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Primordial black holes (PBHs), possibly constituting a non-negligible fraction of dark matter (DM),
might be responsible for a number of gravitational-wave events detected by LIGO/Virgo/KAGRA. In this
paper, we simulate the evolution of PBH binaries in DM halos and calculate their merger rate up to redshift
of 10. We assume that DM halos are made entirely by a combination of single PBHs and PBH binaries. We
present the resulting merger rates from the two main channels that lead to merging PBH binaries: two-body
captures and binary-single interactions. We account for alternative assumptions on the dark matter halo
mass-concentration relationship versus redshift. We also study what impact the PBH mass distribution,
centered in the stellar-mass range, has on the PBH merger rate that the ground-based gravitational-wave
observatories can probe. We find that, under reasonable assumptions on the abundance of PBH binaries
relative to single PBHs, the binary-single interaction rates can be dominant over the two-body capture
channel. Our work studies in detail the dynamics of PBHs inside DM halos, advancing our understanding
on how the current gravitational-wave events constrain the properties of PBHs. Moreover, we make

predictions in a redshift range to be probed by future observatories.
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I. INTRODUCTION

Primordial black holes (PBHs) are formed from primor-
dial perturbations in the early Universe through a variety of
mechanisms [1-4]. Following the discovery of the first
gravitational-wave event in 2015 [5], interest in PBHs grew
significantly. Depending on their mass, PBHs could con-
tribute some fraction or even all dark matter (DM) and be
detectable in gravitational waves [6—12]. Conversely,
gravitational-wave observations can also be used to set
limits on the abundance of PBHs [13-17]. In addition,
PBHs might serve as seeds for the formation of super-
massive black holes [18-21].

The binary formation mechanisms of PBHs vary on the
basis of their formation time and interaction type, resulting
in distinct properties (see, e.g., Ref. [22]). In the late
Universe, binaries form within DM halos via dynamical
capture or binary-single interactions. In dynamical capture,
PBH binaries emerge from hyperbolic encounters that lose
sufficient energy through gravitational-wave emission. The
three-body channel involves 2 + 1 PBH encounters, where
the third PBH carries away enough energy for the other two
to become bound. The merger rate of PBH binaries via
direct capture is estimated in [6,23], showing its dominance
in small-mass halos, with resulting binaries being highly
eccentric and merging quickly [24]. The merger rate from
the single binary channel within the PBH minihalos,
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examined in [25], predominates over the direct capture
rate only when the fraction of PBH in DM is enhanced as
such interactions are likely to occur in dense environments.

On the other hand, in the early Universe, PBH binaries
can form when nearby PBH pairs are decoupled from the
Hubble flow [13,14]. Reference [14] showed that such
binaries are highly eccentric. In addition, it calculated the
rate at which such binaries merge today and showed that,
other than a small fraction, binaries are not perturbed by
PBH tidal torques and encounters with other PBHs in their
environment. However, their work relied on analytical
calculations valid for massive halos and in regions of the
halos far from their centers.

In this work, we evaluate the PBH merger rate due to
direct capture events and due to the evolution of the orbital
properties of PBH binaries from interactions with other
(single) PBHs, inside DM halos. We focus on stellar-mass
PBHs that can be directly probed by the LIGO/Virgo/
KAGRA ongoing gravitational-wave observations. We
account fully for the mass distribution of dark matter halos,
also known as the halo mass function, and how that evolves
with redshift. We perform calculations including DM halos
with current masses from 10° to 10" M. We simulate the
entire volume of dark matter halos from the redshift of 12 to
the present era. This is important to take into account, as
other than the smallest mass O(10°~10*)M, halos, there
is a significant density gradient inside DM halos and
also a gradient in the velocity distribution of PBHs. This
can affect the derived PBH merger rates. Our dark matter
halos’ total mass, PBH density profiles (described by the
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concentration parameter), and PBH velocity distribution
profiles evolve with time as well.

We describe all our assumptions regarding the modeling
of the DM halos and how those evolve in Sec. II. In Sec. III,
we describe our methodology in evaluating the PBH-PBH
direct capture interactions and our subsequent results. We
study both the simple monochromatic 30M, case, which
has been studied in the past (as, e.g., in [6]), but also more
realistic PBH mass distributions with probability density
functions peaking approximately at the same mass. Our
results are in agreement with [6,23], at low redshifts and by
a factor of ~2 at a redshift of 6, increasing rapidly at earlier
times. These findings are robust to the PBH mass distri-
bution and DM halo concentration relation. In Sec. IV, we
discuss the binary PBH-single PBH interactions occurring
inside DM halos. We study these interactions for the entire
DM halo masses range, simulating the evolution of these
binaries under different environmental (PBH density and
velocity distribution) conditions. These interactions accel-
erate the PBH binary evolution, especially in the inner parts
of the DM halos. We find that, if an appreciable fraction
of PBHs are in binaries at formation, then the PBH merger
rate is enhanced compared to just the direct capture
calculation. Finally, in Sec. V, we combine all our results
and discuss further connections to future gravitational-
wave observations.

II. DARK MATTER HALO MODELS

In this section, we briefly discuss the DM halo models
used in this paper. This includes key quantities such as the
density profile, concentration parameter, and halo mass
function, which are important for the calculation of the
merger rate of PBH binaries from (a) two-body captures
and (b) binary-single interactions.

A. The halo profile

We take the PBH density profile to follow the Navarro-
Frenk-White (NFW) DM profile [26],

Ps
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Parameter r is the distance from the halo’s center, while R,
is the scale radius of the halo. The DM density p; is defined
as pPuit - 0., Where pg;; denotes the critical density of the
Universe at a specific redshift z, and 0, is the linear
overdensity threshold. The overdensity threshold o, is
connected to the concentration parameter C through

200 C°

©T 3 g0y @)

where

4(C) = In(1 + C) —HLC. 3)

Ry
R,
central density of DM halos. The halo’s virial radius R,
covers a volume within which the average halo density is
200 the critical density of the Universe.

Given the halo density profile, we can calculate the total
mass within a sphere of radius R,; as

characterizes the

The concentration parameter C =
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We note that the mass of the halo is a function of the
concentration. In the above equation, g(C) is just the
quantity in square brackets.

B. The mass-concentration-redshift relation C(M,z)

As we mentioned above, the concentration parameter
plays an important role in the properties of DM halos.
N-body simulations show that the concentration parameter
decreases with increasing halo mass and varies with red-
shift at a fixed mass [27,28]. This behavior is consistent
with the dynamics of the merger tree of DM halos and their
evolution, where smaller halos, having already virialized,
tend to be more concentrated than larger ones. The
relationship between concentration, mass, and redshift
can be described by the C(v) relation. Here, v(M, z), the
peak height, is a dimensionless parameter defined as
v(M,z) = 68.(2)/6(M, z), where 5. (z) = 1.686(1 + z) is
the spherical collapse threshold for overdensities and
6(M, z) is the linear root-mean-square fluctuation of over-
densities. This peak height parameter indicates that the
concentration parameter depends on both the mass and the
redshift.

In this paper, we utilize two key models for the mass-
concentration-redshift relation C(M, z) that give a good fit
to the DM N-body simulation results. Henceforth, we shall
refer to these models as Ludlow16 [28] and Pradal2 [27].
For Ludlow16, we employ Eq. (C1) of Ref. [28]. For
Pradal2, we use the model described by Eqgs. (12)—(22) of
Ref. [27]. In Fig. 1, for a DM halo that reaches a mass of
10'2M, at z = 0, we show how its mass and concentration
parameter evolved with redshift starting from z = 12. We
used the Ludlow16 concentration evolution model.

In Fig. 2, we illustrate the concentration parameter of
DM halos of fixed mass, for the Ludlow16 model (top) and
for the Pradal2 model (bottom). We note that in our
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FIG. 1. The redshift evolution of mass and concentration

parameter C for a 10'2M, halo at z = 0, using the Ludlow16
model.
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FIG. 2. The redshift evolution of the concentration parameter
for various DM halos. The expectations of the Ludlow16 (top)
and Pradal2 (bottom) concentration models are shown for halos
that at present (z = 0) have masses of 103, 10°, 10°, and 10"2M .

calculations we evolve the mass of DM halos from
accretion and use such relations to find what the concen-
tration parameter is for a halo of a given mass at a given
redshift.

C. The halo mass function

A key quantity in determining the merger rate of PBH
binaries is the halo mass function. This describes the mass
distribution of DM halos. We use the differential halo mass
function as introduced in [29],

dlnx

f(x)‘ dinM

dn Pm
— M
dln M M?

; (5)

where 7 is the number density of DM halos, M is the halo
mass, p,, is the mean density of matter, and f(x) is a
function related to the geometrical conditions for the
overdensities at the collapse time of the halo. f(x) can
be derived from analytical work or numerical simulations.
We use the halo mass function by Press and Schechter [29],

1= 2oy (-22) (©)

The DM mass function is readily accessible through the
publicly available Python package HMFcale [30]. To estimate
the total merger rate due to capture and binary-single
interactions of all DM halos, we will first evaluate the
merger rate per DM halo R, of mass M. Then we will
integrate that rate over the halo mass function.

D. Primordial black hole velocity distributions

To study the interactions between PBHs, let us consider
two PBHs with masses m; and m, and a relative velocity
Vel = |01 — 2| = vpgy. Those PBHs are in a DM halo
with virial velocity v and dispersion velocity vgs,. The
relative velocity distribution of PBHs can be approximated
by a truncated Maxwell-Boltzmann distribution [6,24],

v3 V2
p(vpsn) = Fy' vpgy {CXP (‘%) —exp <—%>} . (7)

disp disp

F, is a normalization constant such that
Uyi 2 2 a2 /.2
Fy = 47[/) " v%’BH (e_”PBH/”disp — e Yir Udisp)dv_ (8)

The relationship between vy, and v; can be derived
from the properties of the halo as
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where xp,,x = 2= = 2.1626 (C,, of Ref. [6]) and

M(r < Frpa) = 471'/ - drrszFW(r)
0

= 4nR3p, / " dx
0
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X

= 4zR3p, |In(1 ) — ———|. 10
Rip, 11 + 1) = 1222 |.(10)
Given Ry, p,, and C, we calculate the velocity dispersion
vgisp from the first equality of Eq. (9) and the virial velocity

vy;. from the second equality.

III. TWO-BODY CAPTURE EVENTS

In this section, we describe our assumptions for the
evaluation of the two-body capture rate between PBHs,
following Ref. [6]. Since the binaries formed from such
interactions are hard binaries with high initial eccentricities
and small semimajor axes (see Ref. [24] for more details),
we also consider that the merger of the binaries follows
with a small delay in redshift.

A. Merger rates per halo

For two PBHs with masses m; and m,, the cross section
of interaction for binary formation can be expressed as [6]

27 2/7
a(vaH>=2”<85ﬂ)wG2(mlWW'"]/ LA
6v/2 010/7053/;

The differential capture rate is then given by
dFCa ure
d;): =ny(r) - ny(r)- <6UPBH>’ (12)

where n;(r) and n,(r) are the number densities of PBHs
with mass m; and m,, respectively. We assume that the
density distributions for both PBH binaries and single
PBHs follow the NFW profile. The matter density in PBHs
in general is ppgy(r) = fpeu X Pnpw(r), With fppy the
fraction of DM in PBHs. In this work, we take fpgy = 1.
Our merger rates for the PBH binaries scale as f3gy. We
note that in this paper we do not aim to revisit the limits on
PBHs from the gravitational-wave observations (for a
recent update on that, see [31,32]), but study the PBH
merger rates themselves. We also note that the fraction of
PBHs in binaries may depend on fppy (see [33]).

For a monochromatic PBH mass distribution, i.e., m; =
m, = m and, consequently, we have

1 1 . . 2
nl_nz_)in2:§<PNFw(r)mfPBH fm> ‘ (13)

The factor of 1/2 is used to account for pairs of black holes
of identical mass. To get the total capture rate per halo, we
take integration over the volume of the halo,

Rvir
— 2
l—‘capture = 4”/ drr= - <6 ’ UPBH>
0

% 1 [feen - PnEw (7)) ‘

2 m>

(14)

This leads to the final form of the merger rate per halo,

27 (85m\2/7
Rya0(M, z) = ?ﬂ (W%) “fou - [
G’M 3irD (UPBH)f (C)
R}-c-g(C)* ")
where
1
0= 1= e (16
and

Vyir 21} 3/7
D(”PBH) :/o P(”PBHJJdiSp) (%) dvppy- (17)

Note that, in Eq. (15), we have substituted for p, using
Eq. (5). The details for the case of a generic PBH mass
distribution are provided in Appendix A.

B. Direct capture rate results

In Fig. 3, we present the PBH direct capture rate—and
merger rate from that channel—per halo, covering halo
masses from 10°M, to 10 M, at redshift z = 0. In all our
calculations, we assume that 50% of the DM halo mass is in
single PBHs and 50% is in PBH binaries. We compare the
merger rate from direct captures for a monochromatic mass
distribution with m = 30M, to a log-normal mass distri-
bution with mean y = In(30M,) and a variance ¢ = 0.6.
Changing the value of m for the monochromatic PBH mass
distribution does not affect our results, as in Eq. (15) the
PBH mass m cancels out. Similarly, changing the value of
the mean p has a very marginal effect on the capture rates.
The log-normal mass distribution provides a higher merger
rate from two-body captures compared to the monochro-
matic one. In Fig. 3, we show results for both the Ludlow16
and Pradal2 concentration models. The Pradal2 relation
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FIG. 3. The merger rate per halo Ry, for the Ludlow16 and

Pradal2 concentration relations. We compare the rates from a
monochromatic and a log-normal PBH mass distribution with
u =1n(30My) and ¢ = 0.6. We note that, in calculating these
rates, only 1/2 of the DM halo mass is in single PBHs, while the
other 1/2 of the halo mass is in PBH binaries. However, given
that most binaries are wide and act as single black holes with
respect to direct captures, our results are independent of the
relative abundance of single PBHs versus PBH binaries.
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FIG. 4. The merger rate R;,, per halo at redshift z =0,
considering the Ludlowl6 concentration relation. We show
results for both a monochromatic and a log-normal PBH mass
distribution with g = In(30M ).

gives higher rates as it predicts higher concentrations than
Ludlow16.

In Fig. 4, we show the merger rate R}, as a function
of halo mass at redshift z = 0 for the Ludlow16 concen-
tration relation. The plot shows both the monochromatic
and log-normal distributions with mean u = In(30M) and
6 =1[0.4,0.6,0.8]. As we increase ¢ in the log-normal
distribution, the merger rate becomes higher.
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FIG.5. The merger rate per halo Ry, per halo at redshift z = 0

considering Ludlow16 concentrations model considering differ-
ent mass distributions of PBHs, including monochromatic, log-
normal, critical collapse, and broken power-law mass functions.
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FIG. 6. Evolution of the merger rate per halo Ry, (z) and halo
mass with redshift for a halo having a mass M = 10"2M, at
z = 0. The Ludlow16 concentration model is applied along with
log-normal distribution [with 4 = In(30M ®) and ¢ = 0.6] for
the PBH mass functions.

In Fig. 5, we compare merger rates using monochromatic
mass distributions with log-normal and critical collapse
distributions. Critical collapse models predict slightly
higher merger rates than the log-normal or monochromatic
mass distributions. The three PBH mass distributions are
shown in the top panel of Fig. 18 in Appendix B.

In Fig. 6, we show the redshift evolution of the merger
rate due to captures of two PBHs inside a halo with a mass
thatat z = 0 is 10'>M . For comparison, we also show how
such a halo’s mass evolved (same red line as in Fig. 1). We
utilize the Ludlow 16 concentration model and show results
for both the monochromatic PBH mass distribution and the
log-normal distribution. For such a DM halo, the PBH
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FIG. 7. Evolution of the merger rate per halo Ry,(z), with
redshift z for halos of masses 10°, 10°, 10?, 10'2, and 10 M, at
z = 0. The Ludlow16 concentration model has been used, incor-
porating the monochromatic PBH mass with mpgy = 30 M.

merger rate from direct capture events increased with time
peaked at z ~ 5, after which time it decreased asymptoti-
cally to a constant rate. The log-normal distribution
provides higher merger rates than the monochromatic
distribution by a factor of 3 for z < 6. For the evolution
of the halo mass, we used Eq. (31).

Similarly, in Fig. 7, we compare the redshift evolution of
the capture merger rate per halo Ry, (z) for various halos,
specifically, 103, 10°, 10°, 10'2, and 10'"M halos at
z = 0. For smaller mass halos, the merger rate from direct
capture events peaks at later times.

Figure 8 shows the total comoving merger rate with
the Press-Schechter halo mass function versus redshift.

- —— mono.+Ludlow16 /
150 | -—- log-normal+Ludlow16 7]
—-+— mono.+Pradal2 /s

------ logo-normal+Pradal2 i,

Redshift (z)

FIG. 8. The redshift evolution of the comoving PBH merger
rate from two-body captures. We used the Press-Schechter
halo mass function (see text for details). For the log-normal
PBH mass distribution, we have used u =In(30My) and
variance of ¢ = 0.6.

This rate is evaluated by combining the merger rate per halo
with halo mass function,

ROM2) = [ R0 aM. (18)

We show results for two PBH mass distributions: mono-
chromatic and log-normal. For the computation of the halo
mass function we use HMFcale. Additionally, we employed
both the Ludlow16 and Pradal2 concentration models in
our calculations. We illustrate the differences in merger
rates predicted by these models and mass functions. We
observe good agreement between the alternative assump-
tions for z < 2. However, at higher redshifts, uncertainty
arises due to the mass function of the halos. The Pradal2
concentration model predicts higher concentrations than
Ludlow16 at low redshifts. This leads to a slightly higher
total merger rate using the Pradal2 to the Ludlow16 for
7 < 2. However, in Fig. 8, at z > 2 the Ludlow16 relation
predicts higher merger rates. This can be attributed to the
behavior of the Pradal2 relationship for massive halos at
z > 2. For these halos and redshifts, the Pradal2 relation-
ship diverges, giving in fact increasing concentrations
with increasing redshift. As a result, going back in time,
we had to cup the predicted concentrations from the
Pradal2 model to their minimum values. We consider that
to simply be part of the generic modeling uncertainty for
this calculation.

IV. BINARY-SINGLE INTERACTIONS EVENTS

In this section, we outline our assumptions to calculate
the merger rate resulting from binary-single interactions.
There are two types of interactions that PBH binaries
encounter in DM halos: (a) interactions between PBH
binaries and single PBHs and (b) interactions between PBH
binaries themselves.

In this study, we care about the PBH binaries that are
hard at the beginning of the evolution of their orbital
properties and can merge within a Hubble time. See
Appendix D to see what fraction of the binaries that are
hard per halo at z =0. These are the binaries whose
semimajor axis is less than or equal to the critical value
of the semimajor axis in a halo. We also take for simplicity
a monochromatic mass distribution with m = 30M,.
Because of the wide distribution in the orbital properties
of the PBH binaries, the interactions between two PBH
binaries can be approximated well as the interaction
between the harder of the two binaries and the PBH closest
to it. Thus, we treat all interactions of hard PBH binaries
with their environment as interactions with single PBHs.
Because all PBHs are taken to have the same mass, there
are no exchange interactions. For narrow PBH mass
distributions, this is a valid approximation.
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A. The evolution of PBH binaries properties

To model the merger rate of PBH binaries through
binary-single interactions, we examine their orbital param-
eters (a, e) evolution equations. For a PBH binary with
masses m; and m, residing in a DM halo, the evolution
equation for its semimajor axis is [34]

da __ GHpey(r.1) , 64 G
dr Vgisp (7 1) 5dad
X (my 4+ my) - (my - my)F(e), (19)

with

73 37
(1 _ »2\-T7/2. 2 4
F(e) =(1-¢?) <1—|—24e +96e>. (20)

G is Newton’s constant, ¢ is the speed of light, and
Peny(r, 1) is the density of the environment in which the
PBH binary resides, a DM halo in our case. Finally,

Ugisp (7 1) is the velocity dispersion of the PBHs surround-

ing the binary.

For any halo under consideration, we assume that the
density distributions for both PBH binaries and single
PBHs adhere to the NFW profile. This implies that the
environmental density in Egs. (19) and (20) is determined
according to the NFW profile. We assume that 50% of the
halo’s mass is in PBH binaries and the remaining 50% is in
single PBHs. Consequently,

penv(r’ t) = PPBH binaries(r’ t) +psingle PBH(r7 t)

= pnEw (75 ). (21)

We remind the reader that the first term in Eq. (19)
describes the averaged effect of hardening interactions of
PBH binaries with their environment, while the second
term represents the Peters secular evolution due to
gravitational-wave emission. In Eq. (21) for the p.,, we
include the density of the binaries pppy pinarics> a5 the great
majority of PBH binaries are wide and act as two single
objects on the evolution of the tight binaries. H(r, ) is the
hardening rate [35], which can be approximated by [36]

a ~0.95
H(r.f)=1455x (1+0287—2—) . (22)
a(r, 1)

The hard semimajor axis a,(r, t) is defined by

ay(rt) = —2mM (23)

Ao (r)?

The velocity dispersion of single objects (PBHs) and
binaries in the halo depends on time and position,

2GM(r, 1)

O

o (r 1) (r. ) =

where M (r, 1) is the halo mass contained within a sphere of
radius r from its center, at time ¢.

The evolution equation for eccentricity of the PBH
binaries is [34]

de GH(r,t)K(r,t)peny (7, 1) 304 G?
A a—

dt Vi (7, 1) 15 Sat
X (my +my)(my - my)D(e), (25)
with
121
— (1 = ¢2)5/2. e 3
D(e) = (1—¢?%) <e+304e>. (26)

K(r,t) describes the eccentricity growth rate as a result of
interactions with third bodies. Like H(r, 1), it is determined
by numerical three-body simulations. We use the fitting
function provided in [36] [their Eq. (18)].

Our simulations neglect the possibility for PBH ejection
from DM halos during binary-single interactions. Given
that the escape velocities from massive halos are generally
high, except in the outermost regions, these ejections have a
minimal impact on the merger rates. However, in the case of
small-mass halos, such ejections may reduce the merger
rate within the halo, as the escape velocity is comparable to
the dispersion velocity. Consequently, neglecting these
ejections could lead to an overestimation of merger rates
in small-mass halos. To properly account for the signifi-
cance of ejections in small-mass DM halos, numerical
simulations are required. This goes beyond the scope of
this work.

B. Numerical analysis setup

The system of Egs. (19) and (25) is solved numerically.
We divide our halos with mass larger than 10’ M, into ten
discrete spherical shells and take the PBH binaries to reside
inside a given shell throughout the simulation. The radial
boundaries of these shells R; are logarithmically spaced
from O to R,; (7). This allows for the shells to grow with
time following the mass and volume evolution of the DM
halos. For a halo with R,;(¢) at a given time ¢, the radial
boundary R;(?) is

w0 o0 (5 m(1+850)) 1, o

where i € [0, 10].

For less massive halos, we use the same approach as
described previously, with the difference of using a smaller
number of shells. For halos of O(10*)M ,, we only take one
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TABLE I. The shell boundaries R; at the end of the evolution of
a DM halo with M = 10"?M and R,;, = ~211 kpc at z = 0.
i R; (pc)

0 0.00
1 241
2 10.61
3 38.57
4 133.83
5 458.46
6 1564.65
7 5334.13
8 18179.03
9 61949.37
10 211101.44

sphere; for O(10*)M ,, one sphere and one shell around it;
for O(10°)M ,, one sphere and two logarithmically spaced
shells around it (i € [0, 3]) and for O(10°)My, i € [0, 5]. As
an example, for a halo with a mass of 10'?M and virial
radius of R,; ~ 211 kpc at z = 0, the shell boundaries at
the end of the simulation are given in Table I.

Furthermore, we take the halo density pe,, (7, ) and the
dispersion velocity US?S\{;)(F, t) to evolve in discrete time
steps. We update their values every 200 Myr.

The densities on each spherical shell are evaluated at the
midpoint of the shell. Thus, the density of the shell is

Ri(t) +Ri+1(t)>. (28)

pil1) = pnew ( 5

We remind the reader that R, = R, - C(M, z) and that
R, depends on C(M,z). We employ the Ludlow16 con-
centration relation and evaluate the halo’s mass at any given
redshift. Once we have the mass at a specific redshift,
we can estimate C(M, z) and also derive parameters such
as Rvir(t)'

The system of Egs. (19) and (25) is solved using the
Euler method for each PBH binary, located within a given
shell at each time step in the history of DM halos. We
implement structured time stepping to ensure precision and
efficiency. We adapt a global time step dgq, = 200 Myr,
that governs the main simulation time ¢ from O to ., the
look-back time from when we start our simulation to the
present day.1 Within each digqy = 200 Myr we evolve
numerically the binaries’ orbital properties using a time
step of dtjocq = 2 Myr. During each global time step
dtgigpa, We evolve our hard PBH binaries through

'For DM halos that at the present era have a mass
M =5 x 104M®, we start our simulation at z = 12. Instead,
for halos with smaller masses at the present era, we start their
evolution at a lower redshift, as we require that halos at all times
contain at least ~30 PBHs in them.

Apyy = ay + dtlocal : fa(tlocaan Ay, en>7 (29)

€1 =€, + d[local : fe(tlocal,n’ Ay, en)v (30)

where a,, denotes the semimajor axis and e,, represents the
orbital eccentricity at step n. The functions f, and f,
represent the right-hand side of Egs. (19) and (25). If during
the evolution of the semimajor axis of our PBH binaries a
approaches zero, we consider that a merger event.

C. Evolution of the DM halo’s mass properties

To evolve the mass of DM halos, we used the semi-
analytical model of Ref. [37] (their Appendix C), which
predicts that

M(z) = My(1 + z)%e~. (31)

Parameters a and f# characterize the mass evolution of each
halo. Equation (31) is used to determine the concentration
parameter C(M, z) of a given halo at a given redshift in its
evolution and subsequently the R.;.(¢). The details on how
to calculate these parameters are given in Appendix C.

In Fig. 9, using Eq. (31) we show the mass evolution
starting from z = 12 of halos with masses of 10°~10"°M,
at z = (0. We observe the same trend as for the case of a
10'?M, halo (see Fig. 1). Low-mass halos form earlier but
gain their mass more slowly compared to massive halos.

In Fig. 10, we depict the time evolution of the mass and
density for each shell of a halo with a present-era mass of
10"2M . We observe that the density is higher in the inner
shell compared to the outer ones. However, due to the
relevant volumes of the spherical shells, the mass of the
outer shells is much larger.

Figure 11, top panel, shows the evolution of dispersion
velocity vgis, (7. 1) in each spherical shell of a 10'2M, halo.
Furthermore, the bottom panel shows the critical value for

T T
1015 L — M=10°My A
M =104Mg
— M=10°Mp
e M =109M

1012 _________ e — M=10TMp ]
----------- ~_ M =10%Mp

M =10° Mg
M =10\
—_— M=10" My

~<

2O 1()9 ___________________________________ M= 101205 7|
=TT — M=10%Mg
2 e UM = 101 M
M =10""Mg
106 ...................................................................
N T T el
L
100 10!
z

FIG. 9. Mass accretion history for a range of halos mass with
103105 M, at present day, z = 0.
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FIG. 10. Evolution of mass (top) and density of a halo (bottom)
with M = 10">M, in each spherical shell with radius R;(¢)
where i = 1,2,3, ..., 10.

the semimajor axis of hard binaries a,, for the different
spherical shells. We observe an opposite trend to the

velocity dispersion as a; = 4(52’” (m being the PBH mass).
disp

We note that we only evolve the hard PBH binaries. Each
time, we sample a specific number of PBH binaries and
then select the hard binaries using the condition a < ay,.
Only hard binaries may merge as a result of interactions
with third bodies [38]. From the bottom panel of Fig. 11,
we notice that the inner mass shells have relatively constant
critical values for a;. However, in the outer shells a
decreases with time. For the halo we simulate here, i.e.,
M =10"2M at z = 0, at early times there was a signifi-
cantly higher fraction of hard binaries than later. This has
implications on the resulting merger rate evolution, as will
be shown in the following sections.

D. The initial distribution of PBH binaries’
orbital properties

PBH binaries exist even outside DM halos. We assume
that these binaries are gravitationally bound and remain

Ry
Ry
Ry |
Ry

102
. n

Vdisp(km/s)

10!

10% — R

t(Myr)

FIG. 11. The time evolution of the velocity dispersion vg;g,
(top) and a,, (bottom) for each of the ten spherical shells of a halo
with M = 10'>M, at the present era.

unaffected until the formation of DM halos. Therefore, at
the time they become part of a DM halo, their initial orbital
parameters (@, eq) follow the same distributions as at the
time for their formation at matter-radiation equality. Only,
once these binaries fall into DM halos, their evolution is
affected by their environment. In each time step of our
simulation, we pick N gmpi. of PBH binaries with (o, () to
evolve between ¢ and ¢ + dt. To sample these parameters,
we take the approach presented in [14,39,40]. In
Appendix D, we provide more details on how we sample
the initial orbital parameters of the PBH binaries.

E. Binary-single interaction results

In this section, we present the results of our simulations
for the merger rates per halo (in yr~!) and the total merger
rate (in Gpc™ - yr™!) from the interactions of PBH binaries
with single PBHs. There are also interactions of the PBH
binaries with regular starts. Those too can cause hardening
of the PBH binaries’ orbital properties. However, these
happen at the cores of the most massive halos, which as we
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FIG. 12. The cumulative number of PBH mergers from binary-
single interactions in each mass shell R; of a 1.15 x 10'2M, halo.
In the simulation, in each shell we have sampled Ngppe =
2 x 10% binaries per time step.

will show contribute very little to the total rate. Thus, we
can ignore the impact of stars.

In our simulations for a given mass halo, we have
assumed a monochromatic mass distribution m = 30M
and used the Ludlow16 concentration model, under the
assumption of Eq. (21) that 50% of the halo’s mass is in
PBH binaries and the remaining 50% is in single PBHs.
For a given halo, we start the simulation at z = 12 and
end around z =0 which is equivalent simulation time
of 0-13.4 Gyr.

In Fig. 12, we present the cumulative number of binary
PBH mergers Ny in each of the shells R; of a halo
1.15 x 10'2M, over time. As a first step in our simulation,
we take that there are Ngmpe = 2 X 10° binaries in each
shell and in each time step. That is obviously not accurate,
as there are many more PBH binaries in the outer shells
and at later times. We describe how we rescale our
results subsequently. Before rescaling, we see that the
cumulative number of mergers is higher in the inner
shells. In the inner shells, the PBH density is much higher,
while their velocity dispersion lower. Thus, the PBH
binaries experience hardening more often, evolving much
faster and giving a much larger number of mergers. In
Appendix E, we present information on how fast hard PBH
binaries are expected to have hardening interactions with
single PBHs for different DM mass halos and at different
times in those halos’ evolution. We find that for the smaller
in mass halos and at later times in their evolution
the interactions of PBH binaries with single PBHs are
important.

The true merger rate of PBH binaries due to their
interaction with single PBHs is derived by taking the
results of Fig. 12, and rescaling them by accounting for
the true number of binaries that exist per time step, using

M =10° M, A
Simulation /I,
=== Polynom. Aver. //
W
4
//
q
I3
=} M
£ 013 e
& 1078y ke |
1073 1072 101 100 1ol
Redshift(z)

FIG. 13. The merger rate per halo from binary-single inter-
actions for a halo with mass M = 103My at z = 0. The green
spiky line shows the results from our simulation, the dashed blue
(“Polynom. Aver.”) line is a polynomial averaging to the
simulation. Our simulations start at redshift at z = 12 and stop
at z = 0 corresponding to the look-back time of t = 13.4 Gyr.
However, we drop the first time step from the calculation of the
rates. So our results start at z =~ 10. The simulation has been done
assuming the halo density and dispersion velocity is calculated at
R,;;/2 at each time step.

N shells

Tlook
o N NpH binaries,ii Vmerger.i.s 39
halo — : ( )

At

i=1 1=0 N sample
where 0k is the look-back time of a halo, Npgy;, is the
actual number of binaries in a shell with radius R; from the
halo’s center at 7, Nyergeris 1S the number of mergers in
the shell at time 7 when N, binaries are considered in
the simulations, and Ngmpe is the number of binaries
sampled per time step.

After rescaling, the merger rates in the inner shells are
significantly suppressed due to much fewer binaries in
them compared to the outer shells. We also find that
most mergers occur early in the evolution of the halo.
At high redshifts, the density of single PBHs and PBH
binaries are high and the velocity dispersion low, leading to
higher hardening rates and consequently more mergers in
early times.

In Fig. 13, we present the merger rate per halo for a
10°M, halo, where the solid green spiky line depicts the
merger rate obtained from the simulation that has stochastic
fluctuations and the dashed blue line represents a poly-
nomial approximation (averaging) of it. While our simu-
lation starts at z = 12, since we are averaging rates between
neighboring time steps, we drop the first time step from the
averaged calculation of the rate and present results starting
from z =~ 10. Especially for the case of O(10*)M, DM
halos, there is no velocity gradient for the PBHs, as the
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FIG. 14. Asin Fig. 13, for a halo with mass M = 1.7 x 104Mo
(top), M =1.6x 106MO (middle), and M = 1.5x 106Mo
(bottom) at z = 0. Two, three, and five spherical shells have
been used for each halo, respectively.

timescale to cross the halo is smaller than our simulation
time step. As we described in Sec. IV B, we use ten
spherical shells only for the > O(10")M, DM halos.
We see a similar trend in halos of all masses. In Fig. 14,
we present the merger rate of more massive halos. As the
halo mass increases, the merger rate increases as well. In
fact, the merger rate per halo for masses from 10° to 103M,

4 i Mo ]
10 - M:;xillf’ Mg
—= M =1x10° Mg
6l M =1x10" Mg
10— m=1x20°m, b
T A A B
= 1070 1
3
g ———————————————
Cd 10 —10 || _==fF==FATthr==F=-reTar=- 4
10 —12 ]
1073 1072 1071 10° 10
Redshift(z)
FIG. 15. Evolution of the merger rate per halo Ry, (z) from the

binary-single interactions. We show results for halos of different
masses at z = 0. The Ludlow16 concentration model has been
used, incorporating a monochromatic PBH mass distribution
with Mpgy = 30M .

increases approximately proportionally to the mass of the
DM halo. That is unlike the direct capture rates where the
merger rate per halo increases more slowly with mass.

As shown in Fig. 12, for the 10'>M, halo, there are
many PBH mergers in the inner shells before rescaling,
but few in the outer ones. For these massive halos, after
rescaling our simulations, the many mergers in the inner
shells have a small contribution to the total merger rate,
while the few merger events in the outer shells dominate the
rate at any given time. The stochastic nature of these few
merger events in the outer shells causes the merger rates to
fluctuate significantly between time steps. This is resolved
by using appropriate polynomial averaging.

In Fig. 15, we compare the merger rate per halo for
several halo masses. We notice that the merger rate per halo
from binary-single interactions is much higher than the one
from two-body captures presented in Fig. 7. This occurs
because the binary-single interactions dominate when the
combination of fpgy and fppH binaries 1S high, as we have
taken it to be here. Hence, the environment is dense in PBH
binaries and in PBHs in general. We also note that, as the
halo mass increases, the merger rate per halo increases and
faster than it does with the direct capture case (compare to
Fig. 7). Given the Press-Schechter halo mass function (and
most conventional halo mass functions) for the rate due to
binary-single interactions, a much wider range of DM halo
masses contribute. This makes these rates less susceptible
to arguments about the stability of the smallest halo masses.
At z = 0, it is the halos with mass from 10? to 10° M, that
contribute to the PBH merger rate due to binary-single
interactions. By comparison, for the direct capture rates
only the DM halos of the smallest masses dominate the
total rate. Finally, for some of the most massive—galaxy
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FIG. 16. The redshift evolution of the PBH merger rate from
binary-single interactions, after summing over all halo masses.
‘We have taken fsingle PBH = 1/2, fPBH binaries — 1/2 and used the
Press-Schechter halo mass function with PBH mass m = 30M .
We plot up to redshift of 10.

cluster scale—DM halos, even the rate per halo gets
suppressed. In these halos, the relative velocities between
the PBH binaries and the surrounding single PBHs are too
high for any hardening to take place.

The total comoving merger rate due to binary-single
interactions is presented in Fig. 16 where a set of 50 DM
halos with masses logarithmically spaced between 103 and
10°M are simulated to the present day. We used a
monochromatic PBH mass distribution and employed
the Ludlow16 concentration model for each halo. The
Press-Schechter halo mass function is utilized in the
calculation of the total rate. For the choice of fpgy = 1
and fsingle PBH = JPBH binaries = 1/2, the expected merger
rate from binary-single interactions is much larger than the
total merger rate from the two-body capture presented
in Fig. 8.

Even if all of the DM is in PBHs at the stellar-mass range
(feey = 1), the relative ratio of single PBHs to PBH
binaries (fpgH binaries/ [ singte pBH) 1 highly uncertain. In
Fig. 17, we show the total comoving PBH merger rate
as a function of redshift, from the contribution of direct
capture events and from binary-single interactions. We
show five lines for that rate for alternative assumptions
on fpgy and fppH binaries- Y€ always assume that
fsingle PBH T fPBH binaries — 1. For fPBHbinan'es/fsinglePBH ~1
the total rate is dominated by the binary-single inter-
action rate. Comparing the solid blue line of Fig. 17
to Fig. 16, they are effectively identical. Only once
fPBH binan'es/fsingle PBH is 0(10_2) do the two components
become comparable (green dash-dotted line). The red
dotted line is for the case where only the direct capture
rate is present.

T T
— feeu = 1.00, f.

fesi = 0.10, fuingle 5 J

1073 1072 1071 100 10!
Redshift(z)

FIG. 17. Total comoving merger rate R, versus redshift z for
different PBHs fractions. The total rate includes contributions
from two-body captures and binary-single interactions. The five
lines correspond to various choices of fppi pinaries/f single PBH aNd
on fppy. We plot up to redshift of 10.

We examined the impact of a halo mass function with
suppressed small-scale power, as proposed by Jenkins
etal. [41]. Upto z = 1, the Press-Schechter function predicts
merger rates 6—8 times higher than the model of Jenkins ez al.
Above z= 1, both models increase sharply, with Press-
Schechter mass function still leading as the gap narrows.

The total PBH merger rate scales as f35, which means
that any choice of fpgy can be rescaled accordingly. Thus,
lower values of fpgy Will reduce rates but do not funda-
mentally change our qualitative conclusions. We note that
these rates compared to the rates of [14,31,42], which study
the impact of unperturbed binaries merging at redshift of 0,
are about a factor of 10* smaller (at z = 0). Revisiting the
assumption on the rate of mergers from the unperturbed
PBH binaries is left for a future study.

V. CONCLUSIONS

Primordial black holes remain a viable candidate for the
explanation of the observed abundance of DM. In this work
we revisit the merger rate of PBH pairs with masses in the
stellar-mass range that can be observed by the ground-
based gravitational-wave observatories. We focus on (i) the
hard binaries that can form in direct capture events, when
two PBHs inside DM halos come close enough to emit in
gravitational waves enough of their initial energy to form a
bound boundary and (ii) the interactions between PBH
binaries that have existed as bound to each other since their
formation, at the early Universe and once they fall in a DM
halo, can interact multiple times with single PBHs, accel-
erating the evolution of their orbital properties, leading to
merger events.

In this work, we use the halo mass accretion history
to calculate the merger rates at each redshift, both for the
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two-body captures and for binary-single interactions. We
also use the information on the concentration parameter of
DM halos that is relevant to model the evolving density of
PBHs inside halos and the evolution with redshift of their
velocity dispersion profiles. We also take into account that,
for the massive halos at any given time, there is a radial
profile on their velocity dispersion. This allows us to
evaluate the merger rate as a function of the redshift going
back as far as z = 10, an era that has not been explored in
that context. Examples of these rates for given DM halos
are given in Figs. 6 and 7, for the binaries formed via direct
capture interactions and in Figs. 13-15, for the rates
associated with binaries hardening by interacting with their
environment.

We find that the PBH (comoving) merger rates increase
dramatically as we go back in time, with our results shown
in Fig. 8 for the direct capture rates and in Fig. 16 for the
rate associated with the binary-single interactions. While
the direct capture rate is at all times dominated by the
contribution of the smallest DM halos available, the rate
due to the binary-single interactions receives a significant
contribution from a wide range of DM halo masses. At
z = 0, that includes masses as large as 109Mo- In reality,
both rates can be present. Depending on the fraction of DM
in stellar-mass black holes and the relative abundance of
single PBHs versus PBHs in binaries, the total rate can be
dominated by either component as we show in Fig. 17.
However, even if O(1072) of the PBHs are formed in
binaries that survive falling into a DM halo, we expect the
total merger rate to have an important if not dominant
contribution from the PBH binary-single PBH interactions
taking place inside DM halos. Reference [25], focusing just
on small-mass DM halos, found an appreciable contribu-
tion to the PBH merger rate from binary-single interactions.
We find that our results are compatible with theirs. We also
study the typical timescale for hardening interactions of
PBH binaries with their environment. We find that the main
point of Ref. [13] is true under the conditions that they
focus on. However, we note again the importance of
midsized DM halos in the total PBH merger rate due to
binary-single interactions in them. Even if rare, the mergers
from that mechanism are likely more common than the
mergers due to direct captures.

We study alternative PBH mass distributions, finding
that as long as there is a peak of these distributions in the
stellar-mass range the total merger rates are fairly similar to
those evaluated for a monochromatic mass distribution.
Given the current limits on PBHs from gravitational
microlensing [43,44] (see, however, [45]), there is little
motivation to study a PBH mass distribution heavily tilted
on the subsolar-mass ranges. Such a distribution would
need separate treatment to account for the fact that the
smaller PBHs could be ejected entirely out of the host DM

halo, an effect that we ignore due to the narrow PBH mass
distribution that we study.

Given the high merger rates at early times, future ground-
based observatories such as the Einstein Telescope [46] and
the Cosmic Explorer [47,48], will be able to probe high
redshifts and directly probe these PBH-PBH binaries, even
if a small fraction of DM is in the stellar-mass range.
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APPENDIX A: TWO-BODY CAPTURE RATE PER
HALO ASSUMING A PBH MASS DISTRIBUTION

In this appendix, we present the calculation of the two-
body capture rate for a generalized PBH mass distribution.
The differential capture rate of PBHs with masses m;
and m, is

Rvir
— 2
1—‘capture,ml,mz = 47[/ <6' UPBH> My Mgy T dr. (Al)
0

The n,,, and n,, are the number densities of PBHs with
mass m; and m,. They are equal to

- :pNFW(r> 'fPBH‘fm1 (A2)
my

and

:PNFw(r) “feer  Sm,

m )
2 m2

(A3)

where f, and f, indicate the fractions of PBHs with

masses m; and m,, respectively.
Substituting Eqgs. (A2) and (A3) into (Al) we get

_4”'f]2>BH'fml 'fmz

capture,my,m,
p 1,1 my - my

Rvir
X A (0 - vpph) 'pNFW(r)2 - rAdr. (Ad)

r

To obtain the rate, we first integrate the radial part over
the volume, taking the limit of r to R,;,
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/Rvir drrZ 2 (r) o 1R6 2 1 1
o TN TSR R T (R + R )
1
Here,
fo) = 1=t (A6)
N (1+C)3*|"
Substituting (A5) into (A1) we get
r :Lf%’BH 'fmlfmZ
capture,my,m, 127 m,n,
Msll‘f C
X W()Z) (0 - vpgh)- (A7)

The average of ¢ - vpgy 1S given by
(0 - vppn) = /d3UPBH - vppn - P(vppn) - 6(vppH)
Uyir
= 4”/0 dUPBHU%BHp(UPBH) -o(vpgn). (A8)

Here p(vpgy) is the probability density function for vpgy.
Substituting Eq. (11) into Eq. (A9),

8571’) 21 G2(my + my) " m m3

(0 vpgH) = 2”(6\/5 1077

X471'A v dUPBHUngHp(UPBH)' (A9)
Substituting (A9) into (A7), we obtain
T :Lf%BH.fmlfml M%H f( )
capture,m, ,im, 127 mm, Ri’g( )2
5 (857) G2(my + my) ' 3
6\/§ cl()/7
x 47IA dUPBH”;gHP(UPBH), (A10)
- 21 (857 \7 G fhun
capture,my ,m; 6\/§ c
(i my) T T
nymy
M2
(s 1(C)) Do) (A1)
Vyir 3/7
D(v) :/ p(vpgH) <UPBH> dv. (A12)
0 C

The capture rate provided above applies when single PBHs
in the DM halo have specific masses m; and m,. However,
when the masses follow a distribution, it is necessary to
incorporate a probability distribution for PBH masses into
the rate that accounts for the various probabilities of
different mass pairs and ensures a correct calculation of
capture rates across the halo. In this regard, we use a
generic PBH mass distribution, w(m,;) and y(m,) (dis-
cussed further in Appendix B) and integrate it over a
reasonable mass range of maximum and minimum values.
Our new capture rate I'cypnre then becomes

ey 2;; 857r 271G fign
capture =
m'“"‘ my' c

2/72/7
1My

% (my + m2)10/7m
myni,

y(my) -y (my)

2
R?g( )2

Note that we have omitted the fractions f,, and f,,, since
we no longer assume that individual PBHs have mono-
chromatic mass but follow a mass distribution. Moreover,
1/2 is imposed because we want to avoid double counting
of unique pairs. The final form of the merger rate per halo
then is

(C) - D(v)dmdm,. (A13)

mux ’nmwx ml + m 10/7m2/7m§/7
capture =K
mm mm mpmy

xy(my) - y(my)dm dmy

M3,
XRgg( )2 - f(c)- D(v), (A14)
with
1 2z (85x\?/7 G fisn
23 (6\6) c
1

f(C) =1- m,
D(v) = A (0, vgm) (g) v, (A15)

The above rate includes all the possible captures between
single PBHs with different masses in any given halo. This is
covered by the integration over m; and m, from 5M
to 150M, covering all PBH masses within this speci-
fied range.

APPENDIX B: PBHS MASS FUNCTIONS

We use three different PBH mass distributions com-
monly referenced in the literature. These mass distributions
include the log-normal, power-law, broken power-law, and
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critical collapse distributions presented in [49]. We normal-
ize the probability of all three distributions such that

/l//(dm)dm =1 (B1)

with the integration taken over the mass

SMo—150M .

range

1. Log-normal mass distribution

The log-normal mass distribution is defined by

| (- ot
\2nom 262
with 4 = In(M,), where M, represents the median mass

and o characterizes the width of the mass distribution. In
Fig. 18, we have presented a graph of this distribution with

y(m) =

) ®

log-normal ]
0.04 I /-1 —-— broken power law
7/ “ ------- critical collapse
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FIG. 18. Mass distributions for PBHs: log-normal [with
u=1n(30My) and ¢ = 0.71], broken power-law (with M, =
31.1Mg, a=0.54, and a, =5.6), and the critical collapse
distribution (with My = 10.8M¢, and a = 1.1) (top). Log-normal
distributions with different variance ¢ are shown in the bottom

panel. All the distributions are normalized over the range
of 5 —150M,.

a median mean of y = In(30M,) and different values of
variance o.

2. Broken power-law mass distribution

The broken power-law mass distribution is given by

vim = [ 2|

a+1 a-—1 (%)‘“2, if m>m,,

ifm<m,,

(B3)

where m, is the peak mass and a; > 0, a, > 1 are power-
law parameters. We take the best-fit values given in
Ref. [49] which are m, = 31.1, a; = 0.54, and a, = 5.6.
An illustration of this mass distribution is presented in the
top panel of Fig. 18 for reference.

3. Critical collapse mass distribution

The critical collapse mass arises from the critical
collapse of radiation that leads to the formation of
PBHs. It is characterized by

a?m®

TR

exp (=(m/My)"),  (B4)

where a is a universal exponent related to the critical
collapse, and M; is a mass scale approximately of the order
of the horizon mass at the collapse epoch. This distribution
experiences exponential suppression beyond the mass scale
of M;. We take the best fit values given in Ref. [49] which
are My = 10.8M and a = 1. An illustration of this mass
distribution is depicted in the top panel of Fig. 18 for
reference.

APPENDIX C: MASS ACCRETION HISTORY

The parameters o and f in Eq. (31) govern the mass
accretion history of halos. Each halo with mass M today has
unique values of these parameters that govern the mass
accretion history of the halos over time. To determine these
parameters, we need to know the formation redshift z_, of
the halo which is defined as redshift when the total mass of
the halo M(z) is equal to the enclosed mass within the scale
R,, M.(< R,) and its concentration C at present. The
formation time z_, for each DM halo is calculated using
cosmology-dependent constants. The parameters a and f
are then derived as follows [37],

200 C(My,79)3g(1) Q\\1/3
1, = ( ( 0 ZO) g( )__A> -1, (Cl)
Acosmo ng(C(MO)) Qm

In(g(1)/9(C)) — Pz

“= In(1+ z_,) ’ (2)
3
'B:_l—l-Z_z’ (C3)

063020-15



MUHSIN ALJAF and ILIAS CHOLIS

PHYS. REV. D 111, 063020 (2025)

where A oomo = 798. We employ the Ludlowl6 model
for the mass-concentration-redshift relation of C in our
simulation.

APPENDIX D: PBH BINARIES’ INITIAL
ORBITAL PARAMETERS DISTRIBUTION
AT FORMATION

To obtain the initial distribution of orbital parameters
of the PBH binaries, we start by defining the mean PBH
separation at matter-radiation equality as

- < 3mpgy )1/ 3
X=|—— .

drnf PBHPeq
Here p., is the average energy density in the matter-
radiation equality (z ~3450). PBHs follow a Poisson

spatial distribution at formation and their differential
probability distribution of the rescaled angular momentum

j =1 —é? reads [14,39,40,50]
P
JA+y(j)?)¥?

(D1)

(D2)

J
0.5(1 4 024/ f3pn)"/*(x/%)*

y() = (D3)

Here 0., ~ 0.005 represents the variance of the Gaussian
large-scale density fluctuations at the epoch of matter-
radiation equality. This distribution results from the com-
bined effect of nearby PBHs and matter perturbations that
exert a torque on the binary PBH system during its
formation [14]. Ultimately, the distribution that character-
izes both j and the semimajor axis a can be expressed as

Pl =2 (1Y g [ (0]

ax X

(D4)

with

*(a) = <3amﬂ> v (D5)

drape,

and a = 0.1.

In Fig. 19, we show the counts for initial distribution of
eccentricity e and semimajor axis a for PBH binaries
formed at matter-radiation equality. First, we sampled the
rescaled angular momentum j from its probability distri-
bution P(j), ensuring that j values range between (0, 1).
Then, we used the joint distribution P(a, j) to sample q
by randomly selecting values within (1076, 1) pc. In both
cases, we employ the inverse sampling techniques with
Ngample = 10* to generate samples. We also assumed that

10'}

103 L

102 L

Counts of binaries

101 L

100, ‘ ‘ ‘ J‘UUU 4

0.0 0.1 0.2 0.3 0.4
a(pe)

10°F

103 L

Counts of binaries

102 L

00 02 04 06 08 10
(&

FIG. 19. The initial distribution of semimajor axis (top) and
eccentricity (bottom) of PBH binaries for N = 10° binaries. We
assume all PBHs have mass of m = 30M,.

SfBu = 1 and mpy = 30M, each. From the plot, it is clear
that PBH binaries with high eccentricities have the highest
counts and small semimajor axes. The mean value @, c,,
of the semimajor axis from the pristine distributions in
Eq. (D4) is around 7287 A.U.

In Table IT we also show the percentage of hard binaries
at redshift z =0 in different halos. The shell number

TABLE II.  The percentage of hard binaries Ny,q(%) in differ-
ent halos and shells at z = 0.

Halo mass My  Index of shells Anara (AU Nhara (%)
103 448 x 10° 100.000
10° 1 2.08 x 107! 99.634
100 3 1.79 x 102 41.183
106 5 3.17 x 1072 61.199
10° 1 7.07 x 1072 87.365
10° 6 420 % 1074 0.670
10° 10 3.17 x 1074 0.461
10" 1 1.07 x 1072 26.523
10" 6 1.79 x 1075 0.022
10'2 10 3.17 x 107 0.003
101 1 226 x 1073 5.130
105 6 1.21 x 107° 0.000
10 10 3.17 x 1078 0.000
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indicates the index of the shells in each halo, with lower
indices indicating the inner shells of a halo and higher
indices representing the outer shells. It is obvious that
low-mass halos possess a greater proportion of hard
binaries, where all binaries are characterized as hard.
Moreover, massive halos contain fewer hard binaries.
Furthermore, within a specific halo, more hard binaries
are present in the inner shells compared to the outer
shells. These are the types of binaries that we evolve
and analyze in our simulations, and they might merge
within the Hubble time.

APPENDIX E: BINARY-SINGLE INTERACTION
TIMESCALE OF PBH BINARIES

In this appendix, we present the timescale for the binary-
single interaction during the evolution of a given halo. For a
binary with a semimajor axis of a = a,, to interact with a
third PBH, and hence the rate interaction between a PBH
binary and a third PBH is given by

my-n(r,z)-a

R3h =2zG
Vaisp (7 2)

, (E1)

where M7y = NIpBY binaries T Mingle PBH> n(r, t) is  the
number density of PBHs in the environment where pri-
mordial binary black holes are located, and v, (7, 2) is the
velocity dispersion of the single PBHs. In the case of
monochromatic mass, my = 3m. We define the number
density of single PBHs as n(r,1) :”E“V#, which is
basically peny(7,2) = pnew (7, 2). The final form of the
rate for a = ay, is then

pnrw(7.2) - ay

Ry, = 671G , (E2)
3b Vdisp» (n Z)
which is equivalent to the timescale of
Vyi r,zZ
T3b dlSp( ) (E3)

B 672G - pxrw, (V,Z) : ah'

We have presented the value of this timescale in Table I11
for different DM mass halos and at different redshift in the
evolution of those haloes. We notice that binary-single hard
interactions become significant at a late stage in their
evolution as the timescales get smaller.

TABLE III. Binary-single interaction timescale for a binary
with semimajor axis a = a; to interact with PBH singles at
different redshifts (z =0, 2, 8), located at different spherical
shells for halos with masses of 10°, 106, 10%, 10'2, and 10" M
at z = 0.

No. of
M(z) My) z R; shells a, (AU) 73, (Myr)
1.0 x 10° 0 Ry 1 45 10° 5.5 % 10*
6.2x 10> 2 Ryp 1 33x10° 8.1x10°
1.2 x 102 8 Ry 1 4.1x10° 1.9 x 102
1.0 x 10° 0 1 5 43 x 104 2.6 x 10!
1.0 x 10° 0 3 5 3.7 x 103 7.9 x 10*
1.0 x 10° 0 5 5 6.5 x 103 5.1 x 107
5.6 x 10° 2 1 5 4.5 % 10* 1.6 x 10!
5.6 x 10° 2 3 5 43 %103 2.5 x 10*
5.6 x 10° 2 5 5 4.6x 103 8.5 x 10°
7.3 x 10* 8 1 5 5.8 x 10* 5.1 x 10°
7.3 x 10* 8 3 5 8.6 x 103 2.2 % 10°
7.3 x 10* 8 5 5 6.2 x 10° 22 % 10°
1.0 x 10° 0 1 10 1.5 x 10* 1.0 x 10
1.0 x 10° 0 6 10 8.7 x 10! 9.7 x 10°
1.0 x 10° 0 10 10 6.5 x 10! 6.5 x 1010
4.6 x 108 2 1 10 1.4 x 10* 7.6 x 10°
4.6 x 108 2 6 10 1.2 x 10% 2.6 x 10°
4.6 x 108 2 10 10 5.3 x 10! 8.7 x 10°
3.1 x 107 8 1 10 1.5 x 10* 3.6 x 10°
3.1 x 107 8 6 10 2.9 x 10? 1.6 x 10°
3.1 %107 8 10 10 1.1 x 102 1.1 x 108
1.0x 102 0 1 10 2.2 x 103 5.2 x 10!
1.0x102 0O 6 10 3.7 x 10° 6.9 x 108
1.0x102 0 10 10 6.5x 107" 47x 10"
29x 101 2 1 10 1.9 x 103 4.0 x 10!
29x 10" 2 6 10 5.2 x 10° 1.5 x 108
29x 101 2 10 10 72x 1070 42 x10'2
43 % 10° 8 1 10 24 %103 1.6 x 10!
43 x 10° 8 6 10 2.1 x 10! 4.1 x 10°
4.3 % 10° 8 10 10 4.1 x 10° 1.3 x 100
1.0x10% 0 1 10 4.7 x 102 2.1 x 102
1.0x 105 0 6 10 25x 107" 4.0x 10!
1.0x105 0 10 10 6.5x 1073 3.4x10°
1.6 x 104 2 1 10 2.9 x 10? 1.9 x 102
1.6x10% 2 6 10 3.0x 107" 7.6%x10°
1.6x10% 2 10 10 1.1x1072 1.9x 10"
29x 10" 8 1 10 5.4 x 10? 5.5 x 10!
29x 10" 8 6 10 2.4 % 10° 6.4 x 107
29x 10 8 10 10 24x10"" 7.9x 10"

063020-17



MUHSIN ALJAF and ILIAS CHOLIS

PHYS. REV. D 111, 063020 (2025)

[1] Y. B. Zel’dovich and I. D. Novikov, The hypothesis of cores
retarded during expansion and the hot cosmological model,
Sov. Astron. 10, 602 (1967), https://ui.adsabs.harvard.edu/
abs/1967SvA....10..6027Z.

[2] G.F. Chapline, Cosmological effects of primordial black
holes, Nature (London) 253, 251 (1975).

[3] S. Hawking, Gravitationally collapsed objects of very low
mass, Mon. Not. R. Astron. Soc. 152, 75 (1971).

[4] B. Carr, F. Kuhnel, and M. Sandstad, Primordial black holes
as dark matter, Phys. Rev. D 94, 083504 (2016).

[5] B.P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Observation of gravitational waves from a binary
black hole merger, Phys. Rev. Lett. 116, 061102 (2016).

[6] S. Bird, I. Cholis, J.B. Muifoz, Y. Ali-Haimoud, M.
Kamionkowski, E.D. Kovetz, A. Raccanelli, and A.G.
Riess, Did LIGO detect dark matter?, Phys. Rev. Lett.
116, 201301 (2016).

[7] B. Carr, K. Kohri, Y. Sendouda, and J. Yokoyama, Con-
straints on primordial black holes, Rep. Prog. Phys. 84,
116902 (2021).

[8] B. Carr and F. Kuhnel, Primordial black holes as dark
matter: Recent developments, Annu. Rev. Nucl. Part. Sci.
70, 355 (2020).

[9] A. M. Green and B. J. Kavanagh, Primordial black holes as a
dark matter candidate, J. Phys. G 48, 043001 (2021).

[10] E.D. Kovetz, I. Cholis, P.C. Breysse, and M.
Kamionkowski, Black hole mass function from gravita-
tional wave measurements, Phys. Rev. D 95, 103010 (2017).

[11] S. Clesse and J. Garcia-Bellido, GW190425, GW190521
and GW190814: Three candidate mergers of primordial
black holes from the QCD epoch, Phys. Dark Universe 38,
101111 (2022).

[12] S. Clesse, J. Garcia-Bellido, and S. Orani, Detecting the
stochastic gravitational wave background from primordial
black hole formation, arXiv:1812.11011.

[13] M. Sasaki, T. Suyama, T. Tanaka, and S. Yokoyama,
Primordial black hole scenario for the gravitational-wave
event GW150914, Phys. Rev. Lett. 117, 061101 (2016);
121, 059901(E) (2018).

[14] Y. Ali-Haimoud, E.D. Kovetz, and M. Kamionkowski,
Merger rate of primordial black-hole binaries, Phys. Rev.
D 96, 123523 (2017).

[15] E. D. Kovetz, Probing primordial-black-hole dark matter with
gravitational waves, Phys. Rev. Lett. 119, 131301 (2017).

[16] G. Morras et al., Analysis of a subsolar-mass compact
binary candidate from the second observing run of Ad-
vanced LIGO, Phys. Dark Universe 42, 101285 (2023).

[17] LIGO Scientific, VIRGO, and KAGRA Collaborations,
Search for subsolar-mass black hole binaries in the second
part of Advanced LIGO’s and Advanced Virgo’s third
observing run, Mon. Not. R. Astron. Soc. 524, 5984
(2023); 526, 6234(E) (2023).

[18] M. Kawasaki, A. Kusenko, and T.T. Yanagida, Primordial
seeds of supermassive black holes, Phys. Lett. B 711, 1 (2012).

[19] T. Nakama, T. Suyama, and J. Yokoyama, Supermassive
black holes formed by direct collapse of inflationary
perturbations, Phys. Rev. D 94, 103522 (2016).

[20] F. Hasegawa and M. Kawasaki, Cogenesis of LIGO pri-
mordial black holes and dark matter, Phys. Rev. D 98,
043514 (2018).

[21] M. Kawasaki and K. Murai, Formation of supermassive
primordial black holes by Affleck-Dine mechanism, Phys.
Rev. D 100, 103521 (2019).

[22] M. Raidal, V. Vaskonen, and H. Veermie, Formation of
primordial black hole binaries and their merger rates,
arXiv:2404.08416.

[23] V. Mandic, S. Bird, and I. Cholis, Stochastic gravitational-
wave background due to primordial binary black hole
mergers, Phys. Rev. Lett. 117, 201102 (2016).

[24] 1. Cholis, E.D. Kovetz, Y. Ali-Haimoud, S. Bird, M.
Kamionkowski, J. B. Muifioz, and A. Raccanelli, Orbital
eccentricities in primordial black hole binaries, Phys. Rev. D
94, 084013 (2016).

[25] G. Franciolini, K. Kritos, E. Berti, and J. Silk, Primordial
black hole mergers from three-body interactions, Phys. Rev.
D 106, 083529 (2022).

[26] J. F. Navarro, C. S. Frenk, and S. D. M. White, The structure
of cold dark matter halos, Astrophys. J. 462, 563 (1996).

[27] F. Prada, A. A. Klypin, A.J. Cuesta, J. E. Betancort-Rijo,
and J. Primack, Halo concentrations in the standard LCDM
cosmology, Mon. Not. R. Astron. Soc. 423, 3018 (2012).

[28] A.D. Ludlow, S. Bose, R.E. Angulo, L. Wang, W.A.
Hellwing, J. F. Navarro, S. Cole, and C. S. Frenk, The mass—
concentration—redshift relation of cold and warm dark
matter haloes, Mon. Not. R. Astron. Soc. 460, 1214 (2016).

[29] W.H. Press and P. Schechter, Formation of galaxies and
clusters of galaxies by self-similar gravitational condensa-
tion, Astrophys. J. 187, 425 (1974).

[30] S. Murray, C. Power, and A. S. G. Robotham, HMFcalc: An
online tool for calculating dark matter halo mass functions,
Astron. Comput. 3—4, 23 (2013).

[31] G. Franciolini, K. Kritos, E. Berti, and J. Silk, Primordial
black hole mergers from three-body interactions, Phys. Rev.
D 106, 083529 (2022).

[32] M. El Bouhaddouti, M. Aljaf, and I. Cholis, Conservative
limits on primordial black holes from the LIGO-Virgo-
KAGRA observations, arXiv:2502.00144.

[33] B.J. Kavanagh, D. Gaggero, and G. Bertone, Merger rate of
a subdominant population of primordial black holes, Phys.
Rev. D 98, 023536 (2018).

[34] P.C. Peters, Gravitational radiation and the motion of two
point masses, Phys. Rev. 136, B1224 (1964).

[35] G.D. Quinlan, The dynamical evolution of massive black
hole binaries I. Hardening in a fixed stellar background,
New Astron. 1, 35 (1996).

[36] A. Sesana, F. Haardt, and P. Madau, Interaction of massive
black hole binaries with their stellar environment. I. Ejection
of hypervelocity stars, Astrophys. J. 651, 392 (2006).

[37] C. A. Correa, J.S. B. Wyithe, J. Schaye, and A.R. Duffy,
The accretion history of dark matter haloes—II. The
connections with the mass power spectrum and the density
profile, Mon. Not. R. Astron. Soc. 450, 1521 (2015).

[38] D.C. Heggie, Binary evolution in stellar dynamics, Mon.
Not. R. Astron. Soc. 173, 729 (1975).

[39] B.J. Kavanagh, D. Gaggero, and G. Bertone, Merger rate of
a subdominant population of primordial black holes, Phys.
Rev. D 98, 023536 (2018).

[40] L. Liu, Z.-K. Guo, and R.-G. Cai, Effects of the surrounding
primordial black holes on the merger rate of primordial
black hole binaries, Phys. Rev. D 99, 063523 (2019).

063020-18



SIMULATING BINARY PRIMORDIAL BLACK HOLE MERGERS ...

PHYS. REV. D 111, 063020 (2025)

[41] A. Jenkins, C.S. Frenk, S. D. M. White, J. M. Colberg, S.
Cole, A.E. Evrard, H. M. P. Couchman, and N. Yoshida,
The mass function of dark matter halos, Mon. Not. R.
Astron. Soc. 321, 372 (2001).

[42] M. Martinelli, F. Scarcella, N. B. Hogg, B. J. Kavanagh, D.
Gaggero, and P. Fleury, Dancing in the dark: Detecting a
population of distant primordial black holes, J. Cosmol.
Astropart. Phys. 08 (2022) 006.

[43] T. Blaineau et al., New limits from microlensing on Galactic
black holes in the mass range 10Mgy <M < 1000M,
Astron. Astrophys. 664, A106 (2022).

[44] P. Mroz et al., No massive black holes in the Milky Way
halo, Nature (London) 632, 749 (2024).

[45] J. Garcia-Bellido and M. Hawkins, Reanalysis of the
MACHO constraints on PBH in the light of Gaia DR3
data, Universe 10, 449 (2024).

[46] S. Hild et al., Sensitivity studies for third-generation
gravitational wave observatories, Classical Quantum Grav-
ity 28, 094013 (2011).

[47] M. Evans et al., Cosmic explorer: A submission to the NSF
MPSAC ngGW subcommittee, arXiv:2306.13745.

[48] I. Gupta et al., Characterizing gravitational wave detector
networks: From A? to cosmic explorer, Classical Quantum
Gravity 41, 245001 (2024).

[49] Z.-C. Chen and A. Hall, Confronting primordial black holes
with LIGO-Virgo-KAGRA and the Einstein telescope,
arXiv:2402.03934.

[50] G. Franciolini, R. Cotesta, N. Loutrel, E. Berti, P. Pani, and
A. Riotto, How to assess the primordial origin of single
gravitational-wave events with mass, spin, eccentricity, and
deformability measurements, Phys. Rev. D 105, 063510
(2022).

063020-19



	Simulating binary primordial black hole mergers in dark matter halos
	I. INTRODUCTION
	II. DARK MATTER HALO MODELS
	A. The halo profile
	B. The mass-concentration-redshift relation C(M,z)
	C. The halo mass function
	D. Primordial black hole velocity distributions

	III. TWO-BODY CAPTURE EVENTS
	A. Merger rates per halo
	B. Direct capture rate results

	IV. BINARY-SINGLE INTERACTIONS EVENTS
	A. The evolution of PBH binaries properties
	B. Numerical analysis setup
	C. Evolution of the DM halo's mass properties
	D. The initial distribution of PBH binaries' orbital properties
	E. Binary-single interaction results

	V. CONCLUSIONS
	ACKNOWLEDGMENTS
	APPENDIX A: TWO-BODY CAPTURE RATE PER HALO ASSUMING A PBH MASS DISTRIBUTION
	APPENDIX B: PBHS MASS FUNCTIONS
	1. Log-normal mass distribution
	2. Broken power-law mass distribution
	3. Critical collapse mass distribution

	APPENDIX C: MASS ACCRETION HISTORY
	APPENDIX D: PBH BINARIES' INITIAL ORBITAL PARAMETERS DISTRIBUTION AT FORMATION
	APPENDIX E: BINARY-SINGLE INTERACTION TIMESCALE OF PBH BINARIES
	References


