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Abstract. Despite the remarkable success of large vision-language mod-
els (LVLMs) on various tasks, their susceptibility to knowledge bias
inherited from training data hinders their ability to generalize to new
scenarios and limits their real-world applicability. To address this chal-
lenge, we propose the Counterfactual Bias-Robust Reasoning (CoBRa)
dataset that tackles knowledge bias by offering a novel collection of VQA
examples designed to evaluate and mitigate bias in LVLMs. These ex-
amples encourage counterfactual thinking by providing edited knowl-
edge graphs and image contents, with detailed annotations of reason-
ing processes to facilitate a comprehensive understanding of the ex-
amples. Based on the dataset, we introduce a Chain of Counterfactual
Thought (CoCT) method that learns the bias-robust reasoning processes
and provides in-context examples demonstrating how existing reasoning
generalizes to counterfactual scenarios. This enables LVLMs to explic-
itly reason step-by-step rather than relying on biased knowledge, lead-
ing to more generalizable solutions. Our extensive evaluation demon-
strates that CoCT outperforms existing approaches on tasks requir-
ing reasoning under knowledge bias. Our work is available at https:
//github.com/SuperJohnZhang/CoBRa.
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1 Introduction

The recent emergence of large vision language models (LVLMs), exemplified by
GPT-4V, highlights a transformative era in artificial intelligence by seamlessly
integrating visual and linguistic reasoning. Despite their advancements, LVLMs
are hindered by knowledge bias, challenging the realization of artificial general
intelligence (AGI) [37]. Knowledge bias arises from inherent prejudices embed-
ded within the training data. This bias can manifest in various forms, including
social bias [5], cultural bias [48], linguistic bias [30], and factual bias [7], etc.
Particularly, factual bias can critically influence the information LVLMs per-
ceive and learn, causing the phenomenon of hallucination [7,31], where LVLMs
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Fig. 1: While GPT-4V accurately counts the Tracey-Munro-Tracy members in the ex-
ample, its understanding and generalizability remain unclear. Counterfactual examples
(e.g., replacing a member with a child) reveal its struggle with new scenarios, suggest-
ing bias-induced limitations. Our CoBRa dataset provides rich counterfactual examples
and detailed reasoning annotations, enabling a novel CoCT method to mitigate bias in
LVLMs and promote more generalizable multimodal understanding.

fabricate information or provide demonstrably false answers when encountering
novel scenarios outside the scope of their training data.

Our work is driven by the aim of mitigating knowledge bias in LVLMs
through counterfactual thinking [11]. This strategy involves crafting counter-
factual examples, scenarios that deviate from the original situation in specific
ways, necessitating the model to employ bias-robust step-by-step reasoning. As
shown in Fig. 1, when prompted with a question like the number of members
in Tracey-Munro-Tracey, without employing counterfactual thinking, the model
(e.g., GPT-4V) may rely solely on its prior knowledge, assuming all three indi-
viduals in the image are members of the trio. However, when confronted with
a counterfactual scenario, the model can no longer provide the correct response
unless guided by a bias-robust reasoning process. Our research delves into the
data and methodological approaches that steer LVLMs towards more bias-robust
reasoning processes, thereby reducing susceptibility to inherent knowledge bias.

In this paper, we introduce the Counterfactual Bias-Robust Reasoning (Co-
BRa) dataset, which presents two key novelties: (1) CoBRa features paired
VQA examples with matched reasoning processes over varied knowledge con-
tents (i.e., three trio members vs. two members of the trio and a child, Fig. 1),
sourced from potentially biased internet knowledge and counterfactual exam-
ples. Distinct from existing counterfactual data synthesis methods (e.g., CSS [3],
MUTANT [14]), the counterfactual examples are generated with systematically
designed knowledge editing rules, editing both the knowledge graph and image
contents. (2) CoBRa offers comprehensive annotations detailing the step-by-step
reasoning processes, including the specific reasoning functions employed (e.g.,
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Find(), Filter(), Fig. 1) and relevant knowledge entities (e.g., people, adult,
Fig. 1). This rich annotation scheme allows researchers to not only evaluate the
final answer of a model but also gain insights into its decision making, facilitat-
ing the identification of potential bias and promoting the development of more
robust and explainable LVLMs.

Leveraging the counterfactual examples and annotated reasoning processes
from CoBRa, we introduce Chain of Counterfactual Thought (CoCT), a novel
chain-of-thought (CoT) method designed to mitigate the impact of knowledge
bias on LVLMs. CoCT separates the reasoning functions from potentially biased
factual knowledge, enabling the model to concentrate on bias-robust reasoning.
By incorporating both original and counterfactual examples as in-context ex-
amples, LVLMs are prompted to maintain consistent reasoning across different
scenarios. This approach significantly aids in mitigating bias influence, facilitat-
ing models’ ability to generalize to novel situations.

In summary, the contributions of this paper are as follows:

1. Our CoBRa dataset introduces paired VQA examples with contrasting knowl-
edge contents and comprehensive reasoning process annotations to facilitate
the bias-robust reasoning of LVLMs.

2. Our CoCT method mitigates knowledge bias by separating the bias-robust
reasoning functions from bias-sensitive knowledge and guiding consistent
reasoning across original and counterfactual scenarios.

3. We demonstrate the effectiveness of CoBRa and CoCT in reducing biased
responses through comprehensive experiments on multiple benchmarks. The
results and findings offer valuable insights into combatting knowledge bias
and hallucinations in LVLMs.

2 Related Work

2.1 Large Vision-Language Models

Our work builds upon the advancements in LVLMs, which have demonstrated
significant advancements in artificial intelligence tasks, particularly due to their
extensive pre-training on large-scale internet datasets for visual understand-
ing [2]. Built on large language models (LLMs), their integration of the visual
modality is often achieved through various architectural approaches: Models like
Flamingo [1] combine a static vision component with a specialized LLM, while
PaLM-E [10] directly integrates visual information into the powerful PaLM [6]
architecture. Recent efforts focus on creating high-quality, diverse multimodal
datasets from models like GPT-4 and GPT-4V. These datasets are then em-
ployed to fine-tune open-source LVLMs, such as LLaVA [32] and MiniGPT-4 [5§],
expanding their capabilities. Despite the excellent performance of LVLMSs, they
often tend to generate irrelevant or fabricated answers, namely hallucination hal-
lucination [7,8,26,31]. Hallucinations arise from the model’s over-reliance on bias
within the training data, hindering generalization to new scenarios. In response,
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our CoBRa dataset provides paired VQA examples with matched reasoning pro-
cesses upon different factual knowledge. CoCT leverages these counterfactual
examples to guide LVLMs through bias-robust reasoning, offering a focused ap-
proach to address knowledge bias in LVLMs.

2.2 Bias Evaluation and Mitigation

Many comprehensive benchmarks have been proposed to evaluate a broad spec-
trum of cognitive abilities for LVLMs;, such as recognition [12,33,49], OCR [36],
language processing [34,56], and knowledge [35]. However, many of them often
lack specific bias evaluation components. To combat bias, previous dataset ef-
forts have focused on out-of-distribution VQAs [15,20] and hallucination-prone
tasks [7,26,31]. They address specific aspects of bias but may not systemati-
cally evaluate all types of bias with sufficient examples. Counterfactual-based
approaches [4,14] have been proposed to promote stronger connections between
reasoning and inputs by generating synthetic images or questions. While they
rely on simple masking or visual feature manipulation, our CoBRa dataset sys-
tematically generates diverse counterfactual examples by applying comprehen-
sive knowledge editing rules based on knowledge graphs. CoBRa also provides
step-by-step reasoning annotations for both original and counterfactual exam-
ples, guiding model training and empowering LVLMs in counterfactual thinking.

2.3 Chain-of-Thought Reasoning

Chain-of-thought (CoT) techniques have become a valuable tool for enhancing
LLM reasoning abilities. They encourage LLMs to explicitly generate intermedi-
ate reasoning steps, leading to more accurate final results. CoT approaches fall
into two main categories: zero-shot CoT [17,22,54,55], which relies on fine-tuned
prompts without specific examples, and few-shot CoT [42,47], which provides
multiple demonstrations of step-by-step reasoning for similar tasks. The for-
mer category advances in domain-specific performance due to the fine-tuning
of large language models while the latter benefits flexibility in multi-domain
deployment from the lightweight design. To improve CoTs in both categories,
researchers are actively exploring ways by optimizing the reasoning process in
prompts (e.g., explicit decomposition of problems [21,57], employing calibration
methods [13,27,46], etc.), or selecting high-quality demonstrations based on var-
ious metrics (e.g., similarity [19,42|, diversity [53], and complexity [13]). Recent
efforts also generalize CoT to cross-modal CoT [34, 54, 55] for LVLMs. Unlike
its precedents, our proposed CoCT is a novel cross-modal few-shot CoT method
that optimizes both the reasoning process and the in-context demonstrations. It
leverages counterfactual examples from the CoBRa dataset to predict bias-robust
reasoning processes with separated logical steps (i.e., functions) and knowledge
entities (i.e., parameters), and accumulates pairs of in-context examples with rel-
evant reasoning processes over diverse factual knowledge, empowering LVLMs
to achieve higher levels of bias-robustness in their decision making.
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Fig. 2: The two-stage pipeline of generating original and counterfactual examples with
reasoning process annotations. Left: Build a knowledge graph from a Wikipedia im-
age for original example generation and reasoning process sampling. Right: Applying
comprehensive knowledge editing rules to generate a counterfactual knowledge graph,
guiding the creation of counterfactual examples. This novel knowledge-graph-based ap-
proach forms the basis of CoBRa, enhancing LVLMs’ reasoning and bias robustness.

3 Counterfactual Bias-Robust Reasoning Dataset

Our CoBRa dataset challenges LVLMs’ reasoning abilities beyond knowledge
bias by providing pairs of original and counterfactual examples and annotations
of detailed reasoning processes. The construction of our CoBRa dataset follows
a rigorous pipeline, involving data collection, knowledge retrieval and editing,
reasoning process generation, question generation, and image generation. This
pipeline comprises two stages (see Fig. 2): original example generation, and coun-
terfactual example generation.

3.1 Generating Original Examples

The original examples are obtained from a collection of Wikipedia images and
their corresponding textual descriptions [43]. Given an image, we employ state-
of-the-art scene graph generation [16] and knowledge retrieval [51] methods to
construct a comprehensive knowledge graph that organizes the relevant visual-
linguistic information from the images and external sources (e.g., attribution
caption, sections of Wikipedia contents [43]). From the constructed knowledge
graph, to generate the reasoning processes, along with the corresponding ques-
tions and answers, we first sample reasoning processes based on a pool of func-
tions (e.g., Find(), Count()) and match them with the parameters (i.e., inter-
connected knowledge entities and relationships) sampled from the knowledge
graph, arriving at parameterized reasoning processes (e.g., Find(frogs), Count()).
Specifically, reasoning functions denote the fundamental logical steps to arrive
at a conclusion, while parameters are the specific knowledge contents employed
within these functions. To examine the validity of the sampled reasoning process,
we employ a series of sanity checkers following GQA-VD [52], such as check-
ing the existence of reasoned knowledge entities, etc. Finally, upon successful
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Fig. 3: To ensure the diversity of counterfactual examples, we leverage graph-based
knowledge editing rules (e.g., addEntity, addRelationship, replaceEntityClass, re-
placeEntityProperty etc.) Edited knowledge entities are highlighted in red.

validation, the reasoning processes and their associated facts are translated to
questions and answers (e.g., “Q: How many frogs are there in the image? A:
6”) using the question engine of the GQA-VD dataset [52]. This process ensures
that the questions are grounded in the visual-linguistic knowledge depicted in
the knowledge graph.

3.2 Generating Counterfactual Examples

What distinguishes our method from previous studies is the generation of coun-
terfactual examples. While existing counterfactual VQA methods simply apply
masks or low-level manipulations to the image, we generate counterfactual ex-
amples by editing the knowledge graph and then inpainting the affected image
regions, leading to more comprehensive and realistic results. As shown in Fig. 3,
given an original example, we edit the relevant entities using multiple rules ran-
domly sampled from a pool of comprehensive graph-based knowledge editing
rules [40], such as replaceEntityClass(frog, snake) — to change the selected entity
from a frog to a snake, or replaceEntityColor(dark green) — to change the color
of the selected entity to dark green. The counterfactual images are generated
from the edited knowledge graph using diffusion models [40,41,44]. To ensure
the image quality, we apply a visual validator to examine whether the inpainted
visual contents fit the desired scene and align with the edited knowledge graph.
This is achieved by projecting the inpainted visual features and the updated
knowledge graphs into the same latent space with CLIP [38] and comparing
their similarity. Based on the updated knowledge graph, we then update the pa-
rameters of the original examples and apply the same sanity checkers/question
engine, generating counterfactual reasoning processes, questions and answers.
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Table 1: Statistics of CoBRa and related datasets. E. is short for edited images or
QAs. Anns denotes the data annotation method. K. Anns and R. Anns denote the
knowledge and reasoning annotations, respectively. T. denotes training set availability.

Dataset ‘ # Imgs # E.Imgs # QAs # E. QAs ‘ Anns K. Anns R. Anns T
CoBRa | 10k+ 5k+ 20k 20k+ | Auto KG Process v
VQA-CP v2 [15] 98k 0 220k 0 Manual - - v
GQA-OOD |[20] 9.7k 0 53k 0 Auto SG Process Vv
HallusionBench [31] | 1,129 504 1,129 1,129 Manual - - -
Bingo [7] 308 140 370 370 Manual - -
MMMU [50] 11,550 0 11,550 0 Manual - - -
ScienceQA [34] 10,332 0 21,208 0 Manual - Text v
MMBench [33] 2,974 0 2,974 0 Manual - - -
MME [12] 1,187 0 1,457 1,457 Manual - - -
MM-Vet [49] 200 0 218 155 Manual - - -

This comprehensive approach ensures coherence in reasoning between the origi-
nal and counterfactual examples despite factual knowledge shifts and bias.

3.3 Dataset Statistics

CoBRa introduces a novel approach to dataset creation for knowledge-based rea-
soning in counterfactual examples. It features 10,000 pairs of images, their cor-
responding question-answer sets, and reasoning annotations, meticulously edited
using detailed knowledge graph annotations. With a fully automatic generation
pipeline, this dataset can scale to more Wikipedia pages and currently main-
tains an additional training set with 44,604 pairs of examples, facilitating robust
model training and testing across diverse scenarios. Tab. 1 highlights CoBRa’s
key benefits compared to existing datasets: (1) CoBRa stands out with its focus
on comprehensive counterfactual scenarios, providing by far the only counter-
factual image dataset with explicitly annotated knowledge graphs and reason-
ing processes. (2) To guarantee the diversity of knowledge for counterfactual
examples, CoBRa leverages 254 compositional templates formed by a compre-
hensive set of graph-based knowledge editing rules. (3) CoBRa’s scope extends
beyond bias evaluation. With an automatic generation pipeline, CoBRa can gen-
erate more examples about a broader range of factual knowledge, allowing future
methods to learn from our reasoning-grounded counterfactual examples.

As shown in Fig. 4, CoBRa promotes fair and generalizable AT models by
incorporating a diverse range of topics and ensuring a balanced distribution of
knowledge facts in the counterfactual examples. CoBRa’s VQA examples span a
diverse range of 12 natural and social science topics. The knowledge graph asso-
ciated with each example has an average of 16 nodes and 46.9 edges. The dataset
categorizes reasoning processes into five key skill sets: identification, comparison,
classification, description, and arithmetic. Each reasoning process further decom-
poses into an average of 3.8 distinct reasoning functions (e.g., Find(), Count()),
enabling fine-grained analysis of a model’s reasoning capabilities. This diversity
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of knowledge distribution offers a rich and balanced knowledge base for robust
training and evaluation, leading to more reliable and inclusive models.

4 Chain of Counterfactual Thought

Chain of Thought (CoT) is a recent advancement in eliciting step-by-step reason-
ing behavior for LLMs and LVLMs. By exposing them to intermediate reasoning
processes and high-quality in-context demonstrations, CoT not only generates
more accurate answers but also provide an explanation. Inspired by its success,
our proposed CoCT further advances with the counterfactual examples and rea-
soning annotations provided by the CoBRa dataset, empowering bias-robust
reasoning for LVLMs. As shown in Fig. 5, it features two technical novelties:
(1) Different from conventional CoT methods that treat logical steps and rele-
vant knowledge as a whole (e.g., rationales in DDCoT [55]), our CoCT explic-
itly separates them into reasoning functions and parameters. By leveraging the
rich reasoning annotations from CoBRa, we train translation language models
(TLM) [25], which excels at modeling relationships between linguistic sequences,
and generate step-by-step bias-robust reasoning processes for LVLMs. (2) At the
inference stage, CoCT retrieves contextually relevant examples from the training
data based on the similarity of the reasoning process, with both the original and
counterfactual examples being presented to the LVLM as in-context examples.
This approach effectively guides the LVLM’s counterfactual thinking to reason
consistently across both scenarios.

4.1 Learning Bias-Robust Reasoning Processes

The proposed CoBRa dataset offers pairs of counterfactual examples along with
their reasoning annotations, enabling the training of a dedicated model to predict
the counterfactual “thought” for test examples. As shown in Fig. 5, CoCT adopts
the TLM architecture [23], processing the LXMERT [45] embedding of the input
to predict a sequence of reasoning steps P = {P?}. Instead of predicting reason-
ing functions Py and parameters P, together, we employ two transformers in the
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Fig. 5: Our CoCT method consists of two stages: [Left] Training a TLM to generate
bias-robust reasoning processes, including functions and parameters. [Right] Prompt-
ing the LVLM with in-context examples retrieved from the training data, based on the
similarity of reasoning processes.

TLM structure, each predicting one of them. The decoupling of functions and
parameters allows models to flexibly adjust the parameters for counterfactual
examples while preserving the functions, contributing to bias-robust reasoning.

The TLM training is supervised by ground-truth annotations of reasoning
processes. To enhance generalizability and prevent overfitting, we simultaneously
evaluate pairs of original and counterfactual examples: one question might have
bias built-in, while the other is its bias-augmented counterparts. The TLM sees
both questions at once, and learns to predict the correct reasoning steps for both.

To achieve this, the loss function is defined by extending the conventional
denoising auto-encoding L, loss and back-translation loss L;; of unsupervised
neural machine translation system (NMT) [24,25] with a bias-robust loss L,

L=Ly + Loe+ L. (1)
The bias-robust loss encourages the original and counterfactual pair to main-
tain similar reasoning functions regardless of the parameters,

where 7 is the positional index of the output and p}, ﬁ;} are the predicted rea-
soning functions in a contrasting pair, respectively. The denoising auto-encoding
and back-translation loss cooperate to ensure a robust translation. With a noise
model that randomly drops tokens from the source (i.e., questions) and the tar-
get domain (i.e., functions and parameters), the denoising auto-encoding loss
Lqe guarantees that the sequences at both domains can be reconstructed from
their noisy versions, while the back-translation loss L;; ensures that the noisy
translation of sequences can be translated back into their original domain. With
these losses, our models maintain stable performance in generating bias-robust
reasoning processes.

(2)
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Overall, this method addresses knowledge bias by translating the input ques-
tion into a bias-robust reasoning process, minimizing its reliance on potentially
biased factual knowledge. For detailed loss implementation, please refer to Sup-
plementary Materials.

4.2 Prompting with In-Context Examples

For unbiased reasoning, as shown in Fig. 5 [Right], we search from CoBRa’s
unique original and counterfactual example pairs from the training dataset, and
prompt LVLMs with those in-context examples.

Different from traditional in-context learning that relies on matching ques-
tions with similar examples from a large dataset, we consider the reasoning
functions and parameters separately, where good in-context examples should
maintain similarity in reasoning functions but diversity in parameters. With this
strategy, CoCT does not rely on the knowledge similarity between in-context ex-
amples and the test example, hence allowing reasoning to be generalized to new
scenarios.

Specifically, to measure the reasoning similarity between a test example’s rea-
soning process and those in the CoBRa training dataset, we adopt the Needleman-
Wunsch (NW) algorithm [28], a dynamic programming technique used to find
the optimal alignment between two sequences by maximizing a similarity score
while considering gaps. The original and counterfactual pairs with the highest
similarity scores are then selected as the in-context examples, demonstrating
how similar reasoning functions can be conducted to capture diverse visual con-
texts. Since the paired examples maintain diverse and balanced contexts in the
original and counterfactual scenarios, they also help mitigate bias inherent in
specific visual representations.

We integrate pairs of original and counterfactual examples into a structured
prompt to guide bias-robust reasoning for LVLMs. As shown in Fig. 5, the
prompt starts with a prompt head “Please mimic these examples to answer
the test question.” to frame the VQA task, and then includes in-context exam-
ples following a specific structure: “ V: foriginal-image/; Q: [question]; R:[reason-
process|; K:[knowledge]; A: [answer]”. Finally, the test example along with the
predicted reasoning process is appended, leaving LVLMs to generate outputs.
For detailed prompt examples, please refer to the Supplementary Materials.

5 Experiments

We comprehensively evaluate the effectiveness of our proposed CoBRa dataset
and CoCT method in mitigating knowledge bias within LVLMs. We present
experimental settings (Sec. 5.1) detailing the training and evaluation settings.
We then conduct a quantitative evaluation (Sec. 5.2) by applying the CoCT to
various benchmarks, comparing its performance against baselines, and measuring
its impact on reducing bias. Finally, ablation studies (Sec. 5.3) systematically
remove key components to analyze their contributions.
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5.1 Experimental Settings

Datasets. To comprehensively evaluate the general reasoning and debiasing
abilities of LVLMs, besides our proposed CoBRa dataset, we employed a di-
verse range of benchmark datasets encompassing various challenge categories:
Out-of-distribution Datasets: GQA-OOD [20] and VQA-CPv2 [15] test mod-
els on scenarios where the answer distribution differs from training data, chal-
lenging them with uncommon or unexpected inputs. Comprehensive Bench-
marks: MMBench [33] and ScienceQA with image contexts (SQA) [34], evaluat-
ing LVLMs across various domains and modalities, demanding reasoning across
diverse contexts. Hallucination Benchmarks: Bingo (fact bias split) 7] and
HallusionBench (HB) [31] contain questions requiring the model to imagine or
hallucinate scenarios beyond the information provided in the image. Some sub-
categories intentionally shift the knowledge distribution to test LVLMs’ capabil-
ities to handle bias. This comprehensive selection ensures a rigorous evaluation
of LVLMs’ capabilities under various bias and reasoning challenges. For results
on other LVLM benchmarks (e.g., MME [12], MMMU [50], MM-Vet [49]) and
hyperparameter tuning, please refer to the Supplementary Materials.
Compared Models. We evaluate our method against LVLM-based debiasing
approaches, specifically focusing on two LVLMs: GPT-4V [2] and LLaVa-1.5 [32].
These models are tailored for vision-language tasks, leveraging pre-training on
extensive image-text data to excel across various VLM benchmarks. We compare
our CoCT method with three typical CoT methods: the clustering-based Auto-
CoT [53], Active Prompting (AP) [9], and the rationale-generating DDCoT [55].
Training and Evaluation. Our method utilizes the CoBRa dataset to train a
TLM and collect in-context examples for unbiased CoT reasoning. To prevent
TLM from learning from seen examples, we split the dataset into training, val-
idation, and test sets, ensuring evaluation validity and reliability. The trained
TLM and reasoning-oriented heuristics are then assessed across all benchmarks.
Inference Time While CoT methods like AutoCoT, AP, and DDCoT improve
reasoning, they potentially slow down the process by requiring large datasets or
generating rationales. CoCT, focusing on core reasoning similarities, needs less
data and achieves the fastest inference time (39ms) compared to others (AP:
41ms, AutoCoT: 48ms, DDCoT: 74ms), making it more suitable for real-world
applications.

5.2 Quantitative Results

We quantitatively evaluate our method and current CoT approaches on LLaVA-
1.5 and GPT-4V, presenting performance comparisons in Tab. 2. Our results
reveal several findings:

— Adopting CoT methods (e.g., AutoCoT, AP, DDCoT, and CoCT) leads
to improved bias mitigation in LVLMs, particularly evident in significant
enhancements over bias-evaluation benchmarks like CoBRa (16.1% on A),
HB (9.3%), and Bingo (138.4%). This demonstrates the importance of in-
corporating step-by-step reasoning mechanisms to navigate biased shortcuts
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Table 2: Comparison of model performance on multiple benchmarks. O and C refer to
the original and counterfactual splits of CoBRa, respectively. A refers to the difference
between two splits from CoBRa (i.e., original and counterfactual) and GQA-OOD (i.e.,
head and tail) respectively. All the experiments are conducted in a test set.

Method CoBRa VQA-CP GQA-OOD HB Bingo SQA MMBench
(@) C Al Tail A
LLaVA-1.5 63.1 18.9 44.2 50.4 478 9.9 29.0 12,5 66.8 64.3
F AutoCoT [53] 63.3 19.6 43.7 53.2 48.2 88 294 188 679 65.1
+ AP [9] 63.4 214 420 52.8 483 89 30.1 188 684 65.2
+ DDCoT?! [55] 744 239 50.5 55.8 48.7 9.1 30.8 234 T74.6 68.4
4+ CoCT (GQA) 73.5 33.4 40.1 56.2 50.1 84 314 234 708 67.9
+ CoCT (CoBRa) | 76.4 38.3 38.1 56.0 49.2 8.4 32.0 29.8 713 68.9
GPT-4V 78.2 36.7 41.5 54.8 49.3 94 373 9.4 71.3 68.9
+ AutoCoT [53] 79.1 379 41.2 55.7 49.7 9.1 37.8 109 73.2 77.8
+ AP [9] 78.8 38.0 40.8 56.3 49.5 9.4 374 125 741 78.2
+ DDCoT [55] 79.1 38.4 40.7 59.8 50.2 88 37.7 234 80.2 78.3
4+ CoCT (GQA) 78.9 40.1 38.8 58.8 50.9 89 385 266 742 68.3
+ CoCT (CoBRa) | 79.3 41.8 37.5 60.4 50.6 8.5 41.2 31.4 758 78.5

for more equitable and robust reasoning. More importantly, high-performing
CoT approaches also outperform bare LVLMs on comprehensive benchmarks
(e.g., +6.7% on SQA, +7.1% on MMBench), underscoring the crucial role
of bias mitigation in bolstering LVLMs’ performance and robustness across
diverse evaluation settings.

— Our CoCT outperforms existing CoT approaches (i.e., AutoCoT, AP, DD-
Cot) across all bias-evaluation benchmarks (i.e., CoBRa, VQA-CP, GQA-
OOD, HB, Bingo) and MMBench, emphasizing its effective usage of the
bias-robust reasoning process. While the rationale generation method DD-
CoT achieves higher performance on SQA, its fine-tuning for the rationale
generation on a large language model [39] exacerbates the bias, leading to
limited performance on bias-evaluation datasets. Differently, CoCT provides
a lightweight solution by explicitly decoupling reasoning functions from po-
tentially biased knowledge with TLMs, achieving more accurate reasoning
and better generalizability.

— Our CoBRa dataset, providing counterfactual examples with diverse knowl-
edge but similar reasoning functions, significantly enhances adaptability and
generalization across various reasoning tasks. The combination of CoCT and
CoBRa examples outperforms CoCT with GQA examples, achieving the top
performance on 8/10 and 9/10 metrics with LLaVA-1.5 and GPT-4V, re-
spectively. It is noteworthy that leveraging GQA examples is advantageous
on GQA-OOD and VQA-CP due to the same source (i.e., MS COCO [29],
GQA [18]) for images and questions of GQA examples.

! Different from few-shot CoT methods, DDCoT fine-tunes a large language model on
the CoT annotations of SQA to generate reasoning rationales.
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Table 3: Ablation study of TLM and bias-robust Loss in CoCT on multiple datasets.

Method ‘ CoBRa-O CoBRa-C A | HB Bingo SQA
Baseline 63.1 18.9 44.2  29.0 12.5 66.8
w/o TLM 69.8 28.5 41.3 31.5 18.8 68.9
w/o Bias-Robust Loss Lp- 74.5 34.2 40.3 31.8 26.6 70.4
Full 76.4 38.3 38.1 32.0 29.8 T71.3

Table 4: Impacts of different settings of in-context examples. K.Sim stands for exam-
ples selected by the similarity of factual knowledge.

Setting | CoBRa-O CoBRa-C  A] HB Bingo SQA
Zero-Shot 68.5 27.1 414 294 188 679
Random 72.3 31.1 41.2 30.7 234 70.1
K.Sim 72.7 31.2 41.5 30.5 18.8 70.8
Original 72.9 32.1 40.8 31.1 23.4 69.3
Counterfactual 73.5 33.7 39.8 314 23.4 69.8
Both 76.4 38.3 38.1 32.0 29.8 71.3

5.3 Ablation Study

We explore the impact of various components through ablation studies on the
LLaVA-1.5 model, including the TLM that predicts the reasoning process (Tab. 3),
the choices of in-context examples (Tab. 4) and the design of prompts (Tab. 5).
TLM and Bias-Robust Loss. The TLM model of CoCT is trained on the
CoBRa examples with the bias-robust loss L., explicitly generating step-by-
step reasoning processes for the training and test examples. As shown in Tab. 3,
ablating this model effectively removes the model’s ability to perform CoT rea-
soning, leading to a drastic performance drop among all four benchmarks (i.e.,
CoBRa A |: +3.2; HB: -0.5, Bingo: -11.0; SQA: -3.6). This result suggests the
crucial role of the step-by-step reasoning process in eliciting the reasoning ca-
pabilities of LVLMs across different scenarios. Besides, incorporating a TLM
without the bias-robust loss in CoCT not only degrades overall performances,
but also contributes to a steeper performance drop on counterfactual examples
(i.e., CoBRa-C (-4.1) vs. CoBRa-O (-1.9)), indicating that the bias-robust loss
is able to mitigate the influence of potential bias embedded within the training
data and generalize LVLM more effectively to counterfactual scenarios.
In-Context Examples. The choice of in-context examples is also highly rele-
vant to the model’s reasoning capabilities. To evaluate how in-context examples
impact the reasoning of LVLMSs, as shown in Tab. 4, we evaluate CoCT under six
different settings: (1) Zero-Shot: only a template example to regulate the out-
put format of CoT; (2) Random: randomly selected examples; (3) K. Sim: examples
with high knowledge semantic similarity; (4-6) Original/Counterfactual/Both:
only original/counterfactual or both examples with high reasoning similarity
computed by NW [28]. Our results reveal four observations:

Firstly, integrating in-context examples (2-6) yields improved performance
over the zero-shot setting (1) across various benchmarks (CoBRa-O, CoBRa-C,
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Table 5: Impacts of different prompt components.

Prompt ‘ CoBRa-O CoBRa-C A | HB Bingo SQA
w /o Reasoning Processes 68.5 24.3 44.2 294 14.1 67.8
w/o0 Knowledge Graphs 71.4 29.9 41.5 314 26.6 69.2
Full 76.4 38.3 38.1 32.0 29.8 T71.3

HB, SQA), demonstrating their ability to harness LVLM reasoning potential effi-
ciently. Secondly, employing different similarity metrics (3-6) enables LVLMs to
access more relevant contexts compared to random examples (2), resulting in en-
hanced reasoning performance in specific scenarios; for instance, K.Sim achieves
superior performance (SQA: 70.8) compared to the random setting (SQA: 70.1).
Thirdly, while K.Sim excels in benchmarks requiring diverse knowledge (SQA:
70.8), our reasoning similarity examples (4-6) demonstrate greater effectiveness
in counterfactual scenarios (CoBRa-C: >32.1), highlighting the significance of
separating reasoning from biased knowledge for bias-robust decision-making.
Lastly, incorporating both original and counterfactual examples (6) significantly
improves performance over single-type examples (4, 5) across all bias-evaluation
benchmarks (CoBRa A |: -2.7, HB: +0.9, Bingo: +6.4), emphasizing the crucial
role of contrastive comparison in bias mitigation.

Prompt Design. Tab. 5 show the impact of different prompt components on
LVLM’s reasoning capabilities, including reasoning processes and knowledge
graphs. Overall, combining both components yields the highest performance
(i.e., 38.1 on CoBRa, 32.0 on HB, etc.), highlighting their effectiveness. Besides,
omitting reasoning processes causes the most significant performance decline
(e.g., 38.1 — 44.2 on A for CoBRa), indicating their crucial role in guiding
LVLMs for bias-robust reasoning and improved generalizability.

6 Conclusion

This paper tackled the pervasive issue of knowledge bias in LVLMSs. It offers two
key contributions for achieving bias-robust reasoning: CoBRa is a novel dataset
featuring counterfactual examples and detailed reasoning annotations. CoBRa
facilitates studying LVLMSs’ reasoning and empowers the development of bias-
mitigating techniques. Powered by CoBRa’s counterfactual examples and reason-
ing processes, CoCT is a novel approach for mitigating knowledge bias through
step-by-step reasoning. CoCT achieves this by decoupling the core reasoning
functions from potentially biased knowledge and prompting LVLMs with coun-
terfactual examples that share the reasoning steps but differ in factual details.
Their effectiveness, demonstrated through comprehensive experiments, paves the
way for next-generation LVLMs that prioritize fairness and reliability. Future
work may explore CoCT’s application to broader vision-language tasks while in-
tegrating explainability techniques for deeper insights into its reasoning process
and further combatting bias in Al systems.
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