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Abstract. We introduce a framework for selecting the number of code-
book vectors in a vector quantizer based on local characteristics of the
data density, the degree to which the process of VQ distorts the repre-
sentation of this density, and the theoretical efficiency of estimators of
these densities. In our analysis, L? theory from kernel density estimation
relates the number of VQ prototypes to observed sample size, dimension,
and complexity, all of which intuitively influence codebook sizing.
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1 Introduction

Vector Quantization (VQ, [11]) is a technique for data encoding and compres-
sion used for a variety of pattern matching tasks in many domains. Given a
d-dimensional sample of data X = {zs € R?}Y | drawn from density f(z), VQ
algorithms learn a set of prototype or codebook vectors W = {w; € R4}M |
where typically M << N, to approximate f(x). The quantization function Q(z)
represents z by its Best Matching Unit (BMU) in W, which is the element of
W with minimum 7r-th order distortion (distance to z, also called quantization
error). Voluminous VQ research (see [12] for a thorough overview) has focused
primarily on theoretical considerations and implications of VQ design for either
a fized or asymptotically increasing number of prototypes. That is, given M,
much is known about optimal W, the behavior of the resulting quantization
error, the geometries of the resulting Voronoi partition, etc. By contrast, this
body of research has very little to say about specifying M in practical settings:
VQ theorists often assume M “large enough” to invoke limiting behaviors in
proofs; VQ practitioners may select M to meet constraints such as ensuring a
maximum quantization error, or size of the encoded signal. While situational
constraints may be used to set M in some domains, we are interested in VQ as a
tool to build prototype-based models in machine learning [2], which include, e.g.,
the Self-Organizing Map (SOM, [14]), Neural Gas (NG, [20]), Learning Vector
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Quantization (LVQ, [14]), and even K-means [19]. These algorithms are regularly
applied to domains where no hard constraints guide the selection of M.

Various rules-of-thumb and algorithmic enhancements have appeared over
the years to address this issue. In what follows, we present a framework for
choosing M based on concepts from density estimation theory. In Sect. 3 we
review methods for selecting M in practice; Sect. 4 presents a review of the
statistical theory of kernel density estimation, curated for our current needs;
Sect. 5 outlines our density-based framework, which is exercised on synthetic
data in Sect. 6.

2 VQ Theory

Optimal VQ design seeks the best codebook W to represent f(x), as measured
through minimum expected distortion, also called Quantization Error: [10]:

D)= [lo—wnll f@)de (1) W —arguinED] (2
{wi}lL,

While (1) has motivated the study of many theoretical aspects of VQs over the
last half-century, we briefly present two theoretical results first presented by
Zador [26] germane to this work. Both involve a crucial quantity o = W? which
we call the magnification exponent. Z1: Evaluated at its theoretical optimal W
(2), distortion (1) tends to 0 at rate o< ||f||aM~7 as M — oo. Here, ||f]|,
denotes the LP function norm. Z2: The prototypes W = {w;}M, (2) are joint
minimizers of (1) if and only if the point density of prototypes, which we denote
g(w), obeys the following power law with respect to the data density f:

g(w) = cf(w)®, c=1/ / f(w)* dw 3)

The consequence of Z1 is that an optimal VQ with larger M always results in
lower quantization error, which may suggest over-specifying M. Since prototype-
based ML models can lose pertinence or efficacy as M increases and the VQ
mapping tends toward the identity function, we have reason to prefer a more
parsimonious approach. One implication of Z2 is that prototypes resulting from
an optimal VQ can be thought of as a sample of size M from g = ¢f“. As defined,
a < 1 always with dllngo a = 1. Consequently, the density surface defined by g

magnifies parts of input space which have low measure according to f, and usu-
ally ensures g a smoother density than f, which will be important in Sect. 5 In
practice, we are not given f(z) but rather X, a sample of size N assumed to
be drawn from it, so the expectation of (1) is replaced by its empirical mean.
Unfortunately, this guarantees that minimization of (1) is NP hard. Neverthe-
less, a collection of practical algorithms [8,16,17,19] have been developed by
both engineers and statisticians to fit VQ models to observed data X. These
classical algorithms above are all based on competitive learning, indicating that
the prototypes “compete” to represent (quantize) each z;. Neural VQs, such as
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the SOM [14] and Neural Gas [20], add a cooperative element to their iterative
update rules where, at each learning step, prototype updates are influenced both
by their own receptive fields (like classical VQ) and by the RFs of neighboring
prototypes.

However, cooperation is known [6,14] to impart a new magnification expo-
nent a* on the resulting prototype density g. While several works have derived
theoretical expressions for o in restricted settings, no form exists for a neural
VQ with arbitrary but fixed M in general dimension d, although it is “certainly
less than unity” [14, Chapter 3|. While we will not attempt to add any fur-
ther insight to o in this work, we have highlighted the different magnification
behaviors of neural VQs to stress that the results of Sect. 5 will differ for them.

3 Existing Methods to Select M

In practice, VQ sizing is often done via trial-and-error, where M is specified along
a grid, VQ codebooks of size M are built, some measure of fit (e.g., quantization
error) computed, and the process repeated until a “good” codebook size is deter-
mined (or time/computational constraints are met); we stress the absence of
any universally acceptable definition of “good.” Various rules of thumb abound,
mostly in practical handbooks (e.g., [15]) and documentation for VQ algorithms,
with a wide range of suggested starting values for M. Letting M = O(ﬂN )
is a popular starting point for grid searching, which we note has analogs in Sil-
verman’s rule of thumb for selecting the resolution in KDEs [23]. Less ad-hoc
methods to select M exist, but most require that multiple VQs be fit [7], shift
the burden of specifying M to that of specifying alternate (possibly more obtuse)
parameters [9] or require additional information such as labeled data [24]. We
prefer a more self-supervised and formal approach. To do so, in the next section
we invoke theory from kernel density estimation where researchers have battled
the dilemma of optimal data resolution for over half a century.

4 Variable Kernel Density Estimation

The advantage of VQ, and the crux of our methodology, depends on its density
matching properties governed by the power law (3). As such, we pause now
to introduce relevant parts of density estimation theory of use in this work.
Specifically, we focus on variable KDEs, as they are better suited to higher-
dimensional settings [25], harkening the space filling advantage of VQs [18].
Kernel density estimation utilizes smoothing kernel functions K centered at
observed data X = {z4}, to approximate the density f(x) from which X
is assumed to be arise. Variable kernel density estimators (vKDES) prescribe
different orientations and levels smoothing amounts across RY, whereas fized
KDEs use the same smoothing parameters everywhere. Fixed KDEs are more
commonly employed, mostly because their construction is simpler but vKDEs
are capable of better performance in high-dimensional settings. We note that
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most of the theory below is summarized from [25], but we borrow some notation
from [4] for mathematical brevity. A multivariate vKDE has the form

N
~ 1 _ _
fomfy= 5 S K -w), Ku, = HKEY), @)
s=1

where y € R? is an arbitrary point and subscripts y denote function evaluation
at y. The kernel parameter H, is called the bandwidth matrix prescribing the
scale and rotation of smoothing K asserts amongst the sample points to produce
the estimate f . In contrast with fixed estimators, H, varies with y.

H, is the most important tuneable parameter of (4); we re-parameterize
it as H, = hyA,, where h, > 0 is a scalar controlling the kernel’s size and
A, : |A)| = 1is a d x d rotation matrix controlling its elliptical shape. To
achieve consistency, we require that h, — 0 as N — oo. The exact functional
form of K is less crucial to the success of (4) [23], but K is generally constrained
to be a probability density in its own right satisfying the following moment
conditions:

(i)/K(y) dy = 1; (ii)/yK(y) dy = 0; (iii)/nyK(y) dy=1I1s (5)

where I; is the d-dimensional identity matrix. For computational simplicity, K
is often assumed to be the pdf of standard multivariate Gaussian distribution.

4.1 L?-Error for vKDEs

We now give an overview of squared error analysis of (4), which is crucial to the
theory of KDEs and motivates the methodology presented in Sect. 5. Detailed
derivations of these results are found in, e.g., [25], [23, Chapter 6] and [4]. At
an arbitrary evaluation point y, pointwise squared error of (4) with bandwidth
parameter H, = h, A, is given by ( fy — fy)Q. Because fy is a random variable
(via its dependence on our sample X), it is more appropriate to consider point-

wise Mean Squared Error M SFE |:fy|Xi| =FEx [(fy‘x — fy)Q} where we have used

the notation fy|x to remind us that the fy is a function of the random sample
X. Pointwise bandwidth selection in kernel density estimation seeks H, as the
argmin of MSE [ fy}, which is often intractable (even if true f is known). To
circumvent this, asymptotic error analysis replaces f with its Taylor series expan-
sion in a window of shape/size H, about y. Ignoring order-3 terms and above in

the series results in the following Asymptotic Variance (AV) and Squared Bias
(ASB) decomposition (from [23], with notation from [4]):

AMSE[f,] = AVIf,]+ASBIf,] (6) AV, = fyhfj][fl o
2
ASBIf,) = by By (813, = |l (K) AZ Doro g, | (9)

Dy-
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In the above, R[K] = [ K(z)?dz denotes the statistical roughness of K and
py € {2,4} is the order of the estlmate7 based on the curvature of f, (p = 2 when
the Hessian V2 [y is positive or negative definite, p = 4 when it is indefinite). y,,
is the vectorized p,-th moment of the kernel, defined as yu,(K) = [2®PK(z)dz
where z®? is the p-th fold Kronecker product of the vector z € R? with itself (a
dP length vector, after vectorization). A? Pv is the py-th Kronecker product of A
with itself (a dP¥ x dPv matrix), and D®Pv = ayagpy is the vectorized p,-th fold
Kronecker power of the differential operator applied to f, whose dPv elements
contain all mixed partials of f up to order p,. More explanation of vectorized
higher-order derivatives can be found in [5].

Pointwise bandwidth selection minimizes AMSE]| fy] over h, and A,, which
is separable in these parameters as the latter enters only via 3,. [25] describes
this minimization over A, in great detail as its procedure various based on p,;
for brevity we reproduce the optimal bandwidth results below. Letting Ay be
the minimizer of 3, and [ its minimum value, the optimal bandwidth scale hy
and resulting AMSE is given by

. df_,,R[K]) 1/(d+2py)
= (SN 10
AMSE® [fy} = e[fy] N~2y/(d+2py) (11)
~ d/(d+2py)
Where e[fy] = (1 + p) (fy [ ])2py/(d+2py) (2271115;)

(11) tells us that vKDE error decreases with sample size N at a rate
O(N~2pu/(d+2Py)) wwhich is faster than fixed KDEs most everywhere [25]. We
harness this improvement in the methodology for sizing VQ codebooks described
below.

5 Methodology

5.1 Motivation

Our goal is to deduce a relationship between the number of VQ prototypes
M, the complexity of our data X, and the observed sample size N. This is
motivated by the assumption that encoding a large amount of complicated data
demands more prototypes — but how many more? The answer depends on how
one characterizes the loose notion of data complexity, which we formalize here.

Zador’s results summarized in Sect. 2 reveal that the M prototypes of an
optimal VQ follow the density g = cf“. Thus, fitting a VQ in practice with
sample X of size N results in a prototype sample W (from density g) of size
M. Density estimation theorists have spent decades formally characterizing how
(i.e., the process of kernel bandwidth selection), and to what degree of accuracy
(i.e., the resulting minimal AMSE), one can infer the underlying density from
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which a sample arises. Deeper scrutiny of their main conclusions, as encapsu-
lated in the terms of the optimal AMSE (11), reveal several analogues to data
considerations germane to VQ practitioners when specifying M, such as sam-
ple size, dimension, and data complexity (terms involving f, Df, etc.). Our
observation is that these M prototypes, if optimally derived, should
represent their density g as well as the data X represent their density
f. That is, we propose selecting M to best represent g, as measured via AMSE,
modulo the constraints on this process inherent in the observed sample X from
which W arises.

5.2 An Equivalent Sample Size Analysis for M

Statisticians compare estimators in terms of their relative efficiency, as measured
by their error. At evaluation point y,, we let f, and §, denote the theoretically
optimal variable density estimates of f, and g, based on samples X and W,
respectively. That is, fy and g have functional form given by (4) with sample
sizes N and M, respectively. The efficiency of § to f can be characterized by
quantity 7, which reports the ratio of their minimal errors:

B AMSE*[g] B €[3y] M —24y/(d+2qy) (12)
"7 AMSE[f) T[], NI/

where, for clarity, we have let ¢, denote the order of g, (the analog of p, for f,).
For given values of its RHS (including M and N), n conveys how much better
(n <1) or worse (n > 1) g, is at estimating g, than f, is at estimating f,; we
now have a functional form relating data complexity (the admittedly complex
ratio €[g,]/€| fy]), the observed sample size N, and the number of prototypes
M. Prescribing an acceptable efficiency n allows us to solve for the number of
prototypes required to achieve such efficiency at y, which is known as equivalent
sample size analysis in density estimation theory:

3 _ (d+2qy)/(29y)
My = (1 x eyl /elfy) x Noro/a2m) W

Taking the expectation of My over our sample gives an estimate of the aggregate
number of prototypes required to achieve efficiency 7 overall:

1 N
M :N;Mgﬁs. (14)

7 is the only tuneable parameter in our methodology and has a direct,
interpretable meaning; e.g., specifying n = 2 results in a number of prototypes
which represent g = cf® twice as badly as f could be represented with its
N observations. Thus, a practitioner only needs to choose their relative error
tolerance prior to constructing a VQ codebook.
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5.3 Practical Considerations

Evaluating M™ in practice is not trivial for various reasons and we pause now
to address computational roadblocks. Assuming f is known (for now), Zador’s
conclusions relate the prototype density g = cf® but we still must compute its
normalizing constant c¢. Empirical estimation of ¢ = Ex[f(X)®~1] is an option,
but this will suffer from the “curse of dimensionality” unless increasingly large
sample sizes are available. Instead, for now, we propose restricting f to the class
of Gaussian Mixture Models (f = >, wr¢(px, X)) and approximating true g
by the straightforward method of [1]. When true f is not known (most practical
settings), we propose using a preliminary pilot estimate fo directly from X using
Gaussian kernels, which is common among modern kernel smoothing methods
[4]. Finally, because the components of AMSE involve terms whose size grows
exponentially with data dimension d, computation of (11) demands the careful
algorithms of [5] for feasibility in arbitrary dimension.

6 Experiments and Discussion

We selected four Gaussian mixtures f from density estimation literature [3] to
showcase AMSE-modulated M*. These mixtures, abbreviated Mix. {8,9,11, 12},
have varying number of components and component-wise covariance structures
resulting in different complexities. The mixtures in the literature are all 2d;
because we would like to showcase M™ across a range of d we have expanded
their dimensionality by replicating each component-wise covariance across the
range d € {2,4,6,8,10, 20,40, 60,80,100}. Visuals of these mixtures in 2d are
given below, where colors correspond to the various mixture components.

Mix 8 (2 comp) Mix 9 (3 comp) Mix 11 (9 comp) Mix 12 (6 comp)
4

Each mixture and dimension listed above corresponds to a known data den-
sity f from which we estimate the prototype density g according to [1]. From
each f we sample X ~ f of size N = 10,000 and compute the number of proto-
types M* according to (14). To assess the suitability of M* we view it in relation
to [1] an information-theoretic characterization of data complexity, and [2] the
Mean Quantization Error resulting from K-means across a large range of M.

For measure [1], we compute the overall mean ji) and covariance X for each
f(m,d). Because the multivariate Gaussian density has maximum entropy for
continuous unbounded data with a given first and second moment, the KL-
Divergence from N(ji,X) to f(m,d) represents how far, in an information-
theoretic sense, f(m,d) is from maximum entropy; i.e., it is one measure of data
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complexity that is unitless (comparable across varying d). We posit that higher-
entropy mixtures should require more prototypes, which is generally confirmed
in Fig. 1. For each mixture KL increases with d, which is not unexpected as it
is known that higher-dimensional data tend to form “hubs” (clumps) in space
more strongly [21]. While M* generally decreases with K L it is not a completely
monotonic trend which is likely due to several factors: (a) we have empirically
estimated both KL and M* from our sample of size N = 10,000 so both are
subject to typical statistical estimation errors; (b) likely more influential is the
suitability of KL as the only oracle for data complexity.

In practice, it is common to build several VQs for the same data by varying
M and observing how the quantization error (distortion) behaves in response.
So-called knee-finding algorithms (e.g., [22]) are often used to help guide the eye
to points of regime switching along the QF vs. M curve. These curves, resulting
from fitting K-means for M in the range [10,9000] are shown in Fig. 2 for our two
most visually complicated mixtures (11 and 12). In each case, the M* selected
via (14) is shown on the curve (salmon points), along with the curve’s knee (dark
blue points) identified by [22].

Comparing the two, we see in Fig.1 that M* appears a conservative recom-
mendation for the number of prototypes, at least when we demand n = 1. We
also note the trend that as d increases M* — Mpnee, suggesting M* may signal
regime changes along the QF curve without the burden of constructing many
different quantizers, at least in higher-d cases.

Mix 8

\ * d
— \
4000 e \ e 2
Mix 9 \ \

) . 4
. e 6

3500 Mix 12
) \ 8

x e 10

= 3000
° 20
.
e 40
2500 S 60
o e 80
2000 100

03 1.0 3.0 10.0 30.0
KL Div from N(ft, £) to Mixture

Fig.1. M* from (14) with n = 1 vs. KL-Divergence from a N(fi, &) density to each
mixture of noted dimension. A larger KL divergence indicates the mixture is less com-
plicated, from an Information Theory perspective, relative to its overall scale.
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Fig. 2. Mean quantization error for Mixtures 11 and 12 (dark lines) produced by K-
means along a range of M. The salmon points indicate the M™ selected via our method,
and the dark blue points are the result of the knee-finding Kneedle algorithm [22].

7 Conclusions and Further Work

We have presented a framework for selecting the number of prototypes (code-
book vectors) in a vector quantizer modulated by squared-error theory of kernel
density estimation. The link between these two relies on a subset of VQ theory
defining the prototype density of an optimal quantizer. Crucially, our equiva-
lent sample size analysis, common in analyses of statistical estimators, replaces
ad-hoc or rule-of-thumb methods for sizing codebooks with a formalism whose
only parameter 7 is a meaningful measure of relative estimator efficiency. Spec-
ification of M™ is completely a-priori, alleviating the need to fit multiple vector
quantizer(s). Of further benefit, our methodology can be inverted to reveal the
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(relative) impact of a given codebook size on the ability for resulting prototypes
to to represent their density (and, in turn, the data density).

For this introductory work we have restricted experimentation to synthetic
cases where the data density f is known; in the future we will remove this
restriction by prescribing a pilot estimation scheme such as in [4] to select M
in more general settings. Inspired by [13], we also believe uniformly demanding
n = 1 (as done in our initial experiments) may err on a conservative estimate
M*; further experiments with a range of 7 efficiencies are planned.
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