

1 **Enhanced intermediate-depth nutrient import to the Late Last**
2 **Interglacial Atlantic**

4 *Authors: Isaac Sipp-Alpers^{1,†}, Jean Lynch-Stieglitz¹, Tyler Vollmer¹, Thomas Marchitto²*

6 ¹Georgia Institute of Technology, School of Earth & Atmospheric Sciences, Atlanta, GA;

7 ²University of Colorado, Institute of Arctic and Alpine Research, Boulder, Colorado

9 [†]Corresponding Author: is9188@princeton.edu

12 *Key Points*

- 14 • Nutrient supply to the Florida Straits was high during the Late Last Interglacial due to
15 more nutrient-rich intermediate waters
- 16 • Preformed nutrient content of intermediate waters that form in the Southern Ocean
17 was great during the Late Last Interglacial
- 18 • High preformed nutrients in intermediate waters during the Late Last Interglacial
19 supported significant equatorial primary productivity

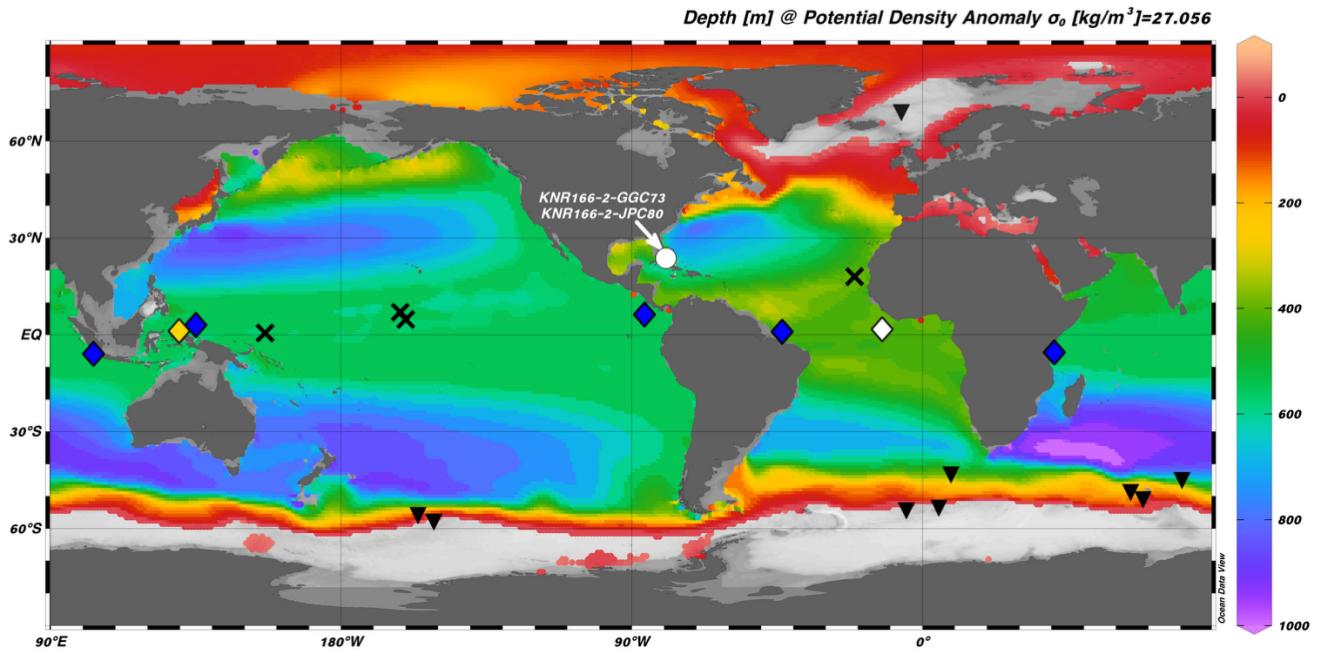
21 *Abstract*

22

23 The delivery of nutrients from intermediate waters that form in the Southern Ocean is
24 thought to be a key control on tropical ocean surface productivity. In this paper, we present
25 geochemical evidence that an increase in low-latitude productivity during the Last Interglacial
26 (LIG) was driven by an increase in the preformed nutrient content of Subantarctic Mode Water
27 (SAMW). We generated records of benthic foraminiferal $\delta^{13}\text{C}$, $\delta^{18}\text{O}$, Cd/Ca and Mg/Li which are
28 used to reconstruct seawater cadmium, dissolved oxygen, and temperature from a core site in the
29 Florida Straits. The Florida Straits is a location of mixing between SAMW and Northern
30 Component Water, the ratio of which is dependent on the strength of the Atlantic Meridional
31 Overturning Circulation. We find that Late LIG seawater cadmium – which in today’s ocean is
32 correlated to phosphate – was substantially higher than the Late Holocene average at this
33 location, while apparent oxygen utilization was similar during these two periods. Thus, we
34 invoke higher preformed phosphate in the Florida Straits during the Late LIG relative to the Late
35 Holocene. Increased SAMW preformed phosphate could be the result of reduced Antarctic Zone
36 winter mixed layer residence time and greater Southern Ocean surface nutrient supply during the
37 Late LIG compared to the Late Holocene, as supported by published reconstructions of Southern
38 Ocean biogeochemistry and dynamics. We therefore hypothesize that higher SAMW preformed
39 phosphate would cause an increase in the transport of nutrients into the low latitudes, thereby
40 increasing productivity there.

41

42


43 *1. Introduction*

44

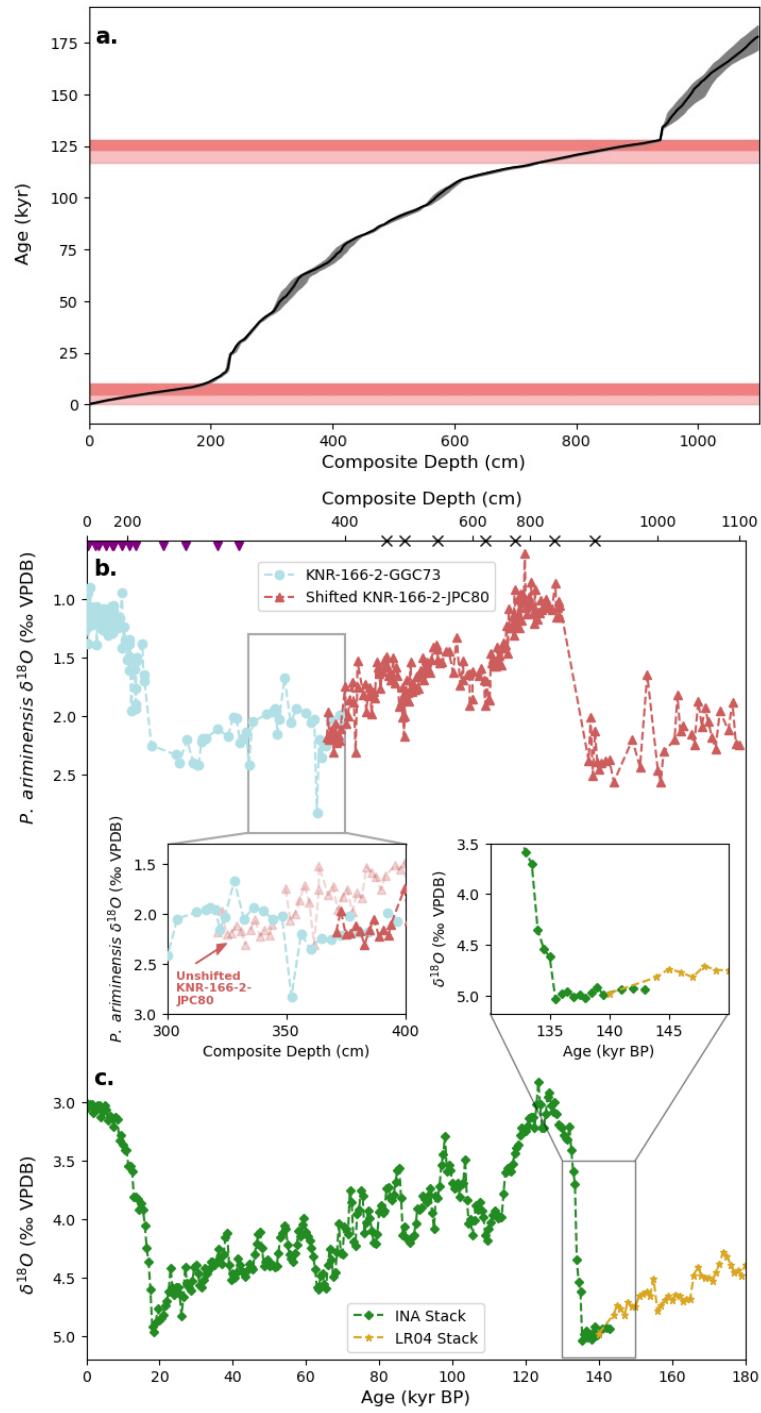
45 The equatorial oceans are among the most biologically productive regions of the modern
46 world ocean due to the year-round availability of light at the equator and the equatorial trade
47 winds, which drive upward mixing of nutrient-rich intermediate waters. Low-latitude
48 productivity has implications for the development or decline of oxygen minima in the tropical
49 subsurface ocean (Karstensen et al., 2008), as well as for seawater properties like carbonate
50 saturation state, which in turn impacts the health of marine organisms that build calcium
51 carbonate shells (Tyrell, 2008). A more robust understanding of the controls on equatorial
52 productivity, itself important to our comprehension of Earth's biosphere, could also clarify the
53 broad controls on oceanic phenomena like dysoxia.

54 Indeed, the annual productivity of the equatorial ocean is variable on timescales stretching
55 from seasonal (e.g., Brandt et al., 2025) to glacial-interglacial (e.g., Costa et al., 2017), with
56 different mechanisms thought to be responsible for changes in equatorial productivity at different
57 rates, frequencies, and magnitudes. For instance, on shorter (multi-year) timescales, variability in
58 upwelling driven by El Niño-Southern Oscillation is thought to be a chief control on nutrient
59 delivery to the low-latitude Pacific surface ocean, and thus also modulates low-latitude
60 productivity there (Barber & Chavez, 1986). Winckler et al. (2016) discussed the numerous
61 hypotheses which could explain how equatorial productivity in the Pacific varied over the glacial
62 cycles of the late Pleistocene, including theoretically stronger glacial trade wind-driven
63 upwelling, more substantial glacial eolian Fe deposition, and changing glacial nutrient supply
64 from the upward mixing of subsurface waters of Southern Ocean origin at the equator. Evidence
65 from Earth system models concurs with this last point, suggesting that nutrient delivery from
66 intermediate water masses which mix upward near the equator present a major control on
67 equatorial productivity in the modern ocean (Sarmiento et al., 2004). Studies of past climate can
68 help test this hypothesis and the others mentioned above by revealing how properties such as
69 intermediate water nutrient concentrations were different in periods when low-latitude
70 productivity was different from today. Such paleoceanographic studies are especially useful
71 when considering past interglacial periods, where these studies can reveal the sensitivity of low-
72 latitude productivity to intermediate water nutrient concentrations under warm climate
73 conditions; this is relevant to the response of low-latitude productivity to modern warming.

74 Here we focus on the Last Interglacial Period (LIG; ca. 128,000-117,000 years ago [128-117
 75 kyr]), which is the most recent extended period of warmth against which Holocene climate can
 76 be compared. During the LIG, Earth's climate was marginally warmer (by roughly 0.5°C-1.5°C)
 77 than the Holocene (e.g., Nascimento et al., 2022; Hoffman et al., 2017; Bova et al., 2021).
 78 Atmospheric pCO₂ was very similar to the pre-Industrial Holocene (Petit et al., 1999), but orbital
 79 parameters were markedly different, with a much more eccentric orbit and lower obliquity during
 80 the LIG (Berger & Loutre, 1991). Greater primary productivity during the LIG is inferred from a
 81 number of fossil records across the equatorial world ocean (Figure 1); this change is especially
 82 obvious during the Late LIG (LLIG), which, like the Late Holocene (LH), was marginally cooler
 83 than the climate optimum it succeeded (Capron et al., 2014). With no evident change in tropical
 84 dust deposition during the LLIG relative to the LH (Skonieczny et al., 2019; Jacobel et al.,
 85 2017), we posit that the change in tropical productivity was probably driven by an increase in
 86 vertical mixing at the equator, an increase in the nutrient load of upward-mixing intermediate
 87 and deep waters, or some combination thereof.

88
 89 Figure 1. World map of depth along the $\sigma_0 = 27.056 \text{ kg m}^{-3}$ isopycnal (the isopycnal of bottom waters at the
 90 Florida Straits core site). Blue diamonds indicate equatorial core sites with higher average reconstructed productivity
 91 during the Late Last Interglacial (LLIG) than the Late Holocene (LH); from left to right: Tangunan et al. (2017),
 92 Romero et al. (2012), Kawahata et al. (1998), Marcantonio et al. (2020), Piacsek et al. (2021). The yellow diamond
 93 indicates a core site with lower average reconstructed productivity in the LLIG than the LH (Su et al., 2015) and the
 94 white diamond indicates a core site recording approximately equal productivity during these two periods (Schneider

95 et al., 1996). Black crosses indicate records of terrigenous dust deposition (Skonieczny et al., 2019; Jacobel et al.,
96 2017) and inverted black triangles denote records of high-latitude ocean surface conditions we discuss (Thibodeau et
97 al., 2017; Robinson & Sigman, 2008; Jaccard et al., 2013; Martinez-Garcia et al., 2014; Studer et al., 2015; Ai et al.,
98 2020; Ai et al., 2024; Lamy et al., 2024). The white dot indicates the location of the cores studied herein. Figure made
99 using Ocean Data View (Schlitzer & Reiner, 2023).


100
101 Here we introduce reconstructions of bottom-water temperature, dissolved oxygen, and
102 seawater cadmium (which is tightly correlated with phosphate in the modern ocean; Boyle et al.,
103 1995) from two collocal cores from the Cay Sal Bank in the Florida Straits. These cores are
104 currently bathed by a mixture of Northern Component Water (NCW)—which we define as a
105 mixture of predominantly Subpolar Mode Water (SPMW) along with North Atlantic Central
106 Water and Mediterranean Water—and Subantarctic Mode Water (SAMW), the latter of which is
107 also a major component of the intermediate waters which are thought to feed equatorial
108 productivity in all three major ocean basins (Sarmiento et al., 2004). With these records, we seek
109 to investigate the impact of nutrient concentration in intermediate waters on LLIG tropical
110 productivity. Furthermore, we will deconvolve the nutrient change into its preformed and
111 remineralized components with the goal of discerning the mechanisms which could give rise to
112 these differences in nutrient concentration.

113
114 *2. Methods*

115
116 *2.1 Core location and oceanographic setting*

117 The two collocal cores examined in this study (23°44.73' N 79°25.78' W; 542 m modern
118 depth) consist of a gravity core (KNR166-2-GGC73) and a piston core (KNR166-2-JPC80). A
119 composite record is constructed using the top 396 cm of the gravity core, and depths 320 to 1050
120 cm in the piston core. The sections have a 76 cm overlap to enable the joining of the records to
121 yield a single stratigraphy. We align the uppermost portion of the benthic $\delta^{18}\text{O}$ record from
122 KNR166-2-JPC80 with that of the lowermost portion of the benthic $\delta^{18}\text{O}$ record from KNR166-
123 2-GGC73, resulting in a downward shift of 50 cm in all sample depths in KNR166-2-JPC80 (in
124 other words, we added 50 cm to the original depths in KNR166-2-JPC80; see Figure 2, left
125 inset). The offset in depth between the different types of cores is likely due to compression or
126 missing material at the top of the piston core.

127 Previous work on KNR166-2-GGC73 includes analyses of stable carbon and oxygen isotopes
128 in benthic and planktonic foraminifera (Lynch-Stieglitz et al., 1999a; Lynch-Stieglitz et al.,
129 2011) and seawater cadmium (Cd_w) and temperature (T) reconstructions using trace metal ratios
130 in the benthic foraminifer *Hoeglundina elegans* (Lu et al., 2024). All analyses of KNR166-2-
131 JPC80 are novel. KNR166-2-JPC80 sediment samples were wet sieved in a 63 μm sieve with
132 deionized water and the $>63 \mu\text{m}$ fraction was then dried in a 60°C oven.

133

134 Figure 2. (a.) The age model developed with BIGMACS (in age vs. depth space), with climate optima (peak
 135 interglacials) highlighted in dark red and cooler periods within each interglacial highlighted in light red (according
 136 to the limits described by Ezat et al., 2024, and Marcott et al., 2013). The grey envelope denotes the 1σ error on the
 137 age model. (b.) Downcore composite record of *P. ariminensis* $\delta^{18}\text{O}$ for KNR166-2-GGC73 and KNR166-2-JPC80.
 138 Note that the records are plotted vs Age (bottom axis), and the top axis for depth is non-linear and corresponds to the
 139 age model shown in panel a. Purple inverted triangles on the top axis indicate depths for which the age model is

140 substantiated by radiocarbon measurements while black crosses indicate prescribed age-depth ties (Table A). (c.)
141 Combined Intermediate North Atlantic (INA; Lisiecki & Stern, 2016) and LR04 (Lisiecki & Raymo, 2005) benthic
142 $\delta^{18}\text{O}$ stacks used to develop our age model. Inset figures describe overlap regions for (left) KNR166-2-GGC73 and
143 KNR166-2-JPC80, with and without the 50 cm shift applied to KNR166-2-JPC80; and (right) INA and LR04 stacks.
144

145 *2.2. Measurements of stable isotopes of carbon and oxygen*

146 Benthic foraminifera *Planulina ariminensis*, *Hoeglundina elegans*, and *Globobulimina spp.*
147 were picked from the $>250\text{ }\mu\text{m}$ size fraction of the entire composite core (hereafter KNR166-2-
148 GGC73/JPC80). Stable oxygen and carbon isotopic ratio data ($\delta^{18}\text{O}$ and $\delta^{13}\text{C}$, respectively) for
149 all samples of *P. ariminensis* and 51 out of 70 total samples of *Globobulimina spp.* were
150 acquired using a Thermo MAT 253 with Kiel carbonate preparation device at the Georgia
151 Institute of Technology (GT). Data for 19 replicate samples of *Globobulimina spp.* were
152 acquired using a Thermo MAT 253 stable isotope mass spectrometer with Kiel carbonate
153 preparation device at the University of Arizona (UA). At each sample depth, one to three *P.*
154 *ariminensis* tests and up to five *Globobulimina spp.* tests were analyzed singly. Along with the
155 sample analytes, NIST NBS-18 and NBS-19 carbonate standards were tested to track variability
156 between sets of samples and an in-house Carrara marble standard at GT (IAEA-603 was the in-
157 house standard at UA) to track variability within each individual set of samples. Analytical
158 precision for runs with samples below 50 μg ranges from 0.021‰ to 0.080‰ for $\delta^{18}\text{O}$ and
159 0.016‰ to 0.050‰ for $\delta^{13}\text{C}$. Analytical precision for samples above 50 μg ranges from 0.028‰
160 to 0.055‰ for $\delta^{18}\text{O}$ and 0.011‰ to 0.029‰ for $\delta^{13}\text{C}$. Seven samples that had either *P.*
161 *ariminensis* $\delta^{18}\text{O}$ or $\delta^{13}\text{C}$ exceeding 2 population standard deviations of a 5-point running median
162 were excluded from further analysis (including all calculations and figures), in addition to 1
163 sample of *Globobulimina spp.*, which constituted an outlier in both $\delta^{18}\text{O}$ and $\delta^{13}\text{C}$. See Table S1
164 for excluded data points.

165

166 *2.3. Age model development*

167 The BIGMACS MATLAB package (Lee et al., 2023) was used to construct an age model for
168 the composite core. Specifically, this software was used to fit the *P. ariminensis* $\delta^{18}\text{O}$ record
169 from KNR166-2-GGC73/JPC80 and previously-developed radiocarbon dates for KNR166-2-
170 GGC73 (Lynch-Stieglitz et al., 2009) to an Intermediate North Atlantic (INA) stack melded with
171 the LR04 benthic stack. The two stacks were fused in Marine Isotope Stage (MIS) 6 (Figure 2b.)

172 as the relevant INA benthic $\delta^{18}\text{O}$ stack is 150 kyr long, but magnetic susceptibility and P .
173 *ariminensis* $\delta^{18}\text{O}$ trends for KNR166-2-JPC80 suggest this core could capture up to MIS 6e,
174 which ended approximately 180 kyr before present (BP). As such, the fact that this age model is
175 based on two, spliced stacks only affects data older than 140 kyr (in other words, the age model
176 from the Holocene through the LIG is solely based on the INA stack). The parameters we input
177 include a maximum allowable sedimentation rate of 20 cm/kyr (as suggested by the magnetic
178 susceptibility record for this core) and a minimum allowable sedimentation rate of 0.125 cm/kyr
179 (as necessitated by the hiatuses apparent in the record during the last two glacial terminations;
180 see *Results*). 7 age-depth ties were prescribed upon visual inspection of the *P. ariminensis* $\delta^{18}\text{O}$
181 record. See Table A for fixed age-depth ties and their corresponding features in the isotope
182 record. Following Ezat et al. (2024), we define the Last Interglacial as the period between 117
183 kyr BP and 128 kyr BP and divide it into the Early Last Interglacial (ELIG; 128-123.5 kyr BP)
184 and the Late Last Interglacial (LLIG; 123.5-117 kyr BP). Similarly, we define the Holocene as
185 the period from 10 kyr BP to the present and divide it into the Early Holocene (EH; 10-5 kyr BP)
186 and the Late Holocene (LH; 5 kyr BP to the present) after Marcott et al. (2013). The average 1σ
187 error for our entire age model is ± 1.23 kyr, and this average error shrinks to ± 0.25 kyr for LIG
188 samples.

189

190 Table A. Prescribed ties between age and depth used for age model development, as inferred
191 from the *P. ariminensis* $\delta^{18}\text{O}$ record.

Composite Depth (cm)	Age prescribed (kyr BP)	Feature
449.75	82	MIS 5a Peak
489.75	87	MIS 5b Peak
549.75	96	MIS 5c Peak
613.75	109	MIS 5d Peak
737.75	117	MIS 5e Termination
937.75	128	MIS 5e Onset
941.75	139	TII Hiatus Onset

192

193 2.4. Measurements of trace metals

194 The ratio of cadmium to calcium (Cd/Ca) in the benthic foraminifer *Hoeglundina elegans*
195 from KNR166-2-GGC73/JPC80 was measured by first crushing and reductively and oxidatively
196 cleaning the samples following Boyle and Rosenthal (1996), and then using a Thermo Finnigan
197 Element2 Magnetic Sector Inductively Coupled Plasma-Mass Spectrometer at the Institute of
198 Alpine and Arctic Research, University of Colorado, Boulder (INSTAAR) according to the
199 methods of Marchitto (2006). The ratios of magnesium and lithium to calcium (Mg/Ca and
200 Li/Ca, respectively) in *H. elegans* from KNR166-2-GGC73/JPC80 were also measured at
201 INSTAAR and were used to calculate the ratio of magnesium to lithium (Mg/Li). With *H.*
202 *elegans* Mg/Li, past bottom-water T was estimated according to the polynomial calibration,
203 shown in Equation 1, that Marchitto et al. (2018) proposed:

204

205 (1)
$$\frac{Mg}{Li} = 0.150 + 0.0209 * T - 0.0002 * T^2$$

206

207 At each sample depth, one to twelve *H. elegans* fossils were analyzed together. *H. elegans*
208 Cd/Ca data previously gathered at Woods Hole Oceanographic Institution (WHOI) (Lu et al.,
209 2024) were corrected to the data generated at INSTAAR with the offsets calculated by Oppo et
210 al. (2023), with Equation 2:

211

212 (2)
$$\left(\frac{Cd}{Ca}\right)_{INSTAAR} = \left(\frac{Cd}{Ca}\right)_{WHOI} * 0.9863$$

213

214 Roughly two-thirds ($n = 42$) of the displayed trace metal data for KNR166-2-GGC73 were
215 developed at WHOI (Lu et al., 2024), and the remainder ($n = 20$) at INSTAAR. Analytical
216 precision for Cd/Ca is $\pm 2\%$ (1σ) based on consistency standards. In order to ensure data quality,
217 26 Mg/Li datapoints and 13 Cd/Ca datapoints from the full composite core (comprised of 216
218 measurements each of Mg/Li and Cd/Ca) are excluded from figures and calculations according
219 to the following criteria: all samples with less than 5 μg CaCO_3 were discarded, in addition to
220 Mg/Li datapoints calculated from Li/Ca or Mg/Ca outliers (Li/Ca above 6 $\mu\text{mol kg}^{-1}$ or below 3
221 $\mu\text{mol kg}^{-1}$; Mg/Ca above 2.5 mmol kg^{-1}), Cd/Ca outliers (above 0.1 $\mu\text{mol kg}^{-1}$), T reconstructions
222 $>4^\circ \text{C}$ above a 5-point running mean, and Cd_w reconstructions 2 population standard deviations
223 away from a 5-point running mean. These excluded data are tabulated in Table S1.

224

225

226 *2.5. Estimation of dissolved oxygen*

227 We reconstruct dissolved oxygen concentration ($[O_2]$) using the calibration proposed by
228 Hoogakker et al. (2025). This relationship, shown in Equation 3, yields bottom water $[O_2]$ as a
229 function of the gradient in $\delta^{13}C$ ($\Delta\delta^{13}C$) between the epibenthic foraminifer *Cibicidoides*
230 *wuellerstorfi* and the infaunal foraminifer *Globobulimina* spp. (Hoogakker et al., 2025):

231

232 (3) $\Delta\delta^{13}C = 0.011 * [O_2] + 0.093$

233

234 The epibenthic foraminifer *Cibicidoides wuellerstorfi* resides at the sediment-water interface
235 and thus draws the carbon it incorporates to construct its carbonate test directly from dissolved
236 inorganic carbon (DIC) in the bottom-water (Lutze & Thiel, 1989). *Globobulimina* spp. resides
237 at the oxic/anoxic boundary in the sediment (Hoogakker et al., 2015), so it is assumed that all
238 respiration between *C. wuellerstorfi* and *Globobulimina* spp. is aerobic. Aerobic respiration in
239 the sediment between these benthic foraminifera releases isotopically light DIC into the
240 interstitial fluid, which is eventually utilized by *Globobulimina* spp. to calcify, hence the lower
241 $\delta^{13}C$ observed for *Globobulimina* spp. than *C. wuellerstorfi* (Figure 3b.). The change in
242 porewater DIC between the habitats of *C. wuellerstorfi* and *Globobulimina* spp. is roughly
243 linearly related to the amount of oxygen in the bottom-water (Equation 3), with a reported R^2
244 correlation of 0.78 (Vollmer et al., 2022). While this calibration was originally created using the
245 epifaunal foraminifer *C. wuellerstorfi*, this species is not present in sufficient mass throughout
246 the studied sediment cores. *P. ariminensis* is plentiful in these sediment cores and, like *C.*
247 *wuellerstorfi*, has been shown to be an elevated foraminifer that also accurately reflects seawater
248 $\delta^{13}C$ (Lutze & Thiel, 1989; Slowey & Curry, 1995). Following a previous study in the region
249 (Lynch-Stieglitz et al., 2024), here we use *P. ariminensis* instead of *C. wuellerstorfi* when
250 calculating $\Delta\delta^{13}C$.

251 Previous studies suggest the $\Delta\delta^{13}\text{C}$ proxy may be confounded by processes such as anaerobic
252 respiration occurring in the sediment above the habitat depth of *Globobulimina* spp. Several
253 species of *Globobulimina* spp. have been shown to denitrify (Nomaki et al., 2015), meaning they
254 could conceivably reside below the sedimentary oxic/anoxic boundary. In this case, sulfate and
255 nitrate reduction above the calcification habitat of *Globobulimina* spp. would release low- $\delta^{13}\text{C}$
256 DIC into the porewaters occupied by *Globobulimina* spp. without impacting $[\text{O}_2]$, thus
257 weakening the correlation between bottom water oxygenation and $\Delta\delta^{13}\text{C}$. Hoogakker et al.
258 (2025) discussed this possible hindrance to the proxy and remark that as yet no evidence
259 indicates that this is a behavior demonstrated by *Globobulimina* spp. Sedimentary carbonate
260 dissolution could also affect $\delta^{13}\text{C}$ of porewater DIC independently of $[\text{O}_2]$, but the waters
261 overlying the studied core site demonstrate a calcite saturation state of 70 (Bryan & Marchitto,
262 2008), so we do not consider this a significant hindrance to using the $\Delta\delta^{13}\text{C}$ proxy.

263 At one point during MIS 6 (at composite depth 997.75 cm), *P. ariminensis* $\delta^{18}\text{O}$ was an
264 outlier, so *P. ariminensis* $\delta^{18}\text{O}$ and $\delta^{13}\text{C}$ were excluded. Because there was still a *Globobulimina*
265 $\delta^{13}\text{C}$ measurement at this point, we used an average of the *P. ariminensis* $\delta^{13}\text{C}$ of one sample
266 immediately above and below the excluded point in the oxygen calculation. This datapoint is
267 dated to MIS 6 and does not impact our conclusions related to the LLIG.

268 2.6 *Calculation of Cd_w, phosphate, and apparent oxygen utilization*

269 Dissolved cadmium has a labile nutrient-like profile in seawater, with low values in warm
270 surface waters and higher concentrations in the deep ocean (Boyle et al., 1976). Seawater
271 cadmium concentration has been shown to correlate closely with phosphate concentration, with a
272 slightly nonlinear relationship (Elderfield & Rickaby, 2000; Middag et al., 2018; Roshan and
273 DeVries, 2021). The curvature of this relationship, with lower seawater Cd/P at low $[PO_4^{3-}]$,
274 appears to be related to regional differences in the Cd/P of phytoplankton and its subsequent
275 remineralization. If those ratios were different during the past, we might expect slight changes in
276 the seawater Cd/P curvature, leading to minor errors in reconstructed P. Of potentially greater
277 importance, Cd has been shown to be removed by CdS precipitation in anoxic sediments,
278 impacting the global seawater Cd budget and theoretically affecting global ocean Cd/P. The
279 impact of glacial/interglacial oscillations in the extent of anoxic sediments would be muted by
280 the relatively long oceanic residence time of Cd (tens of kyr; Little et al., 2015). We have no
281 reason to suspect a long-term trend in ocean anoxia that would cause whole ocean Cd to drift
282 from MIS 5e toward the present.

283 Seawater Cd concentration has also been shown to be recorded by the ratio of cadmium to
284 calcium in benthic foraminiferal carbonate (e.g., Boyle, 1992). The benthic species *Hoeglundina*
285 *elegans* incorporates Cd and Ca into its aragonitic test in a similar ratio to the contemporary local
286 seawater Cd/Ca (a partition coefficient of 1; Boyle et al., 1995). Some evidence from calcitic
287 benthic foraminifera suggests that Cd/Ca partition coefficients are reduced in waters that are
288 undersaturated with respect to calcite (McCorkle et al., 1995; Marchitto et al., 2005). However,
289 as stated, the waters bathing the core site studied herein are highly supersaturated today (calcite
290 saturation state is 70, aragonite saturation state is 44; Bryan & Marchitto, 2008), so dissolution is
291 not a major concern for Cd/Ca. *H. elegans* is also immune to the manganese carbonate
292 overgrowths that can lead to diagenetically elevated Cd/Ca in calcitic foraminifera (Boyle,
293 1983). This makes *H. elegans* Cd/Ca an effective tool for reconstructing past seawater Cd/Ca
294 and, by extension, past seawater $[PO_4^{3-}]$, with demonstrated success in the Florida Straits and
295 Bahama Banks (e.g., Marchitto et al., 1998; Bryan and Marchitto, 2010; Vollmer et al., 2022;
296 Lynch-Stieglitz et al., 2024; Valley et al., 2019; Valley et al., 2017).

297
298

299

300 To calculate seawater cadmium concentration (Cd_w), benthic Cd/Ca ($\mu\text{mol mol}^{-1}$) was first
301 converted to seawater Cd/Ca according to Equation 4:

302

303
$$(4) D_{Cd} = \frac{\frac{Cd_{foram}}{Ca_{foram}}}{\frac{Cd_w}{Ca_w}}$$

304

305 where D_{Cd} , the empirical partition coefficient, described above, is assumed to be 1 for *H.*
306 elegans (Boyle et al., 1995), and seawater calcium concentration (Ca_w) is conventionally
307 assumed to 0.01 mol kg⁻¹ (Boyle, 1992). With the Cd_w trend (Figure 3c.), past phosphate
308 concentration ($[PO_4^{3-}]$) was calculated using the equation from Vollmer et al. (2022):

309

310
$$(5) [PO_4^{3-}] = \frac{3.3 \mu\text{mol kg}^{-1}}{\left[\left(\frac{1.2 \text{ nmol kg}^{-1}}{Cd_w} - 1 \right) * \alpha^{-1} \right] + 1}$$

311

312 where $\alpha = 2.5$ for the Atlantic Ocean (Elderfield and Rickaby, 2000). The 1σ error for this
313 calculation is 0.3 $\mu\text{mol kg}^{-1}$ (Vollmer et al., 2022).314 Oxygen saturation was calculated using the Gibbs SeaWater Oceanographic Toolbox,
315 assuming no change in upper ocean salinity during the LLIG relative to the LH. AOU was
316 calculated according to Equation 6:

317

318
$$(6) AOU = [O_2]_{sat} - [O_2]_{measured}$$

319

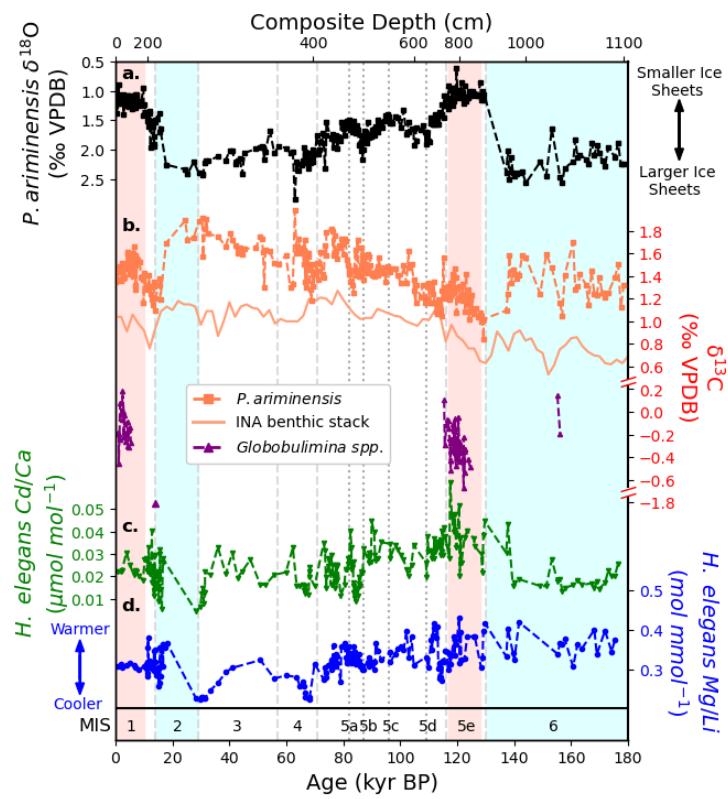
320 where $[O_2]_{sat}$ is the saturation oxygen concentration and $[O_2]_{measured}$ is the value yielded by
321 the $\Delta\delta^{13}\text{C}$ proxy. Error for AOU is the product of compounding errors in the $\Delta\delta^{13}\text{C}$ proxy ($1\sigma \approx$
322 20 $\mu\text{mol kg}^{-1}$) and the T proxy on which $[O_2]_{sat}$ is based ($1\sigma = 1.3^\circ \text{C}$; Marchitto et al., 2018), and
323 we estimate 1σ error for AOU to be about 34.3 $\mu\text{mol kg}^{-1}$.324 To calculate remineralized phosphate (P_{remin}), we multiply the derived AOU by the Redfield
325 ratio for P:O₂, which we assume to be 1:-170 (Anderson & Sarmiento, 1994) and constant over
326 time. The approximation of P_{remin} using AOU is under some scrutiny due to its assumption of

327 oxygen saturation upon water mass formation, when in reality many water masses of high
328 latitude origin form while undersaturated with respect to oxygen due to upward mixing of
329 oxygen-poor thermocline waters and surface heat flux (Ito et al., 2004). So, our estimate for
330 P_{remin} serves as an upper bound for this value. The estimate for P_{remin} is combined with estimates
331 of seawater $[\text{PO}_4^{3-}]$ to deconvolve the changes in remineralized and preformed fractions from the
332 seawater nutrient record we developed (see *Discussion*).

333

334 3. Results

335

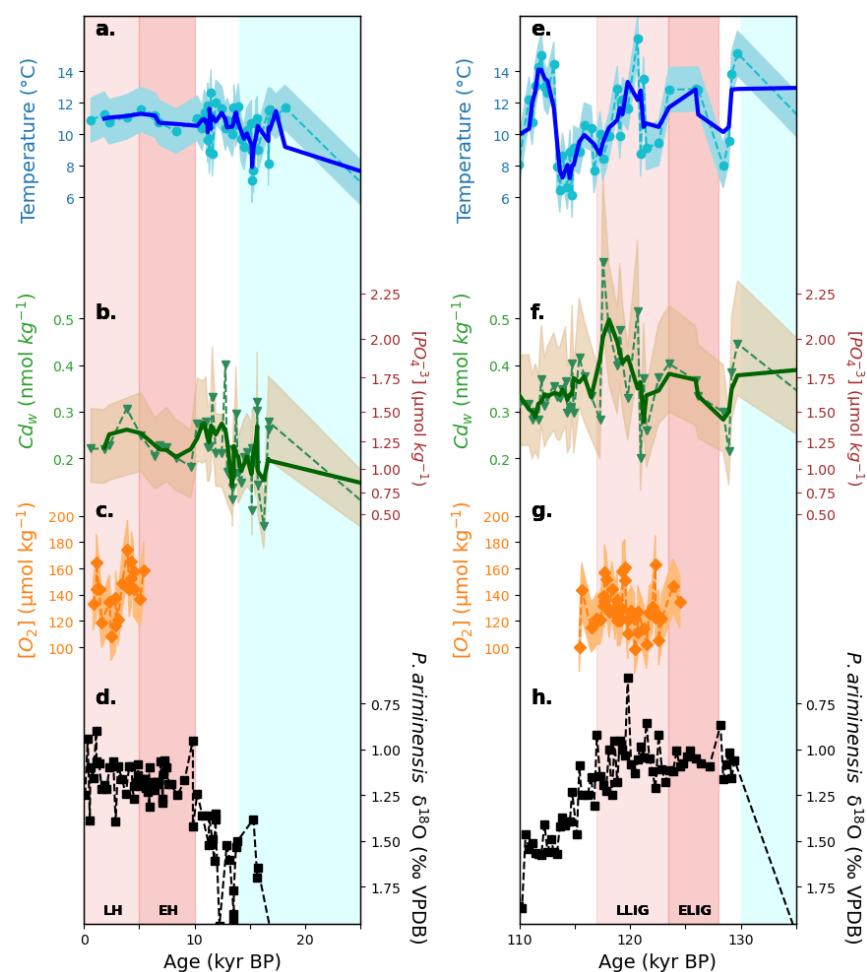

336 Largely, our results follow expected trends across glacial-interglacial boundaries (Figure
337 3). The magnitude of change in *P. ariminensis* $\delta^{13}\text{C}$ from the onset of MIS 5e to the end of MIS
338 5e is consistent with other records from the intermediate depth North Atlantic (e.g., the INA $\delta^{13}\text{C}$
339 stack; Lisiecki et al., 2010), and the same is true for MIS 1 (Figure 3b.). This consistency is
340 weaker but still clear for MIS 2-5a, with the greatest deviation from our record and the stack
341 being clear during full glacial periods MIS 2 and 6. As expected from previous work in the
342 Florida Straits, Cd/Ca is lower in glacial periods than in interglacial periods, owing to the shift in
343 Florida Straits mixing ratios caused by a weakening AMOC that results in a greater volume of
344 low-nutrient NCW bathing the core site in colder periods (Valley et al, 2017).

345 Our coretop reconstructions of T (Figure 4a.), $[\text{PO}_4^{3-}]$ (Figure 4b.), and $[\text{O}_2]$ (Figure 4c.)
346 strengthen confidence in our records as they show good agreement with measurements of
347 modern seawater: the modern bottom-water T at this coresite is 10.8°C (Bryan and Marchitto,
348 2010), which falls within the 68% confidence interval, $10.9 \pm 1.4^\circ\text{C}$, of our uppermost Mg/Li-
349 based T estimate; the modern bottom-water $[\text{PO}_4^{3-}]$ at this coresite is approximately $1.49 \mu\text{mol}$
350 kg^{-1} , which falls within the 68% confidence interval, $1.19 \pm 0.3 \mu\text{mol kg}^{-1}$, of our uppermost
351 Cd/Ca-based $[\text{PO}_4^{3-}]$ estimate; and the modern bottom-water $[\text{O}_2]$ at this core site is
352 approximately $150 \mu\text{mol kg}^{-1}$, which falls within the 68% confidence interval, $133 \pm 19.9 \mu\text{mol}$
353 kg^{-1} , of our uppermost $\Delta\delta^{13}\text{C}$ -based $[\text{O}_2]$ estimate. Because our records comprise the longest
354 record of intermediate-depth Atlantic Cd_w that we are aware of, there unfortunately is no
355 reference point against which we can compare our Last Interglacial data to evaluate its accuracy.

356 There is an apparent hiatus in the core during the penultimate deglaciation (TII), as
357 inferred from the sharp jump in *P. ariminensis* $\delta^{18}\text{O}$ and an analogous event during the last

358 deglaciation, where the hiatus is constrained by radiocarbon dates (Lynch-Stieglitz et al., 2009;
 359 Figure 2b. herein). It is not immediately clear how much time is missing from the record for the
 360 deeper hiatus, but the roughly 0.3‰ decline in $\delta^{18}\text{O}$ between 1049.75 cm and 1053.75 cm
 361 (Figure 2b.) that is characteristic of the MIS 6c/6d boundary (Figure 2c.) indicates that the
 362 portion of the core below the hiatus is likely to be MIS 6. Because the record does not resolve the
 363 steady increase in $\delta^{18}\text{O}$ directly before the penultimate deglaciation that benthic stacks describe
 364 (see Figure 2, right inset), but it does resolve a flat $\delta^{18}\text{O}$ signature characteristic of MIS 6b
 365 immediately before the deglaciation, we posit that the hiatus includes both part of the
 366 penultimate deglaciation and MIS 6a (Sun & An, 2005), with approximately 10 kyr lost from the
 367 record.

368



369
 370 Figure 3. Results from the composite of cores KNR166-2-GGC73 and KNR166-2-JPC80. (a.) $\delta^{18}\text{O}$ of
 371 *Planulina ariminensis*. (b.) $\delta^{13}\text{C}$ of *P. ariminensis* (orange squares), the INA benthic $\delta^{13}\text{C}$ stack (light orange solid
 372 line; Lisiecki et al., 2010), and *Globobulimina spp.* (purple triangles). (c.) Cd/Ca of *H. elegans*. (d.) Mg/Li of *H.*
 373 *elegans*. Top (non-linear) x-axis denotes depth in the sediment cores and bottom x-axis denotes age before the
 374 present. Red shading designates full interglacial (sub)intervals, Marine Isotope Stages 1 and 5e, while blue shading
 375 designates full glacial intervals, MIS 2 and 6. Vertical, dashed lines denote boundaries of Marine Isotope Stages,
 376 which are labeled at the bottom of the figure. Vertical dotted lines denote the peaks of the subintervals of MIS 5

377 (Lisiecki & Raymo, 2005), also labeled at the bottom of the figure. Note the breaks in the $\delta^{13}\text{C}$ axis in (b.). All
 378 replicate samples are plotted.

379
 380 During the LLIG, Cd_w ($n = 10$) was approximately 61% greater than the LH average ($n = 4$)
 381 (Figure 4, b. & f.), with an absolute change of about $0.149 \text{ nmol kg}^{-1}$. This corresponds to an
 382 increase of $0.53 \mu\text{mol kg}^{-1}$ in $[\text{PO}_4^{3-}]$ from the LH to the LLIG (see *Methods*). Average LLIG
 383 $[\text{O}_2]$ ($n = 39$) was about 9% lower than the LH average ($n = 17$) (Figure 4, c. & g.), with an
 384 absolute change of about $13.0 \mu\text{mol kg}^{-1}$.

385

386
 387 Figure 4. Comparison of trends for the period 0-25 kyr BP and 110-135 kyr BP of (a., e.) Mg/Li-derived
 388 temperature, in degrees Celsius ($^{\circ}\text{C}$; blue circles); (b., f.) seawater cadmium concentration with secondary, non-
 389 linear axis depicting seawater phosphate estimate (Elderfield & Rickaby, 2000; inverted green triangles); (c., g.)
 390 estimated seawater oxygen concentration (orange diamonds); and (d., h.) *P. ariminensis* $\delta^{18}\text{O}$ (black squares). Dark
 391 red shading indicates climate optima within peak interglacial periods and light red shading indicates cooler portions
 392 of peak interglacial periods, all of which are labeled at the bottom of the figure. Light blue shading indicates full

393 glacial periods. In all subfigures, dashed lines connect consecutive raw datapoints; solid, dark lines signify a
394 centered, three-point running mean (where applicable); and light shading signifies the 1σ error of the calibration
395 (where applicable). Note that the beige shading in (b.) and (f.) shows the 1σ error of the conversion from Cd_w to
396 $[\text{PO}_4^{3-}]$. Also, note that the linear O_2 axis in (c.) and (g.) is approximately scaled to the non-linear axis for $[\text{PO}_4^{3-}]$ in
397 (b.) and (f.) according to the assumed Redfield Ratio for these species. LH = Late Holocene; EH = Early Holocene;
398 LLIG = Late Last Interglacial; ELIG = Early Last Interglacial.

399

400 4. Discussion

401

402 A number of factors could have contributed independently to the observed enrichment of Cd
403 during the Late LIG. In sections 4.1 – 4.4, we discuss four hypotheses to explain this
404 observation: an increase in upward mixing of high-nutrient abyssal waters, an increase in
405 remineralization in the water masses bathing KNR166-2-GGC73/JPC80, a change in AMOC
406 strength which would directly impact Florida Straits isopycnal tilt (Lynch-Stieglitz et al., 1994),
407 and a change in preformed nutrient concentration of the water masses bathing KNR166-2-
408 GGC73/JPC80.

409

410 4.1 Increased nutrient import from diapycnal mixing

411 We first explore the possibility that high LLIG bottom-water nutrient concentration in the
412 Florida Straits could have been the result of changes in ocean mixing and argue that this is
413 unlikely to have been the case. The upward mixing of high-nutrient abyssal waters is currently a
414 major source of nutrients to the surface (Fripiat et al., 2021), and a change in the rate of this
415 mixing could explain our results. Little evidence exists referring to a difference in tidal mixing
416 (which is the main driver of the incorporation of deep waters into the upper ocean) between the
417 Late LIG and the Late Holocene. However, sea level was higher throughout the LIG than the
418 Holocene (Veeh, 1966). This would mean the area of underwater continental shelves would have
419 been more expansive in the LIG, and thus more tidal mixing would take place in these shallow
420 regions than in the deep ocean. The opposite trend has been used to explain greater deep mixing
421 during the Last Glacial Maximum (LGM; ca. 20 kyr BP) (e.g., Egbert et al., 2004; Green et al.,
422 2009), driven by sea levels approximately 100 m below the modern. We assume, based on
423 marginally higher sea levels during the Late LIG than the Late Holocene, a similar degree of
424 vertical mixing between the deep and intermediate ocean. Furthermore, a benthic foraminiferal

425 Cd/Ca record from the deep South Atlantic shows very similar averages for the LIG and the
426 Holocene, suggesting Atlantic deep water Cd_w was comparable during these periods (Oppo and
427 Rosenthal 1994). Thus, the similar degree of vertical mixing coupled with unchanged deep
428 nutrient levels likely did not give rise to an increase in the amount of nutrients mixed upward in
429 the LIG.

430

431 *4.2 Increased remineralization in the water column*

432 We now consider whether the high LLIG nutrient concentration in the Florida Straits was a
433 result of stronger remineralization and again find that this is not the likely mechanism.

434 The nutrient load of the intermediate and deep waters that feed the tropical surface ocean can
435 be divided into ‘preformed’ and ‘remineralized’ components. Preformed nutrients are present in
436 their dissolved, ionic form in the water mass upon formation, and in the case of the intermediate
437 and deep waters characteristic of the tropical Atlantic, this formation takes place in the North
438 Atlantic or the Southern Ocean. Nutrient concentration in the water mass formation region, and
439 thus preformed nutrient concentration, is determined by the ratio of surface nutrient utilization to
440 nutrient supply in the formation region. This ratio is controlled by an array of factors including
441 (but not limited to) sea ice cover, surface water residence times, and terrigenous dust delivery
442 (Boyd et al., 2001; Robinson et al., 2005). When surface nutrient utilization increases at a rate
443 slower than the concomitant increase in nutrient supply to the surface, the fraction of surface
444 nutrient utilization (that is, nutrients consumed divided by nutrients supplied) decreases, and
445 preformed nutrients increase, as more nutrients remain in the water mass as it mixes into the
446 interior.

447 Remineralized nutrients are released into the water mass throughout its time in the ocean
448 interior via the decomposition of biomatter. The remineralized component of nutrients in a water
449 mass may change due to a difference in the biomatter rain rate from the surface, or an alteration
450 in the speed or path of the lower ocean water mass; all of these factors could change the total
451 quantity of biomatter available for respiration, as well as the chemical pathway through which
452 that matter is respired (Deutsch & Weber, 2012, and references therein), thereby impacting the
453 quantities of dissolved, ionic nutrients released by remineralization.

454 Because the cores studied herein were collected on the Bahamas side of the Florida Straits,
455 and the modern mixing of Subantarctic Mode Water and Northern Component Water occurs at

456 this location (among others in the North Atlantic) (Xu et al., 2022), we can use this data to
457 understand both changes in endmember properties and the mixing regime of NCW and SAMW.
458 Compared to SAMW, NCW is a water mass with moderately higher oxygen (approx. 180 μmol
459 kg^{-1} ; Xu et al., 2022), similar temperature (roughly 10°C), similar salinity (roughly 35 psu), and
460 lower nutrient content than SAMW. On the other hand, SAMW is a part of the southern-sourced
461 waters that contribute to the upper limb of the Atlantic Meridional Overturning Circulation and is
462 instrumental in the northward flux of nutrient-replete, cool, low oxygen (approx. 140 $\mu\text{mol kg}^{-1}$;
463 Xu et al., 2022), low salinity waters from the Antarctic and Subantarctic Zones of the Southern
464 Ocean to the North Atlantic.

465 Heightened remineralization in NCW and/or SAMW upstream of the Florida Straits in the
466 Late LIG relative to the Late Holocene would increase the nutrient contents of these water
467 masses, thus causing an increase in the nutrient supply to the Florida Straits during the LLIG,
468 which could explain our results. An increase in aerobic remineralization would also necessitate
469 greater oxygen utilization in the water masses before they reach KNR166-2-GGC73/JPC80,
470 however our calculated AOU is only slightly higher in the Late LIG than in the Late Holocene:
471 our estimate for LLIG AOU is 13.3 $\mu\text{mol kg}^{-1}$ ($1\sigma = 34.3 \mu\text{mol kg}^{-1}$) greater than our estimate for
472 LH AOU. When applied to the Redfield Ratio for O₂:P (which we take as -170:1), we calculate a
473 maximum (see *Methods*) difference in P_{remin} of $0.078 \pm 0.202 \mu\text{mol kg}^{-1}$ between the LH and the
474 LLIG. Considering our estimates of average [PO₄³⁻] in the LLIG and LH, we infer that changes
475 in biological remineralization can account for $15 \pm 38\%$ of the measured change in Cd_w. This
476 non-negligible signal (with an error spanning 0) indicates that another mechanism is likely
477 responsible for most of the change in Cd_w that we reconstruct. Furthermore, an increase in
478 remineralized nutrients during the LLIG is consistent with increased preformed nutrients as
479 preformed nutrients in intermediate waters fuel tropical surface productivity (Sarmiento et al.,
480 2004), which rains biomatter that is respired in the ocean interior, ultimately producing
481 remineralized nutrients in those same intermediate waters. By this mechanism, preformed
482 nutrients are transformed into remineralized nutrients, and so an increase in preformed nutrients
483 would lead to a rise in remineralized nutrients, as well (Palter et al., 2010).

484

485 *4.3 Altered Last Interglacial AMOC*

486 We now consider whether changes in AMOC could have produced the higher LLIG nutrient
487 concentrations and again suggest that this hypothesis is insufficient to explain our results. As
488 stated above, because of the role of SAMW in the upper limb of AMOC, its prevalence
489 throughout the North Atlantic is tied to the production of North Atlantic Deep Water (NADW):
490 when NADW production is great (strong AMOC), compensatory northward SAMW flow is
491 great, and vice versa (Bryden et al., 2011). So, when AMOC is strong, SAMW will account for a
492 greater fraction of the water bathing the Florida Straits core site, while when AMOC is weak,
493 NCW will dominate the bottom water of this core site. These changes in Florida Straits bottom
494 water are evident in past reconstructions of nutrient concentration through the last deglaciation
495 (Valley et al., 2017), dissolved oxygen through the Younger Dryas (ca. 12 kyr BP; Lynch-
496 Stieglitz et al., 2024), and temperature through the LGM (Valley et al., 2019). If AMOC had
497 been significantly stronger during the LLIG than during the LH, more SAMW would have been
498 imported into the North Atlantic. Under this scenario, the properties at the bottom of the Florida
499 Straits and the location of KNR166-2-GGC73/JPC80 would have been closer to those of SAMW
500 than NCW. As SAMW is the nutrient-rich endmember, an AMOC strengthening could have
501 increased the nutrient supply to KNR166-2-GGC73/JPC80, so it is conceivable that this could
502 explain the reconstructed Cd_w enrichment during the LLIG.

503 Conversely, a weaker AMOC state during the LLIG could also be a possible explanation for
504 the Cd_w enrichment. A weaker AMOC state would cause a slowing of the geostrophic flow
505 through the Florida Straits (Weiffenbach et al., 2023), meaning the SAMW, which under strong
506 AMOC conditions primarily abuts the western side of the Straits, would disperse eastward,
507 causing the slopes of the isopycnals spanning the Straits to flatten. This change in isopycnal
508 steepness is evident in the fossil record during events when AMOC is presumed to be weaker
509 than today, such as the Younger Dryas (Lynch-Stieglitz et al., 1994; Lynch-Stieglitz et al., 2024).
510 As KNR166-2-GGC73/JPC80 is on the opposite side of the Florida Straits from the center of the
511 SAMW tongue in the region (Xu et al., 2022), a weakening of AMOC would cause the
512 horizontal extent of the SAMW tongue to grow in the direction of KNR166-2-GGC73/JPC80.
513 Thus, due to the weakened tilt alone—and not considering any change in the amount of SAMW in
514 the region—a weakening of AMOC during the LLIG relative to the LH could also increase the

515 fraction of southern-sourced water at this core site, thus explaining the difference in Cd_w between
516 these periods.

517 However, it does not appear that the LLIG AMOC was significantly different from its Late
518 Holocene state. Böhm et al. (2015) presented records of ε Nd and $^{231}\text{Pa}/^{230}\text{Th}$ from the deep
519 Bermuda Rise which extend from the present to MIS 6. According to these records, mean
520 $^{231}\text{Pa}/^{230}\text{Th}$ is identical during the LH ($\mu = 0.056, n = 10$) and the LLIG ($\mu = 0.056, n = 9$),
521 indicating deep water flow speed was similar during these two periods, one sign that AMOC was
522 not significantly different (Böhm et al., 2015). ε Nd is also similar on average between the LLIG
523 ($\mu = -13.19, n = 10$) and the LH ($\mu = -14.05, n = 6$). Furthermore, the records of LLIG
524 foraminifera and diatom assemblages from the Nordic Seas presented by Ezat et al. (2024)
525 indicate that AMOC-driven freshwater export during the LLIG was extremely similar to the
526 Holocene average, suggesting similar AMOC activity. This notion of similar AMOC strength in
527 the LLIG and the LH is also largely supported by records of benthic $\delta^{13}\text{C}$ in the Nordic Sea
528 overflow and the deep Caribbean Sea developed by Galaasen et al. (2014, 2020) and Oppo &
529 Fairbanks (1990), respectively, although these records suggest a marginally weaker AMOC state
530 in the LLIG than the LH. Finally, Guihou et al. (2011) developed records of $^{231}\text{Pa}/^{230}\text{Th}$ in a
531 North Atlantic depth transect to show high agreement in AMOC state between the LIG and the
532 Holocene. In light of these records, we conclude that the available evidence suggests the ratio of
533 southern-sourced to northern-sourced waters in the Florida Straits was similar during the LLIG
534 and the LH. Thus, we reject the AMOC hypothesis as a primary explanation for our observed
535 increase in nutrient supply to the Florida Straits core site.

536

537 *4.4 Increased preformed nutrients in endmembers of mixing*

538 In the absence of large changes in regenerated nutrient content or the mixing ratio of SAMW
539 and NCW in the Florida Straits, we turn to a change in the preformed nutrient load of one or both
540 endmembers of mixing to explain the observed variation in Cd_w between the LLIG and the LH.

541

542 *4.4.1 P_{pre} enrichment in the LLIG Atlantic*

543 First, we examine a record of North Atlantic surface productivity during the LLIG and find
544 that the little existing evidence indicates NCW P_{pre} may not have differed substantially during
545 the LLIG and the LH. Thibodeau et al. (2017) presented a record of bulk sedimentary $\delta^{15}\text{N}$ in the

546 polar North Atlantic. $\delta^{15}\text{N}$ is a tracer of nutrient utilization such that lower $\delta^{15}\text{N}$ suggests a
547 poorer degree of nitrate consumption by primary producers, resulting in a more abundant supply
548 of dissolved nitrate, which is conducive to greater kinetic fractionation of nitrogen isotopes
549 during nitrate assimilation. This polar record shows a decrease of $<1\text{\textperthousand}$ from the LH to the LLIG,
550 indicating little to no difference in nutrient utilization between these periods. These surface
551 waters contribute to the deep winter mixed layer in the subpolar North Atlantic which forms
552 Subpolar Mode Water, which is the principal component of NCW at our core site, according to
553 the local bottom water density of $\sigma_0 \approx 27.0 \text{ kg m}^{-3}$. The other water masses which we recognize
554 could contribute to NCW, Mediterranean Water and North Atlantic Central Water, both currently
555 form from low-nutrient surface waters, so we assume the preformed nutrient fractions therein
556 were not different during the LLIG. Thus, the record of Thibodeau et al. (2017) supports similar
557 P_{pre} in the northern-sourced endmember of mixing in the Florida Straits during the LLIG. So, we
558 invoke a change in P_{pre} of SAMW to explain the higher Cd_w observed in the Florida Straits
559 during the LLIG.

560 There is evidence from the region where SAMW forms which supports higher preformed
561 nutrients in this water mass. While few studies focusing on primary productivity in the Southern
562 Ocean have explicitly discussed differences in biogeochemistry between the LLIG and the LH,
563 many published records do capture both of these periods, and they show appreciable changes in
564 factors such as $\delta^{15}\text{N}$ and biogenic opal flux in regions important to SAMW formation,
565 specifically the Antarctic Zone (AZ) and the Subantarctic Zone (SAZ). The AZ is where primary
566 productivity takes place in the surface waters that form SAMW before these waters mix
567 downward in the wintertime SAZ to form SAMW. Robinson and Sigman (2008) presented
568 records of diatom-bound $\delta^{15}\text{N}$ and $\delta^{18}\text{O}_{\text{opal}}$ from an Atlantic sediment core in the AZ. These
569 records point to lower $\delta^{15}\text{N}$ (poorer nutrient utilization) and higher $\delta^{18}\text{O}_{\text{opal}}$ (denser surface water)
570 during the LLIG than the LH. Furthermore, a biogenic opal flux record from the Atlantic AZ
571 demonstrates higher export productivity during the LLIG than the LH (Jaccard et al., 2013). The
572 $\delta^{18}\text{O}_{\text{opal}}$ record indicates an increase in surface density in the AZ during the LLIG relative to the
573 LH, arguing for decreased surface isolation and thus lower residence time of the upper Southern
574 Ocean. Lower surface residence time would hinder the ability of primary producers to consume
575 the nutrient supply from upwelling to completion before the water mass leaves the photic zone.
576 A lower surface residence time might also decrease the degree of oxygen saturation and lead to

577 an overestimation of P_{remin} when calculated using AOU (Ito et al., 2004). With a lower degree of
578 nutrient utilization would come a greater concentration of dissolved nutrients left in the surface
579 waters as the SAMW forms (*i.e.*, greater P_{pre}). Broader LLIG biogenic opal deposition (Jaccard
580 et al., 2013) bolsters this conclusion, revealing that the downturn in nutrient utilization was not
581 driven by lower absolute productivity in the LLIG relative to the LH, but rather an increase in the
582 surface nutrient supply and/or a decrease in the surface residence time.

583 Evidence from the SAZ, where SAMW last sees the surface before mixing downward, does
584 not directly support or refute these conclusions. For instance, Martínez-García et al. (2014)
585 developed records of iron flux, foraminifera-bound $\delta^{15}\text{N}$, and alkenone flux from the Atlantic
586 SAZ, and found a roughly 0.5‰ enrichment in $\delta^{15}\text{N}$ during the LLIG relative to the LH, with
587 little change in alkenone flux (an export productivity proxy based on the deposition of
588 biomarkers produced by prymnesiophytes). This could indicate that waters leaving the SAZ
589 would have approximately the same P_{pre} in the LLIG as in the LH, disagreeing directly with the
590 preformed nutrients hypothesis. However, Sigman et al. (2021) argued that a change in SAMW
591 P_{pre} could be achieved with changes in nutrient utilization in either the SAZ or the AZ (assuming
592 little change in the other region), or a change in the strength of the upwelling in this region.
593 Hence, the lack of support offered by the limited data from the Atlantic SAZ does not necessarily
594 disprove the preformed nutrients hypothesis.

595

596 *4.4.2 P_{pre} enrichment in the LLIG Indo-Pacific and causes thereof*

597 Evidence of SAMW P_{pre} enrichment during the LLIG is not limited to the Atlantic sector of
598 the Southern Ocean, and in this section, we discuss records from the Indo-Pacific which support
599 this notion and help clarify the mechanism underlying this change in nutrient cycling. Studer et
600 al. (2015) presented records of diatom-bound $\delta^{15}\text{N}$, opal flux, and Ba/Fe (another export
601 productivity proxy) from the Pacific sector of the AZ which show approximately equal $\delta^{15}\text{N}$
602 during the LLIG and the LH with markedly higher values for opal flux and Ba/Fe during the
603 LLIG. As in the Atlantic records, these records indicate that greater absolute productivity was
604 required to achieve a similar (or poorer) level of nutrient consumption in the AZ during the
605 LLIG, which suggests that the nutrient supply to the surface was greater then, that the surface
606 residence time was shorter, and thus that the absolute quantity of nutrients left unconsumed
607 during water mass formation (*i.e.*, preformed nutrients) was greater in the LLIG.

Furthermore, Ai et al. (2024) used a meridional transect of cores in the South Indian Ocean to indicate that the latitudes of Antarctic Circumpolar Current (ACC) fronts were up to 2° poleward of their Holocene averages during the LLIG. Numerous climate models and reconstructions of past climate conditions (e.g., Barnes & Polvani, 2013; Gray et al., 2023) suggest that a close relationship exists between the latitudes of ACC fronts and that of the Southern Westerly Winds (SWW), such that a poleward shift in one occurs concomitantly with a poleward shift of similar magnitude in the other. Furthermore, these same climate models indicate that the latitude of the SWW is tightly correlated to the strength of the SWW, such that a poleward shift in the SWW is coincident with a strengthening of the SWW (Gray et al., 2023). While the magnitude of the shift in ACC latitude that Ai et al. (2024) reconstructed may not have been homogeneous across the Indian, Pacific, and Atlantic sectors of the Southern Ocean, little evidence of ACC front paleolatitude exists in the Atlantic through the LLIG, so we still take this estimate as a reflection of the direction of change in the Atlantic at the same time. We use this poleward shift in ACC latitude with the aforementioned relationships between ACC latitude and SWW latitude, and between SWW latitude and SWW strength, to infer that, during the LLIG, the SWW were farther poleward and thus stronger. This would have two direct impacts on the Southern Ocean system: 1) strengthening of the ACC; and 2) reinforcement of Ekman upwelling, resulting in a greater rate of overturning. Lamy et al. (2024) used sedimentary sortable silt fractions from sediment cores in the Pacific sector of the Southern Ocean to reconstruct ACC strength and found that the ACC was upwards of 20% stronger during the LLIG than its LH average. Furthermore, the record of greater $\delta^{18}\text{O}_{\text{opal}}$ in the Atlantic AZ during the LLIG (Robinson & Sigman, 2008) suggests poorer surface stratification, possibly driven by stronger Ekman upwelling. If the ACC was stronger and surface stratification weaker in the LLIG than the LH, we suggest that a poleward shift in the SWW was ultimately responsible for the increase in SAMW P_{pre} .

Our evidence supports the hypothesis that low axial tilt could drive upwelling in the Southern Ocean. Ai et al. (2020) explained that the large difference they observed between measured, diatom-bound $\delta^{15}\text{N}$ in the Indian AZ and predicted $\delta^{15}\text{N}$ (from a model based on Antarctic air T) in the LLIG is due to this obliquity-driven mode of upwelling. In the LLIG, obliquity was lower than the LH (Berger and Loutre, 1991), which could have led to a steepening of the low-to-high latitude T gradient and thus a strengthening of the SWW and the Ekman upwelling these winds drive during the LLIG. This mechanism facilitated upwelling despite Antarctic cooling across

639 the LLIG (Jouzel et al., 2007), which would have otherwise forced ACC fronts (and the SWW)
640 equatorward and weakened the ACC and SWW. As Ai et al. (2020) note, the Late Holocene is
641 also marked by declining obliquity, but average obliquity is still greater than the LLIG, allowing
642 for a weaker mid-to-high latitude T gradient and inferior upwelling during the LH relative to the
643 LLIG, despite warmer Antarctic temperatures in the LH.

644

645 *4.4.3 Higher equatorial surface productivity during the LLIG*

646 As stated in the introduction, several studies have suggested that, during the LLIG, surface
647 productivity was higher than the Late Holocene in equatorial regions in the Atlantic, Pacific, and
648 Indian Oceans (Piacsek et al., 2021; Marcantonio et al., 2020; Kawahata et al., 1998; Tangunan
649 et al., 2017; Romero et al., 2012). The cores from which these productivity records were
650 developed all underlie surface waters within the circumequatorial band of Si* from $-10 \mu\text{mol kg}^{-1}$
651 to $-15 \mu\text{mol kg}^{-1}$ (defined as the difference between concentrations of silicic acid and nitrate;
652 Sarmiento et al., 2004); this range is characteristic of SAMW, implying that SAMW nutrient
653 content modulates surface productivity at these sites (Sarmiento et al., 2004). The relationship
654 between SAMW nutrient concentration and equatorial productivity—including changes in the
655 Southern Westerly Winds serving as a driving mechanism for change in SAMW P_{pre} —has been
656 inferred from modern SAMW trends and the shifts in equatorial productivity with which they
657 correlate well (Ayers & Strutton, 2013). Almost all of the equatorial productivity records we cite
658 include age models developed from radiocarbon and planktonic foraminiferal $\delta^{18}\text{O}$, so we argue
659 that incongruity in age models is not a challenge to the explanation of LLIG changes in these
660 equatorial cores using data from the reconstructions we generated.

661 Due to the paucity of records of intermediate water nutrient concentration that resolve the
662 LLIG, records that describe higher equatorial productivity during the LLIG than the LH could
663 previously only be explained by inference (that is, under the substantiated assumption that light
664 and micronutrient delivery were not limiting productivity during the LLIG; see *Introduction*).
665 Now, our records indicate that these reconstructed increases in equatorial productivity may be
666 attributable to the increase in SAMW preformed nutrients that we infer.

667

668 *5. Conclusions*

669

670 We presented new records of temperature, seawater cadmium concentration, and bottom-
671 water dissolved oxygen content from the Bahamas side of the Florida Straits. We observe that, in
672 the Late Last Interglacial, Cd_w was substantially higher than the average Late Holocene value (a
673 difference of over 60%) with an incongruously small increase in apparent oxygen utilization. The
674 published evidence from an array of sediment cores in the Atlantic (Robinson & Sigman, 2008),
675 Indian (Ai et al., 2024), and Pacific (Lamy et al., 2024; Studer et al., 2015) sectors of the
676 Southern Ocean are consistent with southward-shifted Southern Westerly Winds and Antarctic
677 Circumpolar Current in the LLIG relative to the LH, which would come with a strengthening of
678 these atmospheric and oceanic currents. With a strengthening in SWW would come an increase
679 in Ekman upwelling in the Southern Ocean, which would decrease surface residence time and
680 increase the nutrient supply to the photic layer, assuming a relatively constant level of nutrients
681 in the deep waters mixing upward there (Oppo and Rosenthal, 1994). Such changes led to a
682 decrease in the degree of nutrient consumption and an increase in the nutrient load borne by the
683 surface waters as they mixed downward in the Subantarctic Zone to form Subantarctic Mode
684 Water. Thus, we propose that higher preformed phosphate in SAMW during the LLIG was
685 responsible for much of the change in Florida Straits Cd_w we reconstruct.

686 Due to the impact of SAMW nutrient concentration on tropical productivity (Sarmiento et al.,
687 2004), we also attribute previously unexplained increases in equatorial productivity observed in
688 the Atlantic (Piacsek et al., 2021), Pacific (Marcantonio et al., 2020), and Indian (Romero et al.,
689 2012; Tangunan et al., 2017) Oceans during the Late Last Interglacial to the increase in SAMW
690 preformed nutrients.

691

692 *Data Availability:*

693 The novel data used to draw the conclusions in this paper are archived in the PANGAEA database (Sipp-
694 Alpers et al., 2025).

695

696 *Conflict of Interest Statement:*

697 The authors declare that they have no conflicts of interest according to affiliations or funding which could
698 influence the contents of this work.

699

700 *Acknowledgements:*

701 The authors would like to thank S. Wang and W. Lu for providing previously unpublished trace metal data;
702 K. Thirumalai and A. Manoogian for the development of replicate isotopic measurements on *Globobulimina spp.*; B.
703 Buyurgan for assistance with age model software; L. van Maldegem for assistance in the INSTAAR Trace Metal
704 Lab; D. Sigman and I. Bolden for helpful discussions; and two anonymous reviewers for their helpful comments.
705 This work was supported by the Georgia Tech School of Earth & Atmospheric Sciences Rutt Bridges Undergraduate
706 Research Award and by U.S. National Science Foundation Grants OCE-1851900 to Lynch-Stieglitz and OCE-
707 2233080 to Marchitto.

708 *References*

709

710

711 Ai, X. Y. E., Studer, A. S., Sigman, D. M., Martínez-García, A., Fripiat, F., Thöle, L. M., et al.
712 (2020). Southern Ocean upwelling, Earth's obliquity, and glacial-interglacial atmospheric
713 CO change. *Science*, 370(6522), 1348-+.

714 Ayers, J. M., & Strutton, P. G. (2013). Nutrient variability in Subantarctic Mode Waters forced
715 by the southern annular mode and ENSO. *Geophysical Research Letters*, 40(13), 3419–
716 3423.

717 Anderson, L. A., & Sarmiento, J. L. (1994). Redfield Ratios of Remineralization Determined by
718 Nutrient Data-Analysis. *Global Biogeochemical Cycles*, 8(1), 65-80.

719 Barnes, E. A., & Polvani, L. M. (2013). Response of the midlatitude jets, and of their variability,
720 to increased greenhouse gases in the CMIP5 models. *Journal of Climate*, 26(18), 7117–
721 7135.

722 Barnett, R. L. et al. (2023). Constraining the contribution of the Antarctic Ice Sheet to Last
723 Interglacial sea level. *Sci. Adv.* 9, eadf0198.

724 Berger, A., & Loutre, M. F. (1991). Insolation Values for the Climate of the Last 10000000
725 Years. *Quaternary Science Reviews*, 10(4), 297-317.

726 Bohm, E., Lippold, J., Gutjahr, M., Frank, M., Blaser, P., Antz, B., et al. (2015). Strong and deep
727 Atlantic meridional overturning circulation during the last glacial cycle. *Nature*,
728 517(7532), 73-U170.

729 Bova, S., Rosenthal, Y., Liu, Z. Y., Godad, S. P., & Yan, M. (2021). Seasonal origin of the
730 thermal maxima at the Holocene and the last interglacial. *Nature*, 589(7843), 548-+.

731 Boyle, E., Sclater, F. & Edmond, J. (1976). On the marine geochemistry of
732 cadmium. *Nature* 263, 42–44.

733 Boyle, E. A. (1983). Manganese carbonate overgrowths on foraminifera tests. *Geochimica et
734 Cosmochimica Acta*, 47, 1815-1819.

735 Boyle, E. A. (1992). Cadmium and $\delta^{13}\text{C}$ paleochemical ocean distributions during the Stage 2
736 glacial maximum. *Annual Review of Earth and Planetary Sciences*, 20, 245-287.

737 Boyle, E. A., Labeyrie, L., & Duplessy, J. C. (1995). Calcitic Foraminiferal Data Confirmed by
738 Cadmium in Aragonitic *Hoeglundina* - Application to the Last Glacial Maximum in the
739 Northern Indian-Ocean. *Paleoceanography*, 10(5), 881-900.

740 Boyle, E. A., & Rosenthal, Y. (1996). Chemical hydrography of the South Atlantic during the
741 Last Glacial Maximum: Cd vs. $\delta^{13}\text{C}$. In G. Wefer, W. H. Berger, G. Siedler, & D. Webb
742 (Eds.), *The South Atlantic: Present and Past Circulation* (pp. 423–443). Springer, Berlin,
743 Heidelberg.

744 Brandt, P., Körner, M., Moum, J. N., et al. (2025). Seasonal productivity of the equatorial
745 Atlantic shaped by distinct wind-driven processes. *Nature Geoscience*, 18, 84-90.

746 Bryan, S. P., & Marchitto, T. M. (2008). Mg/Ca-temperature proxy in benthic foraminifera: New
747 calibrations from the Florida Straits and a hypothesis regarding Mg/Li.
748 *Paleoceanography*, 23(2).

749 Bryan, S. P., & Marchitto, T. M. (2010). Testing the utility of paleonutrient proxies Cd/Ca and
750 Zn/Ca in benthic foraminifera from thermocline waters. *Geochemistry Geophysics
751 Geosystems*, 11.

752 Bryden, H. L., King, B. A., & McCarthy, G. D. (2011). South Atlantic overturning circulation at
753 24°S. *Journal of Marine Research*, 69(1), 39-56.

754 Costa, K. M., Jacobel, A. W., McManus, J. F., Anderson, R. F., Winckler, G., & Thiagarajan, N.
755 (2017). Productivity patterns in the equatorial Pacific over the last 30,000 years. *Global
756 Biogeochemical Cycles*, 31(5), 850-865.

757 Deutsch, C., & Weber, T. (2012). Nutrient Ratios as a Tracer and Driver of Ocean
758 Biogeochemistry. *Annual Review of Marine Science*, Vol 4, 4, 113-+.

759 Egbert, G. D., R. D. Ray, and B. G. Bills (2004), Numerical modeling of the global semidiurnal
760 tide in the present day and in the last glacial maximum, *J. Geophys. Res.*, 109, C03003.

761 Eggleston, S., Schmitt, J., Bereiter, B., Schneider, R., & Fischer, H. (2016). Evolution of the
762 stable carbon isotope composition of atmospheric CO₂ over the last glacial cycle.
763 *Paleoceanography*, 31(3), 434-452.

764 Elderfield, H., & Rickaby, R. E. M. (2000). Oceanic Cd/P ratio and nutrient utilization in the
765 glacial Southern Ocean. *Nature*, 405(6784), 305-310.

766 Ezat, M. M., Fahl, K., & Rasmussen, T. L. (2024). Arctic freshwater outflow suppressed Nordic
767 Seas overturning and oceanic heat transport during the Last Interglacial. *Nature
768 Communications*, 15(1).

769 Fripiat, F., Martínez-García, A., Marconi, D., Fawcett, S. E., Kopf, S. H., Luu, V. H., et al.
770 (2021). Nitrogen isotopic constraints on nutrient transport to the upper ocean. *Nature
771 Geoscience*, 14(11), 855-+.

772 Galaasen, E. V., et al. (2014). Rapid reductions in North Atlantic Deep Water during the peak of
773 the last interglacial period. *Science*, 343, 1129-1132.

774 Galaasen, E. V., et al. (2020). Interglacial instability of North Atlantic Deep Water ventilation.
775 *Science*, 367, 1485-1489.

776 Gray, W. R., de Lavergne, C., Wills, R. J. C., Menviel, L., Spence, P., Holzer, M., et al. (2023).
777 Poleward Shift in the Southern Hemisphere Westerly Winds Synchronous With the
778 Deglacial Rise in CO₂. *Paleoceanography and Paleoclimatology*, 38(7).

779 Green, J. A. M., C. L. Green, G. R. Bigg, T. P. Rippeth, J. D. Scourse, and K. Uehara (2009),
780 Tidal mixing and the Meridional Overturning Circulation from the Last Glacial
781 Maximum, *Geophys. Res. Lett.*, 36, L15603.

782 Guihou, A., Pichat, S., Govin, A., Nave, S., Labeyrie, L., Michel, E., Duplessy, J.-C., Telouk, P.,
783 & Waelbroeck, C. (2011). Enhanced Atlantic Meridional Overturning Circulation
784 supports the Last Glacial Inception. *Quaternary Science Reviews*, 30(13-14), 1576–1582.

785 Hoffman, J. S., Clark, P. U., Parnell, A. C., & He, F. (2017). Regional and global sea-surface
786 temperatures during the last interglaciation. *Science*, 355(6322), 276-279.

787 Hoogakker, B. A. A., Elderfield, H., Schmiedl, G., McCave, I. N., & Rickaby, R. E. M. (2015).
788 Glacial-interglacial changes in bottom-water oxygen content on the Portuguese margin.
789 *Nature Geoscience*, 8(1), 40-43.

790 Hoogakker, B. A. A., et al. (2025). Review of proxies for low-oxygen paleoceanographic
791 reconstructions. *Biogeosciences*, 22, 863-957.

792 Ito, T., Follows, M. J., & Boyle, E. A. (2004). Is AOU a good measure of respiration in the
793 oceans? *Geophysical Research Letters*, 31(17).

794 Jaccard, S. L., Hayes, C. T., Martínez-García, A., Hodell, D. A., Anderson, R. F., Sigman, D. M.,
795 & Haug, G. H. (2013). Two Modes of Change in Southern Ocean Productivity Over the
796 Past Million Years. *Science*, 339(6126), 1419-1423.

797 Jacobel, A. W., McManus, J. F., Anderson, R. F., & Winckler, G. (2017). Climate-related
798 response of dust flux to the central equatorial Pacific over the past 150 kyr. *Earth and*
799 *Planetary Science Letters*, 457, 160-172.

800 Johnson, G. C. (2008). Quantifying Antarctic Bottom Water and North Atlantic Deep Water
801 volumes. *Journal of Geophysical Research*, 113, C05027.

802 Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., et al.
803 (2007). Orbital and millennial Antarctic climate variability over the past 800,000 years.
804 *Science*, 317(5839), 793-796.

805 Karstensen, J., Stramma, L., & Visbeck, M. (2008). Oxygen minimum zones in the eastern
806 tropical Atlantic and Pacific oceans. *Progress in Oceanography*, 77(4), 331–350.

807 Kawahata, H., Suzuki, A., & Ahagon, N. (1998). Biogenic sediments in the West Caroline Basin,
808 the western equatorial Pacific during the last 330,000 years. *Marine Geology*, 149(1–4),
809 155–176.

810 Kohfeld, K. E., & Chase, Z. (2017). Temporal evolution of mechanisms controlling ocean carbon
811 uptake during the last glacial cycle. *Earth and Planetary Science Letters*, 472, 206–215.

812 Lamy, F., Winckler, G., Arz, H. W., Farmer, J. R., Gottschalk, J., Lembke-Jene, L., et al. (2024).
813 Five million years of Antarctic Circumpolar Current strength variability. *Nature*,
814 627(8005).

815 Leduc, G., Schneider, R., Kim, J. H., & Lohmann, G. (2010). Holocene and Eemian sea surface
816 temperature trends as revealed by alkenone and Mg/Ca paleothermometry. *Quaternary*
817 *Science Reviews*, 29(7–8), 989–1004.

818 Lee, T., Rand, D., Lisiecki, L. E., Gebbie, G., & Lawrence, C. (2023). Bayesian age models and
819 stacks: combining age inferences from radiocarbon and benthic $\delta^{18}\text{O}$ stratigraphic
820 alignment. *Climate of the Past*, 19(10), 1993–2012.

821 Little, S. H., Vance, D., Lyons, T. W., & McManus, J. (2015). Controls on trace metal authigenic
822 enrichment in reducing sediments: Insights from modern oxygen-deficient settings.
823 *American Journal of Science*, 315(2), 77–119.

824 Lisiecki, L. E., & Raymo, M. E. (2005). A Pliocene-Pleistocene stack of 57 globally distributed
825 benthic $\delta^{18}\text{O}$ records -: art. no. PA1003. *Paleoceanography*, 20(1).

826 Lisiecki, L. E. (2010). A simple mixing explanation for late Pleistocene changes in the Pacific-
827 South Atlantic benthic $\delta^{13}\text{C}$ gradient. *Climate of the Past*, 6, 305–314.

828 Lisiecki, L. E., & Stern, J. V. (2016). Regional and global benthic $\delta^{18}\text{O}$ stacks for the last glacial
829 cycle. *Paleoceanography*, 31(10), 1368-1394.

830 Lu, W. Y., Guo, W. F., & Oppo, D. W. (2024). Assessing the Precision and Accuracy of
831 Foraminifera Elemental Analysis at Low Ratios. *Geochemistry Geophysics Geosystems*,
832 25(10).

833 Lutze, G. F., & Thiel, H. (1989). Epibenthic foraminifera from elevated microhabitats:
834 *Cibicidoides wuellerstorfi* and *Planulina ariminensis*. *Journal of Foraminiferal Research*,
835 19, 153-158.

836 Lynch-Stieglitz, J., Curry, W. B., & Slowey, N. (1999). Weaker Gulf Stream in the Florida
837 straits during the last glacial maximum. *Nature*, 402(6762), 644-648.

838 Lynch-Stieglitz, J., W. B. Curry, and D. C. Lund (2009), Florida Straits density structure and
839 transport over the last 8000 years, *Paleoceanography*, 24, PA3209,

840 Lynch-Stieglitz, J., Schmidt, M. W., & Curry, W. B. (2011). Evidence from the Florida Straits
841 for Younger Dryas ocean circulation changes. *Paleoceanography*, 26.

842 Lynch-Stieglitz, J. and T. Marchitto, Tracers of past ocean circulation. (2014). In Holland H.D.
843 and Turekian K.K. (eds.), *Treatise on Geochemistry*, second edition. Oxford: Elsevier,
844 vol. 8, pp. 435-451.

845 Lynch-Stieglitz, J., Vollmer, T. D., Valley, S. G., Blackmon, E., Gu, S. F., & Marchitto, T. M.
846 (2024). A diminished North Atlantic nutrient stream during Younger Dryas climate
847 reversal. *Science*, 384(6696), 693-696.

848 Lynch-Stieglitz, J., & Fairbanks, R. G. (1994). Glacial-Interglacial History of Antarctic
849 Intermediate Water - Relative Strengths of Antarctic Versus Indian-Ocean Sources.
850 *Paleoceanography*, 9(1), 7-29.

851 Marcantonio, F., Hostak, R., Hertzberg, J. E., & Schmidt, M. W. (2020). Deep Equatorial Pacific
852 Ocean Oxygenation and Atmospheric CO₂ Over The Last Ice Age. *Scientific Reports*,
853 10(1).

854 Marchitto, T., Curry, W. & Oppo, D. (1998). Millennial-scale changes in North Atlantic
855 circulation since the last glaciation. *Nature* 393, 557–561.

856 Marchitto, T. M. (2006). Precise multielemental ratios in small foraminiferal samples determined
857 by sector field ICP-MS. *Geochemistry Geophysics Geosystems*, 7.

858 Marchitto, T. M., Oppo, D. W., & Curry, W. B. (2002). Paired benthic foraminiferal Cd/Ca and
859 Zn/Ca evidence for a greatly increased presence of Southern Ocean Water in the glacial
860 North Atlantic. *Paleoceanography*, 17(3).

861 Marchitto, T. M., Lynch-Stieglitz, J., & Hemming, S. R. (2005). Deep Pacific CaCO₃
862 compensation and glacial-interglacial atmospheric CO₂. *Earth and Planetary Science
863 Letters*, 231(3-4), 317-336.

864 Marchitto, T. M., Bryan, S. P., Doss, W., McCulloch, M. T., & Montagna, P. (2018). A simple
865 biomineralization model to explain Li, Mg, and Sr incorporation into aragonitic
866 foraminifera and corals. *Earth and Planetary Science Letters*, 481, 20–29.

867 Marcott, S. A., Shakun, J. D., Clark, P. U., & Mix, A. C. (2013). A Reconstruction of Regional
868 and Global Temperature for the Past 11,300 Years. *Science*, 339(6124), 1198-1201.

869 Martínez-García, A., et al. (2014). Iron fertilization of the Subantarctic Ocean during the last ice
870 age. *Science*, 343, 1347-1350.

871 Martrat, B., Grimalt, J. O., Shackleton, N. J., de Abreu, L., Hutterli, M. A., & Stocker, T. F.
872 (2007). Four climate cycles of recurring deep and surface water destabilizations on the
873 Iberian margin. *Science*, 317(5837), 502-507.

874 McCorkle, D. C., Martin, P. A., Lea, D. W., & Klinkhammer, G. P. (1995). Evidence of a
875 dissolution effect on benthic foraminiferal shell chemistry: δ¹³C, Cd/Ca, Ba/Ca, and
876 Sr/Ca results from the Ontong Java Plateau. *Paleoceanography*, 10(4), 699-714.

877 Middag, R., van Heuven, S. M. A. C., Bruland, K. W., & de Baar, H. J. W. (2018). The
878 relationship between cadmium and phosphate in the Atlantic Ocean unravelled. *Earth
879 and Planetary Science Letters*, 492, 79-88.

880 Nascimento, R. A., Shimizu, M. H., Venancio, I. M., Chiessi, C. M., Kuhnert, H., Johnstone, H.
881 J. H., et al. (2022). Warmer western tropical South Atlantic during the Last Interglacial
882 relative to the current interglacial period. *Global and Planetary Change*, 215.

883 Nomaki, H., Chikaraishi, Y., Tsuchiya, M., Toyofuku, T., Suga, H., Sasaki, Y., Ohkouchi, N., et
884 al. (2015). Variation in the nitrogen isotopic composition of amino acids in benthic
885 foraminifera: Implications for their adaptation to oxygen-depleted environments.
886 *Limnology and Oceanography*, 60(1), 1–17.

887 Oppo, D. W., Lu, W., Huang, K. F., Umling, N. E., Guo, W., Yu, J., et al. (2023). Deglacial
888 Temperature and Carbonate Saturation State Variability in the Tropical Atlantic at
889 Antarctic Intermediate Water Depths. *Paleoceanography and Paleoclimatology*, 38(9).

890 Oppo, D. W., & Rosenthal, Y. (1994). Cd/Ca Changes in a Deep Cape Basin Core over the Past
891 730,000 Years - Response of Circumpolar Deep-Water Variability to Northern-
892 Hemisphere Ice-Sheet Melting. *Paleoceanography*, 9(5), 661-675.

893 Oppo, D. W., & Fairbanks, R. G. (1990). Atlantic Ocean thermohaline circulation of the last
894 150,000 years: Relationship to climate and atmospheric CO₂. *Paleoceanography*, 5 (3),
895 277-288.

896 Pelejero, C., Grimalt, J. O., Heilig, S., Kienast, M., & Wang, L. J. (1999). High-resolution
897 U(K)₃₇ temperature reconstructions in the South China Sea over the past 220 kyr.
898 *Paleoceanography*, 14(2), 224-231.

899 Petit, J. R., Jouzel, J., Raynaud, D., et al. (1999). Climate and atmospheric history of the past
900 420,000 years from the Vostok ice core, Antarctica. *Nature*, 399, 429-436.

901 Piacsek, P., Behling, H., Gu, F., Venancio, I. M., Lessa, D. V. O., Belem, A., & Albuquerque, A.
902 L. S. (2021). Changes in sea surface hydrography and productivity in the western
903 equatorial Atlantic since the last interglacial. *Palaeogeography Palaeoclimatology*
904 *Palaeoecology*, 562.

905 Palter, J. B., Sarmiento, J. L., Gnanadesikan, A., Simeon, J., & Slater, R. D. (2010). Fueling
906 export production: Nutrient return pathways from the deep ocean and their dependence
907 on the Meridional Overturning Circulation. *Biogeosciences*, 7, 3549-3568.

908 Robinson, R. S., & Sigman, D. M. (2008). Nitrogen isotopic evidence for a poleward decrease in
909 surface nitrate within the ice age Antarctic. *Quaternary Science Reviews*, 27(9-10), 1076-
910 1090.

911 Romero, O. E., Mohtadi, M., Helmke, P., & Hebbeln, D. (2012). High interglacial diatom
912 paleoproductivity in the westernmost Indo-Pacific Warm Pool during the past 130,000
913 years. *Paleoceanography*, 27.

914 Roshan, S., & DeVries, T. (2021). Global contrasts between oceanic cycling of cadmium and
915 phosphate. *Global Biogeochemical Cycles*, 35(6), e2021GB006952.

916 Sarmiento, J. L., Gruber, N., Brzezinski, M. A., & Dunne, J. P. (2004). High-latitude controls of
917 thermocline nutrients and low latitude biological productivity. *Nature*, 427(6969), 56-60.

918 Schlitzer, Reiner, Ocean Data View, <https://odv.awi.de>, 2023.

919 Schneider, R.R., Müller, P.J., Ruhland, G., Meinecke, G., Schmidt, H., Wefer, G. (1996). Late
920 Quaternary Surface Temperatures and Productivity in the East-Equatorial South Atlantic:
921 Response to Changes in Trade/Monsoon Wind Forcing and Surface Water Advection. In:
922 The South Atlantic. Springer, Berlin, Heidelberg.

923 Sigman, D. M., Fripiat, F., Studer, A. S., Kemeny, P. C., Martínez-García, A., Hain, M. P., Ai,
924 X., Wang, X., Ren, H., & Haug, G. H. (2021). The Southern Ocean during the ice ages: A
925 review of the Antarctic surface isolation hypothesis, with comparison to the North
926 Pacific. *Quaternary Science Reviews*, 254, Article 106732.

927 Sipp-Alpers, I. Lynch-Stieglitz, J. Vollmer, T. Marchitto, T. (2025). Isotopic and trace metal
928 records of benthic foraminifera from Florida Straits sediment cores KNR166-2-JPC80
929 and KNR166-2-GGC73 [Dataset]. PANGAEA,
930 <https://doi.org/10.1594/PANGAEA.985385>

931 Skonieczny, C., McGee, D., Winckler, G., Bory, A., Bradtmiller, L. I., Kinsley, C. W., et al.
932 (2019). Monsoon-driven Saharan dust variability over the past 240,000 years. *Science
933 Advances*, 5(1).

934 Slowey, N. C., & Curry, W. B. (1995). Glacial-interglacial differences in circulation and carbon
935 cycling within the upper western North Atlantic. *Paleoceanography*, 10, 715-732.

936 Su, X., Liu, C., Beaufort, L., Barbarin, N., & Jian, Z. (2015). Differences in Late Quaternary
937 primary productivity between the western tropical Pacific and the South China Sea:
938 Evidence from coccoliths. *Deep-Sea Research Part II: Topical Studies in Oceanography*,
939 122, 131–141.

940 Sun, Y., & An, Z. (2005). Late Pliocene-Pleistocene changes in mass accumulation rates of
941 eolian deposits on the central Chinese Loess Plateau. *Journal of Geophysical Research*,
942 110, D23101.

943 Tangunan, D., Baumann, K. H., Pätzold, J., Henrich, R., Kucera, M., De Pol-Holz, R., &
944 Groeneveld, J. (2017). Insolation forcing of coccolithophore productivity in the western
945 tropical Indian Ocean over the last two glacial-interglacial cycles. *Paleoceanography*,
946 32(7), 692-709.

947 Thibodeau, B., Bauch, H. A., & Pedersen, T. F. (2017). Stratification-induced variations in
948 nutrient utilization in the Polar North Atlantic during past interglacials. *Earth and*
949 *Planetary Science Letters*, 457, 127-135.

950 Tyrrell, T. (2008). Calcium carbonate cycling in future oceans and its influence on future
951 climates. *Journal of Plankton Research*, 30(2), 141-156.

952 Valley, S., Lynch-Stieglitz, J., & Marchitto, T. M. (2017). Timing of Deglacial AMOC
953 Variability From a High-Resolution Seawater Cadmium Reconstruction.
954 *Paleoceanography*, 32(11), 1195-1203.

955 Valley, S. G., Lynch-Stieglitz, J., & Marchitto, T. M. (2019). Intermediate water circulation
956 changes in the Florida Straits from a 35 ka record of Mg/Li-derived temperature and
957 Cd/Ca-derived seawater cadmium. *Earth and Planetary Science Letters*, 523.

958 Veeh, H. H. (1966). Th230/U238 and U234/U238 ages of Pleistocene high sea level stand, J.
959 *Geophys. Res.*, 71(14), 3379–3386.

960 Vollmer, T. D., Ito, T., & Lynch-Stieglitz, J. (2022). Proxy-based preformed phosphate estimates
961 point to increased biological pump efficiency as primary cause of Last Glacial Maximum
962 CO₂ drawdown. *Paleoceanography and Paleoclimatology*, 37, e2021PA004339.

963 Weiffenbach, J. E., Baatsen, M. L. J., Dijkstra, H. A., von der Heydt, A. S., Abe-Ouchi, A.,
964 Brady, E. C., et al. (2023). Unraveling the mechanisms and implications of a stronger
965 mid-Pliocene Atlantic Meridional Overturning Circulation (AMOC) in PlioMIP2.
966 *Climate of the Past*, 19(1), 61-85.

967 Winckler, G., Anderson, R. F., Jaccard, S. L., Marcantonio, F. (2016). Ocean dynamics, not dust,
968 have controlled equatorial Pacific productivity over the past 500,000 years. *PNAS*,
969 113(22), 6119-6124.

970 Xu, Y. Y., Wanninkhof, R., Osborne, E., Baringer, M., Barbero, L., Cai, W. J., & Hooper, J.
971 (2022). Inorganic Carbon Transport and Dynamics in the Florida Straits. *Journal of*
972 *Geophysical Research-Oceans*, 127(10).

973