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The merging black hole binaries detected by the LIGO-Virgo-KAGRA (LVK) gravitational-wave
observatories may help us shed light on how such binaries form. In addition, these detections can help us
probe the hypothesized primordial black holes, a candidate for the observed abundance of dark matter. In
this work, we study the black-hole mass distribution obtained from the LVK binary black hole merger
events. In particular, we study the primary mass m1-distribution of the observed black hole binaries, and
also the secondary to primary mass ratio q ¼ m2=m1 distribution. We obtain those distributions by first
associating a skewed normal distribution to each event detected with a signal to noise ratio ðSNRÞ > 8

and then summing all such distributions. We also sample black hole binaries from two separate
populations of merging binaries to which we associate a redshift from the redshift distribution. One of
these is a stellar-origin population that follows a mass-distribution similar to the zero-age mass function
of stars. The second population of black holes follows a Gaussian mass-distribution. Such a distribution
could approximate a population of black hole binaries formed from earlier black hole mergers in dense
stellar environments, or binaries of primordial black holes among other astrophysical processes.
For those populations, we evaluate the number of detectable events and fit their combination to
the LVK observations. In our work, we assume that stellar-origin binary black holes follow a similar
mass-distribution to that of the initial mass-function of stars. We simulate a wide range of stellar-origin
black-hole mass distributions. In agreement with the binary black hole merger rates-analysis of the
LVK collaboration, we find that studying the observed LVK events can be fitted better by the combination
of such a stellar-origin mass distribution and a Gaussian distribution, than by the stellar-origin
mass distribution alone. As we demonstrate with some simple examples, our methodology allows
for rapid testing of potential theoretical models for the binary black hole mergers to the observed
events by LVK.
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I. INTRODUCTION

The Laser Interferometer Gravitational-wave Obser-
vatory (LIGO), first detected gravitational waves (GW)
from the coalescence of binary compact objects in 2015 [1].
Since then, following detector upgrades and the Virgo [2]
and Kamioka Gravitational Wave Detector (KAGRA) [3]
sites in Italy and Japan joining in the observations (Virgo in
2017 and KAGRA in 2019), there have been two more
completed observing runs, O2 from November 2016 to
August 2017 [4] and O3 from April 2019 to the end of
March 2020 [5]. As a result, the catalog of binary compact
object mergers detected by the LIGO-Virgo-KAGRA col-
laboration (LVK) has reached 93 [6], with the O4 run
currently ongoing. For each transient signal, the LVK
collaboration evaluates the signal to noise ratio (SNR)
and selects as merger events those with SNR > 8. For

every merging binary, LVK estimates the mass of the more
massive compact object M1 and of the less massive object
M2, their ratio q ¼ M2

M1

and the redshift z of the event, among

other quantities. This allows for a study of the mass
distribution of merging black holes (BHs). Among the 93
events in the LVK collaboration data, there are binary black
holes (BBHs), binary neutron stars and neutron star-black
hole binaries. In this paper we focus on the BBHs.
The two LIGO detectors at Hanford Washington and

Livingston Louisiana, having the better sensitivity, offer the
main means by which GWs from merging binaries are
detected. Virgo and KAGRA allow for an improved
localization of the events. The LIGO detectors are versions
of a Michelson interferometer with 4 km long arms [7],
capable of detecting GWs in frequencies of 10 to 1000 Hz.
Thus they are ideal for the detection of coalescing stellar-
mass BBHs.
BBHs can have two origins, astrophysical, from col-

lapsing stars and primordial, forming in the early Universe
(see, e.g., [8–10]). Astrophysical first generation BHs can
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be expected to have an approximately power-law mass
distribution, similar to that of their progenitor stars.1 For
stars with a mass larger than 1M⊙ (including massive
enough to form BHs after their collapse), their initial mass
follows a power-law distribution of dN=dM ∼M−2.3�0.7

[11]. In this paper, we use a power-law model to simulate
astrophysical BHs and test the resulting distribution from
our simulations with the data from the LVK collaboration,
by searching for the best fit power-law parameters (For
detailed reviews on rates and formation channels of BBHs
see [12,13]).
Primordial black holes (PBHs), differ from astrophysi-

cal ones in their origin. PBHs would form from curvature
fluctuations in the primordial universe that collapse to
black holes. Those fluctuations/overdensities are model
dependent. They can be related to a phase transition
during inflation (see for example [14]). Due to the “no-
hair” conjecture, BHs are defined by three quantities:
mass, spin and charge. PBHs would be indistinguishable
from astrophysical BHs. However, the dynamics of PBHs
and astrophysical BHs are different, with astrophysical
BH binaries closely following the baryons in galaxies
while PBHs being in dark matter halos. Given their
different origins and environments, astrophysical and
primordial BHs constitute two separate populations.
Testing PBHs is motivated given that if present, then
they would compose at least a fraction of dark matter
(DM) in the mass range where the current GW detectors
are sensitive. Moreover, measuring their mass would shed
light to the primordial curvature fluctuations in the early
universe and indirectly probe an energy scale impossible
to reach with high-energy particle colliders. In this work,
we consider for simplicity that PBHs have a monochro-
matic mass-distribution. Given that the LVK detectors
have a finite mass resolution, such a monochromatic mass
distribution would appear in the data as a Gaussian-like
component.
In this paper, we present a methodology in studying the

LVK BH mass-distribution data. In Sec. II, we discuss
how we take the reported M1 and M2 values to construct
M1- and q-distributions for the BBHs observed with a false
alarm rate (FAR) smaller than 1 yr−1. This is approximately
similar to a SNR > 8. Subsequently, in Sec. III, we
simulate BBHs from the two populations and compare
to the data. Our results are discussed in Sec. IV.We find that
the LVK BBHs require the presence of a Gaussian-like
component in addition to a power-law mass-distribution.
Finally, in Sec. V, we present our conclusions and discuss
how such an analysis can be used to probe for the origin of
that Gaussian-like component.

II. THE DISTRIBUTION OF BINARY

BLACK HOLE MASSES

A. Studied population

We use the observations from the LVK O1, O2, and O3
runs [5] obtained from the gravitational wave open science
center [6]. Out of the 93 events in the catalog we keep the
events that are mergers of BBHs. We use the primary mass
M1 and secondary massM2 > 4M⊙ information, for events
with a FAR smaller than 1 yr−1. These conditions restrict
the number of events that we work on, to 72.

B. Probability density function of primary

mass and binary mass-ratio

For our study, we need to obtain, for each of the 72
events, the probability density functions (PDFs) for the
primary mass M1 and the mass-ratio q [5]. The reported
error-bars from LVK on each of these quantities are
asymmetric. Thus, we choose a skew-normal distribution
to fit the M1 and M2 PDFs for each event. We use the
following definition of the skew-normal distribution [15],

fðx;ξ;ω;αÞ¼ 1
ffiffiffiffiffiffi

2π
p

ω
exp

�

−
ðx−ξÞ2
2ω2

��

1þerf

�

αðx−ξÞ
ω
ffiffiffi

2
p

��

:

ð1Þ

The parameter ξ is used to describe the location along the
x-axis,ω is the scale parameter and α is the shape parameter
(for α ¼ 0 we get the normal distribution). We want to fit
the PDF of an event’sM1 so that the mode, Yðξ;ω; αÞ of the
distribution is located at the central value of M1 from the
LVK data. We also want the scale of the distribution to be
consistent with the claimed uncertainty on M1. There is no
analytic expression for the mode of the distribution for
α ≠ 0. However, we can obtain the approximate expression
using [15],

δðαÞ ¼ α
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ α2
p ð2Þ

and
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γ1 is the skewness parameter of the distribution. Also,
setting parameters,

μzðαÞ ¼
ffiffiffi

2

π

r

δðαÞ; ð4Þ

σzðαÞ ¼
ffiffi

ð
p

1 − μ2zðαÞÞ ð5Þ

1Second generation BHs, coming from the merger of first
generation astrophysical BHs (originating form the collapse of
stellar cores), may have a more complex mass-distribution.
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and

m0ðαÞ¼ μzðαÞ−
γ1σzðαÞ

2
−
signðαÞ

2
exp

�

−2π

α

�

; ð6Þ

we get the mode of the distribution expressed as,

Yðξ;ω; αÞ ¼ ξþ ωm0ðαÞ: ð7Þ

For each event, we search for the optimal combination
of parameters ξ, ω and α that fits the relevant PDF ofM1 1.
We also obtain the optimal combination of ξ, ω, and
α parameters for M2 in the same way. In Fig. 1, we show
as an example, the estimated PDF for event GW190413_
052954 with a primary mass M1 ¼ 33.7M⊙.
To obtain the PDF for q of each event, we pick a random

value from the event’s distribution of M2 and divide by a
random value from the event’s distribution of M1. Since q
is by definition the ratio between the less massive event
and the more massive event, in the case where the value
randomly picked from the M1 distribution (M1;expl), is
smaller than the randomly picked value from the M2

distribution (M2;expl), i.e. M1;expl < M2;expl, the division
yields a value of q that is larger than 1. We pick in this case
1=q instead. We repeat this process a thousand times to
obtain the PDF for q for that event; and proceed in the
same way to obtain the PDF for q for all events.

C. Mass-distribution properties of the observed

binary black holes

With the skew-normal parameters for the quantities M1

and M2, we have access to the PDFs of M1 and q for all
events. For each event, we make a histogram from the PDF
of M1, using 15 discrete bins. We give our M1 mass-
binning in Table I. We record the number of counts per bin
(ni;j with i indexing the events and j the bins). To obtain the

mass distribution of the M1 parameter for the observed
LVK BBHs, we make a histogram with bin counts ntot;j
(with j the index of the bin) equal to the sum of the bin
counts from the histograms of each event,

ntot;j ¼
X

i

ni;j: ð8Þ

The bin counts of our final histogram for the M1 distri-
bution is then ntot;j for bin j. In Fig. 2, we provide the
derived M1-histogram for the 72 events with FAR
of <1 yr−1.
We proceed in the same way starting from the PDFs of q

for each event to obtain the histogram for the q distribution
of the 72 BBH mergers, the q-binning is also given in
Table I and shown in Fig. 3.
Since we have a small number of events per bin from the

O1, O2, and O3 runs, we use Poisson distribution to obtain
the error bars for these histograms. The 1σ-error for each
bin in the mass distribution of BBHs is the 1σ-error of the
Poisson distribution drawn from the number of bin counts
in the bin considered. This method is valid for the histo-
grams of both M1 and q.

III. SIMULATED BBHS AND THE χ
2 TEST

To reach a better understanding of the mass distribution
of the BHs detected by the LVK collaboration, we sample
BHs following a power-law and a power-lawþ Gaussian
peak (PP) mass-distribution. We place the BHs at a redshift
following a power-law distribution for their comoving rate
density,

dR

dðzþ 1Þ ∝ ð1þ zÞκ: ð9Þ

Reference [5], used the same parameterization for the
redshift distribution of BBHs and found a best fit range for
κ ¼ 2.9þ1.7

−1.8 . We use the central value of κ ¼ 2.9. Since the
observed event with the largest redshift has a redshift with a
central value of 1.18, we simulate events with a redshift of
up to 1.5. Then, on the simulated events, we calculate the
SNR observed by the LIGO interferometers (discussed in
further detail in Sec. III B). We select the simulated events
with a SNR larger than 8 and normalize the distribution of
detectable events to perform our χ2 test.

FIG. 1. Using as an example GW190413_052954, we plot
the PDF of primary mass M1 ¼ 33.7M⊙ (shown as a gray line).
The primary mass, within 90% credible interval, has an upper
limit Mupper

1
¼ 33.7þ 10.4 ¼ 44.1M⊙ and a lower mass limit

Mlower
1

¼ 33.7 − 6.4 ¼ 27.3M⊙ (light orange dashed lines).

TABLE I. The parametric binning of the histograms for M1

and q.

Quantity Number of bins Log or lin space Range of values

M1 15 Logarithmic 3M⊙ to 200M⊙

q 10 Linear 0 to 1
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A. The BBH properties’ distributions

We consider two mass distributions from which we will
sample BBHs. We start with the power-law distribution, in
which the primary mass M1 and q are drawn from,

dN

dM1

∝ M−α
1
: ð10Þ

dN

dq
∝ qβ: ð11Þ

Where α is the exponent of the power-law distribution
from which we draw M1 and β the exponent of the power-
law distribution from which we draw q. We consider the
power-law distribution as a simplified mass distribution of
astrophysical BHs.
The second distribution we consider is a PP distribution,

which is a power-law distribution with an additional
Gaussian component. The parameters are the exponent
of the distributions for M1 and q, i.e., α and β and the
location parameter of the Gaussian peak μ. We are using the
Gaussian in this distribution to simulate monochromatic
PBHs or BHs from earlier mergers. Since PBHs would be
indistinguishable from astrophysical black holes, we pick
for the width of the Gaussian σ, to be the average error of
the primary and secondary BH masses detected by LVK in
an interval centered at the considered peak location. This
approximation consists in averaging the errors on the

detected BH masses at different redshifts. This is a simple
way to estimate the LIGO detectors’ sensitivity accounting
for how that sensitivity changes with respect to redshift.
Given the small sample of BBH detections, we consider
this an adequate approximation, leaving a more sophisti-
cated approach for future comparisons to observations with
many more detections. We note that in order to have a better
estimate of the mass sensitivity of the LIGO detectors in
this mass range, both primary and secondary masses in the
relevant mass interval are used. Our approximation allows
to reduce the number of parameters probed for PP dis-
tribution, as the width of the Gaussian becomes dependant
on the location of the peak.
Using the PP model, we simulate events from the power-

law component and events from the Gaussian component
independently. If that component is associated to PBHs, this
assumes that there is no term in the observed events from
merging binaries consisting of a PBH and a regular BH from
stellar evolution. Such binaries are expected to be very rare.
PBHs occupy the entire dark matter halo. The PBH-PBH
merger events occur at the smaller mass dark matter halos
and at volumes within the halos that is not occupied by
much regular baryonic mass and thus stars [16–19]. Only a
small fraction of PBHs go through the inner part of a galaxy
where BH from stellar evolution may lay. In fact, the PBHs
have relatively high velocities as they cross the inner
galaxies, suppressing their direct capture cross section by
other BHs.

FIG. 2. Histogram of M1 mass distribution for BBHs, with Poisson error bars from GWTC3 events.
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B. Evaluating the signal to noise ratio

After simulating BBHs and placing them at a certain
redshift, we need to calculate the SNR of the simulated
events observed by LVK. Since the two LIGO interferom-
eters are significantly more sensitive than the Virgo or
KAGRA ones, we evaluate the SNR from the just the LIGO
observatory. We use the LIGO noise curves of Ref. [20],
replotted in Fig. 4 for reference. Reference [20], provides
one noise curve for the Hanford site and one noise curve for
the site in Livingston based on the first three months of the
O3 run. These noise curves do not account for the change in
noise with respect to time. We have noticed that this leads to
typically less massive events being detectable in our

simulations than claimed in the small sample of LVK
collaboration. We leave is point to be further discussed in
our Results (Sec. IV).
To calculate the SNR we need the expressions of the

merger and quasinormal (qnr) mode frequencies as well as
the expression of the energy density spectra of the inspiral,
merger and ringdown phases. All these expressions are
in geometrized units (G ¼ c ¼ 1), [21]. The merger
frequency is given by,

fm ¼ 0.02
M

: ð12Þ

The qnr frequency is,

fqnr ¼
0.13
M

: ð13Þ

The energy density spectrum of the inspiral phase for a
frequency lower than fm is given by,

dE

df i

ðfÞ ¼ 1

3
π2=3μM2=3f−1=3; ð14Þ

evaluated at the source. The energy density spectrum of
the merger phase for a frequency between fm and fqnr is
given by,

dE

dfm

ðfÞ ¼ 0.91M2Fðμ=MÞ: ð15Þ

FIG. 3. Histogram of the q-distribution of BBHs, with Poisson error bars from GWTC3 events.

FIG. 4. The noise curves of LIGO Hanford and LIGO Living-
ston used in this work, taken from [20].
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The energy density spectrum of the ringdown phase for a
frequency around fqnr is given by,

dE

dfr

ðfÞ ¼ 1

8
A2 ·Q ·M2fqnr: ð16Þ

WithM the total mass:M ¼ M1 þM2, μ the reduced mass:
μ ¼ M1M2

M1þM2

and Fðμ=MÞ ¼ ð4μ
M
Þ2. We pick A ¼ 0.4 and

Q ¼ 2ð1 − aÞ−920 with a ¼ 0.67 for the ringdown energy
density spectrum.
With the expressions on the energy spectra of the phases

of BBHs coalescence, we can express the characteristic
amplitude of the signal,

h2c ¼ 2
ð1þ zÞ2
ðπDLðzÞÞ2

dE

df
ðð1þ zÞfÞ: ð17Þ

With z the redshift at which the BBH is placed, dE
df

is the

energy spectrum of the coalescence, which is the sum of the
energy spectra of the inspiral, merger and ringdown phases:
dE
df

¼ dE
dfi

þ dE
dfm

þ dE
dfr

. AndDLðzÞ is the luminosity distance

of the BBH at a redshift z,

DLðzÞ ¼ ð1þ zÞ
Z

c

H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ωmð1þ zÞ3 þΩΛ

p dz; ð18Þ

where c is the speed of light, H0 the Hubble constant, Ωm

the matter density parameter and ΩΛ the dark energy
density parameter obtained from “the best fit Euclidian
ΛCDM cosmology from Planck Collaboration(2018)”
according to [22,23]. Since hc is measured on Earth we
need to account for the redshift effect on the frequency, we
thus take the energy spectum at ð1þ zÞf. From [20], we
obtain a strain noise for the Livingston detector that we note
hn;L and a strain noise for the Hanford detector that we
note hn;H.
To evaluate the SNR ρ we combine them as,

hρi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4

5

Z

hc=ð2fÞ2
h2n;L

þ 4

5

Z

hc=ð2fÞ2
h2n;H

s

: ð19Þ

We use the two noise curves separately in the expression of
the SNR because the Livingston noise we use is consis-
tently lower than the Hanford one (see Ref. [4]). Using the
two noise curves independently in the expression of the
SNR instead of an average of two curves does not change
the value of the SNR significantly. Nonetheless, the
expression of Eq. (19) is more accurate.
We simulate 106 BBHwith masses from 4 to 150M⊙ and

up to a redshift of 1.5. Since most generated binaries will
have large luminosity distances and thus a SNR < 8, we
make a first estimate to disregard binaries for which our
SNR will be well bellow 8. This allows us to optimize

significantly our computing time of SNR for the remaining
sample of merging binaries. In simple terms, we need to
evaluate the maximum redshift at which a binary described
by M1 and q would give a SNR ≥ 8. We note that we do
account for the inclination angle as this is not included in
Eq. (14). Discarding detactable BBHs in the study would
result in potentially deforming the distributions from which
we draw the quantities that make our simulated BBHs. This
is why, for each range of primary masses M1, we pick a
cutoff value for the redshift z that is slightly larger than the
found maximum redshifts. This is to ensure that all
detectable simulated BBHs are included in the study. In
Table II, we show the largest redshift for specific choices of
M1. For low M1 values, this translates to setting q ¼ 1.
However, for very highM1 values, the low-frequency noise
curve prevents the detection of binaries with q ≃ 1.

C. Testing models with data

We calculate the SNR of the simulated BBHs that LIGO
would detect and save the primary mass, the ratio q and the
redshift of the simulated events with an SNR > 8. These
events constitute our simulated model. We make a histo-
gram of M1 and q distributions of the simulated model
keeping the same number of bins that we use for the LVK
data with the same range for M1 and q.
One of our objectives, is to find the minimal χ2 for each

choice of parameters. This minimization is done by
searching for the normalization factors that minimize the
χ2 value. For the power-law model, one normalization
factor is enough to minimize the χ2 value. The candidates
for the minimal χ2 used to compare the M1 distribution of
the simulated events for one value of α and one value of β
with theM1 distribution of the LVK data have the following
expression,

χ2M1
¼
X

15

i¼1

 

dataM1;i
− N · modelM1;i

sigmaM1;i

!

2

: ð20Þ

Where, i labels the bins and goes from 1 to 15 for M1,
dataM1;i

is the number of M1 counts from the LVK data in

TABLE II. The largest redshift at which a binary with primary
massM1, would be observed with SNR > 8. We test the range of
possible values for q. We simulate 106 BBHs and present our
result in the second column. The third column gives cutoff value
of z that we pick for that M1 value, in selecting binaries (see text
for details).

M1 (M⊙) Highest value of redshift Cutoff value for z

6 0.09906 0.11
10 0.12489 0.13
15 0.15210 0.17
25 0.20155 0.22
90 0.60272 0.7
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the bin i, modelM1;i
is the number of M1 counts from the

simulated events in the bin i, N a normalization factor, and
sigmaM1;i

is the 1σ error on dataM1;i
.

Similarly, the candidates for the minimal χ2 for the q
distribution have the following expression,

χ2q ¼
X

10

i¼1

�

dataq;i − N · modelq;i
sigmaq;i

�

2

: ð21Þ

Again, i labels the bins and goes from 1 to 10 for q, dataq;i
is the number of q counts from the LVK data in the bin i,
modelq;i is the number of q counts from the simulated
events in the bin i, N a normalization factor, and sigmaq;i is
the 1σ error on dataq;i.
The total χ2 is then,

χ2tot ¼ χ2M1
þ χ2q: ð22Þ

For the PP model, we have two components for the
distribution, a component following a power-law distribu-
tion and a component following a Gaussian distribution.
The expression for χ2M1

and χ2q that is very similar to
Eqs. (20) and (21),

χ2M1;PP
¼
X

15

i¼1

 

dataM1;i
−modelM1;PP;i

sigmaM1;i

!

2

; ð23Þ

where,

modelM1;PP;i
¼ NPL · modelM1;PL;i

þ NPeak · modelM1;Peak;i
: ð24Þ

Similarly,

χ2q;PP ¼
X

10

i¼1

�

dataq;i −modelqPP;i
sigmaq;i

�

2

ð25Þ

with,

modelqPP;i ¼ NPL · modelqPL;i

þ NPeak · modelqPeak;i: ð26Þ

In this case we have one normalization factor for the power-
law component, indexed with “PL,” and one for the
Gaussian component, indexed with “peak.” Bin counts
from the simulated events also come from two different
components of the distribution, the same indices introduced
on the normalization factors apply here. The total χ2 result
of the PP model is again given by Eq. (22) and minimized
to find the best-fit combination of normalization factors
NPL and NPeak.

Note that having two different normalization factors for
the power-law component and the Gaussian components of
the PP model is consistent with what the two components
represent; since the BHs from stellar evolution and the
PBHs have different origins and different dynamics.2

IV. RESULTS

A. Power-law model

For the single power-law model, from the χ2 test we find
the best fit values of α ¼ 3.44þ0.2

−0.29 and β ¼ −0.89þ0.5
−0.1 .

These give a total χ2 of χ2tot ¼ 38.04. The quoted con-
fidence intervals for the best fit parameters are 90%. The χ2

minimization was done with one parameter (the normali-
zation factor for the power-law model), leaving us with
24 degrees of freedom for this model. The χ2 per degree of
freedom (χ2d:o:f:) in this case is then χ2d:o:f: ¼ 1.58. Table III,
includes this result along with χ2 values for specific
parameter choices as fixing β to 0 and 1 or α to 2.3 and
reporting the best-fit value for the other parameter.
We find values for α that are consistent with Ref. [5]. The

values we find for β however are lower than those reported
by Ref. [5], i.e., preference for smaller values of q.
Given the quoted uncertainties of Ref. [5], our best fit

value for β is beyond their 90% confidence interval. That is
not the case for the α parameter however. In our opinion
this suggests that this method of analyzing the gravitational
wave merger data is somewhat orthogonal to that of
Ref. [5]. With a better understanding of the LIGO noise-
curve evolution, the differences between the two methods
should become less pronounced.
In Fig. 5, we show the area in parameter space around

the best-fit values that is within 90% confidence interval.
The best-fit point is given by the red “x” symbol. In Figs. 6
and 7, we show the M1 and q histograms of the simulated

TABLE III. Results of the χ2 test after comparing simulated
populations from the power-law model to the LVK data. The
number of degrees of freedom for this test is 24. The first line
shows the best fit parameters and χ2 results, the second line the
best fit results for β ¼ 0, the third line the best fit results for β ¼ 1

and the last line the best fit results for α ¼ 2.3, which is the
power-law exponent for the initial mass function of stars with
masses > 3M⊙ Ref. [11].

Value of α Value of β Best χ2M1
Best χ2q Best χ2d:o:f:

3.44 −0.89 22.09 17.75 1.58
3.23 0 23.47 25.7 2.05
3.16 1 27.52 40.46 2.83
2.3 −0.45 55.22 22.21 3.23

2For the case where the Gaussian component represents BHs
from earlier BBH mergers, still the relative normalizations of the
PL and the Peak components may be weakly correlated.
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BBHs from a power-law model with the best-fit param-
eters. These are shown as blue histograms with red best-fit
normalization values (no errors shown). For comparison
we include the histograms constructed from the LVK data
(grey histogram with black Poisson errors).
As can be seen from Fig. 6, the single power-law cannot

explain the peak around 40M⊙ on theM1-distribution. This

is also clear from the best-fit χ2d:o:f result for the power-law
model. It is significantly larger than one. The power-law
model, is not sufficient to describe the mass distribution of
the LVK collaboration’s events. It is important to note that
when working with the power-law model, we are effec-
tively considering mergers between first-generation BHs.
Accounting for hierarchical mergers may require a more

FIG. 5. The α-β parameter space for the power-law model probed by the LVK BBHs. The blue dots are inside the 90% credible interval
around the point giving the minimum χ2 value (red “x”).

FIG. 6. Normalized histogram of the distribution of M1, of simulated BBHs detectable with a SNR > 8. The underlying simulated
distribution is that of a power-law model with α ¼ 3.44, and β ¼ −0.89 (blue columns with red best-fit normalizations). Superposed to
that, is the histogram of the M1 distribution from the LVK BBHs with Poisson error bars (gray columns with back errors).
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complex model-distribution and lead to different results. In
fact, our result suggest the need for some additional
component to the simple power-law model, which at a
first level we address in Sec. IV B.
The results obtained in this section relied on calculating

the SNR from simulated mergers that would be detected
with by LIGO. The obtained SNR is dependent on the noise
curve that we use for the two LIGO interferometers. We
have access to only one noise curve for the LIGO Hanford
and one for the LIGO Livingston sites [20]. LIGO’s noise is
time dependent and keeps changing as the detectors are
undergoing improvements. While testing our code to
calculate the SNRs, we compared the SNR we obtained
for specific LVK’s events with their reported SNR. We
noticed that some events with large masses where detected
by LVKwith a SNR larger than 8, while we obtained a SNR
smaller than 8. This can be explained by a seismic noise at
the time of observation that was smaller than the seismic
noise accounted for in the noise curves we have available.
Having access to noise curves for the Hanford and
Livingston for different times during the observation period
would solve this problem.

B. Power-law +peak model

As discussed in III A, the central value μ of the Gaussian
distribution has a corresponding width σ, that its value is
correlated to the value of μ. To obtain σ, we average the
90% errors in the LVK catalog from all M1s and M2s,
each time within an interval spanning from μ − 5M⊙ to
μþ 5M⊙. The derived result is then divided by 2 and

converted into the 1σ error. We test 12 discrete choices for
the peak value of the Gaussian distribution μ. The
corresponding standard deviations are given in Table IV,
for each choice of μ.
The best fit values for the χ2 test for the PP model are

achieved for α ¼ 3.34þ0.36
−0.15 , β ¼ −1þ0.37

−0 and a Gaussian
peak at 40M⊙. For that value of μ, the corresponding
standard deviation is 6.38M⊙. We get a χ2M1

¼ 16.74,
χ2q ¼ 16.05, and a χ2tot ¼ 32.79. In this case, the χ2 per
degree of freedom is χ2d:o:f: ¼ 1.42. This is a significant
improvement to the simple PL model’s best fit results.

FIG. 7. Normalized histogram of the distribution of q of simulated BBHs, detectable with an SNR > 8. In our simulation the BBHs
follow a power-law model with α ¼ 3.44, and β ¼ −0.89 (blue columns with red normalizations). As in Fig. 6, superposed is the q
distribution from the LVK BBHs (gray histogram with black Poisson errors).

TABLE IV. The location parameter values probed for Gaussian
component of the PP model and their corresponding standard
deviations (see text for details).

Peak value (μ) Corresponding 1σ

5M⊙ 0.9447
10M⊙ 2.086
15M⊙ 2.873
20M⊙ 4.134
25M⊙ 4.581
30M⊙ 5.091
35M⊙ 5.683
40M⊙ 6.380
45M⊙ 7.094
50M⊙ 12.5
60M⊙ 14.3
80M⊙ 19.1
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With the quoted best-fit choices, about one in five of
simulated events are drawn from the Gaussian component.
We note that the χ2 from the fitting of M1 alone, gives
a result very close to 1 per d.o.f. For the PP case, it is the
q-distribution that contributes the most to the χ2tot. This
seems to suggest that modeling the BBH population as
either a simple power-law for both M1 and q, or that in
combination with a Gaussian component for M1, is not
sufficient to explain the observed q-distribution. To explain
the BBH observations, we require a mechanism that favors
values of around 0.6. A power-law for q, will consistently
lead to underestimating the number of counts in the q-bin
centered at 0.6, or overestimate the number of counts in the
last bins.

Table V, includes our best-fit choices for the PP model,
along with χ2 values for specific parameter choices as
fixing β to 0 and 1 or α to 2.3 and marginalizing over the
other parameters. We report the χ2 values and the best-fit
values for the other free parameters. Reference [5], found
evidence for a peak with a best-fit value of 45M⊙, with an α
of 3.34, while Ref. [10] found the best-fit value of the peak
to be at 35M⊙. Those are in agreement to our result for a
best-fit value of a peak at 40M⊙.
Figures 8 and 9, show the histograms of the simulated

BHs from a power-lawþ peak model, with the best-fit
parameters compared to the histogram from the LVK data.
TheM1 peak at around 40M⊙ seems to be insufficient in its
amplitude when only looking at Fig. 8. However, we remind
the reader that when adding this peak component, we use of
same normalization factor for both M1 and q (as it is the
same binaries). The peak component adds binaries almost
entirely in the last q ≃ 1 bin. Any attempt to make the
Gaussian peak higher to fit theM1 data better, also raises the
number of counts in the last bin for the q-histogram.
In Figs. 10 and 11, we show the area in parameter space

around the best-fit values that is within 90% confidence
interval for the PP model. The 90% confidence interval
range for the PP model overlaps with the 90% confidence
interval of the power-law model. Some values of α and β

give a χ2 inside the 90% confidence interval for the PP
model, regardless of the normalization of the Gaussian
peak (even if very small). In these cases the PP fit ends up
being effectively a power-law fit.

TABLE V. Results of the χ2 test after comparing simulated
populations from the PP model to the LVK data. The number of
degrees of freedom for this test is 23. The first line shows the best
fit parameters and χ2 results, the second line results for β ¼ 0, the
third line results for β ¼ 1 and the last line the best fit results for
α ¼ 2.3, which is the power-law exponent for the initial mass
function of stars with masses > 3M⊙ Ref. [11].

α β μ χ2M1
χ2q χ2d:o:f:

3.34 −1 40M⊙ 16.74 16.05 1.42
13.23 0 40M⊙ 22.0 27.1 2.13
3.16 1 40M⊙ 25.6 42.1 2.94
2.3 −0.45 35M⊙ 35.3 30.0 2.83

FIG. 8. Normalized histogram of the distribution of M1 of binary black holes with an SNR > 8 that follow a PP distribution (blue
columns with red normalizations). We plot here the case of α ¼ 2.11, β ¼ 0 and μ ¼ 40M⊙. The corresponding standard deviation for a
peak at 40M⊙ is σ ¼ 6.38M⊙. The simulated BBHs are superposed to the histogram of the M1 distribution from the LVK ones with
Poisson error bars (gray columns).
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We did not probe values of β < −1 due to the unphysical
nature of such a choice. Overall, we notice that the values of
β get smaller with an increase in the exponent of the
redshift distribution κ. The redshift distribution exponent is
quoted with a high uncertainty in Ref. [5]. Picking another
value for κ would result in a different 90% confidence
interval range for the PP and the PL models, but would still
favor the PP model to the PL model in fitting the LVK data.
We have tested κ ¼ 2.7 as suggested by [24] and find that
our results on α and β do not change by more than 5%. We
have also tested values of κ as low as κ ¼ 1 and still find a
preference for the PP over the PL model.

V. DISCUSSION AND CONCLUSION

In this paper, we present a way of analyzing the LIGO-
Virgo-KAGRA observations in terms of the mass and mass
ratio spectra of BH binaries that it has detected. Taking each
of the detected merger events of BBHs with a SNR > 8, we
construct M1 and q distributions as we have described in
Sec. II. We then study how these distributions can be
explained by different populations of black holes.
We simulate a population of stellar-origin BHs. These

BHs if they are dominated by first-generation BHs will
have a mass distribution that only approximately will
resemble the mass-distribution of stars at their zero age
(we describe that in Sec. III). We test a wide range of
assumptions on those BHs’ mass spectra. In each case we
simulate a population of BBHs following specific M1-, q-,
and z-distributions and evaluate how many of these binaries

would be detected by the LVK collaboration, using the
reported LIGO noise curves for the Livingston and Hanford
observatories. We also allow for a second component of
BBHs, where their mass spectrum would be approximated
by a Gaussian distribution. Such a population could stem
either from PBHs with a narrow mass-spectrum centered at
the stellar mass range or from massive BHs that themselves
are the product of earlier generation of BBH mergers.
We find that the combination of both populations can

much better explain the LVKobservations (see our results in
Sec. IV). The best-fit choice to the M1- and q-distributions
that we study require for a stellar-origin BH population with
a very similar spectrum to that expected for massive stars at
their zero age, in combination with a Gaussian distribution
centered at 40M⊙. Our result for the need of both compo-
nents to explain the observations is in agreement with the
claim made by Ref. [5], but derived independently as we do
not use information that could allow us to estimate rates of
occurrence of individual merger events. We find somewhat
different best fit values for the stellar-origin BH population’s
distribution properties. Our results agree fairly well with
those of Ref. [5], for the value of α. However, we find a clear
preference for a negative value of β, unlike [5]. Negative
values of β, predict more binaries of unequal mass ratio. We
consider our differences to be due to the inherently different
way of representing the observations. With more detected
events, as the statistical noise will decrease, we will be able
to further understand the relevant systematic uncertainties of
these two alternative methods of representing the LVK
observations.

FIG. 9. Normalized histogram of the distribution of q of binary black holes with an SNR > 8 that follow a power-law distribution
(blue columns with red normalizations). We show results for α ¼ 2.11, β ¼ 0 and μ ¼ 40M⊙. We also show the histogram of the q
distribution from the LVK BBHs with Poisson error bars (gray columns).
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Our method allows for a rapid analysis of the LVK
observations as more results are soon to come from the O4
and future runs. In particular, it can be used to place limits
on the merger rate of PBH binaries. We are currently
working on the derivation of those limits using the rates
calculated in Ref. [19].
We note that the models used in this paper are relatively

simple, as the main aim of this work is to use the limited
number of LVK BBHs as a showcase of how to address
those questions (see also Ref. [25]). We leave for future
work how to connect such an analysis to simulations
of dense stellar environments, that would give us a
prediction for the mass-properties of BHs coming from
multiple/hierarchical mergers in them. This is of particular

importance in relation to fitting the derived q-distribution.
We noticed that neither a simple power-law BH mass-
distribution nor a Gaussian component can optimally
explain it.
As a last note, we point out that for future more in-depth

studies, LVK-detectors noise curves that account for the
change in their sensitivity during a given observing run
would be necessary. In this study we had to rely only on one
noise curve per LIGO detector, derived during the early O3
run, considering it valid for the entire run. This hypothesis
is a rough approximation, that can be easily improved on
for future runs, if similar noise curves as those given
in [20], could be provided for shorter time intervals during
the observation period.

FIG. 10. The α-β parameter space for the power-law model probed using the BBHs from the LVK observations for different choices of
μ. The blue dots are inside the 90% credible interval around the point giving the minimum χ2 value.
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