→ ˆ︁XL−1
ˆ︁Z†
L.

(C.3)

Note that the controlled-Z operators commute with all ˆ︁Zi operators.

(ii) Step 2: The only non-trivial action of the operator ˆ︁H†
L−1 by conjugation is

ˆ︁Z†
L−1

ˆ︁XL ↦→ ˆ︁XL−1
ˆ︁XL ,ˆ︁XL−1

ˆ︁Z†
L ↦→ ˆ︁ZL−1

ˆ︁Z†
L ,ˆ︁ZL−1

ˆ︁Z†
L ↦→ ˆ︁X†

L−1
ˆ︁Z†
L ,ˆ︁ZL−2

ˆ︁Z†
L−1 ↦→ ˆ︁ZL−2

ˆ︁XL−1.

(C.4)

(iii) Step 3: The only non-trivial action of the operator ˆ︂CZ†
L−1,L−2 by conjugation is

ˆ︁XL−1
ˆ︁XL ↦→ ˆ︁Z†

L−2
ˆ︁XL−1

ˆ︁XL ,ˆ︁X†
L−1

ˆ︁Z†
L ↦→ ˆ︁ZL−2

ˆ︁X†
L−1

ˆ︁Z†
L ,ˆ︁ZL−2

ˆ︁XL−1 ↦→ ˆ︁XL−1 ,ˆ︁XL−2 ↦→ ˆ︁XL−2
ˆ︁Z†
L−1.

(C.5)
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(iv) Step 4: The only non-trivial action of the operator ˆ︁H†
L−2 by conjugation is given by

ˆ︁Z†
L−2

ˆ︁XL−1
ˆ︁XL ↦→ ˆ︁XL−2

ˆ︁XL−1
ˆ︁XL ,ˆ︁ZL−2

ˆ︁X†
L−1

ˆ︁Z†
L ↦→ ˆ︁X†

L−2
ˆ︁X†
L−1

ˆ︁Z†
L ,ˆ︁XL−2

ˆ︁Z†
L−1 ↦→ ˆ︁ZL−2

ˆ︁Z†
L−1 ,ˆ︁ZL−3

ˆ︁Z†
L−2 ↦→ ˆ︁ZL−3

ˆ︁XL−2.

(C.6)

Following this pattern for L − 1 steps maps ˆ︁Xj to ˆ︁Zj
ˆ︁Z†
j+1 for j ∈ {1, 2, . . . , L − 1}, andˆ︁Zj

ˆ︁Z†
j+1 to ˆ︁Xj+1 for j ∈ {1, 2, . . . , L− 2}. This matches the Kramers-Wannier transforma-

tion that we set out to achieve but only for all but a few terms around the sites j = 1 and
j = L. These terms are ˆ︁XL ↦→ ˆ︁X1

ˆ︁X2 . . . ˆ︁XL ,ˆ︁ZL−1
ˆ︁Z†
L ↦→ ˆ︁X†

1
ˆ︁X†
2 . . .

ˆ︁X†
L−1

ˆ︁Z†
L ,ˆ︁ZL

ˆ︁Z†
1 ↦→ ˆ︁ZL

ˆ︁X1.

(C.7)

We now conjugate by the operatorˆ︂W , which acts non-trivially on ˆ︁X1 and ˆ︁XL, and trivially
on all other ˆ︁Xj . Its action on ˆ︁X1 and ˆ︁XL delivers

ˆ︁X1 ↦→ ˆ︁Z†
L
ˆ︁X1 ,ˆ︁XL ↦→ ˆ︁ZL
ˆ︁XL

ˆ︁ZL
ˆ︁Z†
1

(C.8)

Given this, we find that the three operators on the right hand side of Eq. (C.7) becomes

ˆ︁X1
ˆ︁X2 . . . ˆ︁XL ↦→ ˆ︁Z†

L
ˆ︁X1
ˆ︁X2 . . . ˆ︁XL−1 =

⎛⎝ L∏︂
j=1

ˆ︁Xj

⎞⎠ ˆ︁ZL
ˆ︁Z†
1,

ˆ︁X†
1
ˆ︁X†
2 . . .

ˆ︁X†
L−1

ˆ︁Z†
L ↦→ ˆ︁ZL

ˆ︁X†
1
ˆ︁X†
2 . . .

ˆ︁X†
L−1

ˆ︁Z†
L =

⎛⎝ L∏︂
j=1

ˆ︁X†
j

⎞⎠ ˆ︁XL ,

ˆ︁ZL
ˆ︁X1 ↦→ ˆ︁X1.

(C.9)

In summary, up to the projector ˆ︁PUr=1, conjugation by the unitary operators produce

ˆ︁X1 ↦→ ˆ︁Z1
ˆ︁Z†
2 ,

ˆ︁Z1
ˆ︁Z†
2 ↦→ ˆ︁X2,

...
...ˆ︁XL−2 ↦→ ˆ︁ZL−2

ˆ︁Z†
L−1,

ˆ︁ZL−2
ˆ︁Z†
L−1 ↦→ ˆ︁XL−1 ,

ˆ︁XL−1 ↦→ ˆ︁ZL−1
ˆ︁Z†
L,

ˆ︁ZL−1
ˆ︁Z†
L ↦→

⎛⎝ L∏︂
j=1

ˆ︁X†
j

⎞⎠ ˆ︁XL,

ˆ︁XL ↦→

⎛⎝ L∏︂
j=1

ˆ︁Xj

⎞⎠ ˆ︁ZL
ˆ︁Z†
1,

ˆ︁ZL
ˆ︁Z†
1 ↦→ ˆ︁X1.

(C.10)

Our sequential circuit achieves what one expects from the Kramers-Wannier transforma-
tion on the Z3-valued degrees of freedom if if we restrict ourselves to the Z3 symmetric

sector, in which
∏︁L

j=1
ˆ︁Xj = 1. This achieved by the inclusion of the projector ˆ︁PUr=1 in

operator (C.1). Notice that this transformation is not yet a symmetry of the Hamiltonian
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(2.3) when J1 = J2 and J5 = J6 ̸= 0. This is because so far all the operators we considered

act on the Z3 degrees of freedom, which leads to a relative half-translation of Z3 and ˆ︁Z2.
We correct for this by the final unitary operator t̂Z2

which implements the transformation

t̂Z2

(︂
τ̂xi τ̂ zi σ̂xi σ̂zi

)︂
t̂
†
Z2

=
(︂
σ̂xi+1 σ̂zi+1 τ̂xi τ̂ zi

)︂
. (C.11)

This completes our proof that the operator (C.1) is indeed the correct Kramers-Wannier
duality operator. This operator, as written in Eq. (C.1), represents a sequential quantum
circuit of depth 4L− 2 27. We note that this can be straightforwardly generalized to any
finite Abelian group. Our sequential circuit is closely related to one that is given in App. A
of Ref. [89] for general finite groups. One important difference is that our circuit involves
gates (operators) that are not all Z3-symmetric, while the full circuit is so.

Algebra of ˆ︁DKW and other symmetry operators:

Let us note a few more algebraic properties of the duality operator above. First, we find
that the Hermitian conjugate gives

ˆ︁D†
KW =

⎛⎝ 1∏︂
j=L−1

ˆ︂CZj+1,j
ˆ︁Hj

⎞⎠ˆ︂W † t̂
†
Z2

ˆ︁PUr=1

= ˆ︁PUr=1

⎛⎝ 1∏︂
j=L−1

ˆ︂CZj+1,j
ˆ︁Hj

⎞⎠ˆ︂W † t̂
†
Z2

= ˆ︁PUr=1

⎛⎝t̂Z2

ˆ︂W L−1∏︂
j=1

ˆ︁H†
j
ˆ︂CZ†

j+1,j

⎞⎠†

, (C.12)

which is also a sequential circuit. The Z3 symmetric local operators are mapped by the

unitary part of ˆ︁D†
KW in exactly the inverse manner as by that of ˆ︁DKW, i.e.,

ˆ︁Z1
ˆ︁Z†
2 ↦→ ˆ︁X1,

ˆ︁X2 ↦→ ˆ︁Z1
ˆ︁Z†
2,

...
...ˆ︁ZL−2

ˆ︁Z†
L−1 ↦→ ˆ︁XL−2,

ˆ︁XL−1 ↦→ ˆ︁ZL−2
ˆ︁Z†
L−1,

ˆ︁ZL−1
ˆ︁Z†
L ↦→ ˆ︁XL−1, ˆ︁XL ↦→

⎛⎝ L∏︂
j=1

ˆ︁X†
j

⎞⎠ ˆ︁ZL−1
ˆ︁Z†
L,

ˆ︁ZL
ˆ︁Z†
1 ↦→

⎛⎝ L∏︂
j=1

ˆ︁Xj

⎞⎠ ˆ︁XL, ˆ︁X1 ↦→ ˆ︁ZL
ˆ︁Z†
1.

(C.13)

Now applying the projector ˆ︁PUr=1 and the half-translation operator t̂Z2
simply produces

the transformationˆ︁D†
KW

ˆ︁Xj = ˆ︁Zj−1
ˆ︁Z†
j
ˆ︁D†
KW,

ˆ︁D†
KW

ˆ︁Zj
ˆ︁Z†
j+1 =

ˆ︁Xj
ˆ︁D†
KWˆ︁D†

KW

(︂
τ̂xi τ̂ zi σ̂xi σ̂zi

)︂
=
(︂
σ̂xi σ̂zi τ̂xi−1 τ̂ zi−1

)︂ ˆ︁D†
KW,

(C.14)

from which we observe the relation

ˆ︁D†
KW = ˆ︁T † ˆ︁DKW. (C.15)

27We note that one can also apply each unitary operator in t̂Z2
after applying one cycle of controlled-Z

and Hadamard operators rendering the sequential circuit of depth 2L− 1.

49



Here, the operator ˆ︁T implements the single lattice site translation of both Z2 and Z3

degrees of freedom, i.e.,

ˆ︁T (︂ ˆ︁Xi
ˆ︁Zi τ̂xi τ̂ zi σ̂xi σ̂zi

)︂ ˆ︁T † =
(︂ ˆ︁Xi+1

ˆ︁Zi+1 τ̂xi+1 τ̂ zi+1 σ̂xi+1 σ̂zi+1

)︂
. (C.16)

Combining the above results, we obtain the fusion rulesˆ︁D†
KW

ˆ︁DKW = ˆ︁PUr=1, (C.17a)

and

ˆ︁DKW

∏︂
j

ˆ︁Xj = ˆ︁DKW =

⎛⎝∏︂
j

ˆ︁Xj

⎞⎠ ˆ︁DKW. (C.17b)

C.2 Rep(S3) self-duality

We found that our S3 symmetric Hamiltonian (2.3a) has a self-duality symmetry in some
sub-manifold in the parameter space. We discussed a sequential circuit that performs this
transformation above. Recall that gauging a Z2 subgroup of S3 led us to the Hamiltonian
(3.13) with Rep(S3) symmetry. We now want to know what symmetry, if any, the above
self-duality symmetry gets mapped to. To that end, we would like to follow how each
operator in ˆ︁DKW (recall Eq. (C.1)) change under the gauging map.

(i) We note that acting by Z2 on half of the system, i.e., on all degrees of freedom to the

right of particular site, say i, will leave every CZ operator except ˆ︂CZi+1,i unaffected.
This particular operator gets transformed as

ˆ︂CZi+1,i =

2∑︂
α=0

ˆ︁Zα
i
ˆ︁PZi+1=ωα ↦→

2∑︂
α=0

ˆ︁Zα
i
ˆ︁PZi+1=ω−α

=

2∑︂
α=0

ˆ︁Z−α
i
ˆ︁PZi+1=ωα = ˆ︂CZ†

i+1,i.

(C.18)

Therefore, if we consider arbitrary Z2 gauge field configurations, we obtain the min-
imally coupled CZ operators as

ˆ︂CZi+1,i ↦→ ˆ︂CZ µ̂x
i+1

i+1,i ≡
2∑︂

α=0

ˆ︁Zαµ̂x
i+1

i
ˆ︁PZi+1=ωα , (C.19)

where we shifted the subscript of the link degrees of freedom by 1/2, as done in the

main text. This minimally coupled operator is the image of ˆ︂CZi+1,i under duality
map as it is unchanged after the unitary transformation (3.4) and the projection in
Eq. (3.7a).

(ii) The Hadamard operator commutes with the charge conjugation operator

ˆ︁Ci
ˆ︁Hi
ˆ︁C†
i =

1√
3

2∑︂
α,β=0

ωαβ ˆ︁Xβ−α
i

ˆ︁PZ=ω−β

i

=
1√
3

2∑︂
α,β=0

ωαβ ˆ︁Xα−β
i

ˆ︁PZ=ωβ

i = ˆ︁Hi.

(C.20)

Hence, the Hadamard operators in ˆ︁DKW are gauge invariant. Similarly, the Hadamard
operator commutes with the unitary transformation (3.4) and is mapped to itself un-
der Z2 gauging.
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(iii) As it was the case for controlled-Z operator ˆ︂CZi+1,i, the unitary ˆ︂W is not gauge
invariant. We find its minimally coupled version

ˆ︂W =
2∑︂

α=0

ˆ︁Zα
L
ˆ︁PZ†

1ZL=ωα ↦→ ˆ︂Wmc =
2∑︂

α=0

ˆ︁Zα
L
ˆ︁PZ

−µx1
1 ZL=ωα

, (C.21)

which is the image of the operator ˆ︂W under Z2 gauging. Note that similar to the

discussion of the minimally coupled CZ operators above, ˆ︂Wmc is unchanged by the
unitary transformation (3.4) and the projection in Eq. (3.7a).

(iv) The projector ˆ︁PUr=1 in the definition of ˆ︁DKW (C.1), under minimal coupling takes
the following form: 28

ˆ︁PUr=1 =
1

3

2∑︂
α=0

L∏︂
j=1

ˆ︁Xα
j ↦→ ˆ︁Pmc :=

1

3

2∑︂
α=0

L∏︂
j=1

ˆ︁X α
∏︁j−1

k=1 µ̂
x
k+1

j

The unitary transformation, (3.4) leaves the operator ˆ︁Pmc unchanged,

ˆ︁Pmc ↦→
1

3

2∑︂
α=0

L∏︂
j=1

ˆ︁X α σ̂z
1

∏︁j−1
k=1 µ̂

x
k+1

j

=
1

3

2∑︂
α=0

(︄
1̂ + σ̂z1

2

)︄
L∏︂

j=1

ˆ︁X α
∏︁j−1

k=1 µ̂
x
k+1

j +
1

3

2∑︂
α=0

(︄
1̂− σ̂z1

2

)︄
L∏︂

j=1

ˆ︁X −α
∏︁j−1

k=1 µ̂
x
k+1

j

=
1

3

2∑︂
α=0

(︄
1̂ + σ̂z1

2

)︄
L∏︂

j=1

ˆ︁X α
∏︁j−1

k=1 µ̂
x
k+1

j +
1

3

2∑︂
α′=0

(︄
1̂− σ̂z1

2

)︄
L∏︂

j=1

ˆ︁X α′ ∏︁j−1
k=1 µ̂

x
k+1

j

=
1

3

2∑︂
α=0

L∏︂
j=1

ˆ︁X α
∏︁j−1

k=1 µ̂
x
k+1

j = ˆ︁Pmc .

Here we used the periodic boundary condition on the σ̂z degrees of freedom, i.e., σ̂z0 ≡
σ̂zL.

(v) Finally, the qubit “half-translation” operator t̂Z2
after the whole gauging procedure

takes the following form:

t̂Rep(S3)
:= ˆ︁A1

L−1∏︂
i=1

ˆ︁Bi
ˆ︁Ai+1,

ˆ︁Ai :=
1 + τ̂ zi

2
+

1− τ̂ zi
2

ˆ︁Ci µ̂
z
i µ̂

z
i+1,

ˆ︁Bi :=
1 + τ̂ zi µ̂

x
i+1

2
+

1− τ̂ zi µ̂
x
i+1

2
τ̂xi τ̂

x
i+1

ˆ︁Ci+1 µ̂
z
i+1 µ̂

z
i+2.

(C.22)

The action of this operator on the generators of the Rep(S3)-symmetric bond algebra
(3.5) can be deduced from the action of t̂Z2

on the generators of S3-symmetric bond

28Note that the choice to start the string of µz
k+1/2’s at k = 1 is completely arbitrary and unphysical.

We could just as well put this “branch cut” anywhere else in the periodic chain.
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algebra (2.6). Namely, we find the transformation rules

t̂Rep(S3)
:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

τ̂ zi

τ̂ zi µ̂
x
i+1

µ̂zi τ̂
x
i
ˆ︁Ci µ̂

z
i+1

τ̂xiˆ︁Xi +
ˆ︁X†
iˆ︁Z µ̂x

i+1

i
ˆ︁Z†
i+1 +H.c.ˆ︁Xi − ˆ︁X†

i

τ̂ zi µ̂
x
i+1

(︂ ˆ︁Z µ̂x
i+1

i
ˆ︁Z†
i+1 −H.c.

)︂

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

↦−→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

τ̂ zi µ̂
x
i+1

τ̂ zi+1

τ̂xi

µ̂zi+1 τ̂
x
i+1

ˆ︁Ci+1 µ̂
z
i+2ˆ︁Xi +

ˆ︁X†
iˆ︁Z µ̂x

i+1

i
ˆ︁Z†
i+1 +H.c.

τ̂ zi

(︂ ˆ︁Xi − ˆ︁X†
i

)︂
ˆ︁Z µ̂x

i+1

i
ˆ︁Z†
i+1 −H.c.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C.23)

on the generators of Rep(S3)-symmetric bond algebra (3.5).

Since we gauged the original Z2 symmetry with periodic boundary conditions, we will
end up in the symmetric sector of the dual Z2 symmetry, generated by

∏︁
j µ̂

x
j . Therefore,

we must include a projector to this symmetric sector in the gauged duality operator.29 So
the full gauged operator has the form30

ˆ︁DRep(S3) := t̂Rep(S3)

1̂ +
∏︁

j µ̂
x
j

2
ˆ︁Pmc

ˆ︁D0 , where

ˆ︁D0 :=

(︄
2∑︂

α=0

ˆ︁Z α
L
ˆ︁P
Z

µx1
1 ZL=ωα

)︄⎛⎝L−1∏︂
j=1

ˆ︁H†
j
ˆ︂CZ−µ̂x

j+1

j+1,j

⎞⎠
We can further simplify ˆ︁DRep(S3) since

1̂ +
∏︁

j µ̂
x
j

2
ˆ︁Pmc =

1̂ +
∏︁

j µ̂
x
j

2

1̂ +ˆ︂W2

3
=

1

6

(︂
1̂ +ˆ︂W1′

)︂(︂
1̂ +ˆ︂W2

)︂
=

1

6

(︂ˆ︂W1 +ˆ︂W1′ + 2ˆ︂W2

)︂
Hence, we have ˆ︁DRep(S3) =

1
6

(︂ˆ︂W1 +ˆ︂W1′ + 2ˆ︂W2

)︂ ˆ︁D0, which we denote in short as ˆ︁DRep(S3) =ˆ︁Preg
ˆ︁D0, where ˆ︁Preg :=

1
6
ˆ︂Wreg is the projector to the Rep(S3)-symmetric sector, as discussed

in the main text.
Under the action of ˆ︁D0 by conjugation, going through calculations similar to those in

Sec. C.1, we find the following operator maps:ˆ︁X1 ↦→ ˆ︁Z1
ˆ︁Z−µ̂x

2
2

ˆ︁Z−µ̂x
2

1
ˆ︁Z2 ↦→ ˆ︁X†

2

...
...ˆ︁XL−2 ↦→ ˆ︁ZL−2

ˆ︁Z−µ̂x
L−1

L−1
ˆ︁Z−µ̂x

L−1

L−2
ˆ︁ZL−1 ↦→ ˆ︁X†

L−1ˆ︁XL−1 ↦→ ˆ︁ZL−1
ˆ︁Z−µ̂x

L
L

ˆ︁Z−µ̂x
1

L
ˆ︁Z1 ↦→ ˆ︁X†

1

and

ˆ︁Z−µ̂x
L

L−1
ˆ︁ZL ↦→ ˆ︁Z−

∏︁
j µ̂

x
j

L

⎛⎝L−1∏︂
j=1

ˆ︁X∏︁L−1
k=j µ̂x

k+1

j

⎞⎠ ˆ︁ZL

29In fact, without this additional projector, the gauged duality operator would not actually commute
with the Hamiltonian (3.13) on the self-dual manifold of parameters described by J1 = J2, J5 = J6.

30Note that t̂Rep(S3)
commutes with the projector

1̂+
∏︁

j µ̂x
j

2
.
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ˆ︁XL ↦→ ˆ︁Z−
∏︁

j µ̂
x
j

L

⎛⎝L−1∏︂
j=1

ˆ︁X∏︁L−1
k=j µ̂x

k+1

j

⎞⎠ ˆ︁ZL
ˆ︁XL

ˆ︁ZL
ˆ︁Z−µ̂x

1
1

In the above, we used ˆ︂Wmc
ˆ︁X†
1
ˆ︂W †

mc = ˆ︁X†
1
ˆ︁Z µ̂x

1
L and ˆ︂Wmc

ˆ︁XL
ˆ︂W †

mc = ˆ︁ZL
ˆ︁XL
ˆ︁ZL
ˆ︁Z−µ̂x

1
1 . The

last two transformations can be re-written as

ˆ︁Z−µ̂x
L

L−1
ˆ︁ZL ↦→ ˆ︁Z−

∏︁
j µ̂

x
j

L

⎛⎝L−1∏︂
j=1

ˆ︁X∏︁j−1
k=0 µ̂

x
k+1

j

⎞⎠
∏︁

j µ̂
x
j ˆ︁ZL (C.24)

ˆ︁XL ↦→ ˆ︁Z−
∏︁

j µ̂
x
j

L

⎛⎝L−1∏︂
j=1

ˆ︁X∏︁j−1
k=0 µ̂

x
k+1

j

⎞⎠
∏︁

j µ̂
x
j ˆ︁ZL

ˆ︁XL
ˆ︁ZL
ˆ︁Z−µ̂x

1
1 (C.25)

Next, note that ˆ︁Preg commutes with the first set of operators above, but for the last
two we have

ˆ︁Preg
ˆ︁Z−

∏︁
j µ̂

x
j

L

⎛⎝L−1∏︂
j=1

ˆ︁X∏︁j−1
k=0 µ̂

x
k+1

j

⎞⎠
∏︁

j µ̂
x
j ˆ︁ZL = ˆ︁Preg

⎛⎝L−1∏︂
j=1

ˆ︁X∏︁j−1
k=0 µ̂

x
k+1

j

⎞⎠
= ˆ︁Preg

⎛⎝L−1∏︂
j=1

ˆ︁X∏︁j−1
k=0 µ̂

x
k+1

j

⎞⎠ ˆ︁XL
ˆ︁X†
L

=
1 +

∏︁
j µ̂

x
j

2

1

3

2∑︂
α=0

L∏︂
j=1

ˆ︁X α
∏︁j−1

ℓ=1 µ̂x
ℓ+1

j

⎛⎝L−1∏︂
j=1

ˆ︁X∏︁j−1
k=0 µ̂

x
k+1

j

⎞⎠ ˆ︁X∏︁
j µ̂

x
j

L
ˆ︁X†
L

=
1 +

∏︁
j µ̂

x
j+1

2

1

3

2∑︂
α=0

L∏︂
j=1

ˆ︁X (α+µ̂x
1 )

∏︁j−1
ℓ=1 µ̂x

ℓ+1

j
ˆ︁X†
L = ˆ︁X†

L
ˆ︁Preg

and

ˆ︁Preg
ˆ︁Z−

∏︁
j µ̂

x
j

L

⎛⎝L−1∏︂
j=1

ˆ︁X∏︁j−1
k=0 µ̂

x
k+1

j

⎞⎠
∏︁

j µ̂
x
j ˆ︁ZL

ˆ︁XL
ˆ︁ZL
ˆ︁Z−µ̂x

1
1

= ˆ︁Preg

⎛⎝L−1∏︂
j=1

ˆ︁X∏︁j−1
k=0 µ̂

x
k+1

j

⎞⎠ ˆ︁X∏︁
j µ̂

x
j

L
ˆ︁ZL
ˆ︁Z−µ̂x

1
1

=
1 +

∏︁
j µ̂

x
j

2

1

3

2∑︂
α=0

⎛⎝ L∏︂
j=1

ˆ︁X (α+µ̂x
1 )

∏︁j−1
ℓ=1 µ̂z

ℓ+1/2

j

⎞⎠ ˆ︁ZL
ˆ︁Z−µ̂x

1
1 = ˆ︁ZL

ˆ︁Z−µ̂x
1

1
ˆ︁Preg

Finally, we act with the unitary t̂Rep(S3)
, whose action on the Rep(S3)-symmetric bond

algebra is outlined in Eq. (C.23). In all, we have the following transformations of the
operators appearing in the Rep(S3)-symmetric Hamiltonian (3.13):

(i) For operators ˆ︁Xj + h.c.,

ˆ︁DRep(S3)

(︂ ˆ︁Xj + h.c.
)︂
= t̂Rep(S3)

(︂ ˆ︁Zj
ˆ︁Z−µ̂x

j+1

j+1 + ˆ︁Z†
j
ˆ︁Z µ̂x

j+1

j+1

)︂ ˆ︁Preg
ˆ︁D0

= t̂Rep(S3)

(︂ ˆ︁Z µ̂x
j+1

j
ˆ︁Z†
j+1 + h.c.

)︂ ˆ︁Preg
ˆ︁D0 =

(︂ ˆ︁Z µ̂x
j+1

j
ˆ︁Z†
j+1 + h.c.

)︂ ˆ︁DRep(S3) .
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(ii) For operators ˆ︁Z µ̂x
j+1

j
ˆ︁Z†
j+1 + h.c.,

ˆ︁DRep(S3)

(︂ ˆ︁Z µ̂x
j+1

j
ˆ︁Z†
j+1 + h.c.

)︂
= t̂Rep(S3)

(︂ ˆ︁Xj+1 + h.c.
)︂ ˆ︁Preg

ˆ︁D0 =
(︂ ˆ︁Xj+1 + h.c.

)︂ ˆ︁DRep(S3) .

(iii) For operators ˆ︁Xj − h.c.,

ˆ︁DRep(S3)

(︂ ˆ︁Xj − h.c.
)︂
= t̂Rep(S3)

(︂ ˆ︁Zj
ˆ︁Z−µ̂x

j+1

j+1 − ˆ︁Z†
j
ˆ︁Z µ̂x

j+1

j+1

)︂ ˆ︁Preg
ˆ︁D0

= t̂Rep(S3)
µ̂xj+1

(︂ ˆ︁Z µ̂x
j+1

j
ˆ︁Z†
j+1 − ˆ︁Z−µ̂x

j+1

j
ˆ︁Zj+1

)︂ ˆ︁Preg
ˆ︁D0

= τ̂ zj µ̂
x
j+1

(︂ ˆ︁Z µ̂x
j+1

j
ˆ︁Z†
j+1 − h.c.

)︂ ˆ︁DRep(S3) .

(iv) For operators τ̂ zi µ̂
x
i+1

(︂ ˆ︁Z µ̂x
i+1

i
ˆ︁Z†
i+1 − h.c.

)︂
,

ˆ︁DRep(S3)τ̂
z
i µ̂

x
i+1

(︂ ˆ︁Z µ̂x
i+1

i
ˆ︁Z†
i+1 − h.c.

)︂
= t̂Rep(S3)

τ̂ zi µ̂
x
i+1

(︂ ˆ︁Xj+1 − ˆ︁X†
j+1

)︂ ˆ︁Preg
ˆ︁D0

=
(︂ ˆ︁Xj+1 − ˆ︁X†

j+1

)︂ ˆ︁DRep(S3) .

(v) The J3 and J4 terms in the Hamiltonian (3.13) are left invariant, even though some
indices get shuffled.

D Details about numerical methods

[AC: @Xiao-Gang: Could you comment on/add to this as necessary?] Let us briefly
comment on how the TEFR algorithm works. We Trotter-ize the imaginary time path
integral (or, partition function) associated with the Hamiltonian to obtain a rank-4 tensor
T . Since the space direction is discrete but the time direction is not, we implement a
few steps of renormalization only along the time direction to obtain an isotropic partition
function tensor Tiso. The full partition function can then be expressed as a network of
these tensors Tiso. Each zoom-out step is implemented via singular value decomposition on
each corner of the network and then implementing loop contractions. [AC: Maybe insert
some figures here?] This zoom-out operation is repeated several times, and each time the
linear dimension is scaled by a factor of 2. After enough iterations, we expect to reach a
fixed point tensor T ∗

iso, whose largest eigenvalue has the form

λ∗ = GSD · exp
(︃
−E0T +

2πv

24L
c+O

(︃
1

L2

)︃)︃
(D.1)

where T is the total length of the compactified imaginary time direction, GSD is the ground
state degeneracy, E0 is the ground state energy, and c is the central charge which is only
non-zero when the system is in a gapless phase described by a CFT at low energies and v
is the “velocity” of the linear-dispersing mode of this CFT. Since v in general depends on
details of the microscopic Hamiltonian, the precise numerical value of the central charge
is difficult to extract. However, we should note that the algorithm is quite efficient at
distinguishing gapless regions of the phase diagram, which have non-zero c, from gapped
regions where c = 0 (within pre-set limits of precision). By benchmarking various known
limits, we also find that relative values of c extracted using this approach are in practice
reflective of the true central charges of the corresponding CFTs.
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(a) J1 = 0.5, J3 = 0.6 (b) J1 = 0.6, J3 = 0.5

(c) J1 = 0.5, J3 = 0.5

Figure 15: Central charges extracted from fits to the Calabrese-Cardy function,
as discussed in the main text. Figure (a) is consistent with Potts criticality,
Figure (b) is consistent with Ising criticality, and Figure (c) is consistent with a
stacking of these two CFTs. The departures from exact values of c = 0.8, 0.5, 1.3,
respectively, are due to the effects of finite system size. For these plots, we set
the system size as L = 100 and performed the central charge fits on the bulk sites
by removing 30 sites from each boundary.

In order to extract numerically precise central charges, we used the density matrix
renormalization group (DMRG) algorithm from the iTensor library [58, 59]. Specifically,
we used the Calabrese-Cardy formula [90] for the entanglement entropy of 1+1d CFTs,

S(ℓ) =
c

6
log

(︃
2L

πa
sin

πℓ

L

)︃
+ c1 , (D.2)

where ℓ is the size of the subsystem, L is the size of the full system, S(ℓ) is the entanglement
entropy of the bipartition of the full system into two pieces of size ℓ and L − ℓ, a is the
lattice constant of the lattice model described by a CFT at low energies, and c is its central
charge. By computing S(ℓ) in the ground state for ℓ = 1, . . . L − 1 and fitting it to the
above functional form, we can quite reliably extract the central charge. We show examples
of this method for two points in the phase diagram Fig. 3 of our S3 spin chain (2.21) in
Fig. 15, to demonstrate the quality of the fits.
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E Gapless boundaries of S3 SymTO

E.1 3-state Potts CFT boundary

The 3-state Potts CFT is a (6, 5) minimal model. This CFT can be realized as a so-
called 1-condensed gapless boundary of the 2+1d S3 topological order. Using the SymTO
point of view, this gives us a way to identify operators of the CFT that carry various
symmetry charges and symmetry twists. The vacuum sector Z1 contains contributions
from local operators that are uncharged under the full S3 symmetry. The 1′ sector contains
local operators that carry the sign representation of S3, and hence are charged under the
Z2 subgroups of S3 but uncharged under the Z3 subgroup. The 2 sector contains local
operators that carry the 2d irrep of S3. The sectors labeled by b and c contain (uncharged)
operators that live on the boundaries of symmetry defects, whereas the sectors labeled by
r1, r2, s1 contain charged operators of the corresponding symmetry-twisted sectors.

From modular bootstrap calculations, we find the following as the only 1-condensed
boundary of D(S3) constructed out of the conformal characters of the Potts minimal
model:

Z
D(S3)
1 = χm6×m6

1,0;1,0 + χm6×m6
5,3;5,−3 + χm6×m6

6, 2
5
;6,− 2

5

+ χm6×m6
10, 7

5
;10,− 7

5

Z
D(S3)
1′ = χm6×m6

1,0;5,−3 + χm6×m6
5,3;1,0 + χm6×m6

6, 2
5
;10,− 7

5

+ χm6×m6
10, 7

5
;6,− 2

5

Z
D(S3)
2 = χm6×m6

3, 2
3
;3,− 2

3

+ χm6×m6
8, 1

15
;8,− 1

15

ZD(S3)
r = χm6×m6

3, 2
3
;3,− 2

3

+ χm6×m6
8, 1

15
;8,− 1

15

ZD(S3)
r1 = χm6×m6

1,0;3,− 2
3

+ χm6×m6
5,3;3,− 2

3

+ χm6×m6
6, 2

5
;8,− 1

15

+ χm6×m6
10, 7

5
;8,− 1

15

ZD(S3)
r2 = χm6×m6

3, 2
3
;1,0

+ χm6×m6
3, 2

3
;5,−3

+ χm6×m6
8, 1

15
;6,− 2

5

+ χm6×m6
8, 1

15
;10,− 7

5

ZD(S3)
s = χm6×m6

2, 1
8
;2,− 1

8

+ χm6×m6
4, 13

8
;4,− 13

8

+ χm6×m6
7, 1

40
;7,− 1

40

+ χm6×m6
9, 21

40
;9,− 21

40

ZD(S3)
s1 = χm6×m6

2, 1
8
;4,− 13

8

+ χm6×m6
4, 13

8
;2,− 1

8

+ χm6×m6
7, 1

40
;9,− 21

40

+ χm6×m6
9, 21

40
;7,− 1

40

The various terms in each component of the partition function are conformal characters

of the (6,5) minimal model. The expression χm6×m6
a,ha; b,−hb

is a short-hand notation for the
product of the left moving chiral conformal character associated with the primary operator
labeled a (set by an arbitrary indexing convention) with conformal weight (ha, 0), and the
right moving chiral conformal character associated with the primary operator labeled b
with conformal weight (0, hb). The superscript m6×m6 indicates that both the left and
right moving chiral conformal characters are picked from the same (6,5) minimal model.

Note that in the above multi-component “SymTO-resolved” partition function, the 1′

sector contains the primary operators with odd charge under the Z2 subgroups of S3. All
of these operators have non-zero conformal spin since h ̸= h̄ for all of them. However,
we can construct descendents with zero conformal spin. All such descendents have scaling
dimension greater than 2 and hence must be relevant perturbations of the CFT.

E.2 3-state Potts ⊠ Ising CFT boundary

Similar to the previous subsection, we can perform a modular bootstrap numerical cal-
culation to identify gapless boundaries of the 2+1d S3 topological order, considered as a
SymTO. The following multi-component partition function shows the various symmetry
charge and symmetry twist sectors for the S3 symmetry:

Z
D(S3)
1 = χm4×m6×m4×m6

1,0;1,0;1,0;1,0 + χm4×m6×m4×m6
1,0;5,3;1,0;5,−3 + χm4×m6×m4×m6

1,0;6, 25 ;1,0;6,−
2
5

+ χm4×m6×m4×m6
1,0;10, 75 ;1,0;10,−

7
5
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+ χm4×m6×m4×m6
2, 1

16 ;1,0;2,−
1
16 ;5,−3

+ χm4×m6×m4×m6
2, 1

16 ;5,3;2,−
1
16 ;1,0

+ χm4×m6×m4×m6
2, 1

16 ;6,
2
5 ;2,−

1
16 ;10,−

7
5

+ χm4×m6×m4×m6
2, 1

16 ;10,
7
5 ;2,−

1
16 ;6,−

2
5

+ χm4×m6×m4×m6
3, 12 ;1,0;3,−

1
2 ;1,0

+ χm4×m6×m4×m6
3, 12 ;5,3;3,−

1
2 ;5,−3

+ χm4×m6×m4×m6
3, 12 ;6,

2
5 ;3,−

1
2 ;6,−

2
5

+ χm4×m6×m4×m6
3, 12 ;10,

7
5 ;3,−

1
2 ;10,−

7
5

Z
D(S3)
1′ = χm4×m6×m4×m6

1,0;1,0;1,0;5,−3 + χm4×m6×m4×m6
1,0;5,3;1,0;1,0 + χm4×m6×m4×m6

1,0;6, 25 ;1,0;10,−
7
5

+ χm4×m6×m4×m6
1,0;10, 75 ;1,0;6,−

2
5

+ χm4×m6×m4×m6
2, 1

16 ;1,0;2,−
1
16 ;1,0

+ χm4×m6×m4×m6
2, 1

16 ;5,3;2,−
1
16 ;5,−3

+ χm4×m6×m4×m6
2, 1

16 ;6,
2
5 ;2,−

1
16 ;6,−

2
5

+ χm4×m6×m4×m6
2, 1

16 ;10,
7
5 ;2,−

1
16 ;10,−

7
5

+ χm4×m6×m4×m6
3, 12 ;1,0;3,−

1
2 ;5,−3

+ χm4×m6×m4×m6
3, 12 ;5,3;3,−

1
2 ;1,0

+ χm4×m6×m4×m6
3, 12 ;6,

2
5 ;3,−

1
2 ;10,−

7
5

+ χm4×m6×m4×m6
3, 12 ;10,

7
5 ;3,−

1
2 ;6,−

2
5

Z
D(S3)
2 = χm4×m6×m4×m6

1,0;3, 23 ;1,0;3,−
2
3

+ χm4×m6×m4×m6
1,0;8, 1

15 ;1,0;8,−
1
15

+ χm4×m6×m4×m6
2, 1

16 ;3,
2
3 ;2,−

1
16 ;3,−

2
3

+ χm4×m6×m4×m6
2, 1

16 ;8,
1
15 ;2,−

1
16 ;8,−

1
15

+ χm4×m6×m4×m6
3, 12 ;3,

2
3 ;3,−

1
2 ;3,−

2
3

+ χm4×m6×m4×m6
3, 12 ;8,

1
15 ;3,−

1
2 ;8,−

1
15

ZD(S3)
r = χm4×m6×m4×m6

1,0;3, 23 ;1,0;3,−
2
3

+ χm4×m6×m4×m6
1,0;8, 1

15 ;1,0;8,−
1
15

+ χm4×m6×m4×m6
2, 1

16 ;3,
2
3 ;2,−

1
16 ;3,−

2
3

+ χm4×m6×m4×m6
2, 1

16 ;8,
1
15 ;2,−

1
16 ;8,−

1
15

+ χm4×m6×m4×m6
3, 12 ;3,

2
3 ;3,−

1
2 ;3,−

2
3

+ χm4×m6×m4×m6
3, 12 ;8,

1
15 ;3,−

1
2 ;8,−

1
15

ZD(S3)
r1 = χm4×m6×m4×m6

1,0;1,0;1,0;3,− 2
3

+ χm4×m6×m4×m6
1,0;5,3;1,0;3,− 2

3

+ χm4×m6×m4×m6
1,0;6, 25 ;1,0;8,−

1
15

+ χm4×m6×m4×m6
1,0;10, 75 ;1,0;8,−

1
15

+ χm4×m6×m4×m6
2, 1

16 ;1,0;2,−
1
16 ;3,−

2
3

+ χm4×m6×m4×m6
2, 1

16 ;5,3;2,−
1
16 ;3,−

2
3

+ χm4×m6×m4×m6
2, 1

16 ;6,
2
5 ;2,−

1
16 ;8,−

1
15

+ χm4×m6×m4×m6
2, 1

16 ;10,
7
5 ;2,−

1
16 ;8,−

1
15

+ χm4×m6×m4×m6
3, 12 ;1,0;3,−

1
2 ;3,−

2
3

+ χm4×m6×m4×m6
3, 12 ;5,3;3,−

1
2 ;3,−

2
3

+ χm4×m6×m4×m6
3, 12 ;6,

2
5 ;3,−

1
2 ;8,−

1
15

+ χm4×m6×m4×m6
3, 12 ;10,

7
5 ;3,−

1
2 ;8,−

1
15

ZD(S3)
r2 = χm4×m6×m4×m6

1,0;3, 23 ;1,0;1,0
+ χm4×m6×m4×m6

1,0;3, 23 ;1,0;5,−3
+ χm4×m6×m4×m6

1,0;8, 1
15 ;1,0;6,−

2
5

+ χm4×m6×m4×m6
1,0;8, 1

15 ;1,0;10,−
7
5

+ χm4×m6×m4×m6
2, 1

16 ;3,
2
3 ;2,−

1
16 ;1,0

+ χm4×m6×m4×m6
2, 1

16 ;3,
2
3 ;2,−

1
16 ;5,−3

+ χm4×m6×m4×m6
2, 1

16 ;8,
1
15 ;2,−

1
16 ;6,−

2
5

+ χm4×m6×m4×m6
2, 1

16 ;8,
1
15 ;2,−

1
16 ;10,−

7
5

+ χm4×m6×m4×m6
3, 12 ;3,

2
3 ;3,−

1
2 ;1,0

+ χm4×m6×m4×m6
3, 12 ;3,

2
3 ;3,−

1
2 ;5,−3

+ χm4×m6×m4×m6
3, 12 ;8,

1
15 ;3,−

1
2 ;6,−

2
5

+ χm4×m6×m4×m6
3, 12 ;8,

1
15 ;3,−

1
2 ;10,−

7
5

ZD(S3)
s = χm4×m6×m4×m6

1,0;2, 18 ;3,−
1
2 ;4,−

13
8

+ χm4×m6×m4×m6
1,0;4, 138 ;3,− 1

2 ;2,−
1
8

+ χm4×m6×m4×m6
1,0;7, 1

40 ;3,−
1
2 ;9,−

21
40

+ χm4×m6×m4×m6
1,0;9, 2140 ;3,−

1
2 ;7,−

1
40

+ χm4×m6×m4×m6
2, 1

16 ;2,
1
8 ;2,−

1
16 ;2,−

1
8

+ χm4×m6×m4×m6
2, 1

16 ;4,
13
8 ;2,− 1

16 ;4,−
13
8

+ χm4×m6×m4×m6
2, 1

16 ;7,
1
40 ;2,−

1
16 ;7,−

1
40

+ χm4×m6×m4×m6
2, 1

16 ;9,
21
40 ;2,−

1
16 ;9,−

21
40

+ χm4×m6×m4×m6
3, 12 ;2,

1
8 ;1,0;4,−

13
8

+ χm4×m6×m4×m6
3, 12 ;4,

13
8 ;1,0;2,− 1

8

+ χm4×m6×m4×m6
3, 12 ;7,

1
40 ;1,0;9,−

21
40

+ χm4×m6×m4×m6
3, 12 ;9,

21
40 ;1,0;7,−

1
40

ZD(S3)
s1 = χm4×m6×m4×m6

1,0;2, 18 ;3,−
1
2 ;2,−

1
8

+ χm4×m6×m4×m6
1,0;4, 138 ;3,− 1

2 ;4,−
13
8

+ χm4×m6×m4×m6
1,0;7, 1

40 ;3,−
1
2 ;7,−

1
40

+ χm4×m6×m4×m6
1,0;9, 2140 ;3,−

1
2 ;9,−

21
40

+ χm4×m6×m4×m6
2, 1

16 ;2,
1
8 ;2,−

1
16 ;4,−

13
8

+ χm4×m6×m4×m6
2, 1

16 ;4,
13
8 ;2,− 1

16 ;2,−
1
8

+ χm4×m6×m4×m6
2, 1

16 ;7,
1
40 ;2,−

1
16 ;9,−

21
40

+ χm4×m6×m4×m6
2, 1

16 ;9,
21
40 ;2,−

1
16 ;7,−

1
40

+ χm4×m6×m4×m6
3, 12 ;2,

1
8 ;1,0;2,−

1
8

+ χm4×m6×m4×m6
3, 12 ;4,

13
8 ;1,0;4,− 13

8

+ χm4×m6×m4×m6
3, 12 ;7,

1
40 ;1,0;7,−

1
40

+ χm4×m6×m4×m6
3, 12 ;9,

21
40 ;1,0;9,−

21
40

This multi-component, SymTO-resolved, partition function is constructed out of the
conformal characters of the primary operators of the Ising (labeled asm4 indicating it is the
(4,3) minimal model) and the Potts (labeled asm6 indicating it is the (6,5) minimal model)

CFTs. Similar to the convention in Eq. (E.1), the expression χm4×m6×m4×m6
a,ha,α,hα; b,−hb,β,hβ

is a short-

hand notation for the product of the left moving chiral conformal characters associated
with the primary operators of the Ising and Potts CFTs with conformal weights (ha, 0)
and (hα, 0) respectively, with the right moving chiral conformal characters associated with
the primary operators of the Ising and Potts CFTs with conformal weights (0, hb) and
(0, hβ) respectively.
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The only sector relevant for the purposes of this paper is the “vacuum” sector Z1,
which contains the S3 symmetric operators constructed out of the primary operators of
Ising and Potts CFTs. Note that there are 3 relevant operators that have a net zero
conformal spin. These have scaling dimensions 4

5 , 1, and
9
5 . They correspond to the three

relevant perturbations explored by the couplings J1−J2, J3−J4, and J⊥ in Sec. 2.3. Only
J3 − J4 is unchanged by the action of the Z3 KW duality.

F Spin chain with G symmetry and its gauged partner with
Rep(G) symmetry

In this appendix, we present a simple manifestation of the fact that upon gauging G
symmetry of a spin chain, with on-site Hilbert space identical to the regular representation
of G, one obtains a dual spin chain, also with on-site Hilbert space identical to the regular
representation of G, that has Rep(G) symmetry.

We consider a tensor product Hilbert space in one spatial dimension, where the on-site
Hilbert spaces are |G| dimensional, and spanned by orthonormal basis vectors labeled by
group elements, i.e.,

H = ⊗iHi , Hi = span{|g⟩ |g ∈ G} (F.1)

Then, we can construct a spin chain symmetric under G (0-form) symmetry, using two
families of local symmetric operators.

ˆ︁HG =
∑︂

i∈sites

(︂ˆ︁Li + Jδ̂i,i+1

)︂
(F.2)

where, ˆ︁Li =
∑︁

h∈G
ˆ︂Lh

i and
ˆ︂Lh

i acts on a basis vector at site i by left multiplication, i.e.,

ˆ︂Lh
i |gi⟩ := |hgi⟩ . (F.3)

and
δ̂i,i+1 :=

∑︂
{g}

δgi,gi+1 |{g}⟩⟨{g}| (F.4)

It is straightforward to check that this Hamiltonian has a G symmetry that acts by left
multiplication on the basis vectors,31

ˆ︂Uh :=
∏︂

i∈sites

ˆ︂Lh
i, (F.5)

where h is any element of G. The G symmetry is reflected in the fact that HG commutes
with all Uh.

A dual model can be defined in terms of degrees of freedom on links instead of sites.
The local Hilbert space on each link is isomorphic to the one described in Eq. (F.1),

H = ⊗l∈linksHl , Hl = span{|˜︁g⟩ | ˜︁g ∈ G}. (F.6)

The Hamiltonian for this dual model is defined asˆ︁HRep(G) =
∑︂

i∈sites

(︂ ˆ︁Qi + J ˆ︁∆(i,i+1)

)︂
(F.7)

31It also has another independent G symmetry that acts by right-multiplication. We will ignore this
symmetry in the present discussion. To be concrete, one can include additional terms in the Hamiltonian
that explicitly break this symmetry, while preserving the G symmetry acting by left-multiplications.
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where ˆ︁Qi =
∑︁

h∈G
ˆ︂Qh

i, with
ˆ︂Qh

i acting as

ˆ︂Qh
i

⃓⃓
. . . , ˜︁g(i−1,i), ˜︁g(i,i+1), . . .

⟩︁
:=
⃓⃓
. . . , ˜︁g(i−1,i)h

−1, h˜︁g(i,i+1), . . .
⟩︁
, (F.8)

and ˆ︁∆(i,i+1) defined as ˆ︁∆(i,i+1) :=
∑︂
{˜︁g} δ˜︁g(i,i+1),e |{˜︁g}⟩⟨{˜︁g}| , (F.9)

where e is the identity element in G. In the equations above, we have parametrized the
links with pairs of successive site indices (i, i+ 1).

Let us show that the model (F.7) can be obtained from the model (F.2) by gauging the
symmetry G. To that end, we introduce link degrees of freedom and enlarge the Hilbert
space to

Hlarge = Hsites ⊗Hlinks (F.10)

where Hlinks = ⊗l∈linksHl, with Hl = span{|g⟩ |g ∈ G}. Next, we minimally couple our
gauge field degrees of freedom (on the links) to the site degrees of freedom by modifying
the second term of (F.2) to

Jδ̂
′
i,i+1 :=

∑︂
{g,˜︁g} Jδg−1

i ˜︁g(i,i+1)gi+1,e
|{g, ˜︁g}⟩⟨{g, ˜︁g}| , (F.11)

where by {g, ˜︁g}, we refer to the basis vectors of Hlarge, labeled by G-variables on both
sites and links. Next, we impose the Gauss law constraints to project down to the smaller
physical Hilbert space Hphys. We define the Gauss law operators via its action on the
enlarged Hilbert space basis vectors,

ˆ︂Gh
j

⃓⃓
. . . , ˜︁g(j−1,j), gj , ˜︁g(j,j+1), . . .

⟩︁
=
⃓⃓
. . . , ˜︁g(j−1,j)h

−1, hgj , h˜︁g(j,j+1), . . .
⟩︁
. (F.12)

We can compactly express Gh
j in terms of the operators ˆ︂Lh

j and ˆ︂Qh
j introduced in Eq.

(F.3) and Eq. (F.8), ˆ︂Gh
j =

ˆ︂Lh
j
ˆ︂Qh

j . The physical Hilbert space is given by

Hphys ∼= Hlarge/{Gh
j=1 ∀j ∀h}. (F.13)

On this reduced Hilbert space, ˆ︂Gh
j acts as the identity operator, by definition. So as far

as states in Hphys are concerned, ˆ︂Lh
j acts as

(︂ˆ︂Qh
j

)︂−1
= ˆ︁Qh−1

j . Let us now gauge-fix

using the unitary operators, ˆ︁U{γj} =
∏︂

j∈sites

ˆ︃Gγj j . (F.14)

In other words, we start with an arbitrary state⃓⃓
. . . , ˜︁g(j−1,j), gj , ˜︁g(j,j+1), . . .

⟩︁
∈ Hlarge (F.15)

and gauge-fix by applying ˆ︁U{γj} with γj = gj , to end up with⃓⃓⃓
. . . , gj−1˜︁g(j−1,j)g

−1
j , e, gj˜︁g(j,j+1)g

−1
j+1, . . .

⟩︂
. (F.16)

Thus our gauge-fixed states
⃓⃓⃓
. . . , ˜︁g ′

(j−1,j), g
′
j , ˜︁g ′

(j,j+1), . . .
⟩︂
are given in terms of the original

site and index labels by

˜︁g ′

(j,j+1) = gj˜︁g(j,j+1)g
−1
j+1 , g

′
j = e, (F.17)
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i.e., the gauge-fixed states all have the site degrees of freedom labeled by the identity
element of the group G. On these states, our minimal coupling term (F.11) becomes
J ˆ︁∆ (i,i+1) so that the full gauge-fixed gauged Hamiltonian takes the form

ˆ︁HRep(G) =
∑︂

i∈sites

ˆ︁Qi + J ˆ︁∆(i,i+1),

thereby deriving Eq. (F.7). We note that the gauge-fixed Hilbert space does have a tensor
product structure, unlike Hphys. Therefore, it makes sense to refer to this model as a “spin
chain”.

Turns out, the Hamiltonian (F.7) has the non-invertible 0-form symmetry described by
the fusion category Rep(G).32 The associated symmetry transformations are implemented
by the operators ˆ︂WR =

∑︂
{˜︁gl}

Tr R

(︄ ∏︂
l∈links

˜︁gl
)︄
|{˜︁gl}⟩⟨{˜︁gl}| (F.18)

where R takes values in the set of irreducible representations of G, namely the simple
objects of Rep(G). The first term in Hamiltonian (F.7) commutes with ˆ︂WR due to the
fact that R(h−1)R(h) = R(h−1h) = R(e) = 1, on account of R being a representation of

G. The second term commutes as well since both ˆ︂WR and this term are diagonal in the
product basis of the link degrees of freedom.

G Fermionic SRep(S3) symmetry

In Sec. 3, we constructed the Rep(S3)-symmetric Hamiltonian (3.13) form S3-symmetric
Hamiltonian (2.3) by gauging the Z2 subgroup of S3. An alternative way to gauging this
Z2 symmetry is to introduce Z2 link degrees of freedom that obeys fermionic statistics,
which implements the so-called Jordan-Wigner (JW) transformation [4, 91, 92]. Such a
JW is viable also for gauging the Z2 subgroup of S3-symmetry and delivers a super fusion
category symmetry SRep(S3), see Ref. [93] for a discussion from topological quantum field
theory perspective.

G.1 Jordan-Wigner duality and constructing SRep(S3) symmetry

We follow the strategy employed in Ref. [94] and introduce two Majorana degrees of free-

dom
{︂
η̂i+1/2, ξ̂i+1/2

}︂
on each link, which satisfy the fermionic anticommutation relations{︂

η̂i+1/2, ξ̂j+1/2

}︂
= 0,

{︂
η̂i+1/2, η̂j+1/2

}︂
=
{︂
ξ̂i+1/2, ξ̂j+1/2

}︂
= 2δij . (G.1)

Without loss of generality, we impose periodic boundary conditions on the fermionic de-
grees of freedom, i.e., η̂i+L+1/2 = +η̂i+1/2 and ξ̂i+L+1/2 = +ξ̂i+1/2 and set the cardinality
of the lattice to be even, i.e., L = 0 mod 2. To gauge the Z2 subgroup of S3, we define
the pairwise commuting Gauss operators

ˆ︁GF
i := iξ̂i−1/2 σ̂

x
i τ̂

x
i
ˆ︁Ci η̂i+1/2,

[︂ ˆ︁GF
i

]︂2
= 1̂, (G.2)

where, as opposed to the Gauss operator in Eq. (3.2) the local representative of ˆ︁Us sym-
metry is sandwiched between fermionic operators. Just as it was the case before, we

32This explains the subscript on the dual Hamiltonian (F.7).
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define the gauge invariant subspace to be the one for which the Gauss operators are set
to identity.

In a similar fashion to Sec. (3), by minimally coupling the bond algebra (2.6) we can
construct a gauge invariant bond algebra. To this end, we define the pairwise commuting
local operators

p̂i+1/2 := iξ̂i+1/2 η̂i+1/2,
[︂
p̂i+1/2, p̂j+1/2

]︂
= 0, p̂2i+1/2 = 1̂, (G.3)

which are local at the links i+ 1/2. The minimally coupled bond algebra is then

Bmc
F :=

⟨︂
σ̂zi τ̂

z
i , τ̂

z
i p̂i+1/2 σ̂

z
i+1, σ̂

x
i , τ̂

x
i ,
(︂ ˆ︁Xi + ˆ︁X†

i

)︂
,

(︃ˆ︁Z p̂i+1/2

i
ˆ︁Z†
i+1 +

ˆ︁Z−p̂i+1/2

i
ˆ︁Zi+1

)︃
,

σ̂zi

(︂ ˆ︁Xi − ˆ︁X†
i

)︂
, τ̂ zi p̂i+1/2

(︃ˆ︁Z p̂i+1/2

i
ˆ︁Z†
i+1 − ˆ︁Z−p̂i+1/2

i
ˆ︁Zi+1

)︃ ⃓⃓⃓ ˆ︁GF
i = 1, i ∈ Λ

⟩︂
,

(G.4)

where the local operator p̂i+1/2 acts as a Z2-valued bosonic gauge field. Physically, this
operator measures the local fermion parity at link i+ 1/2. We implement an analogue of
the unitary transformation (3.4) such that

ˆ︁U σ̂xi ˆ︁U † = iξ̂i−1/2 σ̂
x
i τ̂

x
i
ˆ︁Ci η̂i+1/2,

ˆ︁U σ̂zi ˆ︁U † = σ̂zi ,ˆ︁U τ̂xi ˆ︁U † = τ̂xi ,
ˆ︁U τ̂ zi ˆ︁U † = τ̂ zi σ̂

z
i ,ˆ︁U ˆ︁Xi

ˆ︁U † = ˆ︁X σ̂z
i

i , ˆ︁U ˆ︁Zi
ˆ︁U † = ˆ︁Z σ̂z

i
i ,ˆ︁U ξ̂i+1/2

ˆ︁U † = ξ̂i+1/2 σ̂
z
i+1, ˆ︁U η̂i+1/2,

ˆ︁U † = σ̂zi η̂i+1/2,

(G.5)

which simplifies the Gauss operator to ˆ︁U ˆ︁GF
i
ˆ︁U † = σ̂xi . Setting σ̂xi = 1 and shifting the

fermionic link degrees of freedom to sites by i+1/2 ↦→ i+1 delivers the dual bond algebra

BF :=
⟨︂
τ̂ zi , τ̂

z
i iξ̂i+1 η̂i+1, iξ̂i τ̂

x
i
ˆ︁Ci η̂i+1, τ̂

x
i ,
(︂ ˆ︁Xi +

ˆ︁X†
i

)︂
,

(︃ˆ︁Z iξ̂i+1 η̂i+1

i
ˆ︁Z†
i+1 +

ˆ︁Z−iξ̂i+1 η̂i+1

i
ˆ︁Zi+1

)︃
,(︂ ˆ︁Xi − ˆ︁X†

i

)︂
, τ̂ zi iξ̂i+1 η̂i+1

(︃ˆ︁Z iξ̂i+1 η̂i+1

i
ˆ︁Z†
i+1 − ˆ︁Z−iξ̂i+1 η̂i+1

i
ˆ︁Zi+1

)︃ ⃓⃓⃓
i ∈ Λ

⟩︂
. (G.6)

By comparing with the bond algebra (3.5) of Rep(S3)-symmetric operators, we conclude
that the generators of the bond algebra (G.6) commute with the operators

ˆ︂W1 := 1̂,

ˆ︂Wp :=

L∏︂
i

iξ̂i η̂i ≡
L∏︂
i

p̂i,

ˆ︂W2 :=
1

2

(︄
1 +

L∏︂
i=1

iξ̂i η̂i

)︄[︄
L∏︂
i=1

ˆ︁X∏︁i
k=2 iξ̂k η̂k

i + ˆ︁X−
∏︁i

k=2 iξ̂k η̂k
i

]︄
.

(G.7a)

These operator satisfy the fusion rules

ˆ︂Wp
ˆ︂Wp = ˆ︂W1, ˆ︂Wp

ˆ︂W2 = ˆ︂W2, ˆ︂W2
ˆ︂W2 = ˆ︂W1 +ˆ︂Wp +ˆ︂W2. (G.7b)

Note that the operator ˆ︂Wp implements the ZF
2 fermion parity symmetry, which is special

in the sense that it cannot be broken explicitly or spontaneously and is a symmetry of
any fermionic model. We call the symmetry generated by operators (G.7) the super fusion
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category SRep(S3), where the adjective super signifies the non-trivial inclusion of fermion
parity symmetry into the fusion category.

On the one hand, one verifies that the image of the gauged Z2 symmetry ˆ︁Us is

L∏︂
i

iξ̂i η̂i+1 = (−1)
L∏︂
i

iξ̂i η̂i, (G.8)

where we used the facts that L is even and we imposed periodic boundary conditions
on the fermionic degrees of freedom. On the other hand, imposing periodic boundary
conditions on both fermions and bosons imply that image of 1̂ =

∏︁
i σ̂

z
i σ̂

z
i+1 is

L∏︂
i

iξ̂i η̂i ≡ ˆ︂Wp. (G.9)

Therefore, we conclude that the duality between the bond algebras (2.6) and (G.6) holds
in the subalgebras

BS3

⃓⃓⃓
ˆ︁Us=−1

∼= BF

⃓⃓⃓
ˆ︂Wp=+1

. (G.10)

G.2 Hamiltonian and its phase diagram

Using this duality, we can construct the image of the Hamiltonian (2.3) as

ˆ︁HSRep(S3)
:=− J1

L∑︂
i=1

(︃ˆ︁Z iξ̂i+1 η̂i+1

i
ˆ︁Z†
i+1 +

ˆ︁Z−iξ̂i+1 η̂i+1

i
ˆ︁Zi+1

)︃
− J2

L∑︂
i=1

(︂ ˆ︁Xi + ˆ︁X†
i

)︂
− J3

L∑︂
i=1

(︂
τ̂ zi + τ̂ zi iξ̂i+1 η̂i+1

)︂
− J4

L∑︂
i=1

(︂
iξ̂i τ̂

x
i
ˆ︁Ci η̂i+1 + τ̂xi

)︂
− J5

L∑︂
i=1

i τ̂ zi iξ̂i+1 η̂i+1

(︃ˆ︁Z iξ̂i+1 η̂i+1

i
ˆ︁Z†
i+1 − ˆ︁Z−iξ̂i+1 η̂i+1

i
ˆ︁Zi+1

)︃

− J6

L∑︂
i=1

i
(︂ ˆ︁Xi − ˆ︁X†

i

)︂
,

(G.11)

which is symmetric under the SRep(S3) symmetry generated by operators (G.7). By
duality, the phase diagram of this Hamiltonian has the same shape as that of Hamiltonian
(2.21). Without loss of generality, we set J5 = J6 = 0 and identify the following ground
states corresponding to four fixed-point gapped phases.

(i) When J1 = J4 = 0, Hamiltonian (G.11) becomes

ˆ︁HSRep(S3);2,3
:= −J2

L∑︂
i=1

(︂ ˆ︁Xi + ˆ︁X†
i

)︂
− J3

L∑︂
i=1

(︂
τ̂ zi + τ̂ zi iξ̂i+1 η̂i+1

)︂
(G.12)

There is a single nondegenerate gapped ground state

|GSTriv⟩ :=
L⨂︂
i=1

|τ zi = 1, iξi ηi = 1, Xi = 1⟩ , (G.13)

which is symmetric under the entire SRep(S3) symmetry. This ground state carries
even fermion parity and is a trivial invertible fermionic topological state. For that
reason we call the phase trivial SRep(S3)-symmetric phase.
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(ii) When J2 = J4 = 0, Hamiltonian (G.11) becomes

ˆ︁HRep(S3);1,3
:=− J1

L∑︂
i=1

(︃ˆ︁Z iξ̂i+1 η̂i+1

i
ˆ︁Z†
i+1 +

ˆ︁Z−iξ̂i+1 η̂i+1

i
ˆ︁Zi+1

)︃

− J3

L∑︂
i=1

(︂
τ̂ zi + τ̂ zi iξ̂i+1 η̂i+1

)︂
. (G.14)

There are three degenerate ground states

|GSαTriv⟩ :=
L⨂︂
i=1

|τ zi = 1, iξi ηi = 1, Zi = ωα⟩ . (G.15)

These ground states preserve the ZF
2 fermion parity symmetry generated by ˆ︂Wp while

they break the non-invertible ˆ︂W2 symmetry. Under the latter each ground state is
mapped to equal superposition of the the other two, i.e.,

ˆ︂W2 |GS1p⟩ = |GS2p⟩+ |GS3p⟩ ,ˆ︂W2 |GS2p⟩ = |GS3p⟩+ |GS1p⟩ ,ˆ︂W2 |GS3p⟩ = |GS1p⟩+ |GS2p⟩ .

(G.16)

Each ground state realize a trivial invertible fermionic state. We call this the trivial
SRep(S3)/ZF

2 SSB phase.

(iii) When J1 = J3 = 0, the Hamiltonian (G.11) becomes

ˆ︁HSRep(S3);2,4
:= −J2

L∑︂
i=1

(︂ ˆ︁Xi + ˆ︁X†
i

)︂
− J4

L∑︂
i=1

(︂
iξ̂i τ̂

x
i
ˆ︁Ci η̂i+1 + τ̂xi

)︂
. (G.17)

There is a single nondegenerate ground state

|GSKitaev⟩ :=
L⨂︂
i=1

|τxi = 1, iξi ηi+1 = 1, Xi = 1⟩ . (G.18)

As opposed to the ground state (G.13), the fermions in this ground state realize a
non-trivial invertible phase of matter, i.e., the ground state of the Kitaev chain [95].
When open boundary conditions are imposed, the ground states become twofold
degenerate with unpaired Majorana degrees of freedom at each end of the chain.

Ground state is symmetric under ZF
2 subgroup and carries odd fermion parity (G.18),

i.e.,

ˆ︂Wp |GSKitaev⟩ = − |GSKitaev⟩ . (G.19a)

Because of this, it is annihilated by the non-invertible ˆ︂W2 symmetry

ˆ︂W2 |GSKitaev⟩ = 0. (G.19b)

Interestingly, Hamiltonian (G.12) has a non-degenerate and gapped ground state on
which the non-invertible symmetry operator does not act. Since the expectation
value of the non-invertible symmetry operator vanishes in this ground state, we call
this the Kitaev SRep(S3)/ZF

2 SSB phase.
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(iv) When J2 = J3 = 0, the Hamiltonian (G.11) becomes

ˆ︁HSRep(S3);1,4
:=− J1

L∑︂
i=1

(︃ˆ︁Z iξ̂i+1 η̂i+1

i
ˆ︁Z†
i+1 +

ˆ︁Z−iξ̂i+1 η̂i+1

i
ˆ︁Zi+1

)︃

− J4

L∑︂
i=1

(︂
iξ̂i τ̂

x
i
ˆ︁Ci η̂i+1 + τ̂xi

)︂
. (G.20)

There are two degenerate ground states. First, there is a ground state obtained by
setting ˆ︁Zi = 1 for all sites that is given by

⃓⃓
GSK1

⟩︁
:=

L⨂︂
i=1

⃓⃓
τxi = 1, iξi ηi+1 = 1, Zi = 1

⟩︁
. (G.21a)

The second ground state is 33.

⃓⃓
GSTriv1

⟩︁
:=

1

2L/2

∑︂
{si=±1}

s1

(︄
L⨂︂
i=1

⃓⃓
τxi = 1, iξi ηi = si si−1, Zi = ωsi

⟩︁)︄
. (G.21b)

Fermionic degrees of freedom in the former ground state (G.21a) realize the Kitaev
phase, while they are in the trivial phase for the latter ground state (G.21b). These
two ground states transform under SRep(S3) symmetry as

ˆ︂Wp

⃓⃓
GSK1

⟩︁
= −

⃓⃓
GSK1

⟩︁
, ˆ︂Wp

⃓⃓
GSTriv1

⟩︁
= +

⃓⃓
GSTriv1

⟩︁
,ˆ︂W2

⃓⃓
GSK1

⟩︁
= 0, ˆ︂W2

⃓⃓
GSTriv1

⟩︁
= −

⃓⃓
GSTriv1

⟩︁
.

(G.22)

We note that while ground state
⃓⃓
GSK1

⟩︁
breaks ˆ︂W2 symmetry,

⃓⃓
GSTriv1

⟩︁
preserves

the entire symmetry group. Since fermionic degrees of freedom realize trivial and
non-trivial invertible fermionic states, we call this phase mixed SRep(S3)/ZF

2 SSB
phase.

We identified four gapped fixed-points and constructed the corresponding ground
states. We can deduce the shape of the phase diagram using the duality between Hamil-
tonians (2.3) and (G.11). In Fig. 16a, we show the phase diagram of (G.11) when
J5 = J6 = 0. We deduce the continuous phase transitions also using the fact that the
duality transformation does not change the central charge. We replace the Ising CFT with
Majorana CFT which are known to be dual to each other under JW transformation we
implemented.

We note that since fermion parity symmetry ZF
2 cannot be spontaneously broken, in

all gapped phase the only possible symmetry that can be broken is SRep(S3)/ZF
2 . We

observe this in three of the four gapped phases. In each of the these three gapped phases,
there is a distinct SRep(S3)/ZF

2 SSB pattern showcasing a rich possibility of phase diagrams
when non-invertible symmetries are spontaneously broken. We distinguish these symmetry
breaking patterns by ground state degeneracy and whether the degenerate states realize
trivial state or Kitaev state (see Fig. 16a).

33Much like the ground state (3.36b), it is not obvious that
⃓⃓
GSTriv

1

⟩︁
is shot-range entan-

gled. However, there exists a finite depth local unitary circuit that prepares this state from

the product state
⨂︁L

i=1

[︂⃓⃓⃓
τx
i = 1, iξ̂i η̂i = 1

⟩︂
⊗ 1√

2
(|Zi = ω⟩+ |Zi = ω∗⟩)

]︂
. Namely,

⃓⃓
GSTriv

1

⟩︁
=∏︁L

j=1
ˆ︁CF
j

⨂︁L
i=1

[︂⃓⃓⃓
τx
i = 1, iξ̂i η̂i+1 = 1

⟩︂
⊗ 1√

2
(|Zi = ω⟩+ |Zi = ω∗⟩)

]︂
where ˆ︁CF

j is a kind of CZ operator

that acts as the identity operator if Zj = ω and as iξ̂j−1η̂j if Zj = ω∗.
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(a) (b)

Figure 16: (a) The phase diagram of Hamiltonian (G.11). Since the fermion
parity symmetry SRep(S3) cannot be broken (explicitly or spontaneously), in
each gapped phase SRep(S3)/ZF

2 is broken if SSB takes place. There are three
distinct SSB patterns that are distinguished by ground state degeneracies and
whether if the fermionic degrees of freedom are in trivial or Kitaev phase. The
corresponding fixed-point ground states are given in Eqs. (G.13), (G.15), (G.18),
and (G.21). (b) The phase diagram of Hamiltonian (G.28) that is equivalent to
Hamiltonian (G.11) by half translation (G.24). Because of the unitary equivalence
the phase diagram of the two Hamiltonians and corresponding SSB patterns are
the same. Half-translation (G.24) corresponds to stacking each ground state with
the Kitaev state, which results in an exchange of labels trivial and Kitaev.

G.3 Alternative JW duality

There is a second way to gauge the Z2 subgroup of §3 symmetry using fermionic gauge
fields, which also delivers an SRep(S3). This alternative way differs from the discussion in
Sec. G.1 by the choice of Gauss operator. Namely, we can define

ˆ︁GF′
i := σ̂xi τ̂

x
i
ˆ︁Ci iη̂i+1/2 ξ̂i+1/2,

[︂ ˆ︁GF′
i

]︂2
= 1̂, (G.23)

which, as opposed to the Gauss operator (G.2) acts on only a single link. The two ways
of gauging are related by a half-translation on Majorana operators(︂

ξ̂i+1/2, η̂i+1/2

)︂
↦→
(︂
η̂i+3/2, ξ̂i+1/2

)︂
(G.24)

which can also be interpreted as “stacking” the resulting fermionic theory with Kitaev
chain [31, 93, 94]. Alternatively, this half-translation corresponds to first gauging Z2 sub-
group using bosonic gauge fields, as we have done in Sec. 3, and then gauging the Z2

subgroup of resulting Rep(S3) symmetry.
Under this second way of implementing JW duality, the Rep(S3) symmetric bond

algebra is

B
′

F :=
⟨︂
τ̂zi , τ̂

z
i iξ̂i+1η̂i+2, τ̂

x
i
ˆ︁Ci iξ̂i+1 η̂i+1, τ̂

x
i ,
(︂ ˆ︁Xi + ˆ︁X†

i

)︂
,

(︃ˆ︁Z−iξ̂i+1 η̂i+2

i
ˆ︁Z†
i+1 +

ˆ︁Z+iξ̂i+1 η̂i+2

i
ˆ︁Zi+1

)︃
,(︂ ˆ︁Xi − ˆ︁X†

i

)︂
, τ̂zi iξ̂i+1 η̂i+2

(︃ˆ︁Z−iξ̂i+1 η̂i+2

i
ˆ︁Z†
i+1 − ˆ︁Z+iξ̂i+1 η̂i+2

i
ˆ︁Zi+1

)︃ ⃓⃓⃓
i ∈ Λ

⟩︂
. (G.25)

Since half-translation operator anticommutes with the fermion parity, we find the symme-
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tries of this bond algebra to be generated by

ˆ︂W ′
1 := 1̂,

ˆ︂W ′
p :=

L∏︂
i

iξ̂i η̂i ≡
L∏︂
i

p̂i,

ˆ︂W ′
2 :=

1

2

(︄
1−

L∏︂
i=1

iξ̂i η̂i

)︄[︄
L∏︂
i=1

ˆ︁X∏︁i
k=2 iη̂k+1 ξ̂k

i + ˆ︁X−
∏︁i

k=2 iη̂k ξ̂k
i

]︄
.

(G.26a)

which satisfy the fusion rules

ˆ︂W ′
p
ˆ︂W ′

p = ˆ︂W ′
1, ˆ︂W ′

p
ˆ︂W ′

2 = ˆ︂W ′
2, ˆ︂W ′

2
ˆ︂W ′

2 = ˆ︂W ′
1 −ˆ︂W ′

p +ˆ︂W ′
2. (G.26b)

The duality between bond algebras (2.6) and (G.25) holds in the subalgebras

BS3

⃓⃓⃓
ˆ︁Us=−1

∼= B
′
F

⃓⃓⃓
ˆ︂Wp=−1

. (G.27)

Under the half-translation (G.24), the Hamiltonian (G.11) becomes

ˆ︁H ′

SRep(S3)
:=− J1

L∑︂
i=1

(︃ˆ︁Z−iξ̂i+1 η̂i+2

i
ˆ︁Z†
i+1 +

ˆ︁Z+iξ̂i+1 η̂i+2

i
ˆ︁Zi+1

)︃
− J2

L∑︂
i=1

(︂ ˆ︁Xi +
ˆ︁X†
i

)︂
− J3

L∑︂
i=1

(︂
τ̂ zi + τ̂ zi iη̂i+1 ξ̂i+2

)︂
− J4

L∑︂
i=1

(︂
τ̂xi
ˆ︁Ci iη̂i+1 ξ̂i+1 + τ̂xi

)︂
+ J5

L∑︂
i=1

i τ̂ zi iξ̂i+1 η̂i+2

(︃ˆ︁Z−iξ̂i+1 η̂i+2

i
ˆ︁Z†
i+1 − ˆ︁Z+iξ̂i+1 η̂i+2

i
ˆ︁Zi+1

)︃

− J6

L∑︂
i=1

i
(︂ ˆ︁Xi − ˆ︁X†

i

)︂
.

(G.28)

Begin unitarily equivalent to Hamiltonian (G.11), this Hamiltonian shares the same phase
diagram, which is shown in Fig. 16b when J5 = J6 = 0. The only difference between the
two Hamiltonians is that the labels trivial and Kitaev that denote the fermionic sector of
the ground states are exchanged. This is expected since half-translation (G.24) effectively
stacks a Kitaev chain on top of each ground state. Since this is a unitary transformation
the SSB patterns do not change. The two Hamiltonians are no longer unitarily equivalent
when open boundary conditions are imposed, since the unitary equivalence under half-
translation (G.24) relies on the translation invariance which is broken by open boundary
conditions. This inequivalence is reflected by the differing ground state degeneracies of
the two Hamiltonians with open boundary conditions
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