
Simulating binary primordial black hole mergers in dark matter halos

Muhsin Aljaf
*
and Ilias Cholis

†

Department of Physics, Oakland University, Rochester, Michigan 48309, USA

(Received 16 August 2024; accepted 4 February 2025; published 7 March 2025)

Primordial black holes (PBHs), possibly constituting a non-negligible fraction of dark matter (DM),

might be responsible for a number of gravitational-wave events detected by LIGO/Virgo/KAGRA. In this

paper, we simulate the evolution of PBH binaries in DM halos and calculate their merger rate up to redshift

of 10. We assume that DM halos are made entirely by a combination of single PBHs and PBH binaries. We

present the resulting merger rates from the two main channels that lead to merging PBH binaries: two-body

captures and binary-single interactions. We account for alternative assumptions on the dark matter halo

mass-concentration relationship versus redshift. We also study what impact the PBH mass distribution,

centered in the stellar-mass range, has on the PBH merger rate that the ground-based gravitational-wave

observatories can probe. We find that, under reasonable assumptions on the abundance of PBH binaries

relative to single PBHs, the binary-single interaction rates can be dominant over the two-body capture

channel. Our work studies in detail the dynamics of PBHs inside DM halos, advancing our understanding

on how the current gravitational-wave events constrain the properties of PBHs. Moreover, we make

predictions in a redshift range to be probed by future observatories.
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I. INTRODUCTION

Primordial black holes (PBHs) are formed from primor-

dial perturbations in the early Universe through a variety of

mechanisms [1–4]. Following the discovery of the first

gravitational-wave event in 2015 [5], interest in PBHs grew

significantly. Depending on their mass, PBHs could con-

tribute some fraction or even all dark matter (DM) and be

detectable in gravitational waves [6–12]. Conversely,

gravitational-wave observations can also be used to set

limits on the abundance of PBHs [13–17]. In addition,

PBHs might serve as seeds for the formation of super-

massive black holes [18–21].

The binary formation mechanisms of PBHs vary on the

basis of their formation time and interaction type, resulting

in distinct properties (see, e.g., Ref. [22]). In the late

Universe, binaries form within DM halos via dynamical

capture or binary-single interactions. In dynamical capture,

PBH binaries emerge from hyperbolic encounters that lose

sufficient energy through gravitational-wave emission. The

three-body channel involves 2þ 1 PBH encounters, where

the third PBH carries away enough energy for the other two

to become bound. The merger rate of PBH binaries via

direct capture is estimated in [6,23], showing its dominance

in small-mass halos, with resulting binaries being highly

eccentric and merging quickly [24]. The merger rate from

the single binary channel within the PBH minihalos,

examined in [25], predominates over the direct capture

rate only when the fraction of PBH in DM is enhanced as

such interactions are likely to occur in dense environments.

On the other hand, in the early Universe, PBH binaries

can form when nearby PBH pairs are decoupled from the

Hubble flow [13,14]. Reference [14] showed that such

binaries are highly eccentric. In addition, it calculated the

rate at which such binaries merge today and showed that,

other than a small fraction, binaries are not perturbed by

PBH tidal torques and encounters with other PBHs in their

environment. However, their work relied on analytical

calculations valid for massive halos and in regions of the

halos far from their centers.

In this work, we evaluate the PBH merger rate due to

direct capture events and due to the evolution of the orbital

properties of PBH binaries from interactions with other

(single) PBHs, inside DM halos. We focus on stellar-mass

PBHs that can be directly probed by the LIGO/Virgo/

KAGRA ongoing gravitational-wave observations. We

account fully for the mass distribution of dark matter halos,

also known as the halo mass function, and how that evolves

with redshift. We perform calculations including DM halos

with current masses from 103 to 1015M⊙. We simulate the

entire volume of dark matter halos from the redshift of 12 to

the present era. This is important to take into account, as

other than the smallest mass Oð103–104ÞM⊙ halos, there

is a significant density gradient inside DM halos and

also a gradient in the velocity distribution of PBHs. This

can affect the derived PBH merger rates. Our dark matter

halos’ total mass, PBH density profiles (described by the
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concentration parameter), and PBH velocity distribution

profiles evolve with time as well.

We describe all our assumptions regarding the modeling

of the DM halos and how those evolve in Sec. II. In Sec. III,

we describe our methodology in evaluating the PBH-PBH

direct capture interactions and our subsequent results. We

study both the simple monochromatic 30M⊙ case, which

has been studied in the past (as, e.g., in [6]), but also more

realistic PBH mass distributions with probability density

functions peaking approximately at the same mass. Our

results are in agreement with [6,23], at low redshifts and by

a factor of ∼2 at a redshift of 6, increasing rapidly at earlier

times. These findings are robust to the PBH mass distri-

bution and DM halo concentration relation. In Sec. IV, we

discuss the binary PBH-single PBH interactions occurring

inside DM halos. We study these interactions for the entire

DM halo masses range, simulating the evolution of these

binaries under different environmental (PBH density and

velocity distribution) conditions. These interactions accel-

erate the PBH binary evolution, especially in the inner parts

of the DM halos. We find that, if an appreciable fraction

of PBHs are in binaries at formation, then the PBH merger

rate is enhanced compared to just the direct capture

calculation. Finally, in Sec. V, we combine all our results

and discuss further connections to future gravitational-

wave observations.

II. DARK MATTER HALO MODELS

In this section, we briefly discuss the DM halo models

used in this paper. This includes key quantities such as the

density profile, concentration parameter, and halo mass

function, which are important for the calculation of the

merger rate of PBH binaries from (a) two-body captures

and (b) binary-single interactions.

A. The halo profile

We take the PBH density profile to follow the Navarro-

Frenk-White (NFW) DM profile [26],

ρNFWðrÞ ¼
ρs

ðr=RsÞð1þ r=RsÞ2
: ð1Þ

Parameter r is the distance from the halo’s center, while Rs

is the scale radius of the halo. The DM density ρs is defined

as ρcrit · δc, where ρcrit denotes the critical density of the

Universe at a specific redshift z, and δc is the linear

overdensity threshold. The overdensity threshold δc is

connected to the concentration parameter C through

δc ¼
200

3

C3

gðCÞ ; ð2Þ

where

gðCÞ ¼ lnð1þ CÞ − C

1þ C
: ð3Þ

The concentration parameter C≡
Rvir

Rs
, characterizes the

central density of DM halos. The halo’s virial radius Rvir

covers a volume within which the average halo density is

200 the critical density of the Universe.

Given the halo density profile, we can calculate the total

mass within a sphere of radius Rvir as

MðRvirÞ ¼ 4π

Z

Rvir

0

drr2ρNFWðrÞ

¼ 4πR3
sρs

�

ln
Rvir þ Rs

Rs

−
Rvir

Rvir þ Rs

�

¼ 4πR3
sρs

�

lnð1þ CÞ − C

1þ C

�

¼ 4πR3
sρsgðCÞ: ð4Þ

We note that the mass of the halo is a function of the

concentration. In the above equation, gðCÞ is just the

quantity in square brackets.

B. The mass-concentration-redshift relation CðM; zÞ
As we mentioned above, the concentration parameter

plays an important role in the properties of DM halos.

N-body simulations show that the concentration parameter

decreases with increasing halo mass and varies with red-

shift at a fixed mass [27,28]. This behavior is consistent

with the dynamics of the merger tree of DM halos and their

evolution, where smaller halos, having already virialized,

tend to be more concentrated than larger ones. The

relationship between concentration, mass, and redshift

can be described by the CðνÞ relation. Here, νðM; zÞ, the
peak height, is a dimensionless parameter defined as

νðM; zÞ≡ δscðzÞ=σðM; zÞ, where δscðzÞ ¼ 1.686ð1þ zÞ is

the spherical collapse threshold for overdensities and

σðM; zÞ is the linear root-mean-square fluctuation of over-

densities. This peak height parameter indicates that the

concentration parameter depends on both the mass and the

redshift.

In this paper, we utilize two key models for the mass-

concentration-redshift relation CðM; zÞ that give a good fit

to the DM N-body simulation results. Henceforth, we shall

refer to these models as Ludlow16 [28] and Prada12 [27].

For Ludlow16, we employ Eq. (C1) of Ref. [28]. For

Prada12, we use the model described by Eqs. (12)–(22) of

Ref. [27]. In Fig. 1, for a DM halo that reaches a mass of

1012M⊙ at z ¼ 0, we show how its mass and concentration

parameter evolved with redshift starting from z ¼ 12. We

used the Ludlow16 concentration evolution model.

In Fig. 2, we illustrate the concentration parameter of

DM halos of fixed mass, for the Ludlow16 model (top) and

for the Prada12 model (bottom). We note that in our
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calculations we evolve the mass of DM halos from

accretion and use such relations to find what the concen-

tration parameter is for a halo of a given mass at a given

redshift.

C. The halo mass function

A key quantity in determining the merger rate of PBH

binaries is the halo mass function. This describes the mass

distribution of DM halos. We use the differential halo mass

function as introduced in [29],

dn

d lnM
¼ M ·

ρm0

M2
fðxÞ

�

�

�

�

d ln x

d lnM

�

�

�

�

; ð5Þ

where n is the number density of DM halos, M is the halo

mass, ρm0
is the mean density of matter, and fðxÞ is a

function related to the geometrical conditions for the

overdensities at the collapse time of the halo. fðxÞ can

be derived from analytical work or numerical simulations.

We use the halo mass function by Press and Schechter [29],

fðxÞ ¼
ffiffiffi

2

π

r

δc

x
exp

�

−
δ2c

2x2

�

: ð6Þ

The DM mass function is readily accessible through the

publicly available Python package HMFcalc [30]. To estimate

the total merger rate due to capture and binary-single

interactions of all DM halos, we will first evaluate the

merger rate per DM halo Rhalo of mass M. Then we will

integrate that rate over the halo mass function.

D. Primordial black hole velocity distributions

To study the interactions between PBHs, let us consider

two PBHs with masses m1 and m2 and a relative velocity

vrel ¼ jv1 − v2j ¼ vPBH. Those PBHs are in a DM halo

with virial velocity vvir and dispersion velocity vdisp. The

relative velocity distribution of PBHs can be approximated

by a truncated Maxwell-Boltzmann distribution [6,24],

pðvPBHÞ¼F−1
0
v2PBH

�

exp

�

−
v2PBH
v2disp

�

−exp

�

−
v2vir
v2disp

��

: ð7Þ

F0 is a normalization constant such that

F0 ¼ 4π

Z

vvir

0

v2PBH
�

e−v
2

PBH
=v2

disp − e−v
2

vir
=v2

disp

	

dv: ð8Þ

The relationship between vdisp and vvir can be derived

from the properties of the halo as

FIG. 2. The redshift evolution of the concentration parameter

for various DM halos. The expectations of the Ludlow16 (top)

and Prada12 (bottom) concentration models are shown for halos

that at present (z ¼ 0) have masses of 103; 106; 109, and 1012M⊙.

FIG. 1. The redshift evolution of mass and concentration

parameter C for a 1012M⊙ halo at z ¼ 0, using the Ludlow16

model.
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vdisp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GMðr < rmaxÞ
rmax

s

¼ vvir
ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C

xmax

gðxmaxÞ
gðCÞ

s

; ð9Þ

where xmax ¼ rmax

Rs
¼ 2.1626 (Cm of Ref. [6]) and

Mðr < rmaxÞ ¼ 4π

Z

rmax

0

drr2ρNFWðrÞ

¼ 4πR3
sρs

Z

xmax

0

dx
x

ð1þ xÞ2

¼ 4πR3
sρs

�

lnð1þ xmaxÞ −
xmax

1þ xmax

�

: ð10Þ

Given Rs, ρs, and C, we calculate the velocity dispersion

vdisp from the first equality of Eq. (9) and the virial velocity

vvir from the second equality.

III. TWO-BODY CAPTURE EVENTS

In this section, we describe our assumptions for the

evaluation of the two-body capture rate between PBHs,

following Ref. [6]. Since the binaries formed from such

interactions are hard binaries with high initial eccentricities

and small semimajor axes (see Ref. [24] for more details),

we also consider that the merger of the binaries follows

with a small delay in redshift.

A. Merger rates per halo

For two PBHs with masses m1 and m2, the cross section

of interaction for binary formation can be expressed as [6]

σðvPBHÞ¼ 2π

�

85π

6
ffiffiffi

2
p

�

2=7G2ðm1þm2Þ10=7m2=7
1

m
2=7
2

c10=7v
18=7
PBH

: ð11Þ

The differential capture rate is then given by

dΓcapture

d3x
¼ n1ðrÞ · n2ðrÞ · hσvPBHi; ð12Þ

where n1ðrÞ and n2ðrÞ are the number densities of PBHs

with mass m1 and m2, respectively. We assume that the

density distributions for both PBH binaries and single

PBHs follow the NFW profile. The matter density in PBHs

in general is ρPBHðrÞ ¼ fPBH × ρNFWðrÞ, with fPBH the

fraction of DM in PBHs. In this work, we take fPBH ¼ 1.

Our merger rates for the PBH binaries scale as f2PBH. We

note that in this paper we do not aim to revisit the limits on

PBHs from the gravitational-wave observations (for a

recent update on that, see [31,32]), but study the PBH

merger rates themselves. We also note that the fraction of

PBHs in binaries may depend on fPBH (see [33]).

For a monochromatic PBH mass distribution, i.e., m1 ¼
m2 ¼ m and, consequently, we have

n1 · n2 →
1

2
n2 ¼ 1

2

�

ρNFWðrÞ · fPBH · fm

m

�

2

: ð13Þ

The factor of 1=2 is used to account for pairs of black holes
of identical mass. To get the total capture rate per halo, we

take integration over the volume of the halo,

Γcapture ¼ 4π

Z

Rvir

0

drr2 · hσ · vPBHi

×
1

2

½fPBH · ρNFWðrÞ�2
m2

: ð14Þ

This leads to the final form of the merger rate per halo,

RhaloðM; zÞ ¼ 2π

3

�

85π

6
ffiffiffi

2
p

�

2=7

· f2PBH · f2m

×
G2M2

virDðvPBHÞfðCÞ
R3
s · c · gðCÞ2

; ð15Þ

where

fðCÞ ¼
�

1 −
1

ð1þ CÞ3
�

ð16Þ

and

DðvPBHÞ ¼
Z

vvir

0

PðvPBH; vdispÞ
�

2vPBH

c

�

3=7

dvPBH: ð17Þ

Note that, in Eq. (15), we have substituted for ρs using

Eq. (5). The details for the case of a generic PBH mass

distribution are provided in Appendix A.

B. Direct capture rate results

In Fig. 3, we present the PBH direct capture rate—and

merger rate from that channel—per halo, covering halo

masses from 103M⊙ to 1015M⊙ at redshift z ¼ 0. In all our

calculations, we assume that 50% of the DM halo mass is in

single PBHs and 50% is in PBH binaries. We compare the

merger rate from direct captures for a monochromatic mass

distribution with m ¼ 30M⊙ to a log-normal mass distri-

bution with mean μ ¼ lnð30M⊙Þ and a variance σ ¼ 0.6.

Changing the value ofm for the monochromatic PBH mass

distribution does not affect our results, as in Eq. (15) the

PBH mass m cancels out. Similarly, changing the value of

the mean μ has a very marginal effect on the capture rates.

The log-normal mass distribution provides a higher merger

rate from two-body captures compared to the monochro-

matic one. In Fig. 3, we show results for both the Ludlow16

and Prada12 concentration models. The Prada12 relation
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gives higher rates as it predicts higher concentrations than

Ludlow16.

In Fig. 4, we show the merger rate Rhalo as a function

of halo mass at redshift z ¼ 0 for the Ludlow16 concen-

tration relation. The plot shows both the monochromatic

and log-normal distributions with mean μ ¼ lnð30M⊙Þ and
σ ¼ ½0.4; 0.6; 0.8�. As we increase σ in the log-normal

distribution, the merger rate becomes higher.

In Fig. 5, we compare merger rates using monochromatic

mass distributions with log-normal and critical collapse

distributions. Critical collapse models predict slightly

higher merger rates than the log-normal or monochromatic

mass distributions. The three PBH mass distributions are

shown in the top panel of Fig. 18 in Appendix B.

In Fig. 6, we show the redshift evolution of the merger

rate due to captures of two PBHs inside a halo with a mass

that at z ¼ 0 is 1012M⊙. For comparison, we also show how

such a halo’s mass evolved (same red line as in Fig. 1). We

utilize the Ludlow16 concentration model and show results

for both the monochromatic PBH mass distribution and the

log-normal distribution. For such a DM halo, the PBH

FIG. 3. The merger rate per halo Rhalo for the Ludlow16 and

Prada12 concentration relations. We compare the rates from a

monochromatic and a log-normal PBH mass distribution with

μ ¼ lnð30M⊙Þ and σ ¼ 0.6. We note that, in calculating these

rates, only 1=2 of the DM halo mass is in single PBHs, while the

other 1=2 of the halo mass is in PBH binaries. However, given

that most binaries are wide and act as single black holes with

respect to direct captures, our results are independent of the

relative abundance of single PBHs versus PBH binaries.

FIG. 4. The merger rate Rhalo per halo at redshift z ¼ 0,

considering the Ludlow16 concentration relation. We show

results for both a monochromatic and a log-normal PBH mass

distribution with μ ¼ lnð30M⊙Þ.

FIG. 5. The merger rate per halo Rhalo per halo at redshift z ¼ 0

considering Ludlow16 concentrations model considering differ-

ent mass distributions of PBHs, including monochromatic, log-

normal, critical collapse, and broken power-law mass functions.

FIG. 6. Evolution of the merger rate per halo RhaloðzÞ and halo

mass with redshift for a halo having a mass M ¼ 1012M⊙ at

z ¼ 0. The Ludlow16 concentration model is applied along with

log-normal distribution [with μ ¼ lnð30M ⊙Þ and σ ¼ 0.6] for

the PBH mass functions.
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merger rate from direct capture events increased with time

peaked at z ≃ 5, after which time it decreased asymptoti-

cally to a constant rate. The log-normal distribution

provides higher merger rates than the monochromatic

distribution by a factor of 3 for z < 6. For the evolution

of the halo mass, we used Eq. (31).

Similarly, in Fig. 7, we compare the redshift evolution of

the capture merger rate per halo RhaloðzÞ for various halos,
specifically, 103, 106, 109, 1012, and 1015M⊙ halos at

z ¼ 0. For smaller mass halos, the merger rate from direct

capture events peaks at later times.

Figure 8 shows the total comoving merger rate with

the Press-Schechter halo mass function versus redshift.

This rate is evaluated by combining the merger rate per halo

with halo mass function,

RðM; zÞ ¼
Z

RhaloðM; zÞ dn
dM

dM: ð18Þ

We show results for two PBH mass distributions: mono-

chromatic and log-normal. For the computation of the halo

mass function we use HMFcalc. Additionally, we employed

both the Ludlow16 and Prada12 concentration models in

our calculations. We illustrate the differences in merger

rates predicted by these models and mass functions. We

observe good agreement between the alternative assump-

tions for z≲ 2. However, at higher redshifts, uncertainty

arises due to the mass function of the halos. The Prada12

concentration model predicts higher concentrations than

Ludlow16 at low redshifts. This leads to a slightly higher

total merger rate using the Prada12 to the Ludlow16 for

z≲ 2. However, in Fig. 8, at z > 2 the Ludlow16 relation

predicts higher merger rates. This can be attributed to the

behavior of the Prada12 relationship for massive halos at

z > 2. For these halos and redshifts, the Prada12 relation-

ship diverges, giving in fact increasing concentrations

with increasing redshift. As a result, going back in time,

we had to cup the predicted concentrations from the

Prada12 model to their minimum values. We consider that

to simply be part of the generic modeling uncertainty for

this calculation.

IV. BINARY-SINGLE INTERACTIONS EVENTS

In this section, we outline our assumptions to calculate

the merger rate resulting from binary-single interactions.

There are two types of interactions that PBH binaries

encounter in DM halos: (a) interactions between PBH

binaries and single PBHs and (b) interactions between PBH

binaries themselves.

In this study, we care about the PBH binaries that are

hard at the beginning of the evolution of their orbital

properties and can merge within a Hubble time. See

Appendix D to see what fraction of the binaries that are

hard per halo at z ¼ 0. These are the binaries whose

semimajor axis is less than or equal to the critical value

of the semimajor axis in a halo. We also take for simplicity

a monochromatic mass distribution with m ¼ 30M⊙.

Because of the wide distribution in the orbital properties

of the PBH binaries, the interactions between two PBH

binaries can be approximated well as the interaction

between the harder of the two binaries and the PBH closest

to it. Thus, we treat all interactions of hard PBH binaries

with their environment as interactions with single PBHs.

Because all PBHs are taken to have the same mass, there

are no exchange interactions. For narrow PBH mass

distributions, this is a valid approximation.

FIG. 7. Evolution of the merger rate per halo RhaloðzÞ, with
redshift z for halos of masses 103, 106, 109, 1012, and 1015M⊙ at

z ¼ 0. The Ludlow16 concentration model has been used, incor-

porating the monochromatic PBH mass with mPBH ¼ 30M⊙.

FIG. 8. The redshift evolution of the comoving PBH merger

rate from two-body captures. We used the Press-Schechter

halo mass function (see text for details). For the log-normal

PBH mass distribution, we have used μ ¼ lnð30M⊙Þ and

variance of σ ¼ 0.6.
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A. The evolution of PBH binaries properties

To model the merger rate of PBH binaries through

binary-single interactions, we examine their orbital param-

eters ða; eÞ evolution equations. For a PBH binary with

masses m1 and m2 residing in a DM halo, the evolution

equation for its semimajor axis is [34]

da

dt
¼ −

GHρenvðr; tÞ
venvdispðr; tÞ

a2 −
64

5

G3

c5a3

× ðm1 þm2Þ · ðm1 ·m2ÞFðeÞ; ð19Þ

with

FðeÞ ¼ ð1 − e2Þ−7=2 ·
�

1þ 73

24
e2 þ 37

96
e4
�

: ð20Þ

G is Newton’s constant, c is the speed of light, and

ρenvðr; tÞ is the density of the environment in which the

PBH binary resides, a DM halo in our case. Finally,

venvdispðr; tÞ is the velocity dispersion of the PBHs surround-

ing the binary.

For any halo under consideration, we assume that the

density distributions for both PBH binaries and single

PBHs adhere to the NFW profile. This implies that the

environmental density in Eqs. (19) and (20) is determined

according to the NFW profile. We assume that 50% of the

halo’s mass is in PBH binaries and the remaining 50% is in

single PBHs. Consequently,

ρenvðr; tÞ ¼ ρPBH binariesðr; tÞ þ ρsingle PBHðr; tÞ
¼ ρNFWðr; tÞ: ð21Þ

We remind the reader that the first term in Eq. (19)

describes the averaged effect of hardening interactions of

PBH binaries with their environment, while the second

term represents the Peters secular evolution due to

gravitational-wave emission. In Eq. (21) for the ρenv we

include the density of the binaries ρPBH binaries, as the great

majority of PBH binaries are wide and act as two single

objects on the evolution of the tight binaries. Hðr; tÞ is the
hardening rate [35], which can be approximated by [36]

Hðr; tÞ ¼ 14.55 ×

�

1þ 0.287
a

ahðr; tÞ

�

−0.95

: ð22Þ

The hard semimajor axis ahðr; tÞ is defined by

ahðr; tÞ ¼
Gm1

4venvdispðr; tÞ2
: ð23Þ

The velocity dispersion of single objects (PBHs) and

binaries in the halo depends on time and position,

venvdispðr; tÞðr; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2GMðr; tÞ
rðtÞ

s

; ð24Þ

whereMðr; tÞ is the halo mass contained within a sphere of

radius r from its center, at time t.
The evolution equation for eccentricity of the PBH

binaries is [34]

de

dt
¼ GHðr; tÞKðr; tÞρenvðr; tÞ

venvdispðr; tÞ
a −

304

15

G3

c5a4

× ðm1 þm2Þðm1 ·m2ÞDðeÞ; ð25Þ

with

DðeÞ ¼ ð1 − e2Þ−5=2 ·
�

eþ 121

304
e3
�

: ð26Þ

Kðr; tÞ describes the eccentricity growth rate as a result of

interactions with third bodies. LikeHðr; tÞ, it is determined

by numerical three-body simulations. We use the fitting

function provided in [36] [their Eq. (18)].

Our simulations neglect the possibility for PBH ejection

from DM halos during binary-single interactions. Given

that the escape velocities from massive halos are generally

high, except in the outermost regions, these ejections have a

minimal impact on the merger rates. However, in the case of

small-mass halos, such ejections may reduce the merger

rate within the halo, as the escape velocity is comparable to

the dispersion velocity. Consequently, neglecting these

ejections could lead to an overestimation of merger rates

in small-mass halos. To properly account for the signifi-

cance of ejections in small-mass DM halos, numerical

simulations are required. This goes beyond the scope of

this work.

B. Numerical analysis setup

The system of Eqs. (19) and (25) is solved numerically.

We divide our halos with mass larger than 107M⊙ into ten

discrete spherical shells and take the PBH binaries to reside

inside a given shell throughout the simulation. The radial

boundaries of these shells Ri are logarithmically spaced

from 0 to RvirðtÞ. This allows for the shells to grow with

time following the mass and volume evolution of the DM

halos. For a halo with RvirðtÞ at a given time t, the radial

boundary RiðtÞ is

RiðtÞ ¼ exp

�

i

Nshell

· ln

�

1þ RvirðtÞ
1 pc

��

− 1; ð27Þ

where i∈ ½0; 10�.
For less massive halos, we use the same approach as

described previously, with the difference of using a smaller

number of shells. For halos ofOð103ÞM⊙, we only take one
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sphere; for Oð104ÞM⊙, one sphere and one shell around it;

for Oð105ÞM⊙, one sphere and two logarithmically spaced

shells around it (i∈ ½0; 3�) and for Oð106ÞM⊙ i∈ ½0; 5�. As
an example, for a halo with a mass of 1012M⊙ and virial

radius of Rvir ≃ 211 kpc at z ¼ 0, the shell boundaries at

the end of the simulation are given in Table I.

Furthermore, we take the halo density ρenvðr; tÞ and the

dispersion velocity venvdispðr; tÞ to evolve in discrete time

steps. We update their values every 200 Myr.

The densities on each spherical shell are evaluated at the

midpoint of the shell. Thus, the density of the shell is

ρiðtÞ ¼ ρNFW

�

RiðtÞ þ Riþ1ðtÞ
2

�

: ð28Þ

We remind the reader that Rvir ¼ Rs · CðM; zÞ and that

Rs depends on CðM; zÞ. We employ the Ludlow16 con-

centration relation and evaluate the halo’s mass at any given

redshift. Once we have the mass at a specific redshift,

we can estimate CðM; zÞ and also derive parameters such

as RvirðtÞ.
The system of Eqs. (19) and (25) is solved using the

Euler method for each PBH binary, located within a given

shell at each time step in the history of DM halos. We

implement structured time stepping to ensure precision and

efficiency. We adapt a global time step dtglobal ¼ 200 Myr,

that governs the main simulation time t from 0 to tmax, the

look-back time from when we start our simulation to the

present day.
1
Within each dtglobal ¼ 200 Myr we evolve

numerically the binaries’ orbital properties using a time

step of dtlocal ¼ 2 Myr. During each global time step

dtglobal, we evolve our hard PBH binaries through

anþ1 ¼ an þ dtlocal · faðtlocal;n; an; enÞ; ð29Þ

enþ1 ¼ en þ dtlocal · feðtlocal;n; an; enÞ; ð30Þ

where an denotes the semimajor axis and en represents the
orbital eccentricity at step n. The functions fa and fe
represent the right-hand side of Eqs. (19) and (25). If during

the evolution of the semimajor axis of our PBH binaries a
approaches zero, we consider that a merger event.

C. Evolution of the DM halo’s mass properties

To evolve the mass of DM halos, we used the semi-

analytical model of Ref. [37] (their Appendix C), which

predicts that

MðzÞ ¼ M0ð1þ zÞαeβz: ð31Þ

Parameters α and β characterize the mass evolution of each

halo. Equation (31) is used to determine the concentration

parameter CðM; zÞ of a given halo at a given redshift in its

evolution and subsequently the RvirðtÞ. The details on how

to calculate these parameters are given in Appendix C.

In Fig. 9, using Eq. (31) we show the mass evolution

starting from z ¼ 12 of halos with masses of 103–1015M⊙

at z ¼ 0. We observe the same trend as for the case of a

1012M⊙ halo (see Fig. 1). Low-mass halos form earlier but

gain their mass more slowly compared to massive halos.

In Fig. 10, we depict the time evolution of the mass and

density for each shell of a halo with a present-era mass of

1012M⊙. We observe that the density is higher in the inner

shell compared to the outer ones. However, due to the

relevant volumes of the spherical shells, the mass of the

outer shells is much larger.

Figure 11, top panel, shows the evolution of dispersion

velocity vdispðr; tÞ in each spherical shell of a 1012M⊙ halo.

Furthermore, the bottom panel shows the critical value for

TABLE I. The shell boundaries Ri at the end of the evolution of

a DM halo with M ¼ 1012M⊙ and Rvir ¼ ≃211 kpc at z ¼ 0.

i Ri (pc)

0 0.00

1 2.41

2 10.61

3 38.57

4 133.83

5 458.46

6 1564.65

7 5334.13

8 18179.03

9 61949.37

10 211101.44

FIG. 9. Mass accretion history for a range of halos mass with

103–1015M⊙ at present day, z ¼ 0.

1
For DM halos that at the present era have a mass

M ≳ 5 × 104M⊙, we start our simulation at z ¼ 12. Instead,
for halos with smaller masses at the present era, we start their
evolution at a lower redshift, as we require that halos at all times
contain at least ≃30 PBHs in them.
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the semimajor axis of hard binaries ah, for the different

spherical shells. We observe an opposite trend to the

velocity dispersion as ah ¼ Gm
4v2

disp

(m being the PBH mass).

We note that we only evolve the hard PBH binaries. Each

time, we sample a specific number of PBH binaries and

then select the hard binaries using the condition a ≤ ah.
Only hard binaries may merge as a result of interactions

with third bodies [38]. From the bottom panel of Fig. 11,

we notice that the inner mass shells have relatively constant

critical values for ah. However, in the outer shells ah
decreases with time. For the halo we simulate here, i.e.,

M ¼ 1012M⊙ at z ¼ 0, at early times there was a signifi-

cantly higher fraction of hard binaries than later. This has

implications on the resulting merger rate evolution, as will

be shown in the following sections.

D. The initial distribution of PBH binaries’

orbital properties

PBH binaries exist even outside DM halos. We assume

that these binaries are gravitationally bound and remain

unaffected until the formation of DM halos. Therefore, at

the time they become part of a DM halo, their initial orbital

parameters ðα0; e0Þ follow the same distributions as at the

time for their formation at matter-radiation equality. Only,

once these binaries fall into DM halos, their evolution is

affected by their environment. In each time step of our

simulation, we pick Nsample of PBH binaries with (a0, e0) to

evolve between t and tþ dt. To sample these parameters,

we take the approach presented in [14,39,40]. In

Appendix D, we provide more details on how we sample

the initial orbital parameters of the PBH binaries.

E. Binary-single interaction results

In this section, we present the results of our simulations

for the merger rates per halo (in yr−1) and the total merger

rate (in Gpc−3 · yr−1) from the interactions of PBH binaries

with single PBHs. There are also interactions of the PBH

binaries with regular starts. Those too can cause hardening

of the PBH binaries’ orbital properties. However, these

happen at the cores of the most massive halos, which as we

FIG. 10. Evolution of mass (top) and density of a halo (bottom)

with M ¼ 1012M⊙ in each spherical shell with radius RiðtÞ
where i ¼ 1; 2; 3;…; 10.

FIG. 11. The time evolution of the velocity dispersion vdisp
(top) and ah (bottom) for each of the ten spherical shells of a halo

with M ¼ 1012M⊙ at the present era.
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will show contribute very little to the total rate. Thus, we

can ignore the impact of stars.

In our simulations for a given mass halo, we have

assumed a monochromatic mass distribution m ¼ 30M⊙

and used the Ludlow16 concentration model, under the

assumption of Eq. (21) that 50% of the halo’s mass is in

PBH binaries and the remaining 50% is in single PBHs.

For a given halo, we start the simulation at z ¼ 12 and

end around z ¼ 0 which is equivalent simulation time

of 0–13.4 Gyr.

In Fig. 12, we present the cumulative number of binary

PBH mergers Nmerger in each of the shells Ri of a halo

1.15 × 1012M⊙ over time. As a first step in our simulation,

we take that there are Nsample ¼ 2 × 106 binaries in each

shell and in each time step. That is obviously not accurate,

as there are many more PBH binaries in the outer shells

and at later times. We describe how we rescale our

results subsequently. Before rescaling, we see that the

cumulative number of mergers is higher in the inner

shells. In the inner shells, the PBH density is much higher,

while their velocity dispersion lower. Thus, the PBH

binaries experience hardening more often, evolving much

faster and giving a much larger number of mergers. In

Appendix E, we present information on how fast hard PBH

binaries are expected to have hardening interactions with

single PBHs for different DM mass halos and at different

times in those halos’ evolution. We find that for the smaller

in mass halos and at later times in their evolution

the interactions of PBH binaries with single PBHs are

important.

The true merger rate of PBH binaries due to their

interaction with single PBHs is derived by taking the

results of Fig. 12, and rescaling them by accounting for

the true number of binaries that exist per time step, using

Rhalo ¼
X

Nshells

i¼1

X

tlook

t¼0

NPBH binaries;i;t

Nsample

·
Nmerger;i;t

Δt
; ð32Þ

where tlook is the look-back time of a halo, NPBH;i;t is the

actual number of binaries in a shell with radius Ri from the

halo’s center at t, Nmerger;i;t is the number of mergers in

the shell at time t when Nsample binaries are considered in

the simulations, and Nsample is the number of binaries

sampled per time step.

After rescaling, the merger rates in the inner shells are

significantly suppressed due to much fewer binaries in

them compared to the outer shells. We also find that

most mergers occur early in the evolution of the halo.

At high redshifts, the density of single PBHs and PBH

binaries are high and the velocity dispersion low, leading to

higher hardening rates and consequently more mergers in

early times.

In Fig. 13, we present the merger rate per halo for a

103M⊙ halo, where the solid green spiky line depicts the

merger rate obtained from the simulation that has stochastic

fluctuations and the dashed blue line represents a poly-

nomial approximation (averaging) of it. While our simu-

lation starts at z ¼ 12, since we are averaging rates between

neighboring time steps, we drop the first time step from the

averaged calculation of the rate and present results starting

from z ≃ 10. Especially for the case of Oð103ÞM⊙ DM

halos, there is no velocity gradient for the PBHs, as the

FIG. 12. The cumulative number of PBH mergers from binary-

single interactions in each mass shell Ri of a 1.15 × 1012M⊙ halo.

In the simulation, in each shell we have sampled Nsample ¼
2 × 106 binaries per time step.

FIG. 13. The merger rate per halo from binary-single inter-

actions for a halo with mass M ¼ 103M⊙ at z ¼ 0. The green

spiky line shows the results from our simulation, the dashed blue

(“Polynom. Aver.”) line is a polynomial averaging to the

simulation. Our simulations start at redshift at z ¼ 12 and stop

at z ¼ 0 corresponding to the look-back time of t ¼ 13.4 Gyr.

However, we drop the first time step from the calculation of the

rates. So our results start at z ≃ 10. The simulation has been done

assuming the halo density and dispersion velocity is calculated at

Rvir=2 at each time step.
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timescale to cross the halo is smaller than our simulation

time step. As we described in Sec. IV B, we use ten

spherical shells only for the > Oð107ÞM⊙ DM halos.

We see a similar trend in halos of all masses. In Fig. 14,

we present the merger rate of more massive halos. As the

halo mass increases, the merger rate increases as well. In

fact, the merger rate per halo for masses from 103 to 108M⊙

increases approximately proportionally to the mass of the

DM halo. That is unlike the direct capture rates where the

merger rate per halo increases more slowly with mass.

As shown in Fig. 12, for the 1012M⊙ halo, there are

many PBH mergers in the inner shells before rescaling,

but few in the outer ones. For these massive halos, after

rescaling our simulations, the many mergers in the inner

shells have a small contribution to the total merger rate,

while the few merger events in the outer shells dominate the

rate at any given time. The stochastic nature of these few

merger events in the outer shells causes the merger rates to

fluctuate significantly between time steps. This is resolved

by using appropriate polynomial averaging.

In Fig. 15, we compare the merger rate per halo for

several halo masses. We notice that the merger rate per halo

from binary-single interactions is much higher than the one

from two-body captures presented in Fig. 7. This occurs

because the binary-single interactions dominate when the

combination of fPBH and fPBH binaries is high, as we have

taken it to be here. Hence, the environment is dense in PBH

binaries and in PBHs in general. We also note that, as the

halo mass increases, the merger rate per halo increases and

faster than it does with the direct capture case (compare to

Fig. 7). Given the Press-Schechter halo mass function (and

most conventional halo mass functions) for the rate due to

binary-single interactions, a much wider range of DM halo

masses contribute. This makes these rates less susceptible

to arguments about the stability of the smallest halo masses.

At z ¼ 0, it is the halos with mass from 103 to 109M⊙ that

contribute to the PBH merger rate due to binary-single

interactions. By comparison, for the direct capture rates

only the DM halos of the smallest masses dominate the

total rate. Finally, for some of the most massive—galaxy

FIG. 14. As in Fig. 13, for a halo with massM ¼ 1.7 × 104M⊙

(top), M ¼ 1.6 × 106M⊙ (middle), and M ¼ 1.5 × 106M⊙

(bottom) at z ¼ 0. Two, three, and five spherical shells have

been used for each halo, respectively.

FIG. 15. Evolution of the merger rate per halo RhaloðzÞ from the

binary-single interactions. We show results for halos of different

masses at z ¼ 0. The Ludlow16 concentration model has been

used, incorporating a monochromatic PBH mass distribution

with MPBH ¼ 30M⊙.

SIMULATING BINARY PRIMORDIAL BLACK HOLE MERGERS … PHYS. REV. D 111, 063020 (2025)

063020-11



cluster scale—DM halos, even the rate per halo gets

suppressed. In these halos, the relative velocities between

the PBH binaries and the surrounding single PBHs are too

high for any hardening to take place.

The total comoving merger rate due to binary-single

interactions is presented in Fig. 16 where a set of 50 DM

halos with masses logarithmically spaced between 103 and

1015M⊙ are simulated to the present day. We used a

monochromatic PBH mass distribution and employed

the Ludlow16 concentration model for each halo. The

Press-Schechter halo mass function is utilized in the

calculation of the total rate. For the choice of fPBH ¼ 1

and fsingle PBH ¼ fPBH binaries ¼ 1=2, the expected merger

rate from binary-single interactions is much larger than the

total merger rate from the two-body capture presented

in Fig. 8.

Even if all of the DM is in PBHs at the stellar-mass range

(fPBH ¼ 1), the relative ratio of single PBHs to PBH

binaries (fPBH binaries=fsingle PBH) is highly uncertain. In

Fig. 17, we show the total comoving PBH merger rate

as a function of redshift, from the contribution of direct

capture events and from binary-single interactions. We

show five lines for that rate for alternative assumptions

on fPBH and fPBH binaries. We always assume that

fsingle PBH þ fPBH binaries ¼ 1. For fPBHbinaries=fsingle PBH∼1

the total rate is dominated by the binary-single inter-

action rate. Comparing the solid blue line of Fig. 17

to Fig. 16, they are effectively identical. Only once

fPBH binaries=fsingle PBH is Oð10−2Þ do the two components

become comparable (green dash-dotted line). The red

dotted line is for the case where only the direct capture

rate is present.

We examined the impact of a halo mass function with

suppressed small-scale power, as proposed by Jenkins

et al. [41]. Up to z ≈ 1, the Press-Schechter function predicts

merger rates 6–8 times higher than themodel of Jenkins et al.

Above z ≈ 1, both models increase sharply, with Press-

Schechter mass function still leading as the gap narrows.

The total PBH merger rate scales as f2PBH, which means

that any choice of fPBH can be rescaled accordingly. Thus,

lower values of fPBH will reduce rates but do not funda-

mentally change our qualitative conclusions. We note that

these rates compared to the rates of [14,31,42], which study

the impact of unperturbed binaries merging at redshift of 0,

are about a factor of 104 smaller (at z ¼ 0). Revisiting the

assumption on the rate of mergers from the unperturbed

PBH binaries is left for a future study.

V. CONCLUSIONS

Primordial black holes remain a viable candidate for the

explanation of the observed abundance of DM. In this work

we revisit the merger rate of PBH pairs with masses in the

stellar-mass range that can be observed by the ground-

based gravitational-wave observatories. We focus on (i) the

hard binaries that can form in direct capture events, when

two PBHs inside DM halos come close enough to emit in

gravitational waves enough of their initial energy to form a

bound boundary and (ii) the interactions between PBH

binaries that have existed as bound to each other since their

formation, at the early Universe and once they fall in a DM

halo, can interact multiple times with single PBHs, accel-

erating the evolution of their orbital properties, leading to

merger events.

In this work, we use the halo mass accretion history

to calculate the merger rates at each redshift, both for the

FIG. 16. The redshift evolution of the PBH merger rate from

binary-single interactions, after summing over all halo masses.

We have taken fsingle PBH ¼ 1=2, fPBH binaries ¼ 1=2 and used the

Press-Schechter halo mass function with PBH mass m ¼ 30M⊙.

We plot up to redshift of 10.

FIG. 17. Total comoving merger rate Rtotal versus redshift z for
different PBHs fractions. The total rate includes contributions

from two-body captures and binary-single interactions. The five

lines correspond to various choices of fPBH binaries=fsingle PBH and

on fPBH. We plot up to redshift of 10.
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two-body captures and for binary-single interactions. We

also use the information on the concentration parameter of

DM halos that is relevant to model the evolving density of

PBHs inside halos and the evolution with redshift of their

velocity dispersion profiles. We also take into account that,

for the massive halos at any given time, there is a radial

profile on their velocity dispersion. This allows us to

evaluate the merger rate as a function of the redshift going

back as far as z ¼ 10, an era that has not been explored in

that context. Examples of these rates for given DM halos

are given in Figs. 6 and 7, for the binaries formed via direct

capture interactions and in Figs. 13–15, for the rates

associated with binaries hardening by interacting with their

environment.

We find that the PBH (comoving) merger rates increase

dramatically as we go back in time, with our results shown

in Fig. 8 for the direct capture rates and in Fig. 16 for the

rate associated with the binary-single interactions. While

the direct capture rate is at all times dominated by the

contribution of the smallest DM halos available, the rate

due to the binary-single interactions receives a significant

contribution from a wide range of DM halo masses. At

z ¼ 0, that includes masses as large as 109M⊙. In reality,

both rates can be present. Depending on the fraction of DM

in stellar-mass black holes and the relative abundance of

single PBHs versus PBHs in binaries, the total rate can be

dominated by either component as we show in Fig. 17.

However, even if Oð10−2Þ of the PBHs are formed in

binaries that survive falling into a DM halo, we expect the

total merger rate to have an important if not dominant

contribution from the PBH binary-single PBH interactions

taking place inside DM halos. Reference [25], focusing just

on small-mass DM halos, found an appreciable contribu-

tion to the PBHmerger rate from binary-single interactions.

We find that our results are compatible with theirs. We also

study the typical timescale for hardening interactions of

PBH binaries with their environment. We find that the main

point of Ref. [13] is true under the conditions that they

focus on. However, we note again the importance of

midsized DM halos in the total PBH merger rate due to

binary-single interactions in them. Even if rare, the mergers

from that mechanism are likely more common than the

mergers due to direct captures.

We study alternative PBH mass distributions, finding

that as long as there is a peak of these distributions in the

stellar-mass range the total merger rates are fairly similar to

those evaluated for a monochromatic mass distribution.

Given the current limits on PBHs from gravitational

microlensing [43,44] (see, however, [45]), there is little

motivation to study a PBH mass distribution heavily tilted

on the subsolar-mass ranges. Such a distribution would

need separate treatment to account for the fact that the

smaller PBHs could be ejected entirely out of the host DM

halo, an effect that we ignore due to the narrow PBH mass

distribution that we study.

Given the high merger rates at early times, future ground-

based observatories such as the Einstein Telescope [46] and

the Cosmic Explorer [47,48], will be able to probe high

redshifts and directly probe these PBH-PBH binaries, even

if a small fraction of DM is in the stellar-mass range.
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APPENDIX A: TWO-BODY CAPTURE RATE PER

HALO ASSUMING A PBH MASS DISTRIBUTION

In this appendix, we present the calculation of the two-

body capture rate for a generalized PBH mass distribution.

The differential capture rate of PBHs with masses m1

and m2 is

Γcapture;m1;m2
¼ 4π

Z

Rvir

0

hσ · vPBHi · nm1
· nm2

· r2dr: ðA1Þ

The nm2
and nm1

are the number densities of PBHs with

mass m1 and m2. They are equal to

nm1
¼ ρNFWðrÞ · fPBH · fm1

m1

ðA2Þ

and

nm2
¼ ρNFWðrÞ · fPBH · fm2

m2

; ðA3Þ

where fm1
and fm2

indicate the fractions of PBHs with

masses m1 and m2, respectively.

Substituting Eqs. (A2) and (A3) into (A1) we get

Γcapture;m1;m2
¼ 4π · f2PBH · fm1

· fm2

m1 ·m2

×

Z

Rvir

0

hσ · vPBHi · ρNFWðrÞ2 · r2dr: ðA4Þ

To obtain the rate, we first integrate the radial part over

the volume, taking the limit of r to Rvir,
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Z

Rvir

0

drr2ρ2NFWðrÞ ¼
1

3
R6
sρ

2
s

�

1

R3
s

−
1

ðRvir þ RsÞ3
�

¼ 1

3
R3
sρ

2
sfðCÞ: ðA5Þ

Here,

fðCÞ ¼
�

1 −
1

ð1þ CÞ3
�

: ðA6Þ

Substituting (A5) into (A1) we get

Γcapture;m1;m2
¼ 1

12π

f2PBH · fm1fm2

m1m2

×
M2

virfðCÞ
R3
sgðcÞ2

· hσ · vPBHi: ðA7Þ

The average of σ · vPBH is given by

hσ · vPBHi ¼
Z

d3vPBH · vPBH · pðvPBHÞ · σðvPBHÞ

¼ 4π

Z

vvir

0

dvPBHv
3

PBHpðvPBHÞ · σðvPBHÞ: ðA8Þ

Here pðvPBHÞ is the probability density function for vPBH.
Substituting Eq. (11) into Eq. (A9),

hσ · vPBHi ¼ 2π

�

85π

6
ffiffiffi

2
p

�

2=7 G2ðm1 þm2Þ10=7m2=7
1

m
2=7
2

c10=7

× 4π

Z

vvir

0

dvPBHv
3=7
PBHpðvPBHÞ: ðA9Þ

Substituting (A9) into (A7), we obtain

Γcapture;m1;m2
¼ 1

12π

f2PBH · fm1
fm1

m1m2

M2

vir

R3
sgðcÞ2

fðCÞ

× 2π

�

85π

6
ffiffiffi

2
p

�

2=7G2ðm1 þm2Þ10=7m2=7
1

m
2=7
2

c10=7

× 4π

Z

vvir

0

dvPBHv
3=7
PBHpðvPBHÞ; ðA10Þ

Γcapture;m1;m2
¼ 2π

3

�

85π

6
ffiffiffi

2
p

�

2=7 G2 · f2PBH · fm1
fm2

c

×
ðm1 þm2Þ10=7m2=7

1
m

2=7
2

m1m2

·

×

�

M2

vir

R3
sgðcÞ2

fðCÞ
�

·DðvÞ; ðA11Þ

DðvÞ ¼
Z

vvir

0

pðvPBHÞ
�

vPBH

c

�

3=7

dv: ðA12Þ

The capture rate provided above applies when single PBHs

in the DM halo have specific masses m1 and m2. However,

when the masses follow a distribution, it is necessary to

incorporate a probability distribution for PBH masses into

the rate that accounts for the various probabilities of

different mass pairs and ensures a correct calculation of

capture rates across the halo. In this regard, we use a

generic PBH mass distribution, ψðm1Þ and ψðm2Þ (dis-

cussed further in Appendix B) and integrate it over a

reasonable mass range of maximum and minimum values.

Our new capture rate Γcapture then becomes

Γcapture ¼
1

2

Z

mmax
1

mmin
1

Z

mmax
2

mmin
2

2π

3

�

85π

6
ffiffiffi

2
p

�

2=7 G2 · f2PBH
c

×
ðm1 þm2Þ10=7m2=7

1
m

2=7
2

m1m2

· ψðm1Þ · ψðm2Þ

×
M2

vir

R3
sgðcÞ2

fðCÞ ·DðvÞdm1dm2: ðA13Þ

Note that we have omitted the fractions fm1
and fm2

since

we no longer assume that individual PBHs have mono-

chromatic mass but follow a mass distribution. Moreover,

1=2 is imposed because we want to avoid double counting

of unique pairs. The final form of the merger rate per halo

then is

Γcapture ¼ K

Z

mmax
1

mmin
1

Z

mmax
2

mmin
2

ðm1 þm2Þ10=7m2=7
1

m
2=7
2

m1m2

× ψðm1Þ · ψðm2Þdm1dm2

×
M2

vir

R3
sgðcÞ2

· fðcÞ ·DðvÞ; ðA14Þ

with

K ¼ 1

2
·
2π

3

�

85π

6
ffiffiffi

2
p

�

2=7G2f2PBH
c

;

fðCÞ ¼ 1 −
1

ð1þ CÞ3 ;

DðvÞ ¼
Z

vvir

0

Pðv; vdmÞ
�

v

c

�

3=7

dv: ðA15Þ

The above rate includes all the possible captures between

single PBHs with different masses in any given halo. This is

covered by the integration over m1 and m2 from 5M⊙

to 150M⊙, covering all PBH masses within this speci-

fied range.

APPENDIX B: PBHS MASS FUNCTIONS

We use three different PBH mass distributions com-

monly referenced in the literature. These mass distributions

include the log-normal, power-law, broken power-law, and
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critical collapse distributions presented in [49]. We normal-

ize the probability of all three distributions such that

Z

ψðdmÞdm ¼ 1 ðB1Þ

with the integration taken over the mass range

5M⊙–150M⊙.

1. Log-normal mass distribution

The log-normal mass distribution is defined by

ψðmÞ ¼ 1
ffiffiffiffiffiffi

2π
p

σm
exp

�

−
ðlnðmÞ − μÞ2

2σ2

�

; ðB2Þ

with μ ¼ lnðMcÞ, where Mc represents the median mass

and σ characterizes the width of the mass distribution. In

Fig. 18, we have presented a graph of this distribution with

a median mean of μ ¼ lnð30M⊙Þ and different values of

variance σ.

2. Broken power-law mass distribution

The broken power-law mass distribution is given by

ψðmÞ ¼
�

m�
α1þ 1

þ m�
α2− 1

�

−1

(
�

m
m�

	

α1 ; if m<m�;
�

m
m�

	

−α2 ; if m>m�;
ðB3Þ

where m� is the peak mass and α1 > 0, α2 > 1 are power-

law parameters. We take the best-fit values given in

Ref. [49] which are m� ¼ 31.1, α1 ¼ 0.54, and α2 ¼ 5.6.

An illustration of this mass distribution is presented in the

top panel of Fig. 18 for reference.

3. Critical collapse mass distribution

The critical collapse mass arises from the critical

collapse of radiation that leads to the formation of

PBHs. It is characterized by

ψðmÞ ¼ α2mα

M1þα
f Γð1=αÞ

exp ð−ðm=MfÞαÞ; ðB4Þ

where α is a universal exponent related to the critical

collapse, andMf is a mass scale approximately of the order

of the horizon mass at the collapse epoch. This distribution

experiences exponential suppression beyond the mass scale

of Mf . We take the best fit values given in Ref. [49] which

are Mf ¼ 10.8M⊙ and α ¼ 1. An illustration of this mass

distribution is depicted in the top panel of Fig. 18 for

reference.

APPENDIX C: MASS ACCRETION HISTORY

The parameters α and β in Eq. (31) govern the mass

accretion history of halos. Each halo with massM today has

unique values of these parameters that govern the mass

accretion history of the halos over time. To determine these

parameters, we need to know the formation redshift z−2 of
the halo which is defined as redshift when the total mass of

the haloMðzÞ is equal to the enclosed mass within the scale

Rs, Mrð< RsÞ and its concentration C at present. The

formation time z−2 for each DM halo is calculated using

cosmology-dependent constants. The parameters α and β

are then derived as follows [37],

z−2 ¼
�

200

Acosmo

CðM0; z0Þ3gð1Þ
ΩmgðCðM0ÞÞ

−
ΩΛ

Ωm

�

1=3

− 1; ðC1Þ

α ¼ lnðgð1Þ=gðCÞÞ − βz−2

lnð1þ z−2Þ
; ðC2Þ

β ¼ −
3

1þ z−2
; ðC3Þ

FIG. 18. Mass distributions for PBHs: log-normal [with

μ ¼ lnð30M⊙Þ and σ ¼ 0.71], broken power-law (with M� ¼
31.1M⊙, α ¼ 0.54, and α2 ¼ 5.6), and the critical collapse

distribution (withMf ¼ 10.8M⊙ and α ¼ 1.1) (top). Log-normal

distributions with different variance σ are shown in the bottom

panel. All the distributions are normalized over the range

of 5 − 150M⊙.
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where Acosmo ¼ 798. We employ the Ludlow16 model

for the mass-concentration-redshift relation of C in our

simulation.

APPENDIX D: PBH BINARIES’ INITIAL

ORBITAL PARAMETERS DISTRIBUTION

AT FORMATION

To obtain the initial distribution of orbital parameters

of the PBH binaries, we start by defining the mean PBH

separation at matter-radiation equality as

x̄ ¼
�

3mPBH

4πfPBHρeq

�

1=3

: ðD1Þ

Here ρeq is the average energy density in the matter-

radiation equality (z ≈ 3450). PBHs follow a Poisson

spatial distribution at formation and their differential

probability distribution of the rescaled angular momentum

j≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e2
p

reads [14,39,40,50]

PðjÞ ¼ yðjÞ2
jð1þ yðjÞ2Þ3=2 ; ðD2Þ

yðjÞ ¼ j

0.5ð1þ σ2eq=f
2
PBHÞ1=2ðx=x̄Þ3

: ðD3Þ

Here σeq ≈ 0.005 represents the variance of the Gaussian

large-scale density fluctuations at the epoch of matter-

radiation equality. This distribution results from the com-

bined effect of nearby PBHs and matter perturbations that

exert a torque on the binary PBH system during its

formation [14]. Ultimately, the distribution that character-

izes both j and the semimajor axis a can be expressed as

Pða; jÞ ¼ 3 · a−1=4

4

�

fPBH

αx̄

�

3=4

PðjÞ exp
�

−

�

xðaÞ
x̄

�

3
�

;

ðD4Þ

with

xðaÞ ¼
�

3amPBH

4παρeq

�

1=4

; ðD5Þ

and α ¼ 0.1.

In Fig. 19, we show the counts for initial distribution of

eccentricity e and semimajor axis a for PBH binaries

formed at matter-radiation equality. First, we sampled the

rescaled angular momentum j from its probability distri-

bution PðjÞ, ensuring that j values range between (0, 1).

Then, we used the joint distribution Pða; jÞ to sample a0
by randomly selecting values within (10−6, 1) pc. In both

cases, we employ the inverse sampling techniques with

Nsample ¼ 104 to generate samples. We also assumed that

fBH ¼ 1 and mBH ¼ 30M⊙ each. From the plot, it is clear

that PBH binaries with high eccentricities have the highest

counts and small semimajor axes. The mean value amean

of the semimajor axis from the pristine distributions in

Eq. (D4) is around 7287 A.U.

In Table II we also show the percentage of hard binaries

at redshift z ¼ 0 in different halos. The shell number

FIG. 19. The initial distribution of semimajor axis (top) and

eccentricity (bottom) of PBH binaries for N ¼ 105 binaries. We

assume all PBHs have mass of m ¼ 30M⊙.

TABLE II. The percentage of hard binaries Nhardð%Þ in differ-

ent halos and shells at z ¼ 0.

Halo mass M⊙ Index of shells ahardðA:U:Þ Nhardð%Þ
103 � � � 4.48 × 105 100.000

106 1 2.08 × 10−1 99.634

106 3 1.79 × 10−2 41.183

106 5 3.17 × 10−2 61.199

109 1 7.07 × 10−2 87.365

109 6 4.20 × 10−4 0.670

109 10 3.17 × 10−4 0.461

1012 1 1.07 × 10−2 26.523

1012 6 1.79 × 10−5 0.022

1012 10 3.17 × 10−6 0.003

1015 1 2.26 × 10−3 5.130

1015 6 1.21 × 10−6 0.000

1015 10 3.17 × 10−8 0.000
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indicates the index of the shells in each halo, with lower

indices indicating the inner shells of a halo and higher

indices representing the outer shells. It is obvious that

low-mass halos possess a greater proportion of hard

binaries, where all binaries are characterized as hard.

Moreover, massive halos contain fewer hard binaries.

Furthermore, within a specific halo, more hard binaries

are present in the inner shells compared to the outer

shells. These are the types of binaries that we evolve

and analyze in our simulations, and they might merge

within the Hubble time.

APPENDIX E: BINARY-SINGLE INTERACTION

TIMESCALE OF PBH BINARIES

In this appendix, we present the timescale for the binary-

single interaction during the evolution of a given halo. For a

binary with a semimajor axis of a ¼ ah to interact with a

third PBH, and hence the rate interaction between a PBH

binary and a third PBH is given by

R3b ¼ 2πG
mT · nðr; zÞ · a

vdispðr; zÞ
; ðE1Þ

where mT ¼ mPBH binaries þmsingle PBH, nðr; tÞ is the

number density of PBHs in the environment where pri-

mordial binary black holes are located, and vdispðr; zÞ is the
velocity dispersion of the single PBHs. In the case of

monochromatic mass, mT ¼ 3m. We define the number

density of single PBHs as nðr; tÞ ¼ ρenvðr;zÞ
m

, which is

basically ρenvðr; zÞ ¼ ρNFWðr; zÞ. The final form of the

rate for a ¼ ah is then

R3b ¼ 6πG
ρNFWðr; zÞ · ah
vdisp; ðr; zÞ

; ðE2Þ

which is equivalent to the timescale of

τ3b ¼
vdispðr; zÞ

6πG · ρNFW; ðr; zÞ · ah
: ðE3Þ

We have presented the value of this timescale in Table III

for different DM mass halos and at different redshift in the

evolution of those haloes. We notice that binary-single hard

interactions become significant at a late stage in their

evolution as the timescales get smaller.

TABLE III. Binary-single interaction timescale for a binary

with semimajor axis a ¼ ah to interact with PBH singles at

different redshifts (z ¼ 0, 2, 8), located at different spherical

shells for halos with masses of 103, 106, 109, 1012, and 1015M⊙

at z ¼ 0.

MðzÞ (M⊙) z Ri

No. of

shells ah (A.U.) τ3b (Myr)

1.0 × 103 0 Rvir=2 1 4.5 × 105 5.5 × 104

6.2 × 102 2 Rvir=2 1 3.3 × 105 8.1 × 103

1.2 × 102 8 Rvir=2 1 4.1 × 105 1.9 × 102

1.0 × 106 0 1 5 4.3 × 104 2.6 × 101

1.0 × 106 0 3 5 3.7 × 103 7.9 × 104

1.0 × 106 0 5 5 6.5 × 103 5.1 × 107

5.6 × 105 2 1 5 4.5 × 104 1.6 × 101

5.6 × 105 2 3 5 4.3 × 103 2.5 × 104

5.6 × 105 2 5 5 4.6 × 103 8.5 × 106

7.3 × 104 8 1 5 5.8 × 104 5.1 × 100

7.3 × 104 8 3 5 8.6 × 103 2.2 × 103

7.3 × 104 8 5 5 6.2 × 103 2.2 × 105

1.0 × 109 0 1 10 1.5 × 104 1.0 × 101

1.0 × 109 0 6 10 8.7 × 101 9.7 × 106

1.0 × 109 0 10 10 6.5 × 101 6.5 × 1010

4.6 × 108 2 1 10 1.4 × 104 7.6 × 100

4.6 × 108 2 6 10 1.2 × 102 2.6 × 106

4.6 × 108 2 10 10 5.3 × 101 8.7 × 109

3.1 × 107 8 1 10 1.5 × 104 3.6 × 100

3.1 × 107 8 6 10 2.9 × 102 1.6 × 105

3.1 × 107 8 10 10 1.1 × 102 1.1 × 108

1.0 × 1012 0 1 10 2.2 × 103 5.2 × 101

1.0 × 1012 0 6 10 3.7 × 100 6.9 × 108

1.0 × 1012 0 10 10 6.5 × 10−1 4.7 × 1013

2.9 × 1011 2 1 10 1.9 × 103 4.0 × 101

2.9 × 1011 2 6 10 5.2 × 100 1.5 × 108

2.9 × 1011 2 10 10 7.2 × 10−1 4.2 × 1012

4.3 × 109 8 1 10 2.4 × 103 1.6 × 101

4.3 × 109 8 6 10 2.1 × 101 4.1 × 106

4.3 × 109 8 10 10 4.1 × 100 1.3 × 1010

1.0 × 1015 0 1 10 4.7 × 102 2.1 × 102

1.0 × 1015 0 6 10 2.5 × 10−1 4.0 × 1010

1.0 × 1015 0 10 10 6.5 × 10−3 3.4 × 1016

1.6 × 1014 2 1 10 2.9 × 102 1.9 × 102

1.6 × 1014 2 6 10 3.0 × 10−1 7.6 × 109

1.6 × 1014 2 10 10 1.1 × 10−2 1.9 × 1015

2.9 × 1011 8 1 10 5.4 × 102 5.5 × 101

2.9 × 1011 8 6 10 2.4 × 100 6.4 × 107

2.9 × 1011 8 10 10 2.4 × 10−1 7.9 × 1011
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