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We study the nonlinear σ-model in (d+ 1)-dimensional spacetime with connected target space
K and show that, at energy scales below singular field comfigurations (such as vortices), it has
an emergent non-invertible higher symmetry. The symmetry defects of the emergent symmetry
are described by the d-representations of a discrete d-group G(d) (i.e. the emergent symmetry is

the dual of the invertible d-group G(d) symmetry). The d-group G(d) is determined such that its

classifying space BG(d) is given by the d-th Postnikov stage of K. In (2+1)D and for finite G(2), this
symmetry is always holo-equivalent to an invertible 0-form—ordinary—symmetry with potential ’t
Hooft anomaly. The singularity-free disordered phase of the nonlinear σ-model spontaneously breaks
this symmetry, and when G(d) is finite, it is described by the deconfined phase of G(d) higher gauge
theory. We consider examples of such disordered phases. We focus on a singularity-free S2 nonlinear
σ-model in (3 + 1)D and show that it has an emergent non-invertible higher symmetry. As a result,
its disordered phase is described by axion electrodynamics and has two gapless modes corresponding
to a photon and a massless axion. Notably, this non-perturbative result is different from the results
obtained using the SN and CPN−1 nonlinear σ-models in the large-N limit.
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I. INTRODUCTION

Nonlinear σ-models are field theories with broad appli-
cations in physics. For example, when an ordinary con-
tinuous symmetry G is spontaneously broken down to a
subgroup H, the spontaneous symmetry broken phase
can be described by a nonlinear σ-model with target
space G/H. As a continuum field theory, this nonlinear
σ-model describes the low-energy fluctuations of Gold-
stone bosons [1–4]. In quantum field theory, a quantum
nonlinear σ-model is define by path integral over con-
tinuous field configurations. Such a quantum nonlinear
σ-model is called a singularity-free nonlinear σ-model.

Considering nonlinear σ-models on a spacetime lattice
is also interesting. In this paper, we will call a non-
linear σ-model on a triangulated spacetime a discrete
nonlinear σ-model when its target space is also trian-
gulated [5]. The triangulated target space no longer has
the G-symmetry of the symmetric target space G/H. In
this paper, we will not consider such a G-symmetry.

Discrete nonlinear σ-models are interesting because
they realize similar physics as their continuum counter-
parts while also capturing strong coupling limits. In the
context of spontaneous symmetry breaking, discrete non-
linear σ-models are useful in describing the phase tran-
sitions between the symmetry-breaking and symmetric
phases.

An important property of discrete nonlinear σ-models
is the presence of dynamical excitations corresponding to
singularities in the continuous nonlinear σ-models. Those
singularities in continuous theory are classified by the
topology of the target space (see Ref. 6 for a classic review
or Sec. 2 of Ref. 7 for a modern perspective.). Although
there are no literal singularities in discrete nonlinear σ-



2

models, as there are no continuum fields, corresponding
excitations do exist, and we will still call them “singular-
ities.”1

In continuum nonlinear σ-models, sometimes, singu-
larities are regarded as nondynamical probes added in by
hand (usually in field theory context), while other times,
singularities are regarded as dynamical excitations (usu-
ally in condensed matter context). To avoid confusion,
in this paper, we will use the term “nonlinear σ-model”
to refer to a model that allows dynamical singularities,
whether continuous or discrete. We will use the term
“singularity-free nonlinear σ-model” to refer to a model
whose singularities are all nondynamical probes. We will
refer to dynamical singularities as just singularities, while
nondynamical singularities are singularity defects. In this
paper, we will work in Euclidean spacetime.

Singularities in nonlinear σ-models play an important
role in the phase transitions between the symmetry-
breaking and symmetric phases. Indeed, starting in
the symmetry-broken—ordered—phase and proliferat-
ing singularities drives a transition to the symmetric—
disordered—phase [8–15]. However, a phase transition
between the symmetry breaking and a disordered phase
can occur without proliferating singularities. Whereas
proliferating singularities drive transitions to trivial dis-
ordered phases, disordered phases without proliferated
singularities are nontrivial and can include topological
orders and emergent gauge bosons [5, 7, 16–20].

The simplest way to prevent singularities from prolif-
erating is using a discrete nonlinear σ-model. The singu-
larities can be removed by replacing the maps from the
triangulated spacetime to the triangulated target space
by simplicial homomorphisms. We will call such discrete
nonlinear σ-model a singularity-free discrete nonlinear σ-
model. We emphasize that “singularity-free” refers to the
absence of dynamical singularities and that singularity
defects can still be included by hand to probe the theory.

We will ground our investigation using generalized
symmetries of the singularity-free discrete nonlinear σ-
model, which correspond to emergent symmetries below
the singularity energy scale of a discrete nonlinear σ-
model. In recent years, it has been realized that emergent
symmetries can be very general and contain so-called
generalized symmetries (see Refs. 21–24 for recent re-
views). Using generalized symmetries provides a classifi-
cation scheme for the singularity-free discrete nonlinear
σ-model’s disordered phases since they are symmetry-
breaking phases of generalized symmetries [7].

While codimension-1 invertible symmetry defects in
spacetime generate ordinary symmetries, generalized
symmetries can be generated by codimension-(p+ 1) de-
fects (p-form symmetries [25–30]) and non-invertible de-
fects (non-invertible symmetries [31–51]). While ordi-

1 The name for the singularities differs among communities and
time, and they are sometimes also called topological solitons or
topological defects.

nary symmetries are described by groups, invertible gen-
eralized symmetries are described by higher groups [52–
56] and generic generalized symmetries are described by
monoidal higher categories [35, 36, 57–62]. Just like
ordinary symmetries, these generalized symmetries can
spontaneously break [27, 63–73], have ’t Hooft anoma-
lies [33, 36, 74–91], and characterize symmetry protected
topological phases [34–36, 73, 82, 92–107].
Among all these possible generalized symmetries, what

are the generalized symmetries in the singularity-free
nonlinear σ-model? In this paper, we show that a
singularity-free nonlinear σ-model has a non-invertible
higher symmetry. If singular field configurations are
allowed, a nonlinear σ-model has an emergent non-
invertible higher symmetry at energy scales below the
singularities.
To describe such a non-invertible higher symmetry, we

remark that if the symmetry charges of a symmetry are
described by d-representations of the d-group G(d), we
say that the symmetry is described by the d-group G(d).
In that case the symmetry defects are described by the
elements of the d-group G(d). On the other hand, if
the symmetry defects of a symmetry are described by
d-representations of the d-group G(d), then the symme-
try is not described by the d-group G(d). In this case, we
say that the symmetry is described by fusion d-category
d-Rep(G(d)).

With such an understanding, the generalized symme-
try, in a singularity-free nonlinear σ-model with a con-
nected target space K in (d+ 1)-dimensional spacetime,
is a d-Rep(G(d)) symmetry. Here G(d) is determined
such that its classifying space BG(d) is given by the d-
th Postnikov stage of K, which we realize as a simplicial
set. This symmetry depends only on the topology of the
field’s target space, and, therefore, it cannot be broken
or modified by local modifications to the action.

Using the notion of the dual symmetry introduced in
Ref. 36 and 108, the dual of d-group G(d) symmetry is
d-Rep(G(d)) symmetry. Thus, we may also say that the
generalized symmetries in the singularity-free nonlinear
σ-model is the dual of the d-group G(d) symmetry. We
remark that a symmetry and its dual symmetry are holo-
equivalent, i.e. their corresponding symmetric systems
are identical when restricted with symmetric sub-Hilbert
spaces. As a result, their phase diagrams and critical
points are in one-to-one correspondence.2

2 Dual symmetries can also be discussed in terms of discrete gaug-
ing. Suppose starting from a theory T with symmetry S, gauging
S produces a new theory T/S with symmetry S∨ [109]. The dual
symmetry S∨ is determined by the original symmetry S and the
technical details of the gauging procedure (for example, choices
of discrete torsion [110]). When S is a finite symmetry, S∨ is
always a nontrivial finite symmetry. Importantly, in this case,
there is always a gauging procedure of S∨ that returns T/S to
T. Therefore, the theory T and T/S contains the same physi-
cal information. This includes a one-to-one correspondence of
their phases and phase transitions. Thus, the phases and phase
transitions of T can be inferred from those of T/S
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Since fusion d-category d-Rep(G(d)) is a local fusion d-
category, both d-Rep(G(d)) symmetry and its dual G(d)

symmetry are anomaly-free [35, 36]. Thus, the general-
ized symmetries in the singularity-free nonlinear σ-model
are anomaly-free.3

This paper is closely related to Refs. 5, 7, and 111.
Ref. 5 studied the disordered phase of a singularity-free
discrete nonlinear σ-model in 3 + 1 dimensional space-
time whose target space K satisfied πi(K) = finite group
for i = 1, 2 while πi(K) = 0 for all other i. It was shown
that the disordered phase is described by the deconfined
phase of d-gauge theory of a d-group G(d), where the clas-
sifying space of G(d) is the target space K. According to
a modern understanding, this implies that the disordered
phase has an emergent symmetry, which is the dual of the
G(d) symmetry. In other words, the symmetry defects of
the emergent symmetry are the electric charges of the
d-gauge theory. We remark that, although a G(d) sym-
metry is always invertible, its dual may be non-invertible.
Ref. 7 studied these non-invertible higher symmetries in
the deep IR of generic ordered phases and their symmetry
breaking and mixed ’t Hooft anomalies. Ref. 111 studied
them in the context of continuum nonlinear σ-models and
understood them using non-invertible cohomology theo-
ries on the target space K with topological quantum field
theory coefficients. Where they overlap, the results ob-
tained in this paper agree with those from Refs. 7 and
111.

In this paper, we study discrete nonlinear σ-
models and use simplicial homomorphisms to implement
singularity-free conditions, which give rise to generalized
symmetries. This formalism allows us to write down a
discrete nonlinear σ-model with terms that suppress its
singularities. This makes the notation of emergent gener-
alized symmetries in generic ordered phases from Ref. 7
more precise. Furthermore, using such rigorously defined
discrete nonlinear σ-models, as well as modeling BG(d)

as a simplicial set, we can more rigorously compute the
generalized symmetry in the singularity-free nonlinear σ-
model.

The paper is organized as follows. In Section II,
we review discrete nonlinear σ-models and introduce
singularity-free discrete nonlinear σ-models. In Sec-
tions III and IV, we compute the non-invertible higher-
form symmetries in singularity-free nonlinear σ-models,
first for the case where πi≤d(K) = finite group and then
where these homotopy groups are non-finite. In Sec-
tion V, we discuss some simple examples of generalized
symmetries of singularity-free nonlinear σ-models and
their disordered phases.

One of the main results of this paper is the exam-
ple presented in Section VC on the disordered phase of
the singularity-free S2 nonlinear σ-model. Understand-
ing the properties of its disordered phase represents a

3 Anomaly-free non-invertible higher symmetry is also called alge-
braic higher symmetry [35, 36].

long-standing challenge. It is most commonly studied
by taking a large N limit, working instead with the SN

nonlinear σ-model [112] or the CPN−1 nonlinear sigma
model [113, 114]. Interestingly, these two large N lim-
its yield different results for the disordered phase of the
nonlinear σ-model.

The disordered state of large N SN nonlinear σ-model
is found to be a gapped symmetric state with no degen-
erate ground state. This is consistent with the result
of this paper. Since πn(S

N ) = 0 for n = 0, 1 · · · , N − 1,
the SN nonlinear σ-model has no generalized symme-
try in singularity-free limit for large N . Thus, its dis-
ordered state is the gapped product state. On the
other hand, the disordered state of the CPN−1 nonlin-
ear σ-model is a gapless state described by U(1) gauge
theory. This is also consistent with the result of this
paper. Since π2(CPN−1) = Z and πn(CPN−1) = 0 for
n = 0, 1, 3, 4, 5, · · · , 2N − 2, the large N CPN−1 nonlin-
ear σ-model in singularity-free limit has a U(1) 1-form
symmetry. Its disordered state spontaneously breaks this
U(1) 1-form symmetry, which produces a state with gap-
less mode described by a U(1) gauge field [27].

The two distinct results obtained from these different
large-N approaches were, by some, interpreted as rep-
resenting two distinct possible disordered phases of the
singularity-free S2 nonlinear σ model. However, in light
of the findings presented in this paper, this interpretation
is incorrect.

Using the formalism we develop in this paper, we
non-perturbatively determine the disordered phase of
the singularity-free S2 nonlinear σ model. In 2 + 1 di-
mensional spacetime, because π0(S

2) = π1(S
2) = 0 while

π2(S
2) = Z, we find that the disordered phase in the

singularity free limit is the Coulomb phase of a U(1)
gauge theory. This disagrees with the large N analy-
sis of the SN model but agrees with that of the CPN−1

model. However, in 3 + 1 dimensions, we find that
both of these large N limits of SN and CPN−1 fail
to capture the correct disordered phase. These large
N limits fail because in 3 + 1 dimensions, the sin-
gularities arise from π2(S

2) = Z and π3(S
2) = Z. In

particular, the singularity-free S2 nonlinear σ-model in
(3 + 1)D has a 3-Rep(G(3)) symmetry, where the 3-
group G(3) captures the homotopy 3-type of S2 (the data
π2(S

2) = π3(S
2) = Z as well as the non-trivial interplay

between π2(S
2) and π3(S

2), i.e., a nontrivial Postnikov
invariant). Therefore, the 3-Rep(G(3)) symmetry is an
exotic non-invertible symmetry, and the above two large-
N results do not apply to S2 nonlinear σ-model since
they give rise to wrong emergent symmetries. We find
that due to this non-invertible symmetry, the disordered
phase of singularity-free S2 nonlinear σ-model in 3+1D
is described by axion electrodynamics, featuring two gap-
less modes: one corresponding to a photon and the other
to a massless axion.
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II. DISCRETE NONLINEAR σ-MODELS

Quantum nonlinear σ-models are widely used in quan-
tum field theory to describe bosonic quantum systems
and condensed matter theory to describe the dynamics
of order parameters in a spontaneous symmetry-breaking
state. However, a nonlinear σ-model as a quantum field
theory is not well defined, at least when we add nonlin-
ear perturbations, since the path integral that defines the
nonlinear σ-model requires a summation over ∞∞ con-
figurations of continuous fields. To obtain a well-defined
theory, we discretize both the (d+ 1)-dimensional space-
time Md+1 and the target space K. We replace them
with simplicial complexes Md+1 and K. The path inte-
gral becomes a finite sum in this case, and the discrete
quantum nonlinear σ-model is well defined. Furthermore,
using a lattice regularization allows us to study the non-
linear σ-model at strong coupling, where the physics will
likely no longer describe the dynamics of order parame-
ters in spontaneous symmetry-breaking phases.

A. Simplicial complexes and simplicial sets

To describe the discrete nonlinear σ-model in detail,
let us first briefly review simplicial complexes. A sim-
plicial complex is a set of vertices, links, triangles, etc.,
along with a required set of relations between cells of dif-
ferent dimensions. We will denote K0,K1,K2, · · · ,Kd+1

as the sets of vertices, links, triangles, etc. up to
d+ 1 cells, that form the target space complex K, and
M0,M1,M2, · · · ,Md+1 as the sets of vertices, links, tri-
angles, etc. that form the spacetime complexMd+1. Fur-
thermore, We will use v1, v2, · · · ∈ K0 to label different
vertices in the complex K, l1, l2, · · · ∈ K1 to label differ-
ent links in the complex K, and t1, t2, · · · ∈ K2 different
triangles, etc.. In addition to the n-simplicies making
up each of these simplicial complexes, they also have a
branching structure (e.g., Fig. 1). For the spacetime
complex Md+1, we use this branching structure to label
their cells. We will use i to label vertices in M0, (ij) to
label links in M1 that connect vertices i and j, and (ijk)
to label triangles in M2, etc..

As mentioned, the vertices, links, triangles, etc. are
related. Those relations are formally described by

M0 M1

d0,d1←←
←← M2

d0,d1,d2←←

←←
←← M3

d0,...,d3←←
·←← M4 · · · ,

d0,...,d4←←
·←← (1)

where di are the face maps, describing how the (n− 1)-
simplices are attached to a n-simplex. For example

d0(ij) = j, d1(ij) = i, (2)

indicates that the tail of the oriented link (ij) is con-
nected to the vertex j, and the head of the link is con-
nected to the vertex i. Similarly, the target space com-
plex K is formally described by

K0 K1

d0,d1←←
←← K2

d0,d1,d2←←

←←
←← K3

d0,...,d3←←
·←← K4 · · · .

d0,...,d4←←
·←← (3)

v1 v2

v3

v0
l13

l12

l23
l01

l03

l02

FIG. 1. A tetrahedron with a branch structure. A branching
structure is a choice of orientation for each link in the complex
so that there is no oriented loop on any triangle.

For example

d0(l12) = v2, d1(l12) = v1, (4)

indicates that the tail of the oriented link l12 is connected
to the vertex v2, and the head of the link is connected to
the vertex v1 (see Fig. 1).
A more abstract notion than a simplicial complex is

what is known as a simplicial set. Like a simplicial com-
plex, a simplicial set is an object made up of simplicies
(vertices, links, triangles, etc.), but its definition is less
restrictive than that of a simplicial complex (see Ap-
pendix C). While K is a triangulation of K, we can also
consider a simplicial set B of which K is the realization.
This means that given B, there is a procedure for pro-
ducing the topological space K by using the data of B to
glue together simplices. We will often call B a simplicial-
set triangulation of our target space K, but a warning
is necessary here since the realization of B may not be
triangulated in the technical sense and the realization of
K from B is only a CW-complex. But, because K = |B|
is built by gluing together vertices, links, triangles, etc.,
we still use the word “triangulation” and the qualifier
“simplicial-set” is meant to remind the reader that this
is not strictly a triangulation in the mathematical sense
of the term.

B. Discrete nonlinear σ-model

A discrete nonlinear σ-model is defined via the follow-
ing path integral

Z(Md+1;K,L) =
∑︂
φ

e−
∫︁
Md+1 L(φ), (5)

where
∑︁

φ sums over all the maps φ : Md+1 → K, and

e−
∫︁
Md+1 L(φ) =

∏︂
cells of Md+1

e−
∫︁
cell

L(φ). (6)

Throughout this paper, we will always assume that K
is connected. The map φ is defined as assigning a la-
bel vi ∈ K0 to each vertex i ∈ M0, a label lij ∈ K1 to
each link (ij) ∈ M1, a label tijk ∈ K2 to each triangle
(ijk) ∈ M2, etc.. Thus, we can view the map φ as a col-
lection of fields on the spacetime complex M: a field vi
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on the vertices M0, a field lij on the links M1, a field tijk
on the trianglesM2, etc.. These are all independent fields
with their own independent fluctuations. Therefore, we
can rewrite the path integral (5) as a sum over each of
these independent fields:

Z(Md+1;K,L) =
∑︂

vi,lij ,tijk,···

e−
∫︁
Md+1 L(vi,lij ,tijk,··· ), (7)

where

e−
∫︁
Md+1 L(vi,lij ,tijk,··· ) =

∏︂
cells of Md+1

e−
∫︁
cell

L(vi,lij ,tijk,··· ) (8)

Here, e−
∫︁
cell

L(vi,lij ,tijk,··· ) is a local action ampli-
tude because it is defined for each cell (i, j, k, · · · )
in the spacetime complex Md+1 and vi, lij , tijk, · · · in
L(vi, lij , tijk, · · · ) are the values of the fields on this cell.

C. Singularity-free discrete nonlinear σ-model

With the above careful definition of a discrete nonlin-
ear σ-model, we can now define a singularity-free discrete
nonlinear σ-model, whose name we will explain in a mo-
ment. A singularity-free discrete nonlinear σ-model is
defined by the path integral

Z(Md+1;K,L) =
∑︂
ϕ

e−
∫︁
Md+1 L(ϕ), (9)

where
∑︁

ϕ sums over all the homomorphisms between

complexes ϕ : Md+1 → K. This differs from Eq. (5),
which is a sum of all maps φ instead of simplicial homo-
morphisms ϕ. A homomorphism between complexes is a
special kind of map between complexes that preserves the
relation between vertices, links, triangles, etc. described
by Eqs. (1) and (3). For example, if i, j are two vertices
of Md+1 that are attached to the link (ij), the homo-
morphism ϕ maps i, j to ϕ(i), ϕ(j), and (ij) to ϕ((i, j))
in K such that ϕ(i), ϕ(j) are attached to the link ϕ((i, j)).
In contrast, for a general map φ, the vertices φ(i), φ(j)
may not be attached to the link φ((i, j)). Therefore, all
simplicial homomorphisms ϕ are maps φ, but not vice
versa.

The simplicial homomorphism condition is equivalent
to the smoothness condition of a continuum field that
maps between spaces ϕ(x) : Md+1 → K. Therefore, the
singularity-free discrete nonlinear σ-model is a lattice
regularization of the continuum nonlinear σ-models stud-
ied in field theory without singularities. Whereas the
continuum field theory is not well defined, the lattice
regularized path integral is.

Physically, the homomorphism (smoothness) condition
describes configurations without any dynamical singular-
ities (see footnote 1). Indeed, maps φ with singulari-
ties are those that fail to preserve the attachment struc-
ture of the complexes as described by the face maps (1)
and (3) [5]. Therefore, while singularities are present

in the discrete nonlinear σ-model (5), they are absent
in model (9), which is why we call it the singularity-
free discrete nonlinear σ-model. Nondynamical probe
singularities—singularity defects—can be added by hand
by modifying the sum in (9) to include some maps vio-
lating the homomorphism condition.
Let us remark on the classification of singularities, as it

will be important later. It is well known that singularities
(and singularity defects) are classified by the homotopy
groups πn(K) of the target space K [6], with the nth ho-
motopy group detecting (d− n)-dimensional (in space-
time) singularities. Therefore, in (d+ 1)-dimensional
spacetime with connected K, singularities are classified
by πn(K) for 1 ≤ n ≤ d. The obstructions related to
πn(K) for n ≥ d+ 1 do not have a physical interpreta-
tion of excitations/defects. So, the classification of singu-
larities in a (d+ 1)-dimensional nonlinear σ-model with
target space K is the same as if the target space was
Kτ≤d, which satisfies

πn(Kτ≤d) =

{︄
πn(K) if n ≤ d,

0 if else.
(10)

When πn(K) are finite for all n ≤ d, we refer to the non-
linear σ-model as a π-finite nonlinear σ-model, and oth-
erwise we refer to it as a π-infinite nonlinear σ-model.
The space Kτ≤d is called a Postnikov stage of K

(see Appendix B), and will play an important role in
Sec. III B. In particular, Kτ≤d is the classifying space of

a d-group G(d):

Kτ≤d = BG(d) = B∗
(︁
π1(K), π2(K), · · · , πd(K)

)︁
, (11)

where the subscript ∗ is shorthand for the data
of the d-group that describes the relations between
π1(K), · · · , πd(K). As reviewed in Appendix A, this
data includes how π1(K) acts on πn(K), for each
n ∈ {2, · · · , d}, along with a set of cocycles that describe
how singularities of different dimensions are related. For
π-finite nonlinear σ-models, G(d) is a finite d-group. Oth-
erwise, it is a nonfinite discrete d-group. The relationship
between Kτ≤d and G(d) also means that the classifica-
tion of singularities is the same as the classification of
magnetic defects (i.e., gauge fluxes) of G(d) higher gauge
theory [5, 7].

D. Singularity-suppressed discrete nonlinear
σ-model

Restricting a general map φ to a simplicial homomor-
phism ϕ can be done locally since the relation between
vertices, links, triangles, etc. are local relations given by
the face maps di. Indeed, these relations can be deter-
mined locally by examining a single cell in the spacetime
complex. Formally, whether these relations defining the
homomorphism condition are satisfied can be checked us-
ing a function A(φ), which is defined to be zero for fields
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satisfying the homomorphism condition while unity oth-
erwise:

A(φ) =

⎧⎪⎨⎪⎩0 if
d0(φ((i, j))) = φ(j)

d1(φ((i, j))) = φ(i)
, · · ·,

1 if else.

(12)

Using A(φ), the local homomorphism restriction can
be implemented in the path integral by including a term
that penalizes configurations violating it. Using the
decomposition of φ into vi, lij , tijk, etc. discussed in
Sec. II B, we define the singularity-suppressed discrete
nonlinear σ-model by the path integral

Z =
∑︂

vi,lij ,tijk,···

e−
∫︁
Md+1 L(vi,lij ,tijk,··· )+UA(vi,lij ,tijk,··· ). (13)

For U → ∞, all observables determined from this path in-
tegral satisfy the homomorphism restriction exactly, and
the theory is the same as the singularity-free nonlinear
σ-model (9) except written as a path integral over local
independent fields. For U → 0, this model is the same as
the discrete nonlinear σ-model (5).
The benefit of this model is that, unlike the discrete

nonlinear σ-model (5), the U term allows us to suppress
dynamical singularities while considering a model with
local independent fields. Indeed, for very large but fi-
nite U , we expect the emergent long-distance behavior
to mimic the U → ∞ limit. Therefore, although the ho-
momorphism ϕ is not a local field, the universal features
of the singularity-free discrete nonlinear σ-model can be
described by local bosonic fields and hence a local bosonic
model.

III. GENERALIZED SYMMETRIES IN
SINGULARITY-FREE π-FINITE NONLINEAR

σ-MODELS

Generalized symmetries commonly emerge from local
constraints [115]. Therefore, the local constraint that im-
plements the simplicial homomorphism condition in the
singularity-suppressed discrete nonlinear σ-model may
give rise to emergent generalized symmetries. Such gen-
eralized symmetries would emerge below the singularity
energy scale U . Crucially, they would be exact emergent
symmetries when they are higher-form symmetries [115]
and can, therefore, characterize the model’s phases at
large finite U . On the other hand, these generalized sym-
metries would be exact in the U → ∞ limit and, there-
fore, be exact symmetries of the singularity-free discrete
nonlinear σ-model.

Generalized symmetries in nonlinear σ-models have
been explored for both particular [27, 64, 83, 116–120]
and general target spaces K [7, 111]. In this section,
we will discuss these symmetries of the singularity-free
π-finite nonlinear σ-model, and in the next section, we’ll
consider the singularity-free π-infinite nonlinear σ-model.
Here, we will first find the symmetry category describing

it following Ref. 7. It is not a rigorous derivation but
provides valuable intuition into the mathematical struc-
ture describing the symmetry. We then perform a rigor-
ous calculation of the symmetry category, which is one
of our main results. To do so, we will use the Symme-
try topological order4 (SymTO) [34, 36, 108, 126–130].
Therefore, we will first briefly review the SymTO before
discussing the symmetry category of the singularity-free
π-finite nonlinear σ-model. We refer the reader to Sec. 2
of Ref. 131 for a more comprehensive review.

A. Review of SymTO

The SymTO is a unified framework for describing
all generalized symmetries, including their symmetry
defects, symmetry charges, and their ’t Hooft anoma-
lies. Here, we will review its properties for finite gen-
eralized symmetries described by a fusion d-category
R ≠ ΣB, where B is a non-degenerate braided fusion
(d− 1)-category. In this case, the symmetry category
is described by excitations on a gapped boundary—
topological defects on a topological boundary (at low
energy)—of a topological order—the SymTO—in one
higher dimension.
Within the Symmetry/Topological-Order (Symm/TO)

correspondence, a system with a symmetry restricted to
its symmetric sub-Hilbert space can be exactly simulated
by a boundary of the corresponding SymTO in one higher
dimension. Adding the aforementioned gapped boundary
provides a physical realization of the system’s symmetry
and, at low energies in the SymTO, allows the entirety of
its Hilbert space to be simulated. The excitations on the
gapped boundary are described by R, which is a defining
characteristic of this gapped boundary. Therefore, the
braided fusion d-category M describing the excitations of
the SymTO is given by the (Drinfeld) center of R [126]:

M = Z(R). (14)

An important concept related to the SymTO is the
notation of holo-equivalence [36]. Two symmetries de-
scribed by the monoidal d-categories R1 and R2, respec-
tively, are holo-equivalent if there exists a one-to-one cor-
respondence between R1-symmetric systems and the R2-
symmetric systems such that

1. the corresponding systems’ local symmetric opera-
tors have identical correlations and

2. the corresponding systems have identical energy
spectra when restricted to their respective symmet-
ric sub-Hilbert spaces.

4 SymTO was first called categorical symmetry [36, 108], but later
renamed since many use categorical symmetry to refer to non-
invertible symmetry. SymTO has also been called symmetry
topological field theory (SymTFT) [37, 121–123], holographic
categorical symmetry [124], topological holography [125], and
topological symmetry [49].
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This implies that two symmetries are holo-equivalent if
gauging one symmetry yields a new theory with the other
symmetry. For finite symmetries, where R1 and R2 are
both fusion d-categories, this implies that the two sym-
metries have the same SymTO [36] and therefore

Z(R1) = Z(R2). (15)

This result for finite symmetries motivated the term holo-
equivalence. Using mathematical terminology, R1 and
R2 are holo-equivalent if they are Morita equivalent. The
notion of holo-equivalence and SymTO were widely used
in Refs. 36, 108, 115, 130–135, where more discussions
and applications can be found.

B. The symmetry category

The singularity-free nonlinear σ-model has conserved
quantities corresponding to the conservation of “smooth
soliton” numbers, which come from topologically nontriv-
ial maps from spacetime to the target space. These con-
served quantities, arising from the absence of singulari-
ties, label the topological sectors of the singularity-free
discrete nonlinear σ-model (and the continuum nonlinear
σ-model). From the point of view of generalized symme-
tries, these topological sectors are symmetry sectors. So,
what is this generalized symmetry?

Since singularities take configurations from one topo-
logical sector to another, they are the charged “oper-
ators” of the generalized symmetry [7]. Recall from
Sec. II C that the classification of singularities is the same
as the classification of magnetic defects of G(d) higher
gauge theory (see Eq. (11)). Therefore, this symmetry is
the same as the magnetic symmetry of G(d) higher gauge
theory. The symmetry defects obey the same descrip-
tion as the G(d) electric defects (e.g., Wilson loops) and,
therefore, are described by the d-representations of G(d).
For π-finite K, this means that G(d) is finite and the
symmetry category is

R = d-Rep(G(d)), (16)

the fusion d-category of d-representations of G(d). By
definition, this fusion d-category is the d-functor category

R = [Kτ≤d, d-Vec]. (17)

Because this symmetry depends only on the topology of
the field’s target space, it cannot be broken or modified
by local modifications to the action.

We see that the description of this symmetry is quite
complicated and that it is generally a non-invertible
higher-form symmetry. However, using the notion of dual
symmetry introduced in Ref. 108, we can have a simpler
description: the non-invertible d-Rep(G(d)) symmetry is
the dual of a higher-group symmetry described by the
d-group G(d), or equivalently by the fusion d-category

˜︁R = d-VecG(d) . (18)

R and ˜︁R being dual symmetries implies they are holo-
equivalent. The anyons of their SymTOs are described

by the braided fusion d-category Z(R) = Z( ˜︁R), making
their SymTOs G(d) higher gauge theory in d+ 2 dimen-
sional spacetime (i.e. in one higher dimension). There-
fore, phases and phase transitions of the singularity-free
π-finite nonlinear σ-model characterized by R can be
mapped onto phases and transitions of a dual model char-

acterized by ˜︁R.
When d = 2, this generalized symmetry is always holo-

equivalent to a (potentially anomalous) finite ordinary
symmetry. Indeed, one can first gauge R to get the dual
symmetry G(2) and then gauge the 1-form symmetry of
G(2) to get an ordinary finite symmetry G. This means
that the SymTO of R for d = 2 will always be (3 + 1)D
G gauge theory. This is consistent with the conjecture
that 3 + 1D bosonic topological orders without emergent
fermions are described by Dijkgraaf-Witten theories of
finite ordinary groups [136].
Let us make two additional remarks about the gener-

alized symmetry R.
Firstly, the SymTO is a finite higher gauge the-

ory without any cocycle twist [ω] ∈ Hd+2(BG(d), U(1)).
However, if our singularity-free π-finite discrete nonlinear
σ-model had a Wess-Zumino-Witten (WZW) term [137,
138], then the SymTO will be a higher Dijkgraaf-Witten
theory [139]. Indeed, a WZW term would have a local
expression in one higher dimension, appearing as the ac-
tion amplitude [ω] ∈ Hd+2(Kτ≤d, U(1)) pulled back to
(d+ 2)-dimensional spacetime. This would modify the
SymTO action amplitude by this pulled-back cocycle,
causing it to describe twisted G(d) higher gauge theory–
a higher Dijkgraaf-Witten theory—because of Eq. (11).
This means that Eq. (16) will not describe the gener-
alized symmetries of nonlinear σ-models with a WZW
term. What the symmetry category R becomes with a
WZW term is nontrivial. However, in terms of the dual

symmetry ˜︁R, it is much simpler: the emergent symmetry
will be the dual of an anomalous G(d) symmetry described

by ˜︁R = d-VecωG(d) .
Secondly, the target space K of a continuous π-finite

nonlinear σ-model is usually a symmetric space with a
symmetry described by a group Gsymm. Thus far, we
have ignored this Gsymm symmetry. If we included it,
then we conjecture that the emergent symmetry (up to
holo-equivalence) of the singularity-free continuous π-

finite nonlinear σ-model is described by a d-group PSG(d)

defined by the nontrivial extension

0 → G(d) → PSG(d) → Gsymm → 0. (19)

This conjecture is motivated by the projective symme-
try group (PSG) result from Ref. 140, where G(d) and

PSG(d) are both ordinary groups. By gauging G(d) in

PSG(d), this is holo-equivalent to the conjecture made
in Ref. 7 that the emergent symmetry R and the micro-
scopic symmetry Gsymm have a mixed ’t Hooft anomaly.
The data specifying the nontrivial extension of Gsymm by
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G(d) in Eq. (19) is the same data specifying the nontrivial
mixed anomaly between Gsymm and R.

C. A rigorous calculation based on SymTO

The above discussion on the symmetry category
R = d-Rep(G(d)) and its SymTO being G(d) higher gauge
theory was based on the homotopy n-type of the target
space K and not an explicit calculation using the dis-
crete nonlinear σ-model’s path integral. In this section,
we give a more explicit and rigorous derivation of this
result, showing that the (d+ 1)-dimensional singularity-
free π-finite discrete nonlinear σ-model can be viewed as
a boundary of (d+ 2)-dimensional G(d) higher gauge the-
ory. This result implies that the SymTO of R is indeed
G(d) higher gauge theory.
The partition function of the singularity-free nonlinear

σ-model is given by Eq. (9). We will assume that space-
time Md+1 is a (d+ 1)-sphere: Md+1 = Sd+1. Because
we are interested only in the singularity defects of the
model, without a loss of generality, we truncate the con-
nected target space K to the dth Postnikov stage Kτ≤d,
which satisfies Eq. (10). We will denote the realization
of K from the simplicial set Kτ≤d—the simplicial set tri-
angulation of K—as B.
To show that the singularity-free nonlinear σ-model

with target space B can be viewed as a boundary of G(d)-
gauge theory, it is enough to show that the action am-
plitude in the path integral (9) on Sd+1 can be rewritten
as

e−
∫︁
Sd+1 L(ϕ) = e−

∫︁
Sd+1 L(ϕ)C

∑︂
ϕD

1, (20)

where
∑︁

ϕD 1 is a path integral on a (d+ 2)-dimensional

disk Dd+2 that sums over all simplicial homomorphisms
ϕD : Dd+2 → B with the fixed boundary conditions

ϕD

⃓⃓⃓⃓
∂Dd+2=Sd+1

= ϕ : Sd+1 → B, (21)

and C is a ϕ independent constant. Since B models the
classifying space of the d-group G(d) (see Eq. (11) and ap-
pendices A and B),

∑︁
ϕD 1 describes the deconfined phase

of G(d)-gauge theory in (d+ 2)-dimensional spacetime
Dd+2. Therefore, Eq. (20) shows that the singularity-free
nonlinear σ-model can be viewed as a boundary of G(d)-
gauge theory. Because topological defects on the Neu-
mann boundary of G(d)-gauge theory are described by
d-Rep(G(d)), this implies that the G(d)-gauge theory can
be used to describe the SymTO for the symmetry (16).

To prove (20), we note that
∑︁

ϕD 1 counts the number

of simplicial homomorphisms ϕD : Dd+2 → B that obey
the boundary condition (21). Eq. (20) means that the
number of these simplicial homomorphisms is indepen-
dent of the boundary condition.

Since B is the classifying space of G(d), the
sum is over all flat G(d) gauge fields satisfying

the boundary conditions. These gauge fields are
a collection of cochains a1 ∈ Z1(Dd+2, π1(K)) and
ai ∈ Ci(Dd+2, πi(K)αi) (2 ≤ i ≤ d) satisfying the flat-
ness conditions (see appendix A)

a1ija
1
jk = a1ik

dαi
ai = ci+1(a

1, · · · , ai−1),
(22)

where ci+1 is a πi(K) (i+ 1)-cocycle. Since Dd+2 has
trivial topology, these flatness conditions can always be
solved by considering pure gauge fluctuations.

Let us first assume that only π1(K) is nonzero. In this
case, the d-group G(d) is equivalent to the 1-group π1(K),
so

∑︁
ϕD 1 describes π1(K) gauge theory and is a sum over

all flat π1(K)-connections satisfying (21). In particular,
ϕD consists of only 1-cochains a1ij ∈ π1(K) on the links

(ij) in Dd+2 satisfying the flatness condition a1ija
1
jk = a1ik

with a1ij fixed for links on ∂Dd+2. Therefore, in this case∑︂
ϕD

1 =
∑︂

a1
ij , (ij)∈Dd+2

int

1,

where a1ija
1
jk = a1ik, a1ij ∈ π1(K),

(23)

where Dd+2
int is the interior of Dd+2—is Dd+2 minus sim-

plicies belonging to ∂Dd+2. On the disk, the cocycle

condition a1ija
1
jk = a1ik is solved by a1ij = f

(0)
i (f

(0)
j )−1,

where f
(0)
i ∈ π1(K). We notice that while (ij) in

a1ij = f
(0)
i (f

(0)
j )−1 are links ofDd+2

int , i and j are vertices of

Dd+2 (including ∂Dd+2). Since we fix a1ij on the bound-

ary Dd+2
int , this requires us to fix f

(0)
i on the boundary

Dd+2
int . Using this solution, the sum evaluates to∑︂

ϕD

1 = |π1(K)|−1
∑︂

f
(0)
i , i∈Dd+2

int

1 = |π1(K)|N0−1, (24)

where Nj is the number of j-simplicies in Dd+2
int . The fac-

tor |π1(K)|−1 is included to remove overcounting coming

from f
(0)
i and ˜︁f (0)

i = f
(0)
i g giving rise to the same a1ij for

any g ∈ π1(K). We see that
∑︁

ϕD 1 is independent of the

boundary condition (21), thus proving Eq. (20) for this
case.

Next, we assume that only π1(K) and π2(K) are non-
zero. In this case, G(d) is equivalent to a 2-group and the
sum ∑︂

ϕD

1 =
∑︂

a1
ij ,a

2
ijk (ij),(ijk)∈Dd+2

int

1 (25)

where a1ija
1
jk = a1ik, a1ij ∈ π1(K).

(dα2a
2)ijkl = c3(a

1)ijkl, a2ijk ∈ π2(K).

Again, the sum is only over cochains on links (ij) and
triangles (ijk) in the interior of Dd+2 since the boundary
condition fixes a1 and a2 on ∂Dd+2. The pure gauge
fluctuations solving the flatness condition is

a1ij = (f (0))i(f
(0))−1

j , a2 = dα2
f (1) + ν(2)(f (0)), (26)
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where f (0) ∈ π1(K), f (1) ∈ π2(K), and ν(2) is a first de-
scendant of c3 [139], i.e. ν(2) is a solution of

dα2
ν(2)(f (0)) = c3(df

(0)) (27)

on Dd+2. We want to use (f (0), f (1)) to label (a1, a
(2)
2 ),

but the labeling is many-to-one. Notice that f (1) and

f (1) + dα2
g(0), with g

(0)
i ∈ π2(K), correspond to the

same a2, but g
(0)
i and g

(0)
i + g, with g ∈ π2(K) pro-

duce the same dα2g
(0). This leads to an overcounting

factor of |π2(K)|N0−1. We also notice that (f
(0)
i , f (1))

and (f
(0)
i h, f (1) − ν(1)(f (0), h)), where h ∈ π1(K) and

ν(1)(f (0), h) satisfies

dα2
ν(1)(f (0), h) = ν(2)(f (0)h)− ν(2)(f (0)), (28)

give rise to the same (a1, a2). The above equation always
has a solution on Dd+2, since

dα2
[ν(2)(f (0)h)− ν(2)(f (0))]

= c3
(︁
d(f (0)h)

)︁
− c3

(︁
df (0)

)︁
= 0.

(29)

This leads to an overcounting factor of |π1(K)|. Thus,
we can replace the sum over a1ij and a2ijk in (25) with a

sum over (f1)i and (f2)ij and obtain∑︂
ϕD

1 = |π2(K)|−N0+1|π1(K)|−1
∑︂

f
(0)
i , i∈Dd+2

int

f
(1)
ij , (ij)∈Dd+2

int

1. (30)

Computing this sum, we find∑︂
ϕD

1 = |π2(K)|N1−N0+1|π1(K)|N0−1, (31)

and again see that
∑︁

ϕD 1 is independent of the boundary

condition of ϕD.
The same calculation can be done for general case. It is

tedious but straightforward and shows that the partition
function of the singularity-free nonlinear σ-model (9) on
Sd+1 can be rewritten as a path integral on a d + 2-
dimensional disk Dd+2:

Z(Sd+1;K,L) =
∑︂
ϕ

e−
∫︁
Sd+1 L(ϕ)

=
∑︂
ϕD

C e−
∫︁
Sd+1 L(ϕD|Sd+1 ). (32)

The path integral
∑︁

ϕD on Dd+2 describes the deconfined

phase of G(d) higher-gauge theory. Thus, the singularity-
free nonlinear σ-model can be viewed as a boundary of
the deconfined phase of G(d) higher-gauge theory. This
implies that the SymTO for its generalized symmetries is
G(d) higher-gauge theory. We emphasize how this is true
for arbitrary choices of L(ϕ), as long as the singularity-
free condition is satisfied.

IV. GENERALIZED SYMMETRIES IN
SINGULARITY-FREE π-INFINITE NONLINEAR

σ-MODELS

In Sec. III B, we found that the generalized sym-
metries of the singularity-free nonlinear σ-model in
(d+ 1)-dimensional spacetime are described by the d-
representations of the d-group G(d). We discussed the
singularity-free π-finite nonlinear σ-model—the situa-
tion where G(d) was a finite d-group—in Sec. III. In
this section, we discuss the generalized symmetry of the
singularity-free π-infinite nonlinear σ-model. For physi-
cally relevant K, this means that some πn(K)’s (n ≤ d)
contain one or more Z factors, causing G(d) to be a dis-
crete, but nonfinite d-group.

Since singularity defects are charged under the gen-
eralized symmetry, there are a countably infinite num-
ber of symmetry charges in the singularity-free π-infinite
nonlinear σ-model. This causes the generalized symme-
try to be continuous and includes non-invertible parts
for generic target spaces K. What mathematical struc-
ture describes the corresponding symmetry category is
an open question. Furthermore, it is still being deter-
mined what theory takes the role of the SymTO since
it seemingly must describe an infinite braided fusion d-
category. For the case of Z symmetry charges, a first
guess would be U(1) gauge theory in one higher dimen-
sion whose U(1)-connection is always flat. Such gauge
theories were discussed in, for instance, Refs. 141 and
142.

While its mathematical description is unknown, we can
still discuss some general aspects of this generalized sym-
metry. For instance, the generalized symmetry will be

invertible only when there exists a d-group Ĝ
(d)

that is

Pontryagin dual to G(d). In fact, when Ĝ
(d)

exists, it will
be precisely the d-group that describes the symmetry de-

fects. Whether or not Ĝ
(d)

exists depends on G(d).5

Let us first consider the simplest scenario where all
group homomorphisms αn and Postnikov classes cn+1

(n ≤ d) defining G(d) are trivial and π1(K) is abelian.
In this case, G(d) is a trivial d-group, given by “direct

products” G(d) =
∏︁d−1

r=0 G
(r) with G(r) = πr+1(K). The

dual d-group Ĝ
(d)

is then also a trivial d-group [7], given

by Ĝ
(d)

=
∏︁d−1

r=0 Ĝ
(r)

where Ĝ
(r)

= Hom(πd−r(K), U(1))
is the Pontryagin dual of πd−r(K). Therefore, in this
scenario, whenever there is a Z ⊂ πn(K), there will be a
U(1) (d− n)-form symmetry.

Next, let’s consider the case where αn are trivial but
there are nontrivial Postnikov invariants cn+1 (n ≤ d).

The dual higher group Ĝ
(d)

exists only when the Post-
nikov invariants are stable cohomology operations.6 For

5 When d = 1, G(1) is an ordinary group, and Ĝ
(1)

exists only when
G(1) is abelian.

6 We thank Arun Debray and Hao Xu for related discussion.
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example, Bockstein homomorphisms are stable cohomol-
ogy operations, but some cup products are not.7 Thus,
whenever G(d) has a Postnikov class that is not a stable
cohomology operator, the corresponding singularity-free
nonlinear σ-model will have a noninvertible symmetry. A
simple case where this occurs is for K = S2 with d > 2
(see Sec. VC). Therefore, the singularity-free S2 nonlin-
ear σ-model in d+ 1 > 3 has a noninvertible symmetry.

When any of the αn’s are nontrivial (n ≤ d), we ex-

pect that Ĝ
(d)

does not exist, making the generalized
symmetry non-invertible. Therefore, for π-infinite K
where the π1(K) action on πn(K) (n ≤ d) is nontriv-
ial, the singularity-free nonlinear σ-model will have a
non-invertible symmetry. A simple example is K = RP 2,
where π1(K) ≃ Z2, π2(K) ≃ Z, and the action of π1(K)
on π2(K) flips the sign of π2(K) [144]. So, a singularity-
free RP 2 nonlinear σ-model in d+ 1 > 2 will have a non-
invertible symmetry.

V. NONTRIVIAL DISORDERED PHASES

When terms in the Lagrangian L(ϕ) of the singularity-
free discrete nonlinear σ-model (9) are large, the ground
state wavefunction is dominated by the constant map
ϕ0 : Md+1 → {pt} ∈ K in the path integral. This signals
the ordered phase of the nonlinear σ-model and that the
generalized symmetry R we have been discussing is not
spontaneously broken, causing the singularities to be con-
fined. When the generalized symmetry is finite, gauging
R = d-Rep(G(d)) maps the nonlinear σ-model to its dual
model, which will lie in a phase where the entire d-group
G(d) symmetry is spontaneously broken. This symmetry-
breaking pattern is encoded by the electric boundary of

the SymTO, whose fusion d-category is ˜︁R = d-VecG(d) .
On the other hand, by choosing L(ϕ) = 0, the discrete

nonlinear σ-model will instead reside in a nontrivial dis-
ordered phase [5] that spontaneously breaks parts or all
of the generalized symmetryR [7]. This causes the singu-
larities to become deconfined. Since the emergent sym-
metry has many different breaking patterns, there can be
many different disordered or partially disordered phases.
In what follows, we will focus on the maximally disor-
dered phases.

In terms of the dual model, this nontrivial disordered
phase maps onto a trivial G(d) symmetric phase. This
symmetry-breaking pattern is encoded by the magnetic
boundary of the SymTO, whose fusion d-category is R.
We note that for π-finite nonlinear σ-models, this non-
trivial disordered phase is always gapped since R is a
finite symmetry. For π-infinite nonlinear σ-models, since
R is a continuous symmetry, the disordered phase will
always have gapless excitations by Goldstone’s theorem.

7 We refer the reader to [143, Definition 12.3.23] for the definition
of stable cohomology operation.

In the remainder of this section, we will discuss some
examples of disordered phases for singularity-free discrete
nonlinear σ-models.

A. Singularity-free π-finite nonlinear σ-model

Consider a general singularity-free π-finite nonlinear σ-
model in the ordered phase. R is a finite symmetry and
does not include any d-form symmetries since we assume
the target space of the nonlinear σ-model is connected.
Therefore, the R symmetry can always be spontaneously
broken (there are no Mermin-Wagner obstructions), and
a nontrivial disordered phase always exists.
Since R is the magnetic symmetry of G(d) higher gauge

theory, this disordered phase will correspond to the de-
confined phase of G(d) higher gauge theory. This will be
a gapped phase where all of the singularities are decon-
fined, and there will be ground state degeneracy that de-
pends on the topology of space. The ground states will
be described by an untwisted higher Dijkgraaf-Witten
theory with d-group G(d)

B. T 2 nonlinear σ-model

Consider a singularity-free nonlinear σ-model in
(d+ 1) dimensional spacetime whose target space K is
a 2-torus T 2 ∼= S1 × S1. Such a nonlinear σ-model de-
scribes a two-component superfluid, where two U(1) sym-
metries are spontaneously broken. However, to sim-
plify our discussion, let us explicitly break the two
U(1) symmetries. Parametrizing the maps Md+1 → T 2

by ϕ1(x), ϕ2(x) ∈ 2πR/Z, this nonlinear σ-model is de-
scribed by the Lagrangian

L = |∂µ e iθ1(x)|2 + |∂µ e iθ2(x)|2 + J1 cos(θ1) + J2 cos(θ2)
(33)

The homotopy groups for this target space are

πn(T
2) =

{︄
Z × Z, n = 1,

0, n ̸= 1.
(34)

Therefore, there are two species of codimension 2
singularities—vortices—classified by Z. From the previ-
ous section, this implies there is an emergent U(1)× U(1)
(d− 1)-form symmetry. Each of these U(1) (d− 1)-form
symmetries are generated by a topological defect line

D
(α)
1,i (C) = exp

[︃
iα

∫︂
C

dθi
2π

]︃
, (35)

where C is a 1-cycle in spacetime. Indeed, in the absence

of singularities, d(dθi) = 0 and D
(α)
1,i (C) depends only on

the homology class [C].
There is also a U(1) (d− 2)-form symmetry arising

from a composite current ∗ j = dθ1
2π ∧ dθ2

2π [118], where ∗
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is the Hodge star operator. It is generated by the topo-
logical defect surface

D
(α)
2 (Σ) = exp

[︃
iα

∫︂
Σ

dθ1
2π

∧
dθ2
2π

]︃
, (36)

where Σ is a 2-cycle in spacetime. Whereas D
(α)
1,i (C)

detects species i vorticies, D
(α)
2 (Σ) detects Hopf-linked

vortices of species 1 and 2.
Does this T 2 nonlinear σ-model have a nontrivial dis-

ordered phase? The U(1)× U(1) (d− 1)-form symme-
try cannot spontaneously break in (d+ 1)-dimensional
spacetime [27, 63]. However, the U(1) (d− 2)-form sym-
metry can. Therefore, there is a nontrivial disordered
phase driven by spontaneously breaking the U(1) (d− 2)-
form symmetry, which can be done by proliferating Hopf-
linked vortices.

Since the nontrivial disordered phase is a U(1) (d− 2)-
form SSB phase, it hosts a (d− 2)-form gapless Gold-
stone boson a(d−2)—an emergent photon—and its long-
wavelength properties are described by the effective field
theory

S =
1

2e2

∫︂
Md+1

da(d−2) ∧ ∗ da(d−2). (37)

The U(1) (d− 2)-form symmetry’s Noether current is
given by ∗ j = 1

e2 ∗ da(d−2). Therefore, the Goldstone

mode a(d−2) and the nonlinear σ-model fields θ1 and θ2
are related to one another by∫︂

Σ

dθ1
2π

∧
dθ2
2π

=
1

e2

∫︂
Σ

∗ da(d−2). (38)

Roughly speaking, this means that the magnetic photon

â(1) of the Maxwell theory (37) is related to θ1 and θ2 by

â(1) = 1
2π θ1dθ2.

C. 3 + 1D singularity-free S2 nonlinear σ-model

We now consider the singularity-free nonlinear σ-
model whose target space K is the 2-sphere S2. In
the context of symmetry-breaking phases, this describes
an isotropic antiferromagnetic where an SO(3) symme-
try is spontaneously broken down to SO(2). The maps
Md+1 → S2 can be parametrized by the unit vector
n ∈ R3, and the nonlinear σ-model is described by the
Lagrangian

L =
1

2
(∂νn)

2. (39)

The S2 nonlinear σ-model is historically studied using
the large N limit. The three-dimensional unit vector n is
replaced with an N + 1 dimensional unit vector, causing
the target space to become the N -sphere SN [112]. This
large N analysis predicts that the only disordered state

is a gapped product state. This is consistent with the
result of this framework presented in this paper: since
πn(S

N ) = 0 for n = 0, 1 · · · , N − 1, the SN nonlinear σ-
model has no generalized symmetry for large N and its
disordered state is the gapped product state.8 In what
follows, we show that this large N analysis of the S2

nonlinear σ-model misses an interesting disordered phase
described by massless axion electrodynamics.
The first six homotopy groups of S2 are

π1(S
2) ≃ 0, π2(S

2) ≃ Z, π3(S
2) ≃ Z,

π4(S
2) ≃ Z2, π5(S

2) ≃ Z2, π6(S
2) ≃ Z12. (40)

Since the homotopy groups of S2 are so rich, so is the d-
group G(d) (see Eq. (11)), and thus the generalized sym-
metries of the S2 nonlinear σ-model, will also be interest-
ing and complex. Since π1(S

2) is trivial, the group ho-
momorphisms αn : π1(S

2) → Aut(πn(S
2)) are all trivial.

However, the Postnikov invariants of the classifying space
of G(d) will generally be nontrivial, causing the model’s
generalized symmetries to be nontrivial.

In what follows, we will exclusively work in (3 + 1)D
spacetime as this is the simplest nontrivial case. The
higher group G(d) is then a 3-group whose classifying
space is (see Appendix B)

BG(3) = S2
τ≤3 = Bc4(0,Z,Z). (41)

This 3-group is an extension of a Z 1-form symmetry
group Z(1) by a Z 2-form symmetry group Z(2),

0 → Z(2) → G(3) → Z(1) → 0, (42)

and it is characterized by the cohomology class
[c4] ∈ H4(K(Z, 2),Z). Such extensions of higher-form
symmetry groups were discussed in Ref. 32.

In appendix Sec. A, we have introduced canonical 2
and 3 cochains x2 and x3, respectively, on Bc4(0,Z,Z),
which characterize the homotopy type of Bc4(0,Z,Z) and
the above extension, via the following relation

dx2 = 0, dx3 = c4(x
2), (43)

where c4 is a cocycle representative of [c4].
So what is the cocycle c4? What we show next is that

c4(x
2) = x2 ⌣ x2 ≡ Sq2Z(x

2). (44)

8 Another large N limit is to replace the S2 target space with
CPN−1 since S2 = CP 1 [113, 114]. Studying this large N limit
shows that the disordered state in 3+1 dimensional spacetime
is described by a gapless U(1) gauge theory. This is con-
sistent with the result of this paper. Since π2(CPN−1) = Z
and πn(CPN−1) = 0 for n = 0, 1, 3, 4, 5, · · · , 2N − 2, the CPN−1

nonlinear σ-model has a U(1) 1-form symmetry. Its disordered
state spontaneously breaks this U(1) 1-form symmetry, which
produces a state with gapless mode described by a U(1) gauge
field.
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Therefore, G(3) is a discrete, nonfinite 3-group with a
nontrivial Postnikov invariant. Following the discussion
from Sec. IV, since the cup product in (44) is not a stable
cohomology operation, there is no dual 3-group to G(3).
Consequently, the generalized symmetries of the S2 non-
linear σ-model is a non-invertible symmetry. This agrees
with the result from Ref. 119.

Let us now justify Eq. (44). This is a standard ar-
gument in algebraic topology. We refer the reader to
Appendix D for a quick, less formal argument. We start
with the Hopf map η : S3 → S2. This is, by definition,
the attaching map for the 4-cell in CP 2. We can con-
struct a commutative diagram

S3 η
→→

a3

↓↓

S2 ⊂
→→

a3

↓↓

CP 2

a3

↓↓

q
→→ CP 2/S2 ∼= S4

a4

↓↓

K(Z, 3)
i3 →→ S2

τ≤3

p3

→→ K(Z, 2) k4
→→ K(Z, 4)

where q is the quotient map. The three maps labeled
a3 are the maps in the Postnikov towers for the trun-
cations τ ≤ 3 for each respective space, while a4 is the
map in the Postnikov tower for S4 corresponding to the
truncation τ ≤ 4. That this diagram commutes is im-
plied in the construction of k4, as explained in the proof
of the only Theorem of Ch.22 §4 in Ref. 145. Some of
the maps in our diagram are cohomology classes because
their targets are Eilenberg-MacLane spaces. For exam-
ple, [a3] ∈ H2(CP 2;Z) and [a4q] ∈ H4(CP 2;Z). The fact
that η has Hopf invariant one is equivalent to the equa-
tion [a4q] = [(a3)2]. But since a3 induces an isomorphism
H4(K(Z, 2),Z) ∼= H4(CP 2,Z) and [a4q] = [k4a3], we see
that [k4] must be the square of the fundamental class in
H2(K(Z, 2),Z), so that [k4] = Sq2Z. Since the homotopy
class of k4 is classified by the cohomology class of c4, this
proves Eq. (44).

Let us now consider the nontrivial disordered phase
arising from spontaneously breaking this generalized
symmetry. It is usually believed that the disordered
phase of such a S2 nonlinear σ-model is a trivial phase
described by a product state. But such a result is correct
only if the singularities are proliferated in the disordered
phase. Otherwise, the disordered phase is nontrivial. As
we will now show, the disordered phase of the singularity-
free S2 nonlinear σ-model has two gapless modes—a gap-
less scalar and an emergent photon—and is described by
massless axion electrodynamics.

We show this by constructing a low-energy effective
field theory of 3+1D S2 non-linear σ-model describ-
ing the nontrivial disordered phase. We first replace
the target space S2 by its 3rd Postnikov stage S2

τ≤3 =

Bc4(0,Z,Z). By replacing S2 with S2
τ≤3, we describe

the singularity-free disordered phase of the non-linear σ
model in which the 3-Rep(G(3)) symmetry is maximally
spontaneously broken. The non-linear σ-model is now

described by the following path integral

Z =
∑︂
φ

e−S(φ) (45)

where φ : M3+1 → S2
τ≤3 are singularity-free (i.e. contin-

uous) map from the spacetime M3+1 to the target space
S2
τ≤3.

The canonical 2 and 3 cochains x2 and x3 on S2
τ≤3,

characterizing the homotopy type of S2
τ≤3, have the fol-

lowing relation

dx2 = 0, dx3 = x2 ⌣ x2. (46)

Let F
2π = φ∗x2 be the 2-form field on M3+1 which is the

pull back of x2 on S2
τ≤3. Similarly, let H

2π = φ∗x3 be the

pull back of x3 on S2
τ≤3. We now use the fields (F,H) to

represent the maps φ, and consider the path integral as a
summation over fields (F,H) (with constraints), instead
of over the maps φ:

Z =
∑︂
F,H

e−S(F,H),

dF = 0, dH = (2π)−1F ∧ F. (47)

The simplest effective action is

S(F,H) =

∫︂
M3+1

1

2e2
|F |2 + 1

4πv2
|H|2, (48)

where, for instance, |F |2 ≡ F∧ ∗F .
Since dF = 0, we can introduce a U(1) gauge field A

to describe F via F = dA. In fact, such a gauge field
A appears in the CP 1 representation of the S2 non-
linear σ-model [146] which has a compact U(1) gauge
field A = Aµdx

µ and a two-component unit spinor field
z = (z1, z2) ∈ C2 related to n by the Hopf map

n = z†σz, (49)

where σ = (σ1, σ2, σ3) are the Pauli matrices. At the
level of the equations of motion—the level of local physics
and trivial U(1) bundles—A is related to z by

Aµ = iz†∂µz. (50)

In particular, the homotopy classes π2(S
2) ≃ Z are char-

acterized by the Chern number of the U(1)-bundle,∫︂
S2

1

2π
dA ∈ π2(S

2) ≃ Z, (51)

and the homotopy classes π3(S
2) are characterized by the

Hopf invariant, which can be expressed in terms of Aµ

as [147] ∫︂
S3

1

4π2
A ∧ dA ∈ π3(S

2) ≃ Z. (52)
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In light of Eqs. (47), (51) and (52), we construct the
low-energy field theory using dynamical 1-form and 2-
form U(1) gauge fields A and B, respectively. The gauge
field A is the same that appears in the CP 1 presentation.
The gauge field B is introduced to remedy the fact that
the integrand in Eq. (52) is not gauge invariant. Using
A and B, we construct the gauge invariant fields F and
H, which are expressed as

F = dA, (53)

H =
1

2π
A ∧ dA+ dB, (54)

and correctly satisfy the constraints dF = 0, dH =
(2π)−1F ∧F . The periods of 1

2πF and 1
2πH are in π2(S

2)

and π3(S
2), respectively. Because only F and H are

physical, A and B have the gauge redundancy

A → A+ dα, (55)

B → B + dβ − 1

2π
αdA. (56)

Interestingly, this gauge redundancy has the same form
as the continuous 2-group gauge redundancy discussed in
Ref. 55.

We can dualize the 2-form field B to get the action
Eq. 48 into a more standard form. Integrating out H
directly while including a Lagrange multiplier field ϕ to
ensure its modified Bianchi identity

dH

2π
=

F

2π
∧
F

2π
(57)

is satisfied, we find the dual action

S =

∫︂
M3+1

1

2e2
|F |2 + v2

2
|dϕ|2 + 1

4π2
ϕ F ∧F. (58)

This is nothing but axion electrodynamics with the pho-
ton field A and massless axion field ϕ. The masslessness
of these is protected by the spontaneously broken gen-
eralized symmetry. We remark that the axion coupling
ϕ F∧F arises as a direct consequence of the nontrivial
Postnikov class [c4] (44).

The generalized symmetries of (3 + 1)D axion electro-
dynamics have been intensely studied and shown to be a
rich structure of both invertible and non-invertible 0-form
and higher-form symmetries [148–152]. It is challenging
to compare all of the non-invertible symmetries of the
S2 non-linear σ-model with those of massless axion elec-
trodynamics since the latter will include emergent sym-
metries. The 3-Rep(G(3)) symmetry we have based of
discussion around includes a Q/Z non-invertible symme-
try [119]. Our calculation here shows that spontaneously
breaking this symmetry gives rise to massless axion-
electrodynamics. The Q/Z non-invertible symmetry of
3-Rep(G(3)) matches the Q/Z non-invertible symmetry
of massless axion-electrodynamics discussed in Ref. 151.

This result is particularly interesting from a condensed
matter physics point of view, where axion electrodynam-
ics has also been found to emerge in theories describing

topological insulators [153], quantum spin liquds [154],
topological superconductors [155], and Weyl semimet-
als [156]. From this point of view, we find that starting
in an isotropic antiferromagnet—where SO(3) is sponta-
neously broken to SO(2)—in (3 + 1)D and disordering
without proliferating defects induces a transition into
a phase described by axion electrodynamics. An in-
teresting and important follow-up direction to this re-
sult is understanding in a microscopic spin Hamiltonian
what terms would drive the transition from an anti-
ferromagnet phase to this axion electrodynamics phase.

VI. CONCLUSIONS

In this paper, we have investigated the phases of non-
linear σ-models from the point of view of generalized
symmetries. It is usually believed that the disordered
phase of nonlinear σ-models is a trivial phase described
by a product state. But such a result is correct only if
the singularities are proliferated in a disordered phase.
Otherwise, as emphasized here, the disordered phase is
nontrivial and contains spontaneously broken emergent
generalized symmetries.
The emergent generalized symmetries discussed in

Secs. III and IV therefore offer a way to classify the
disordered phases of nonlinear σ-models. The trivial
disordered phase is one where these symmetries can no
longer emerge. The nontrivial disordered phases, which
we studied here, occur when the generalized symme-
tries still emerge and are classified by their spontaneous
symmetry-breaking patterns. We discussed examples of
this in Sec. V.
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Appendix A: Classifying spaces of higher groups as
simplicial sets

In this appendix, we will describe an explicit construc-
tion for the nerve of an n-group as a simplicial set (see
Appendix C for background on simplicial sets). The real-
ization of the nerve of an n-group is the classifying space



14

of the n-group. We remark that, in physics, the clas-
sifying space of an n-group describes the gauge fields,
dynamical or background, associated with an n-group
gauge redundancy. We will first describe the construc-
tion explicitly and then show why it is the nerve of an
n-group.

We denote the simplicial set for the nerve of our n-
group by

B = Bα2,c3;α3,c4;··· ;αn,cn+1
(G,A2, · · · , An). (A1)

The data in the notation of (A1) consists of:

1. A collection of discrete9 groupsG,A2, · · · , An, with
the condition that the Ai’s are abelian groups.
Topologically, these represent the homotopy groups
π1, . . . , πn of a space K.

2. For each j ∈ {2, 3, · · · , n}, a group homomorphism

αj : G → Aut(Aj), (A2)

where Aut(Aj) is the group of automorphisms of
Aj . These describe an action of G on Aj which,
topologically, corresponds to the action of the
fundamental group of K on its higher homotopy
groups. We will let A

αj

j be the group Aj equipped
with the action of G specified by αj .

3. Inductively defined twisted cocycles c3, . . . , cn+1

representing cohomology classes

[ck+1] ∈ Hk+1(Bα2,c3;··· ;αk−1,ck(G,A2, . . . , Ak−1), A
αk

k )

for k = 2, · · · , n. Topologically, these are related to
the Postnikov k-invariants of K and generalizations
thereof in certain twisted cohomology groups.

These simplicial sets should model all connected homo-
topy n-types, i.e., homotopy types of connected topolog-
ical spaces with only finitely many non-zero homotopy
groups.10

We elaborate on the relationship between B and K.
Given a simplicial set, there is a procedure for produc-
ing a topological space K by using the data of B to

9 Although we restrict ourselves to discrete groups, classifying
spaces and nerves of general higher groups can depend on con-
tinuous groups.

10 In fact, a proof that we get all homotopy n-types should be
straightforward to assemble from the mathematics literature by
combining Ref. 157, Theorem 1.4, Ref. 158, Proposition 25.2
and Ref. 159, Theorem 7.18. Note Ref. 160, Theorem 3.4 gives
a treatment using topological spaces instead of simplicial sets.
When G is abelian and the αk’s are all trivial, the cohomology
classes of the ck+1’s are the Postnikov k-invariants of the space
K. See Ref. 158, Theorem 25.7, Remark 25.9 (2), as well as the
discussion in Appendix B. More generally, the α’s give rise to
local coefficient systems and the ck+1 are twisted cohomology
classes. See also §3.2.2 of Ref. 139 and §3.3 of Ref. 161 useful
discussions.

pt0 pt1

pt2

x102

x101

x112
x2012

FIG. 2. A triangle or 2-simplex in [B]2. The labels are subject
to the conditions x1

pq ∈ G with x1
12x

1
01 = x1

02 and x2
012 ∈ A2.

The vertices pt0, pt1, pt2 are all identified with the single 0-
vertex pt.

glue together simplices. Then K is called the realiza-
tion of B and is often denoted by K = |B| (see Ref. 158
§14). Above, we called B a simplicial-set triangulation of
our target space K even though it only gives us a CW-
structure, which might not be a triangulation in the strict
sense of the term.

We begin our description of B. It is a simplicial set, so
is determined by a set of vertices [B]0, a set of links [B]1
(i.e., 1-simplices), a set of triangles [B]2 (i.e., 2-simplices),
etc. They are formally related to each other by face maps

[B]0 [B]1
d0,d1←←
←← [B]2

d0,d1,d2←←

←←
←← [B]3

d0,...,d3←←
·←← [B]4,

d0,...,d4←←
·←← (A3)

where di are the face maps, describing how an n-simplex
should be attached to the (n− 1)-simplices.11

The nerve B of our n-group has a single vertex
[B]0 = {pt}. The set of links [B]1 is the group G. Ge-
ometrically, one thinks of [B]1 = G as a set of labels for
a collection of links that each start and end at the ver-
tex pt. A 2-simplex, or triangle in [B]2 will be labeled
by group elements x1

01, x
1
12, x

1
02 in G, thought of as deco-

rating the three edges of the triangle, and an additional
label x2

012 which takes values in A2, and is a label for
the unique face of the triangle. See Figure 2. So, the el-
ements of [B]2 are tuples (x1

01, x
1
12, x

1
02;x

2
012) ∈ G3 ×A2.

However, not all such labels are admissible as elements
of [B]2, only those that satisfy certain conditions we will
define next.
We introduce the compact notation

s[012] = (x1
01, x

1
02, x

1
12;x

2
012) (A4)

to denote a decorated triangle. With this convention, for
a labeling of the simplices, the face maps dm : [B]2 → [B]1
can be expressed simply as

d0(x
1
01, x

1
02, x

1
12;x

2
012) = x1

12,

d1(x
1
01, x

1
02, x

1
12;x

2
012) = x1

02,

d2(x
1
01, x

1
02, x

1
12;x

2
012) = x1

01. (A5)

11 There are also degeneracy maps which are discussed later.
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A decorated triangle s[012] = (x1
01, x

1
02, x

1
12;x

2
012) is in

[B]2 if and only if

d0(s[012])d1(s[012])
−1d2(s[012]) = x1

12(x
1
02)

−1x1
01 = 1 ∈ G.

More generally, a d-simplex in [B]d will correspond to
a tuple s[0 · · · d] = (x1

pq;x
2
pqr; · · · ;xd

0···d),

s[0 · · · d] ∈ G(d+1
2 ) ×A

(d+1
3 )

2 · · · ×A
(d+1
d+1)

d . (A6)

with the entries of s[0 · · · d] subject to inductively defined
restrictions that we will specify later. When d > n, Ad

denotes the trivial group.
Geometrically, the labels x1

pq decorate the links of a

geometric d-simplex, the x2
pqr decorate the triangles, etc.,

and the xd
0···d decorates the solid interior of the d-simplex.

The face map dm : [B]d → [B]d−1 is given by

dm(s[0 · · · d]) = s[0 · · · m̂ · · · d], (A7)

where m̂ means that we omit the mth index. Notice that
the face map dm is obtained by applying the co-face map
dm of (C1) below to the indices of the labels.12 Each

d-simplex has
(︁
d+1
d−j

)︁
j-faces given by

dq1dq2 · · · dqj−d
s[0 · · · d] = s[0 · · · q̂1 · · · q̂j−d · · · d].

for 0 ≤ q1 < . . . < qd−j ≤ d. For example, a tetrahedron
has 4 triangles (2-faces) and 6 links (1-faces).

To explain the additional restrictions on s[0 · · · d], we
introduce the canonical cochains on B. The canonical
G-valued 1-cochain x1 is given by its evaluation on 1-
simplices s[01] = x1

01:

⟨x1, x1
01⟩ = x1

01, x1
01 ∈ G. (A8)

The canonical A2-valued 2-cochain x2 is given by its eval-
uation on 2-simplices s[012] = (x1

01, x
1
12, x

1
02;x

2
012):

⟨x2, (x1
01, x

1
12, x

1
02;x

2
012)⟩ = x2

012, x2
012 ∈ A2, (A9)

which is simply the projection to A2. Thus, in general,
the canonical Ad-valued d-cochain xd is defined as the
function

xd : G(d+1
2 ) ×A

(d+1
3 )

2 · · · ×A
(d+1
d+1)

d → Ad

which projects onto the last coordinate. We also let

dx1 : G(32) ×A
(33)
2 → G be given by

dx1(s[012]) = x1(s[12])x1(s[02])−1x1(s[01])

12 Similarly, the degeneracy sm : [B]d → [B]d+1 is obtained by ap-
plying the co-degeneracy sm of (C2) to the indices of the labels,
with the understanding that a label with a repeated index is the
identity element. So, sm(s[0 · · · d]) = (y1p0p1 ; · · · ; y

d
p0···pd ; 0),

where yjp0···pj = xj

sm(p0)···sm(pj)
. For example,

s0(x1
01) = (1, x1

01, x
1
01; 0) and s1(x1

01) = (x1
01, x

1
01, 1; 0).

and dαk
xk : G(k+2

2 ) ×A
(k+2

3 )
2 × · · · ×A

(k+2
k+2)

k+1 → Ak by

dαk
xk(s[0 · · · (k + 1)]) = αk(x

1
01)x

k(s[1 · · · (k + 1)])

+

k∑︂
i=1

(−1)ixk(s[0 · · · î · · · (k + 1)]).

(A10)
Note that these formulas are obtained by composing
the fundamental cochains with alternating sums of face
maps, using the α’s to twist the first term in the sum.
We’ve already specified that the simplices are tu-

ples s[0 · · · d] in G(d+1
2 ) ×A

(d+1
3 )

2 · · · ×A
(d+1
d+1)

d and we have
given the face and degeneracy maps. It remains to de-
scribe the restrictions on the tuples. These are given
inductively, so we will let

Bk := Bα2,c3;··· ;αk,ck+1
(G,A1, · · · , Ak). (A11)

We start with k = 1 and complete our definition of B1.
We have already described [B]0, [B]1, [B]2. More gener-

ally, a label s[0 · · · d] ∈ G(d+1
2 ) is in [B1]d if and only if

every 2-face of s[0 · · · d] satisfies the equation dx1 = 1.
That is, x1

pq(x
1
pr)

−1x1
qr = 1 for all p, q, r ∈ {0, . . . , d} for

the x1
.. labels in s[0 · · · d]. We see that [B1]d is in bijec-

tion with Gd, where we send (x1
ij) to (g1, · · · , gd) with

gi = x(i−1)i. In fact, B1 is one of the standard models
for the classifying space BG.
Given α2 : G → Aut(A2), we define a cochain complex

C∗(B1;Aα2
2 ) as follows. The k-cochains are functions

φ : [B1]k → A2 from the k-simplices of B1 to the abelian
group A2. The differential

dα2
: Ck−1(B1;Aα2

2 ) → Ck(B1;Aα2
2 )

is given by

dα2φ(s[0 · · · k]) = α2(x
1
01)φ(s[1 · · · k])

+

k∑︂
i=1

(−1)iφ(s[0 · · · î · · · k]).

We let c3 ∈ Z3(B1;Aα2
2 ) be a normalized cocycle.13

Given such a choice of c3, we can construct B2 as fol-
lows. We let [B2]d be the set of labels s[0 · · · d] as in (A6)
whose 2-faces and 3-faces satisfy, respectively,

dx1 = 1 and dα2x
2 = c3.

Here, to evaluate c3, it is implicit that we forget the A2

labels in s[0 · · · d] and only remember the G-labels.

13 In terms of the simplicial set B1, normalization means that the
function is zero on the image of the degeneracy maps sm. If
we identify Z3(B1, Aα2

2 ) with the group cocycles Z3(G,Aα2
2 ),

normalization means that the c3 is zero when any of its input is
the identity element of G.



16

Suppose that we have defined Bn−1. Given αn,
we can form a cochain complex C∗(Bn−1;Aαn

n ) whose
k-cochains are functions φ : [Bn−1]k → An on the k-
simplices [Bn−1]k of Bn−1. The differential is

dαnφ(s[0 · · · k]) =αn(x
1
01)φ(s[1 · · · k])

+

k∑︂
i=1

(−1)iφ(s[0 · · · î · · · k]).

After choosing a normalized n+ 1-cocycle
cn+1 ∈ Zn+1(Bn−1;Aαn

n ), we define Bn to have d-
simplices [Bn]d those elements s[0 · · · d] whose faces
satisfy the conditions

dx1 = 1

dαjx
j = cj+1 2 ≤ j ≤ d− 1.

Again, it is implicit that to evaluate cj+1, we only remem-
ber the G,A2, . . . , Aj−1 labels, and if d > n the range on
the second condition stops at n.
In summary, the simplicial set

B = Bn = Bα2,c3;...;αn,cn+1
(G,A2, . . . , An)

has d-simplices described by

[B]d := {s[0 . . . d] = (x1
01, x

1
02, . . . , x

1
(d−1)d;

x2
012, . . . , x

2
(d−2)(d−1)d; . . . ;x

d
0...d)|

x1
.. ∈ G, xj

.. ∈ Aj ,

dαj
xj = cj+1(x

1;x2; . . . ;xj−1),

∀j = 2, 3, . . . , d− 1, and dx1 = 1}

(A12)

It still remains to argue that the simplicial set B we
constructed corresponds to the nerve of an n-group. To
do this, we need to verify that various Kan conditions are
satisfied. These conditions are described in Appendix C.
Specifically, for all 0 ≤ j ≤ m, our simplicial set B must
satisfy Kan(m, j) for all m ≥ 1 and Kan!(m, j) for all
m ≥ n+ 1. The Kan conditions refer to the map

[B]m → Λm
j (B)

from m-simplices to m-horns defined in (C6). See also
Figure 3 for intuition on horns. The condition Kan(m, j)
is satisfied if this map is surjective, while Kan!(m, j) is
satisfied if it is bijective. Colloquially, Kan(m, j) holds if
any horn Λm

j can be completed to an m-simplex ∆m, and
Kan!(m, j) holds if there is a unique choice of m-simplex
for completing each horn.

Notice that the horn space Λm
j (B) has the same

(m− 2)-skeleton as B, thus to verify the Kan condi-
tion Kan(m, j), we only need to take care of the missing
(m− 1)-face and m-face in the horn.

An m-simplex of B for m ≥ n + 1 is uniquely deter-
mined by its n-faces, so it is clear that Kan!(m, j) is
satisfied whenever m ≥ n+ 2. Indeed, specifying a horn

Λm
j specifies its n-faces and, thus, there is a unique m-

simplex with these specified n-faces.
Next, the conditions Kan!(n+ 1, j) are satisfied for

0 ≤ j ≤ n+ 1 because the equation

dαn
xn = cn+1(x

1;x2; . . . ;xn−1), (A13)

implies that as long as we know any n+ 1 out of n+ 2
n-faces in the (n+ 1)-simplex s[01 . . . n+ 1], then the
other one is determined uniquely. Similarly, the condi-
tions Kan(m+ 1, j) are satisfied for 0 ≤ j ≤ m < n be-
cause the following equation,

dαm
xm = cm+1(x

1;x2; . . . ;xm−1), (A14)

implies that any m+ 1 out of the m+ 2 m-faces in the
(m+ 1)-simplex s[01 . . . (m+ 1)] determines the other
one. Thus, we can always fill the (m+ 1, j)-horn and
we have unique filler if and only if Am+1 = 0. Therefore,
our simplicial set B satisfies the required Kan conditions.
It is straightforward to identify B(G) with one of the

standard simplicial models for the classifying space BG
(see Ref. 162, Example 1.5). If n ≥ 2, we let B(An, n)
denote the simplicial set just constructed whose data G,
Ak, αk and ck+1 are all trivial except for the n-th abelian
group An. Then B(An, n) is equivalent to the simplicial
model of an Eilenberg-MacLane space BnAn described
in Ref. 162, Theorem 2.19 or Theorem 23.9 of Ref. 158.

More generally, using Definition 8.1 and Proposition
8.2 of Ref. 158, there is a Kan fibration

B(An, n)
ιn →→ Bα2,c3;...;αn,cn+1

(G,A2, . . . , An)

ρn

↓↓

Bα2,c3;...;αn−1,cn(G,A2, . . . , An−1)

(A15)

The map ιn is the natural inclusion: the simplices
of B(An, n) are viewed as a subset of those in
Bα2,c3;...;αn,cn+1

(G,A2, . . . , An) by inserting the identi-
ties of the groups G,A2, ..., An−1 for the missing la-
bels. The map ρn is obtained by replacing the An la-
bels with zeros. Notice that the k-truncation defined in
Definition 8.1 of Ref. 158 applied to our simplicial set
Bα2,c3;...;αn,cn+1

(G,A2, . . . , An) is

B(k)
α2,c3;...;αn,cn+1

(G,A2, . . . , An)

= Bα2,c3;...;αk,ck+1
(G,A2, . . . , Ak)

From this, we deduce inductively that the homo-
topy groups of Bn are indeed given by π1Bn = G and
πkBn = Ak for k ≥ 2, with the convention that Ak = 0 if
k > n.14

14 In fact, the diagrams Eq. A15 are part of a simplicial Postnikov,
as described in §8 Ref. 158.
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We see from this Kan fibration that Bα2,c3(G,A2) is
the nerve of a 2-group constructed using the 3-cocycle
c3 ∈ Z3(B(G);Aα2

2 ) ∼= Z3(G;Aα2
2 ). This case was dis-

cussed in Ref. 163, Theorem 43, although from a different
perspective. Based on the discussion in Ref. 163, we see
that cohomologuous choices of cocycles c3 should give
rise to equivalent 2-groups, while choices of cocycles in
different cohomology classes of H3(G;Aα2

2 ) should give
rise to inequivalent 2-groups. We discuss this here in the
context of our construction.

If two sets of canonical cochains {cj} and {c′j} differ by
coboundaries valued in Aj−1, we say that they are gauge
equivalent. We show here that gauge equivalent cochains
give rise to weakly equivalent nerves by constructing a
simplicial equivalence

f : B → B′

where B = Bα2,c3;··· ;αn,cn+1
(G,A2, · · · , An) and

B′ = Bα2,c′3;··· ;αn,c′n+1
(G,A2, · · · , An). We construct

f inductively as follows. We let f0 = f1 = id. If
c3 − c′3 = db2 for b2 taking values in A2, then we
let f2(x

2) = x2 + b2(x
1); further using this truncated

simplicial homomorphism, if f∗c4 − c′4 = db3, where b3
takes values in A3, then we let f3(x

3) = x3 + b3(x
1;x2);

further using f0, . . . , f3, if f
∗c5 − c′5 = db4 for b4 taking

values in A4, then we let f4(x
4) = x4 + b4(x

1;x2;x3).
Proceeding inductively, we get a simplicial homomor-
phism f defined by fj : [B]j → [B′]j on the j-simplices.
The simplicial homomorphism f thus obtained is a

weak equivalence since it induces an isomorphism

π∗f : π∗B
∼=−→ π∗B′

on higher homotopy groups, which is shown by compar-
ing the Kan fibrations (A15) for B and B′. Therefore, up
to weak equivalence, it suffices to specify the cohomology
classes of the cocycles ck+1.
We will need the following fact about our simplicial-set

triangulations B. Given an abelian group A, the sim-
plicial set triangulation B specifies a cochain complex
C∗(B, A), whose cohomology is that of the realization
K = |B|,

H∗(C∗(B;A)) ∼= H∗(K;A). (A16)

Namely, the cochains Ck(B;A) are the
functions φ : [B]k → A. The differential
d : Ck−1(B;A) → Ck(B;A) is given by

dφ(s[0 · · · k]) =
k∑︂

j=0

(−1)jφ ◦ s[0 · · · ĵ · · · k].

Further, given another simplicial set B′ with realization
K ′ = |B′| and a simplicial map α : B → B′, we get a ho-
momorphism of chain complex

α∗ : C∗(B′;A) → C∗(B;A)

defined by α∗φ = φ ◦ α. On cohomology, this corre-
sponds to the homomorphism

|α|∗ : H∗(K ′;A) → H∗(K;A)

on the cohomology of the realizations, where |α| is the
realization of the map α.

Finally, we make some remarks about the special case
when the group G is abelian and the homomorphisms αk

are all trivial. We let G = A1 and abbreviate

B = Bc3;··· ;cn+1
(A1, A2, · · · , An).

We also use Bk = Bc3;··· ;ck+1
(A1, A2, · · · , Ak). Under

these triviality conditions, we can use cn+1 to construct
a simplicial homomorphism κn+1 : Bn−1 → B(An, n+ 1)
and obtain a “homotopy fiber sequence”

Bc3;··· ;cn+1
(A1, A2, · · · , An)

ρn

↓↓

Bc3;··· ;cn(A1, A2, · · · , An−1)
κn+1

→→ B(An, n+ 1).

(A17)
The map κn+1 classifies the fibration ρn. Up to homo-
topy, κn+1 is determined by the cohomology class of cn+1.
The map κn+1 is defined as follows. It is the con-

stant map to the unique d-simplex of B(An, n + 1) on
d-simplices for 0 ≤ d ≤ n. Since [B(An, n+ 1)]n+1 = An,
we can define cn+1 : [Bn−1]n+1 → An. This extends to
simplicial homomorphisms if and only if the action of
the α’s are all trivial and we name the resulting homo-
morphism κn+1. Even if κn+1 is not a Kan fibration, it
can be replaced by a Kan fibration so that the sequence
Eq. A17 is a homotopy fiber sequence.
More generally (whenG is any group and the α’s are al-

lowed to be non-trivial), there also exist maps analogous
to the κn+1 which classify the ρn, but their targets are
classifying spaces for some twisted cohomology groups.
See, e.g., Theorem 7.18 Ref. 159.

Appendix B: Higher groups and Postnikov stages

For a connected topological space K (which we assume
is a CW-complex, e.g., the realization of a simplicial set),
there is an action of π1K on πnK for each n ≥ 1. One
can construct spaces Kτ≤n with fibrations

an : K → Kτ≤n

that induce isomorphisms πi = πiK → πiKτ≤n for all
i ≤ n and such that πiKτ≤n = 0 for i > n. The space
K is weakly equivalent to the (homotopy) inverse limit

K(πn, n)

in

↓↓

K(πn−1, n− 1)

in−1

↓↓

K(π1, 1)

i1=

↓↓

K →→ · · · →→ Kτ≤n
pn

→→ Kτ≤n−1
pn−1

→→ · · · →→ Kτ≤1
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where each pn are intermediate fibrations. The trun-
cations Kτ≤n are called the Postnikov stages of K, are
homotopy n-types and can be viewed as the classifying
spaces of the higher n-groups discussed above.

We say in Appendix A how to build the classifying
space of an n-group using certain data. This included ho-
momorphisms αk which recorded the action of π1K = G
on πnK = An. We also had cocycles cn+1 needed to in-
ductively build our classifying spaces. We saw at the end
of Appendix A how, when G is abelian and the homo-
morphisms αn are trivial, we can use the cocycles cn+1

to extend our fibrations of Eq. (A15) to the fibration in
Eq. (A17).

This reflects a similar phenomenon in topological
spaces. If π1K is abelian and acts trivially on πnK for
all n ≥ 2,15 then the fibrations

K(πn, n)
in →→ Kτ≤n

pn

↓↓

Kτ≤n−1

(B1)

are classified by maps kn+1 : Kτ≤n−1 → K(πn, n+ 1)
that fit into a homotopy fiber sequence

Kτ≤n

pn

↓↓

Kτ≤n−1
kn+1

→→ K(πn, n+ 1)

(B2)

Compare Eq. (B1) and (B2) to Eq. (A15) and (A17).
Here K(πn, n+ 1) is a delooping of K(πn, n):

ΩK(πn, n+ 1) ≃ K(πn, n).

The homotopy class [pn] is determined by the cohomology
class

[kn+1] ∈ Hn+1(Kτ≤n−1, πn(K)). (B3)

The importance of these fibrations will be made clear
through our next example.

To obtain the classifying space of a higher n-group as-
sociated to the space K, we simply take Kτ≤n. So, let’s
look at the classifying space of a higher 3-group corre-
sponding to K = S2, the 2-sphere and looking at S2

τ≤3.

We will construct a simplicial set Bc4(Z, 2;Z, 3) whose
realization is equivalent to S2

τ≤3. In this case, because

π1S
2 = 0 and π2 = π3 = Z, we can take S2

τ≤1 to be a

point, and S2
τ≤2 ≃ K(Z, 2). So, the relevant portion of

15 Under these triviality conditions, K is called a simple space.
There is a generalization of the notion of k-invariants for non-
simple spaces take value in twisted cohomology groups.

the Postnikov tower is

S2

a3

↓↓

K(Z, 3) i3 →→ S2
τ≤3

p3

↓↓

K(Z, 2) k4
→→ K(Z, 4)

(B4)

and α3 : S
2 → S2

τ≤3 is an isomorphism on π2 and π3.

We describe our simplicial-set triangulation of S2
τ≤3,

B = Bc4(Z, 2;Z, 3).

The data we use is

1. G = 1, A2 = Z and A3 = Z

2. α2 and α3 are trivial since G = 1

3. c3 = 0 since there are no non-trivial 3-cocycles for
the trivial group, but c4 ∈ Z4(B(Z, 2),Z) is non-
trivial. We choose it to be the cup product,

c4 = x2 ⌣ x2.

Specifically, for s[0 · · · 4] = (x2
...) ∈ [B(Z, 2)]4,

c4(x
2
...) = x2

012x
2
234.

Our simplicial set triangulation has one vertex and we use
pt to label this vertex. SinceG = 1, the triangulation also
has one link and we use x1

pq = 1 to label this unique link
for any indices p, q. We omit the links from the notation
that denotes the triangles in Bc4(Z, 2;Z, 3) and simply
write

(x1
01, x

1
12, x

1
02;x

2
012) = (1, 1, 1;x2

012) = (x2
012)

where x2
012 ∈ π2(S

2) = Z. We see that the condition
dx1 = 1 is trivially satisfied, and so [B]2 = Z. Geometri-
cally, we can think of [B]2 as a wedge of 2-spheres labeled
by the integers, where the 2-spheres are the quotients of
triangles by their boundary.
Since c3 = 0 and α2 is trivial, the condition dα2

x2 = c3
on the labels

s[0 · · · 3] = (x2
012, x

2
023, x

2
013, x

2
123;x

3
0123) ∈ Z4 × Z (B5)

implies that the 3-simplices or tetrahedra in
Bc4(Z, 2;Z, 3) satisfy

dx2(s[0 · · · 3]) = x2
123 − x2

023 + x2
013 − x2

012 = 0. (B6)

Geometrically, this means that the 2-spheres labeled by

(x2
012), (x

2
013), (x

2
023), (x

2
123), (B7)

together bound a tetrahedron in Bc4(Z, 2;Z, 3) when
their labels satisfy Eq. B6. If this is the case, then they
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bound infinitely many tetrahedra, each labeled by the
additional index x3

0123 ∈ Z of Eq. (B5).
Note that this discussion implies the canonical 2-

cochain x2 : [B]2 → Z is actually a 2-cocycle in the
cochain complex C∗(B,Z) of Eq. (A16).
In one higher dimension, labels for 4-simplices are tu-

ples

s[0 · · · 4] = (x2
...;x

3
....) ∈ Z10 × Z5. (B8)

For such a tuple to label a 4-simplex in Bc4(Z, 2;Z, 3) it
must first satisfy dx2 = 0 for any of its 3-faces or trian-
gles, i.e.,

x2
qrs − x2

prs + x2
pqs − x2

pqr = 0

for any 0 ≤ p < q < r < s ≤ 4. Using the canonical 3-
cochain x3 whose evaluation on a tetrahedron as in
Eq. B5 is given by x3

0123, we also need the five tetrahedra
in s[0 · · · 4] labelled by x3

pqrs to satisfy

dx3 = x2 ⌣ x2 = c4 (B9)

where

dx3(s[0 · · · 4]) =
4∑︂

j=0

x3(s[0 · · · ĵ · · · 4]).

That is,

x2
012x

2
234 = x3

1234 − x3
0234 + x3

0134 − x3
0124 + x3

0123.

For higher dimensional simplices, there are no addi-

tional conditions: i.e., (x2
...;x

3
....) ∈ Z(

d+1
3 ) × Z(

d+1
4 ) is a

d-simplex in Bc4(Z, 2;Z, 3) if and only if all its 3-faces
(tetrahedra) satisfy dx2 = 0 and all its 4-faces satisfy
dx3 = x2 ⌣ x2.
Now we explain why the realization of our simplicial

set Bc4(Z, 2;Z, 3) is S
2
τ≤3. Eqs. (A15) and (A17) combine

in a diagram

B(Z; 3) ι3 →→ Bc4(Z, 2;Z, 3)

ρ3

↓↓

B(Z; 2) κ4
→→ B(Z; 4)

with κ4 constructed from c4 and representing the coho-
mology class

[c4] = Sq2Z ∈ H4(B(Z; 2);Z) ∼= H4(K(Z, 2),Z),

where Sq2Z denotes the squaring operation in integral co-
homology. If we apply realization, we get a corresponding
diagram

K(Z, 3)
|ι3|
→→ |Bc4(Z, 2;Z, 3)|

|ρ3|
↓↓

K(Z, 2)
|κ4|

→→ K(Z, 4)

where |ρ3| is a Serre fibration and |κ4| still represents the
same cohomology class. But, as we explained in Sec. VC,
Sq2Z is precisely the k-invariant k4 of the sphere S2. So,

|Bc4(Z, 2;Z, 3)| ≃ S2
τ≤3

are homotopy equivalent and we have realized Eq. (B1)
and (B2) for K = S2 when n = 3.
We consider the cochain complex introduced in the dis-

cussion of Eq. (A16). The simplicial maps in Eq. (A15)
give homomorphisms of cochain complexes

C∗(B(Z, 2);Z)
(ρ2)∗

→→ C∗(B;Z)
(ι3)∗

→→ C∗(B(Z; 3);Z)

where here B = Bc4(Z, 2;Z, 3) as above. We also have
corresponding homomorphisms upon taking cohomology

H∗(K(Z, 2);Z)
(p2)∗

→→ H∗(S2
τ≤3;Z)

(ι3)∗
→→ H∗(K(Z, 3),Z)

Note we are not saying these sequences are exact, just
that the maps are homomorphisms.
Consider the fundamental cochains

y2 ∈ C2(B(Z, 2);Z) and z3 ∈ C3(B(Z, 3);Z). We
use y and z to avoid confusion with the fundamental
cochains x2 ∈ C2(B;Z) and x3 ∈ C3(B;Z). The cochains
y2 and z3 are cocycles that represent the fundamental
classes in H2(K(Z, 2);Z) ∼= Z and H3(K(Z, 3);Z) ∼= Z.
Further, we have (ρ2)∗(y2) = x2 and (ι3)∗x3 = z3. The
first equation implies that x2 is a cocycle and that it
detects a generator in H2(S2

τ≤3;Z) ∼= Z. We had already

noted above that x2 was a cocycle. However, even if
z3 is a cocycle, x3 need not be one. In fact, by our
construction of B, x3 is not a cocycle since it satisfies
Eq. (B9), i.e., dx3 = x2 ⌣ x2. This is consistent with
the fact that H3(S2

τ≤3;Z) = 0, so that x3 should not
represent a cohomology class. Note that

dz3 = d(ι3)∗x3 = (ι3)∗dx3

= (ι3)∗(x2 ⌣ x2) = z2 ⌣ z2.

But z2 = 0 in C2(B(Z, 3);Z), so dz3 = 0 and z3 is indeed
a cocycle.

Appendix C: Simplicial sets and Kan conditions

In this appendix, we give some background on simpli-
cial sets.

Let ∆ be the category of finite ordinals. Its objects are
the ordered sets [n] = {0, · · · , n} for n ≥ 0, for example,

[0] = {0}, [1] = {0, 1}, [2] = {0, 1, 2}, . . . ,

The morphisms are the order-preserving maps. For ex-
ample, we have co-face maps

di : [n−1] → [n], ∀j < i, j ↦→ j,∀j ≥ i, j ↦→ j+1, (C1)
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FIG. 3. The Horns

given to the inclusion that skips i, and co-degeneracy
maps,

si : [n] → [n−1], ∀j < i, j ↦→ j,∀j ≥ i, j ↦→ j−1, (C2)

given by the surjection that repeats i. In fact, any order-
preserving map is a composition of various di’s and si’s,
and so these maps generate all the morphisms in the cat-
egory ∆.

Let Sets be the category of sets. A simplicial set X
is a contravariant functor from the category of finite or-
dinals to Sets, X : ∆op → Sets. In other words, X con-
sists of a tower of sets X0, X1, . . . , Xn, . . . with face maps
di : Xn → Xn−1 and degeneracy maps si : Xn−1 → Xn,
which are dual to di and si, i.e., X(di) = di and
X(si) = si. The category of simplicial sets is denoted
sSets.
If we take a simplicial decomposition of a topological

space K and take Xn to be the set of n-simplices, then
the collection of Xn form a simplicial set with di the
natural face maps and si the natural degeneracy maps.
Thus, it is not hard to imagine, in general, for a simplicial
set X, the maps di and si satisfy the following expected
coherence conditions,

didj = dj−1di if i < j, sisj = sj+1si if i ≤ j,

disj = sj−1di if i < j, djsj = id = dj+1sj ,

disj = sjdi−1 if i > j + 1.

(C3)

Example C.1 (m-simplex and (m, j)-horn). If we take
a geometric n-simplex and take its natural simplicial de-
composition, we end up with a simplicial set ∆m, which
can be described in the following combinatorial way,

(∆m)n = {f : [n] → [m] | f(i) ≤ f(j) for all i ≤ j}
= Hom∆([n], [m]).

(C4)
Similarly, we define the simplicial (m, j)-horn as the fol-
lowing:

(Λm
j )n =

{︁
f ∈ (∆m)n

⃓⃓
{0, . . . , j − 1, j + 1, . . . ,m}

⊈ {f(0), . . . , f(n)}
}︁
.

(C5)

The geometric realization of Λm
j is an m-simplex with

the inner and j-th facet removed. Clearly, there is an
inclusion of simplicial sets ιm,j : Λ

m
j → ∆m.

Then the set of simplicial morphisms
HomsSets(∆

m, X) = Xm, and HomsSets(Λ
m
j , X) is usually

some sort of product of Xi’s and represents horns in X.
For example, Hom(Λ2

1, X) = X1 ×d0,X0,d1
X1.

Definition C.2. A simplicial set X satisfies the Kan
condition Kan(m, j) if and only if the canonical map (i.e.,
the horn projection)

Xm = HomsSets(∆
m, X)

ι∗m,j−−−→ HomsSets(Λ
m
j , X) (C6)

is surjective. It satisfies the unique Kan condition
Kan!(m, j) if and only if the canonical map in (C6) is
an isomorphism.

We call X a Kan simplicial set (or a Kan complex
or the nerve of an ∞-groupoid) if it satisfies Kan(m, j)
for all m ≥ 1, 0 ≤ j ≤ m. We call X the nerve of
an n-groupoid16 if it satisfies Kan(m, j) for all m ≥ 1,
0 ≤ j ≤ m and Kan!(m, j) for all m ≥ n+ 1, 0 ≤ j ≤ m.
Finally, X is called the nerve of an n-group if it is the
nerve of a n-groupoid with the property that X0 is a
point.

For the content of this Appendix, we refer to the stan-
dard textbooks [158, 166] for the theory simplicial sets.
∞-groupoids using Kan condition are due to [164], we
also refer to the in [165, Sect.1] for a nice detailed intro-
duction of this topic.

Appendix D: An informal calculation of c4

This appendix presents a quick, informal calculation of
Eq. (44) of the main text. Consider the CP 1 presentation
of the S2 nonlinear σ-model. As mentioned in Sec. VC,
in this presentation, the homotopy classes π2(S

2) ≃ Z are
characterized by the Chern number of the U(1)-bundle,∫︂

S2

1

2π
dA ∈ π2(S

2) ≃ Z, (D1)

while the homotopy classes π3(S
2) are characterized by

the Hopf invariant, which can be expressed in terms of
Aµ as [147] ∫︂

S3

1

4π2
A ∧ dA ∈ π3(S

2) ≃ Z. (D2)

To determine whether or not the Postnikov 4-invariant
c4 is nontrivial, we introduce the maps

ϕk : S
k → Bc4(0,Z,Z), (D3)

where Sk is a k-sphere and k = 1, 2, 3. In terms of the
n-cochains xn on Bc4(0,Z,Z), the homotopy classes of
these maps are characterized by∫︂

Sk

ϕ∗
k xk ∈ πk(S

2). (D4)

16 These are also called n-hypergroupoids in Ref. 164 and n-
groupoid (without nerve) in [165].
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Comparing Eq. (D4) to Eqs. (D1) and (D2), we relate
the cochains xk to the U(1) gauge field A by

ϕ∗
2x

2 =
1

2π
dA, (D5)

ϕ∗
3x

3 =
1

4π2
A ∧ dA+ coboundary. (D6)

These imply that x2 and x3 satisfy

dx2 = 0, dx3 = x2 ⌣ x2, (D7)

Comparing this to Eq. (43) in the main text, we find that

c4(x
2) = x2 ⌣ x2, (D8)

as claimed by Eq. (44).
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