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Abstract. We introduce SOUMAP (Self-Organizing Uniform Mani-
fold Approximation and Projection) as an alternative to regular Self-
Organizing Map (SOM) learning intended to improve clustering of the
resulting output space. Improvement is achieved by abandoning the
SOM’s rigid lattice structure in favor of a more expressive output
topology afforded by Uniform Manifold Approximation and Projection
(UMAP), which is incrementally learned in conjunction with SOUMAP
prototypes. As in regular SOM learning, the Hebbian connection formed
between input and output spaces results in a topologically trustwor-
thy low-dimensional embedding amenable to clustering. Through con-
trolled experiments we show that SOUMAP’s more expressive “lattice”
improves the quality of clusterings obtained from it.

Keywords: Self-Organizing Maps + Dimensionality Reduction -
Clustering

1 Introduction

Dimensionality reduction (DR) techniques serve various purposes in data anal-
ysis and machine learning. As feature selectors, they are often used as a pre-
processor to either reduce the computational burden or improve performance
of subsequent learning stages. When used to project high-dimensional data to
two or three dimensions, DR techniques allow visualization of high-d structures;
such visualizations are often used to inform or validate data clusterings, and as
scaffolding upon which summary statistics of high-d manifolds can be visualized
in an organized manner. For success in these latter roles, it is crucial that the
outputs of DR algorithms are fiducial representations of high-d structure.

Modern DR techniques such as t-Stochastic Neighbor Embedding (t-SNE,
[8]) and Uniform Manifold Approximation and Projection (UMAP, [10]) have
become commonplace tools for data summarization across research disciplines,
with heavy use in the life and physical sciences. Despite recent work shedding
light on how t-SNE and UMAP produce such expressive embeddings [1,2] con-
fusion persists about about how faithfully either preserve underlying data struc-
ture. This confusion arises partly from potential user (mis-)parameterization,
but also from optimization of their cost functions [2,3].
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On the other end of the (dis-)trust spectrum is Kohonen’s Self-Organizing
Map (SOM), whose non-linear projections are constrained to a low-dimensional
(usually 2- or 3-d) lattice. While this constraint typically results in a less
expressive embedding of high-d manifolds, SOM embeddings are assumed to
be (approximately) topology-preserving due to both their robustness to (mis-)
parameterization and their explicit and simple Hebbian learning link between
low- and high-d spaces [6]. This link establishes a feedback mechanism between
learned representations in input and output spaces, bolstering our trust in both
at termination of learning. Further, associated visualizations [12] readily convey
where a SOM is not topology preserving, which provides insurance against faulty
inferences from its learning.

This work is motivated by a desire to combine the visual expressiveness of t-
SNE or UMAP DR with the trustworthiness and inferential confidence offered by
the SOM. We achieve this by replacing the rigid SOM lattice with a more nimble
low-d topology obtained via UMAP during iterative self-organizing learning.
Thus, our contributions can be thought of as either adding a competitive learning
phase to UMAP, or removing the dependence of the SOM on its lattice; both are
correct. As in Kohonen’s mapping, and in contrast to similarly motivated work
[5], SOUMAP’s learning rule inextricably marries its prototype formation to
the topology of its (prevailing) output space which bolsters confidence that the
latter accurately represents the former. In the following sections we outline the
methodology for a Self-Organizing UMAP (SOUMAP) (Sect. 3) and highlight
experiments showing its utility (Sect. 5).

We stress that SOUMARP is a flexible framework marrying competitive Heb-
bian learning with alternative output space topologies, which could arise from
any DR technique. Here, we have chosen UMAP due to its speed but could just
as easily have prescribed a Self-Organizing {t-SNE, Autoencoder, ISOMAP, ...}
following the same logic presented here.

2 Background

2.1 The Self-Organizing Map

A SOM is an unsupervised neural network that mimics how the cortex of the
human brain summarizes and organizes information. SOMs consists of a rigid
(usually 2-d) lattice &£ = {I;}}, of M artificial neurons, each of which is con-
nected to its input space by a d—dimensional weight vector known as a prototype.
In this work we denote prototypes by W = {w; € R4}M . The SOM learns a
sample X = {z, € R}V, of size N, assumed to arise from manifold J with
density f(x), by simultaneously (1) positioning its M << N prototypes in R?
to estimate f and (2) organizing the prototypes’ associated neurons on £ to
represent the structure of 4. Thus, the SOM performs vector quantization and
nonlinear DR. SOM-based clusterings utilize both of these learned results to
partition data.

The topology-preserving SOM mapping M — &£ is formed via an iterative
two-step learning rule relying on competition (among the prototypes to represent
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each datum) and cooperation (among lattice neurons as prototypes are updated).
The latter is important to this project so we reiterate: the SOM lattice & influ-
ences its prototype formation during learning. This influence makes the SOM
robust to spurious network initialization and bestows the topology-preserving
properties upon the learned mapping.

To be more explicit we define BMU1(s) = argmin; §(zs,w;) as the best
matching unit (i.e., the index of the prototype of minimum distance) of a partic-
ular observations xs. We have let (-, -) denote an arbitrary distance, although
it is typically prescribed as Euclidean. At the start of learning, prototypes w;
and their associated lattice positions l; are initialized (either randomly, or via
some weakly-organizined manner such as a Principal Components Analysis of
the underlying data, [6]). At each iteration ¢, batch SOM learning (which we use
in this work) updates the prototypes as a weighted average of all input data,

SN n(i, BMU1(s), t) *

w;(t) = SN n(i, BMUL(s),t)

(1)

where the weighting is determined by the neighborhood function 7, defined on
&. n is typically a Gaussian smoothed by a time-annealed o (%):

n(i, j, t) = exp (—=6(1;,1;)%/20(t)?) (2)

where, here, 6(;,1;) is usually a geodesic distance on £. We denote geodesics
by A(:,) in what follows. Annealing o(t) from some initially large value to a
terminal small value o(T") = 1 ensures organization of £ with respect to W.

2.2 UMAP

UMAP [10] learns an embedding Y = {y; € R¥}Y | of arbitrary high-d points
P = {p; € RN | where d’ << d is user-specified at the onset of learning. Y’
arises via stochastic gradient descent of the UMAP cost function

Cu ==Y | pijlog(i) + (1 — pj) log(1 — dy;) | - (3)

ij

attractive repulsive
The p;; terms are similarities € [0, 1] between high-d points p; and p;:

pig = (ijli + ags) = Hyatigy,  pg = e POPOPI 7O,

pi = min 6(p;, p;)
J'#i

where §(-,-) is usually Euclidean. p; is the nearest neighbor distance from p;,
so that p;); is a smoothed similarity between p; and all other points such that
max ji;;; = 1. # is a smoothing parameter found via binary search such that
Zj tj1i = logy (ky). ku is the most important user-supplied parameter to UMAP
controlling the number of nearest-neighbors UMAP attempts to preserve in its
embedding. j;; merely symmetrizes the ji;);.
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Likewise, the ¢;; terms of (3) are similarities of the associated points y;
and y; in the low-d embedding, given by ¢;; = (1 + a* 0(y;,y;)?°) "L ¢ is a
generalized Cauchy probability density, where tail thickness is controlled by a
and b. Minimization of UMAP’s cost proceeds by stochastic gradient descent for
a specified number of epochs Ty .

3 SOUMAP Methodology

SOUMAP is a hybrid, iterative paradigm linking competitive and cooperative
SOM learning (Sect. 2.1) with a UMAP embedding (Sect. 2.2) of the prevailing
SOM prototypes at each iteration.

SOUMAP initializes a regular SOM lattice and, after T, iterations of SOM
learning performs a small number (Ty) of UMAP iterations on the prevailing
values of W, replacing the neuron locations [; with the UMAP result y;. Pro-
totype updates proceed as normal, except the distance ¢ in the neighborhood
activation function 7 (2) is now computed with respect to the topology of Y. For
this purpose, we compute the Delaunay graph @y [4] of embedded points Y,
and measure the geodesic A(-,-) along Dy, instead of along £. From here on,
every SOUMAP iteration ¢ involves a prototype update, and every T iterations
another UMAP update is performed to modify Y (¢), using Y (¢t —T.) as UMAP’s
initial coordinates.

By allowing the neurons to abandon their initial lattice positions and slowly
drift toward something deemed more optimal (by UMAP), SOUMAP has the
capacity to produce a terminal configuration that is more expressive than &£,
and more topology-preserving than UMAP would produce on its own, if the
terminal SOM prototypes were embedded in a subsequent (separate) stage post-
learning. We present the overall SOUMAP algorithm pseudocode in Algorithm 1
and address several of its more exotic steps (compared to regular SOM learning)
in the remainder of this section.

During early SOM learning, larger values of o(t) tend to push many SOM
prototypes W to very similar values (major density peaks) for a short period of
time; this behavior is rectified as o(t) is annealed, which allows the prototypes
W to represent more nuanced regions of the underlying data density. This is
perfectly normal SOM behavior, where the lattice helps the prototypes unwind
to their ultimate refined positions.

However, UMAP is particularly sensitive to the high degree of correlation
among these infant prototypes and responds by embedding many prototypes
to nearly identical Y at early stages. Because we use Y (t — T,) as UMAP’s
initialization for the UMAP update at iteration ¢, this imparts lasting effects on
Y. Refraining from any UMAP updates until the SOM enters its convergence
phase would mitigate this, but would also prevent some of the clustering benefits
of SOUMAP discussed in Sect. 5. Instead, we have adopted a strategy where,
during early learning, UM AP updates are performed on the prevailing prototypes
at iteration t in conjunction with a sub-sample S(t) of X of size v(¢)N which
decreases with t. That is, UMAP is applied to W U S(¢), and the prototype
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Algorithm 1. SOUMAP

Inputs: X (data), £, 2Ly (lattice width and height), 7. (UMAP update frequency),
T (max. iterations), oo (starting width of SOM neighborhood), Ty (number of
UMAP epochs performed during incremental UMAP updates to Y)

Initialization: of SOM lattice £, geodesic distances A along £, and prototypes W

Learning:
t—1
while t < T do
o(t) < anneal neighborhood radius
W «— SOM prototype update, using n with A and o(t)
if ¢t mod 7. = 0 then
~(t) < anneal sub-sampling rate, sample S(¢) from X
Y «— UMAP projection (Ty epochs) of W U S(t)
Dy < Update Delaunay graph of Y
A «— Update geodesic distances along Dy

t—t+1

embeddings are extracted from this (joint) UMAP output. v(t) = o2(t)/|<] is
the sub-sampling rate at iteration ¢, where |£| is the cardinality of £. Over
time, |S(t)| decreases, ensuring the embedded prototypes Y reflect only their
high-d counterparts W at termination. We believe this sub-sampling strategy
predominately necessary when UMAP is used as the DR technique to produce
Y; UMAP’s sensitivity appears to stem from the oddities of its optimization
routine [3], as we do not observe similar behaviour when, e.g., t-SNE is used
instead.

4 Experiment Descriptions

4.1 Datasets, Parameterization, and Design

To assess SOUMAP performance for both of its tasks (prototype learning and
DR) we have conducted a series of experiments on samples of size N = 20,000
from the following datasets: worms64! is a synthetic dataset of dimension d =
64 containing 25 clusters of “worm-like” shapes; MINIST, Fashion-MNIST?,
and Kazushiji-MNIST? are commonly used databases of 28 x 28 pixel (d =
784) grayscale images of handwritten digits 0-9, 10 different articles of clothing,
and 10 different Japanese Hiragana characters, respectively.

For each dataset above, we perform regular (lattice-based) batch SOM learn-
ing (M = 2000 prototypes for worms64, M =~ 3600 for MNIST and its rela-
tives)and compare it to SOUMAP learning for the same number of total epochs

! https://cs.uef.fi/sipu/datasets/.
2 https://github.com/zalandoresearch/fashion-mnist.
3 https://github.com /rois-codh /kmnist.
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T = 50. For SOUMAP we allow UMAP updates of Ty = 100 epochs for every
T. = 5 of its iterations. The initial SOM geodesic radius oy was set to 25%
of the hexagonal lattice width and annealed exponentially to o(T = 50) = 1.
Thus, both the SOM and SOUMARP receive 50 batch updates to their prototypes;
SOUMAP receives a total of 1,000 (77:::55? x (Ty = 100)) epochs of UMAP learn-
ing of the evolving prototypes. For now, we have kept all UMAP parameters (in
particular, number of neighbors ky = 15) at their defaults. The increased com-
putational time for UMAP is negligble for these data; worst cases (MNIST and
its relatives, where M = 3600 784-d prototypes) require less than 10 additional
seconds for all 1,000 UMAP training epochs. To investigate a simpler analog
to SOUMAP we also compute prototypes via K-means (using the same M dis-
cussed above for SOM & SOUMAP), and embed them with default UMAP.
We denote this two-stage approach, where prototype learning and embedding
are sequentially separate processes, by KM+U. All three prototype generation
methods and their associated embeddings are compared in Sect. 5.

4.2 Quality Measures

We assess the performance of SOM and SOUMAP learning by measuring the
topology preservation and clustering amenability of each method.

Topology preservation measures (TPMs) assess how well high-d neighbor-
hoods are preserved when represented in a low-d embedding. Numerous TPMs
exist, varying mostly in their definition of “neighborhood.” We have selected two
for consideration: the k-Ary score, and the Weighted Average Folding Length.
The k-Ary score [7] measures the proportion of a high-d k-nearest neighborhood
around each prototype w; that is preserved after embedding w; as y; in low-d,
averaged over all ¢ € {1,..., M} prototypes. As this K-ary measure ([7, equa-
tion 15]) yields a performance curve over k € {1,...,M — 1}, we report the
area under such curve (AUC), normalized by its theoretical maximum (M-2),
for comparison across datasets. k-Ary is in the range [0, 1], with 1 indicating
perfect preservation of high-d neighborhoods of all sizes k.

The Weighted Average Folding Length (WAFL) [13] is a more local measure
of TP with respect to the data manifold. WAFL is based on the CADJ graph
with prototypes as vertices [12]. CADJ is a weighted version of the Induced
Delaunay Graph [9], which estimates topological adjacencies within the manifold
J from which X was sampled. Such adjacencies may be different, e.g., when two
prototypes are nearest Euclidean neighbors, but no data X exists between them.
Thus, CADJ is tuned to highlight seams in the learned manifold caused by its
disconnection at cluster boundaries. CADJ edge weights are given by

CADJ;; =Y I(BMUI1(s) =i A BMU2(s) = j) (4)
where I(-) is the indicator function, and BMU1(s) and BMU2(s) return the

indices of the first and second best matching units (nearest, and second-nearest
prototypes) to datum z,, respectively. The WAFL, defined as
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WAFL = % > CADJ;; * A, (5)
ij

reports the weighted average geodesic neighborhood radius along the Delaunay
graph @y of embedded prototypes required to include all high-d CADJ neigh-
bors. Thus, it measures the degree to which each CADJ edge is preserved as
a nearest geodesic neighbor in embedded space. An ideal value WAFL = 1
indicates all CADJ neighbors are preserved, while any WAFL > 1 grades the
mis-preservation accordingly.

Clustering assessments of both the learned SOUMAP prototypes, and their
projection Y, can help determine the suitability for SOUMAP as a clustering
tool. To this end, we compute an average of clustering quality metrics (the
Adjusted Rand Index — ARI, and Adjusted Mutual Information — AMI) using
the known data labels as ground truth; as each is more applicable in certain con-
ditions [11] we have averaged them into a single measure, ¢l = (AMT1+ ARI)/2.
To cluster learned W or Y we employ hierarchical agglomerative clustering with
single (HACS), complete (HACC), average (HACA), and Ward (HACW) link-
ages, compute ¢l for each, and accept the maximum resulting ¢/ value as the
reported metric for each dataset. We cluster both W and Y in this manner, pro-
ducing quality measures for both of SOM/SOUMAP’s prototypes and resulting
embeddings.

5 Results

Visual results from our experiments with each dataset are presented in Fig. 1,
where the final SOM embedding is shown at left, and the final SOUMAP embed-
ding shown at right. In each panel, neurons are colored by their corresponding
class label, which was assigned by plurality vote of the class labels of data in each
neuron’s receptive field (RF), which is defined as the set of {zs} mapped to each
neuron 4. Each neuron’s plotted size is scaled to the size of its receptive field;
dead neurons (those representing no data) have been removed. Additionally, the
thin gray lines connecting neurons depict the edges of the CADJ graph (4).
This visualization technique, which is an un-weighted analog of the CONNvis
visualization [12], helps identify topology violations; maps with better topology
preservation have overall shorter gray edges with minimal edge crossings.
Visual inspection of Fig.1 reveals strong organization for both the SOM
and SOUMAP. However, the final SOUMAP embeddings (right column) con-
tain more tightly packed clusters and, hence, more separation between clusters,
contributing to a more expressive representation of overall cluster structure.
This is the hallmark characteristic of UMAP which motivated SOUMAP in the
first place. SOUMAP’s early abandonment of the lattice has visually appealing
benefits, particularly for the more complicated data considered in these experi-
ments. For example, the SOM has signaled, to the best of its ability, a boundary
between the blue and orange clusters of FMNIST (representing images of boots
and handbags, respectively); SOUMAP’s delineation of this boundary clearly
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Fig. 1. Learned prototype embeddings of our experimental data from Sect. 4.
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Table 1. Quantitative Performance Measures, as defined in Sect. 4.2. Directional
arrows indicate better performance according to each measure.

worms64 | MNIST | FMNIST | KMNIST

Topology |k-Ary T | SOM 0.56 0.60 0.65 0.61
SOUMAP | 0.54 0.54 0.58 0.55

KM+U 0.21 0.42 0.44 0.41

WAFL |  SOM 1.37 1.44 1.24 1.34

SOUMAP | 1.28 1.23 1.16 1.17

KM+U 5.11 3.02 2.83 2.88

Clustering | W 1 SOM 0.70 0.54 0.46 0.44
SOUMAP | 0.73 0.62 0.51 0.45

KM+U 0.00 0.17 0.18 0.13

Y1 SOM 0.52 0.41 0.42 0.34

SOUMAP | 0.73 0.75 0.52 0.51

KM+U 0.48 0.77 0.49 0.48

separates bags not only from boots but also from the mixed coat/pullover /shirt
super class. More pronounced separation is visible for SOUMAP’s KMNIST
embedding; the SOM only weakly signals separation between the orange/brown,
green/pink, and gray/red character classes, but SOUMAP shows marked delin-
eation for these characters.

From Table 1 we observe that, of the two TPMs considered here, k-Ary and
WAFL report divergent trends: the SOM has a consistently higher (better) k-
Ary score, but also a consistently higher (worse) WAFL score, than SOUMAP.
Our UMAP parameterization is the cause of this behavior, as UMAP was only
instructed to attempt preservation of the ky = 15 nearest high-d neighbors; it
is doing so, but at the expense of higher-order neighborhoods. This is a known
trade-off between global and local views of data in DR techniques. However, as
the CADJ graph has proven a useful tool for SOM clustering, we believe fiducial
representation of CADJ neighborhoods more important than representation of
neighborhoods of all sizes, which is what k-Ary is designed to measure.

Turning to the clustering quality metric of Tablel, we see SOUMAP’s
strength is producing embeddings Y that are more amenable to clustering than
the regular SOM. This agrees with our visual assessments above which found
SOUMAP more expressive in general. Interestingly, there is also some small
improvement when clustering SOUMAP’s prototypes W directly; we assume
this is a result of SOUMAP’s output topology becoming tightly organized early
in the learning process. If such embedded structures are “real” (meaning they
faithfully represent analogous structure in high-d), it should be expected that
the learning reinforcement provided by the neighborhood function n would help
refine the high-d prototypes and bolster prototype clusterings.
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Fig. 2. K-means + UMAP Embeddings of the data from Sect. 4.

The hybrid K-means + UMAP baseline strategy produces seemingly coherent
embeddings of our data (Fig. 2) but underperforms both the SOM and SOUMAP
according to the quantitative measures of Table 1. While the embeddings result-
ing from KM+U possess clusterability similar to SOUMAP, the K-means pro-
totypes are not nearly as amenable to clean clustering. Additionally, the low-d
mapping of the two-stage KM+U procedure suffers from large degradation in
topology preservation. Combined, these results indicate there is much to be
gained from integrating the prototype learning and DR tasks, vs. performing
them sequentially.

6 Conclusions and Future Work

We have presented SOUMAP, a hybrid prototype learning scheme to harness all
of the benefits of SOM-based vector quantization (sample size and noise reduc-
tion) in conjunction with the expressive low-d visualizations of data provided
by UMAP. Our experiments show that SOUMAP is capable of both preserv-
ing the high quality of SOM-based VQ while simultaneously providing visually
appealing embeddings that are more amenable to cluster inference.

With the prototype learning rule established, the next stage in SOUMAP
development is a deeper analysis into the parameterization of its UMAP update
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stage. Ultimately we would prefer SOUMAP to be completely self-parameterized
and, with so many parameters at play, our UMAP stage would likely benefit from
parameter tuning. [13] outlines an automated procedure for specifying t-SNE’s
perplexity parameter based on an analysis of the CADJ graph (4); as UMAP
shares a similar parameter (number of neighbors, denoted ki here), we believe
a related analysis may partly contribute to a self-governed SOUMAP updating
process. Because UMAP is more complex than t-SNE (i.e., has more parameters,
and a wildly different optimization procedure), expanding upon [13] in a UMAP-
specific context is a necessary next step.
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